blob: 1af8618b6deb48cfbd6a45df0432b76e00ca3e4f [file] [log] [blame]
//! TLV Support
//!
//! mcuboot images are followed immediately by a list of TLV items that contain integrity
//! information about the image. Their generation is made a little complicated because the size of
//! the TLV block is in the image header, which is included in the hash. Since some signatures can
//! vary in size, we just make them the largest size possible.
//!
//! Because of this header, we have to make two passes. The first pass will compute the size of
//! the TLV, and the second pass will build the data for the TLV.
use pem;
use base64;
use ring::{digest, rand};
use ring::signature::{
RsaKeyPair,
RSA_PSS_SHA256,
EcdsaKeyPair,
ECDSA_P256_SHA256_ASN1_SIGNING,
Ed25519KeyPair,
};
use untrusted;
use mcuboot_sys::c;
#[repr(u8)]
#[derive(Copy, Clone, PartialEq, Eq)]
#[allow(dead_code)] // TODO: For now
pub enum TlvKinds {
KEYHASH = 0x01,
SHA256 = 0x10,
RSA2048 = 0x20,
ECDSA224 = 0x21,
ECDSA256 = 0x22,
RSA3072 = 0x23,
ED25519 = 0x24,
ENCRSA2048 = 0x30,
ENCKW128 = 0x31,
}
#[allow(dead_code, non_camel_case_types)]
pub enum TlvFlags {
PIC = 0x01,
NON_BOOTABLE = 0x02,
ENCRYPTED = 0x04,
RAM_LOAD = 0x20,
}
/// A generator for manifests. The format of the manifest can be either a
/// traditional "TLV" or a SUIT-style manifest.
pub trait ManifestGen {
/// Retrieve the header magic value for this manifest type.
fn get_magic(&self) -> u32;
/// Retrieve the flags value for this particular manifest type.
fn get_flags(&self) -> u32;
/// Add a sequence of bytes to the payload that the manifest is
/// protecting.
fn add_bytes(&mut self, bytes: &[u8]);
/// Construct the manifest for this payload.
fn make_tlv(self: Box<Self>) -> Vec<u8>;
}
pub struct TlvGen {
flags: u32,
kinds: Vec<TlvKinds>,
size: u16,
payload: Vec<u8>,
}
pub const AES_SEC_KEY: &[u8; 16] = b"0123456789ABCDEF";
impl TlvGen {
/// Construct a new tlv generator that will only contain a hash of the data.
#[allow(dead_code)]
pub fn new_hash_only() -> TlvGen {
TlvGen {
flags: 0,
kinds: vec![TlvKinds::SHA256],
size: 4 + 32,
payload: vec![],
}
}
#[allow(dead_code)]
pub fn new_rsa_pss() -> TlvGen {
TlvGen {
flags: 0,
kinds: vec![TlvKinds::SHA256, TlvKinds::RSA2048],
size: 4 + 32 + 4 + 32 + 4 + 256,
payload: vec![],
}
}
#[allow(dead_code)]
pub fn new_rsa3072_pss() -> TlvGen {
TlvGen {
flags: 0,
kinds: vec![TlvKinds::SHA256, TlvKinds::RSA3072],
size: 4 + 32 + 4 + 32 + 4 + 384,
payload: vec![],
}
}
#[allow(dead_code)]
pub fn new_ecdsa() -> TlvGen {
TlvGen {
flags: 0,
kinds: vec![TlvKinds::SHA256, TlvKinds::ECDSA256],
size: 4 + 32 + 4 + 32 + 4 + 72,
payload: vec![],
}
}
#[allow(dead_code)]
pub fn new_ed25519() -> TlvGen {
TlvGen {
flags: 0,
