blob: b940b6e2d3834ef7473428bcfcba265e0ad24bea [file] [log] [blame]
use log::{info, warn, error};
use rand::{
distributions::{IndependentSample, Range},
Rng, SeedableRng, XorShiftRng,
};
use std::{
mem,
slice,
};
use aes_ctr::{
Aes128Ctr,
stream_cipher::{
generic_array::GenericArray,
NewFixStreamCipher,
StreamCipherCore,
},
};
use simflash::{Flash, SimFlashMap};
use mcuboot_sys::{c, AreaDesc};
use crate::caps::Caps;
use crate::tlv::{TlvGen, TlvFlags, AES_SEC_KEY};
impl Images {
/// A simple upgrade without forced failures.
///
/// Returns the number of flash operations which can later be used to
/// inject failures at chosen steps.
pub fn run_basic_upgrade(&self) -> Result<i32, ()> {
let (flashmap, total_count) = try_upgrade(&self.flashmap, &self, None);
info!("Total flash operation count={}", total_count);
if !verify_image(&flashmap, &self.slots, 0, &self.upgrades) {
warn!("Image mismatch after first boot");
Err(())
} else {
Ok(total_count)
}
}
pub fn run_basic_revert(&self) -> bool {
if Caps::OverwriteUpgrade.present() {
return false;
}
let mut fails = 0;
// FIXME: this test would also pass if no swap is ever performed???
if Caps::SwapUpgrade.present() {
for count in 2 .. 5 {
info!("Try revert: {}", count);
let flashmap = try_revert(&self.flashmap, &self.areadesc, count);
if !verify_image(&flashmap, &self.slots, 0, &self.primaries) {
error!("Revert failure on count {}", count);
fails += 1;
}
}
}
fails > 0
}
pub fn run_perm_with_fails(&self) -> bool {
let mut fails = 0;
let total_flash_ops = self.total_count.unwrap();
// Let's try an image halfway through.
for i in 1 .. total_flash_ops {
info!("Try interruption at {}", i);
let (flashmap, count) = try_upgrade(&self.flashmap, &self, Some(i));
info!("Second boot, count={}", count);
if !verify_image(&flashmap, &self.slots, 0, &self.upgrades) {
warn!("FAIL at step {} of {}", i, total_flash_ops);
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 1");
fails += 1;
}
if Caps::SwapUpgrade.present() {
if !verify_image(&flashmap, &self.slots, 1, &self.primaries) {
warn!("Slot 1 FAIL at step {} of {}", i, total_flash_ops);
fails += 1;
}
}
}
if fails > 0 {
error!("{} out of {} failed {:.2}%", fails, total_flash_ops,
fails as f32 * 100.0 / total_flash_ops as f32);
}
fails > 0
}
pub fn run_perm_with_random_fails_5(&self) -> bool {
self.run_perm_with_random_fails(5)
}
pub fn run_perm_with_random_fails(&self, total_fails: usize) -> bool {
let mut fails = 0;
let total_flash_ops = self.total_count.unwrap();
let (flashmap, total_counts) = try_random_fails(&self.flashmap, &self,
total_flash_ops, total_fails);
info!("Random interruptions at reset points={:?}", total_counts);
let slot0_ok = verify_image(&flashmap, &self.slots, 0, &self.upgrades);
let slot1_ok = if Caps::SwapUpgrade.present() {
verify_image(&flashmap, &self.slots, 1, &self.primaries)
} else {
true
};
if !slot0_ok || !slot1_ok {
error!("Image mismatch after random interrupts: slot0={} slot1={}",
if slot0_ok { "ok" } else { "fail" },
if slot1_ok { "ok" } else { "fail" });
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
error!("Mismatched trailer for Slot 0");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
error!("Mismatched trailer for Slot 1");
fails += 1;
}
if fails > 0 {
error!("Error testing perm upgrade with {} fails", total_fails);
}
fails > 0
}
pub fn run_revert_with_fails(&self) -> bool {
if Caps::OverwriteUpgrade.present() {
return false;
}
let mut fails = 0;
if Caps::SwapUpgrade.present() {
for i in 1 .. (self.total_count.unwrap() - 1) {
info!("Try interruption at {}", i);
if try_revert_with_fail_at(&self.flashmap, &self, i) {
error!("Revert failed at interruption {}", i);
fails += 1;
}
}
}
fails > 0
}
pub fn run_norevert(&self) -> bool {
if Caps::OverwriteUpgrade.present() {
return false;
}
let mut flashmap = self.flashmap.clone();
let mut fails = 0;
info!("Try norevert");
// First do a normal upgrade...
