blob: 8cf267c0ac8909fab3450dd3fc49ebaa2acedb3b [file] [log] [blame]
//! A flash simulator
//!
//! This module is capable of simulating the type of NOR flash commonly used in microcontrollers.
//! These generally can be written as individual bytes, but must be erased in larger units.
use std::iter::Enumerate;
use std::slice;
use pdump::HexDump;
error_chain! {
errors {
OutOfBounds(t: String) {
description("Offset is out of bounds")
display("Offset out of bounds: {}", t)
}
Write(t: String) {
description("Invalid write")
display("Invalid write: {}", t)
}
}
}
fn ebounds<T: AsRef<str>>(message: T) -> ErrorKind {
ErrorKind::OutOfBounds(message.as_ref().to_owned())
}
fn ewrite<T: AsRef<str>>(message: T) -> ErrorKind {
ErrorKind::Write(message.as_ref().to_owned())
}
/// An emulated flash device. It is represented as a block of bytes, and a list of the sector
/// mapings.
#[derive(Clone)]
pub struct Flash {
data: Vec<u8>,
sectors: Vec<usize>,
}
impl Flash {
/// Given a sector size map, construct a flash device for that.
pub fn new(sectors: Vec<usize>) -> Flash {
let total = sectors.iter().sum();
Flash {
data: vec![0xffu8; total],
sectors: sectors,
}
}
/// The flash drivers tend to erase beyond the bounds of the given range. Instead, we'll be
/// strict, and make sure that the passed arguments are exactly at a sector boundary, otherwise
/// return an error.
pub fn erase(&mut self, offset: usize, len: usize) -> Result<()> {
let (_start, slen) = self.get_sector(offset).ok_or_else(|| ebounds("start"))?;
let (end, elen) = self.get_sector(offset + len - 1).ok_or_else(|| ebounds("end"))?;
if slen != 0 {
bail!(ebounds("offset not at start of sector"));
}
if elen != self.sectors[end] - 1 {
bail!(ebounds("end not at start of sector"));
}
for x in &mut self.data[offset .. offset + len] {
*x = 0xff;
}
Ok(())
}
/// Writes are fairly unconstrained, but we restrict to only allowing writes of values that
/// are entirely written as 0xFF.
pub fn write(&mut self, offset: usize, payload: &[u8]) -> Result<()> {
if offset + payload.len() > self.data.len() {
bail!(ebounds("Write outside of device"));
}
let mut sub = &mut self.data[offset .. offset + payload.len()];
if sub.iter().any(|x| *x != 0xFF) {
bail!(ewrite("Write to non-FF location"));
}
sub.copy_from_slice(payload);
Ok(())
}
/// Read is simple.
pub fn read(&self, offset: usize, data: &mut [u8]) -> Result<()> {
if offset + data.len() > self.data.len() {
bail!(ebounds("Read outside of device"));
}
let sub = &self.data[offset .. offset + data.len()];
data.copy_from_slice(sub);
Ok(())
}
// Scan the sector map, and return the base and offset within a sector for this given byte.
// Returns None if the value is outside of the device.
fn get_sector(&self, offset: usize) -> Option<(usize, usize)> {
let mut offset = offset;
for (sector, &size) in self.sectors.iter().enumerate() {
if offset < size {
return Some((sector, offset));
}
offset -= size;
}
return None;
}
/// An iterator over each sector in the device.
pub fn sector_iter(&self) -> SectorIter {
SectorIter {
iter: self.sectors.iter().enumerate(),
base: 0,
}
}
pub fn device_size(&self) -> usize {
self.data.len()
}
pub fn dump(&self) {
self.data.dump();
}
}
/// It is possible to iterate over the sectors in the device, each element returning this.
#[derive(Debug)]
pub struct Sector {
/// Which sector is this, starting from 0.
pub num: usize,
/// The offset, in bytes, of the start of this sector.
pub base: usize,
/// The length, in bytes, of this sector.
pub size: usize,
}
pub struct SectorIter<'a> {
iter: Enumerate<slice::Iter<'a, usize>>,
base: usize,
}
impl<'a> Iterator for SectorIter<'a> {
type Item = Sector;
fn next(&mut self) -> Option<Sector> {
match self.iter.next() {
None => None,
Some((num, &size)) => {
let base = self.base;
self.base += size;
Some(Sector {
num: num,
base: base,
size: size,
})
}
}
}
}
#[cfg(test)]
mod test {
use super::{Flash, Error, ErrorKind, Result, Sector};
#[test]
fn test_flash() {
// NXP-style, uniform sectors.
let mut f1 = Flash::new(vec![4096usize; 256]);
test_device(&mut f1);
// STM style, non-uniform sectors
let mut f2 = Flash::new(vec![16 * 1024, 16 * 1024, 16 * 1024, 64 * 1024,
128 * 1024, 128 * 1024, 128 * 1024]);
test_device(&mut f2);
}
fn test_device(flash: &mut Flash) {
let sectors: Vec<Sector> = flash.sector_iter().collect();
flash.erase(0, sectors[0].size).unwrap();
let flash_size = flash.device_size();
flash.erase(0, flash_size).unwrap();
assert!(flash.erase(0, sectors[0].size - 1).is_bounds());
// Verify that write and erase do something.
flash.write(0, &[0]).unwrap();
let mut buf = [0; 4];
flash.read(0, &mut buf).unwrap();
assert_eq!(buf, [0, 0xff, 0xff, 0xff]);
flash.erase(0, sectors[0].size).unwrap();
flash.read(0, &mut buf).unwrap();
assert_eq!(buf, [0xff; 4]);
// Program the first and last byte of each sector, verify that has been done, and then
// erase to verify the erase boundaries.
for sector in &sectors {
let byte = [(sector.num & 127) as u8];
flash.write(sector.base, &byte).unwrap();
flash.write(sector.base + sector.size - 1, &byte).unwrap();
}
// Verify the above
let mut buf = Vec::new();
for sector in &sectors {
let byte = (sector.num & 127) as u8;
buf.resize(sector.size, 0);
flash.read(sector.base, &mut buf).unwrap();
assert_eq!(buf.first(), Some(&byte));
assert_eq!(buf.last(), Some(&byte));
assert!(buf[1..buf.len()-1].iter().all(|&x| x == 0xff));
}
}
// Helper checks for the result type.
trait EChecker {
fn is_bounds(&self) -> bool;
}
impl<T> EChecker for Result<T> {
fn is_bounds(&self) -> bool {
match *self {
Err(Error(ErrorKind::OutOfBounds(_), _)) => true,
_ => false,
}
}
}
}