kinds: vec![TlvKinds::SHA256, TlvKinds::ED25519],
size: 4 + 32 + 4 + 32 + 4 + 64,
payload: vec![],
}
}
#[allow(dead_code)]
pub fn new_enc_rsa() -> TlvGen {
TlvGen {
flags: TlvFlags::ENCRYPTED as u32,
kinds: vec![TlvKinds::SHA256, TlvKinds::ENCRSA2048],
size: 4 + 32 + 4 + 256,
payload: vec![],
}
}
#[allow(dead_code)]
pub fn new_sig_enc_rsa() -> TlvGen {
TlvGen {
flags: TlvFlags::ENCRYPTED as u32,
kinds: vec![TlvKinds::SHA256, TlvKinds::RSA2048, TlvKinds::ENCRSA2048],
size: 4 + 32 + 4 + 32 + 4 + 256 + 4 + 256,
payload: vec![],
}
}
#[allow(dead_code)]
pub fn new_enc_kw() -> TlvGen {
TlvGen {
flags: TlvFlags::ENCRYPTED as u32,
kinds: vec![TlvKinds::SHA256, TlvKinds::ENCKW128],
size: 4 + 32 + 4 + 24,
payload: vec![],
}
}
#[allow(dead_code)]
pub fn new_rsa_kw() -> TlvGen {
TlvGen {
flags: TlvFlags::ENCRYPTED as u32,
kinds: vec![TlvKinds::SHA256, TlvKinds::RSA2048, TlvKinds::ENCKW128],
size: 4 + 32 + 4 + 32 + 4 + 256 + 4 + 24,
payload: vec![],
}
}
#[allow(dead_code)]
pub fn new_ecdsa_kw() -> TlvGen {
TlvGen {
flags: TlvFlags::ENCRYPTED as u32,
kinds: vec![TlvKinds::SHA256, TlvKinds::ECDSA256, TlvKinds::ENCKW128],
size: 4 + 32 + 4 + 32 + 4 + 72 + 4 + 24,
payload: vec![],
}
}
/// Retrieve the size that the TLV will occupy. This can be called at any time.
pub fn get_size(&self) -> u16 {
4 + self.size
}
}
impl ManifestGen for TlvGen {
fn get_magic(&self) -> u32 {
0x96f3b83d
}
/// Retrieve the header flags for this configuration. This can be called at any time.
fn get_flags(&self) -> u32 {
self.flags
}
/// Add bytes to the covered hash.
fn add_bytes(&mut self, bytes: &[u8]) {
self.payload.extend_from_slice(bytes);
}
/// Compute the TLV given the specified block of data.
fn make_tlv(self: Box<Self>) -> Vec<u8> {
let mut result: Vec<u8> = vec![];
let size = self.get_size();
result.push(0x07);
result.push(0x69);
result.push((size & 0xFF) as u8);
result.push(((size >> 8) & 0xFF) as u8);
if self.kinds.contains(&TlvKinds::SHA256) {
let hash = digest::digest(&digest::SHA256, &self.payload);
let hash = hash.as_ref();
assert!(hash.len() == 32);
result.push(TlvKinds::SHA256 as u8);
result.push(0);
result.push(32);
result.push(0);
result.extend_from_slice(hash);
}
if self.kinds.contains(&TlvKinds::RSA2048) ||
self.kinds.contains(&TlvKinds::RSA3072) {
let is_rsa2048 = self.kinds.contains(&TlvKinds::RSA2048);
// Output the hash of the public key.
let hash = if is_rsa2048 {
digest::digest(&digest::SHA256, RSA_PUB_KEY)
} else {
digest::digest(&digest::SHA256, RSA3072_PUB_KEY)
};
let hash = hash.as_ref();
assert!(hash.len() == 32);
result.push(TlvKinds::KEYHASH as u8);
result.push(0);
result.push(32);
result.push(0);
result.extend_from_slice(hash);
// For now assume PSS.