let (result, _) = c::boot_go(&mut flashmap, &self.areadesc, None, false);
if result != 0 {
warn!("Failed first boot");
fails += 1;
}
//FIXME: copy_done is written by boot_go, is it ok if no copy
// was ever done?
if !verify_image(&flashmap, &self.slots, 0, &self.upgrades) {
warn!("Slot 0 image verification FAIL");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_UNSET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 1");
fails += 1;
}
// Marks image in slot0 as permanent, no revert should happen...
mark_permanent_upgrade(&mut flashmap, &self.slots[0]);
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
let (result, _) = c::boot_go(&mut flashmap, &self.areadesc, None, false);
if result != 0 {
warn!("Failed second boot");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
if !verify_image(&flashmap, &self.slots, 0, &self.upgrades) {
warn!("Failed image verification");
fails += 1;
}
if fails > 0 {
error!("Error running upgrade without revert");
}
fails > 0
}
// Tests a new image written to slot0 that already has magic and image_ok set
// while there is no image on slot1, so no revert should ever happen...
pub fn run_norevert_newimage(&self) -> bool {
let mut flashmap = self.flashmap.clone();
let mut fails = 0;
info!("Try non-revert on imgtool generated image");
mark_upgrade(&mut flashmap, &self.slots[0]);
// This simulates writing an image created by imgtool to Slot 0
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
// Run the bootloader...
let (result, _) = c::boot_go(&mut flashmap, &self.areadesc, None, false);
if result != 0 {
warn!("Failed first boot");
fails += 1;
}
// State should not have changed
if !verify_image(&flashmap, &self.slots, 0, &self.primaries) {
warn!("Failed image verification");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 1");
fails += 1;
}
if fails > 0 {
error!("Expected a non revert with new image");
}
fails > 0
}
// Tests a new image written to slot0 that already has magic and image_ok set
// while there is no image on slot1, so no revert should ever happen...
pub fn run_signfail_upgrade(&self) -> bool {
let mut flashmap = self.flashmap.clone();
let mut fails = 0;
info!("Try upgrade image with bad signature");
mark_upgrade(&mut flashmap, &self.slots[0]);
mark_permanent_upgrade(&mut flashmap, &self.slots[0]);
mark_upgrade(&mut flashmap, &self.slots[1]);
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
// Run the bootloader...
let (result, _) = c::boot_go(&mut flashmap, &self.areadesc, None, false);
if result != 0 {
warn!("Failed first boot");
fails += 1;
}
// State should not have changed
if !verify_image(&flashmap, &self.slots, 0, &self.primaries) {
warn!("Failed image verification");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
if fails > 0 {
error!("Expected an upgrade failure when image has bad signature");
}
fails > 0
}
fn trailer_sz(&self, align: usize) -> usize {
c::boot_trailer_sz(align as u8) as usize
}
// FIXME: could get status sz from bootloader
fn status_sz(&self, align: usize) -> usize {
let bias = if Caps::EncRsa.present() || Caps::EncKw.present() {
32
} else {
0
};
self.trailer_sz(align) - (16 + 24 + bias)
}
/// This test runs a simple upgrade with no fails in the images, but
/// allowing for fails in the status area. This should run to the end
/// and warn that write fails were detected...
pub fn run_with_status_fails_complete(&self) -> bool {
if !Caps::ValidateSlot0.present() {
return false;
}
let mut flashmap = self.flashmap.clone();
let mut fails = 0;
info!("Try swap with status fails");
mark_permanent_upgrade(&mut flashmap, &self.slots[1]);
self.mark_bad_status_with_rate(&mut flashmap, 0, 1.0);
let (result, asserts) = c::boot_go(&mut flashmap, &self.areadesc, None, true);
if result != 0 {
warn!("Failed!");
fails += 1;
}
// Failed writes to the marked "bad" region don't assert anymore.
// Any detected assert() is happening in another part of the code.
if asserts != 0 {
warn!("At least one assert() was called");
fails += 1;
}
if !verify_trailer(&flashmap, &self.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for Slot 0");
fails += 1;
}
if !verify_image(&flashmap, &self.slots, 0, &self.upgrades) {
warn!("Failed image verification");
fails += 1;
}
info!("validate slot0 enabled; re-run of boot_go should just work");
let (result, _) = c::boot_go(&mut flashmap, &self.areadesc, None, false);
if result != 0 {
warn!("Failed!");
fails += 1;
}
if fails > 0 {
error!("Error running upgrade with status write fails");
}
fails > 0
}
/// This test runs a simple upgrade with no fails in the images, but
/// allowing for fails in the status area. This should run to the end
/// and warn that write fails were detected...
pub fn run_with_status_fails_with_reset(&self) -> bool {
if Caps::OverwriteUpgrade.present() {
false
} else if Caps::ValidateSlot0.present() {
let mut flashmap = self.flashmap.clone();
let mut fails = 0;
let mut count = self.total_count.unwrap() / 2;
//info!("count={}\n", count);
info!("Try interrupted swap with status fails");
mark_permanent_upgrade(&mut flashmap, &self.slots[1]);
self.mark_bad_status_with_rate(&mut flashmap, 0, 0.5);
// Should not fail, writing to bad regions does not assert
let (_, asserts) = c::boot_go(&mut flashmap, &self.areadesc, Some(&mut count), true);
if asserts != 0 {
warn!("At least one assert() was called");
fails += 1;
}
self.reset_bad_status(&mut flashmap, 0);
info!("Resuming an interrupted swap operation");
let (_, asserts) = c::boot_go(&mut flashmap, &self.areadesc, None, true);
// This might throw no asserts, for large sector devices, where
// a single failure writing is indistinguishable from no failure,
// or throw a single assert for small sector devices that fail
// multiple times...
if asserts > 1 {
warn!("Expected single assert validating slot0, more detected {}", asserts);
fails += 1;
}
if fails > 0 {
error!("Error running upgrade with status write fails");
}
fails > 0
} else {
let mut flashmap = self.flashmap.clone();
let mut fails = 0;
info!("Try interrupted swap with status fails");
mark_permanent_upgrade(&mut flashmap, &self.slots[1]);
self.mark_bad_status_with_rate(&mut flashmap, 0, 1.0);
// This is expected to fail while writing to bad regions...
let (_, asserts) = c::boot_go(&mut flashmap, &self.areadesc, None, true);
if asserts == 0 {
warn!("No assert() detected");
fails += 1;
}
fails > 0
}
}
/// Adds a new flash area that fails statistically
fn mark_bad_status_with_rate(&self, flashmap: &mut SimFlashMap, slot: usize,
rate: f32) {
if Caps::OverwriteUpgrade.present() {
return;
}
let dev_id = &self.slots[slot].dev_id;
let flash = flashmap.get_mut(&dev_id).unwrap();
let align = flash.align();
let off = &self.slots[0].base_off;
let len = &self.slots[0].len;
let status_off = off + len - self.trailer_sz(align);
// Mark the status area as a bad area
let _ = flash.add_bad_region(status_off, self.status_sz(align), rate);
}
fn reset_bad_status(&self, flashmap: &mut SimFlashMap, slot: usize) {
if !Caps::ValidateSlot0.present() {
return;
}
let dev_id = &self.slots[slot].dev_id;
let flash = flashmap.get_mut(&dev_id).unwrap();
flash.reset_bad_regions();
// Disabling write verification the only assert triggered by
// boot_go should be checking for integrity of status bytes.
flash.set_verify_writes(false);
}
}
/// Test a boot, optionally stopping after 'n' flash options. Returns a count
/// of the number of flash operations done total.
fn try_upgrade(flashmap: &SimFlashMap, images: &Images,
stop: Option<i32>) -> (SimFlashMap, i32) {
// Clone the flash to have a new copy.