let key_bytes = if is_rsa2048 {
pem::parse(include_bytes!("../../root-rsa-2048.pem").as_ref()).unwrap()
} else {
pem::parse(include_bytes!("../../root-rsa-3072.pem").as_ref()).unwrap()
};
assert_eq!(key_bytes.tag, "RSA PRIVATE KEY");
let key_bytes = untrusted::Input::from(&key_bytes.contents);
let key_pair = RsaKeyPair::from_der(key_bytes).unwrap();
let rng = rand::SystemRandom::new();
let mut signature = vec![0; key_pair.public_modulus_len()];
if is_rsa2048 {
assert_eq!(signature.len(), 256);
} else {
assert_eq!(signature.len(), 384);
}
key_pair.sign(&RSA_PSS_SHA256, &rng, &self.payload, &mut signature).unwrap();
if is_rsa2048 {
result.push(TlvKinds::RSA2048 as u8);
} else {
result.push(TlvKinds::RSA3072 as u8);
}
result.push(0);
result.push((signature.len() & 0xFF) as u8);
result.push(((signature.len() >> 8) & 0xFF) as u8);
result.extend_from_slice(&signature);
}
if self.kinds.contains(&TlvKinds::ECDSA256) {
let keyhash = digest::digest(&digest::SHA256, ECDSA256_PUB_KEY);
let keyhash = keyhash.as_ref();
assert!(keyhash.len() == 32);
result.push(TlvKinds::KEYHASH as u8);
result.push(0);
result.push(32);
result.push(0);
result.extend_from_slice(keyhash);
let key_bytes = pem::parse(include_bytes!("../../root-ec-p256-pkcs8.pem").as_ref()).unwrap();
assert_eq!(key_bytes.tag, "PRIVATE KEY");
let key_bytes = untrusted::Input::from(&key_bytes.contents);
let key_pair = EcdsaKeyPair::from_pkcs8(&ECDSA_P256_SHA256_ASN1_SIGNING,
key_bytes).unwrap();
let rng = rand::SystemRandom::new();
let payload = untrusted::Input::from(&self.payload);
let signature = key_pair.sign(&rng, payload).unwrap();
result.push(TlvKinds::ECDSA256 as u8);
result.push(0);
// signature must be padded...
let mut signature = signature.as_ref().to_vec();
while signature.len() < 72 {
signature.push(0);
signature[1] += 1;
}
result.push((signature.len() & 0xFF) as u8);
result.push(((signature.len() >> 8) & 0xFF) as u8);
result.extend_from_slice(signature.as_ref());
}
if self.kinds.contains(&TlvKinds::ED25519) {
let keyhash = digest::digest(&digest::SHA256, ED25519_PUB_KEY);
let keyhash = keyhash.as_ref();
assert!(keyhash.len() == 32);
result.push(TlvKinds::KEYHASH as u8);
result.push(0);
result.push(32);
result.push(0);
result.extend_from_slice(keyhash);
let hash = digest::digest(&digest::SHA256, &self.payload);
let hash = hash.as_ref();
assert!(hash.len() == 32);
let key_bytes = pem::parse(include_bytes!("../../root-ed25519.pem").as_ref()).unwrap();
assert_eq!(key_bytes.tag, "PRIVATE KEY");
let seed = untrusted::Input::from(&key_bytes.contents[16..48]);
let public = untrusted::Input::from(&ED25519_PUB_KEY[12..44]);
let key_pair = Ed25519KeyPair::from_seed_and_public_key(seed, public).unwrap();
let signature = key_pair.sign(&hash);
result.push(TlvKinds::ED25519 as u8);
result.push(0);
let signature = signature.as_ref().to_vec();
result.push((signature.len() & 0xFF) as u8);
result.push(((signature.len() >> 8) & 0xFF) as u8);
result.extend_from_slice(signature.as_ref());
}
if self.kinds.contains(&TlvKinds::ENCRSA2048) {
let key_bytes = pem::parse(include_bytes!("../../enc-rsa2048-pub.pem")
.as_ref()).unwrap();
assert_eq!(key_bytes.tag, "PUBLIC KEY");
let encbuf = match c::rsa_oaep_encrypt(&key_bytes.contents, AES_SEC_KEY) {
Ok(v) => v,
Err(_) => panic!("Failed to encrypt secret key"),
};
assert!(encbuf.len() == 256);
result.push(TlvKinds::ENCRSA2048 as u8);
result.push(0);
result.push(0);
result.push(1);
result.extend_from_slice(&encbuf);
}
if self.kinds.contains(&TlvKinds::ENCKW128) {
let key_bytes = base64::decode(
include_str!("../../enc-aes128kw.b64").trim()).unwrap();
let encbuf = match c::kw_encrypt(&key_bytes, AES_SEC_KEY) {
Ok(v) => v,
Err(_) => panic!("Failed to encrypt secret key"),
};
assert!(encbuf.len() == 24);
result.push(TlvKinds::ENCKW128 as u8);
result.push(0);
result.push(24);
result.push(0);
result.extend_from_slice(&encbuf);
}
result
}
}
include!("rsa_pub_key-rs.txt");
include!("rsa3072_pub_key-rs.txt");
include!("ecdsa_pub_key-rs.txt");
include!("ed25519_pub_key-rs.txt");