let mut flashmap = flashmap.clone();
mark_permanent_upgrade(&mut flashmap, &images.slots[1]);
let mut counter = stop.unwrap_or(0);
let (first_interrupted, count) = match c::boot_go(&mut flashmap, &images.areadesc, Some(&mut counter), false) {
(-0x13579, _) => (true, stop.unwrap()),
(0, _) => (false, -counter),
(x, _) => panic!("Unknown return: {}", x),
};
counter = 0;
if first_interrupted {
// fl.dump();
match c::boot_go(&mut flashmap, &images.areadesc, Some(&mut counter), false) {
(-0x13579, _) => panic!("Shouldn't stop again"),
(0, _) => (),
(x, _) => panic!("Unknown return: {}", x),
}
}
(flashmap, count - counter)
}
fn try_revert(flashmap: &SimFlashMap, areadesc: &AreaDesc, count: usize) -> SimFlashMap {
let mut flashmap = flashmap.clone();
// fl.write_file("image0.bin").unwrap();
for i in 0 .. count {
info!("Running boot pass {}", i + 1);
assert_eq!(c::boot_go(&mut flashmap, &areadesc, None, false), (0, 0));
}
flashmap
}
fn try_revert_with_fail_at(flashmap: &SimFlashMap, images: &Images,
stop: i32) -> bool {
let mut flashmap = flashmap.clone();
let mut fails = 0;
let mut counter = stop;
let (x, _) = c::boot_go(&mut flashmap, &images.areadesc, Some(&mut counter), false);
if x != -0x13579 {
warn!("Should have stopped at interruption point");
fails += 1;
}
if !verify_trailer(&flashmap, &images.slots, 0, None, None, BOOT_FLAG_UNSET) {
warn!("copy_done should be unset");
fails += 1;
}
let (x, _) = c::boot_go(&mut flashmap, &images.areadesc, None, false);
if x != 0 {
warn!("Should have finished upgrade");
fails += 1;
}
if !verify_image(&flashmap, &images.slots, 0, &images.upgrades) {
warn!("Image in slot 0 before revert is invalid at stop={}", stop);
fails += 1;
}
if !verify_image(&flashmap, &images.slots, 1, &images.primaries) {
warn!("Image in slot 1 before revert is invalid at stop={}", stop);
fails += 1;
}
if !verify_trailer(&flashmap, &images.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_UNSET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for Slot 0 before revert");
fails += 1;
}
if !verify_trailer(&flashmap, &images.slots, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 1 before revert");
fails += 1;
}
// Do Revert
let (x, _) = c::boot_go(&mut flashmap, &images.areadesc, None, false);
if x != 0 {
warn!("Should have finished a revert");
fails += 1;
}
if !verify_image(&flashmap, &images.slots, 0, &images.primaries) {
warn!("Image in slot 0 after revert is invalid at stop={}", stop);
fails += 1;
}
if !verify_image(&flashmap, &images.slots, 1, &images.upgrades) {
warn!("Image in slot 1 after revert is invalid at stop={}", stop);
fails += 1;
}
if !verify_trailer(&flashmap, &images.slots, 0, BOOT_MAGIC_GOOD,
BOOT_FLAG_SET, BOOT_FLAG_SET) {
warn!("Mismatched trailer for Slot 1 after revert");
fails += 1;
}
if !verify_trailer(&flashmap, &images.slots, 1, BOOT_MAGIC_UNSET,
BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
warn!("Mismatched trailer for Slot 1 after revert");
fails += 1;
}
fails > 0
}
fn try_random_fails(flashmap: &SimFlashMap, images: &Images,
total_ops: i32, count: usize) -> (SimFlashMap, Vec<i32>) {
let mut flashmap = flashmap.clone();
mark_permanent_upgrade(&mut flashmap, &images.slots[1]);
let mut rng = rand::thread_rng();
let mut resets = vec![0i32; count];
let mut remaining_ops = total_ops;
for i in 0 .. count {
let ops = Range::new(1, remaining_ops / 2);
let reset_counter = ops.ind_sample(&mut rng);
let mut counter = reset_counter;
match c::boot_go(&mut flashmap, &images.areadesc, Some(&mut counter), false) {
(0, _) | (-0x13579, _) => (),
(x, _) => panic!("Unknown return: {}", x),
}
remaining_ops -= reset_counter;
resets[i] = reset_counter;
}
match c::boot_go(&mut flashmap, &images.areadesc, None, false) {
(-0x13579, _) => panic!("Should not be have been interrupted!"),
(0, _) => (),
(x, _) => panic!("Unknown return: {}", x),
}
(flashmap, resets)
}
/// Show the flash layout.
#[allow(dead_code)]
fn show_flash(flash: &dyn Flash) {
println!("---- Flash configuration ----");
for sector in flash.sector_iter() {
println!(" {:3}: 0x{:08x}, 0x{:08x}",
sector.num, sector.base, sector.size);
}
println!("");
}
/// Install a "program" into the given image. This fakes the image header, or at least all of the
/// fields used by the given code. Returns a copy of the image that was written.
pub fn install_image(flashmap: &mut SimFlashMap, slots: &[SlotInfo], slot: usize, len: usize,
bad_sig: bool) -> [Option<Vec<u8>>; 2] {
let offset = slots[slot].base_off;
let slot_len = slots[slot].len;
let dev_id = slots[slot].dev_id;
let mut tlv = make_tlv();
const HDR_SIZE: usize = 32;
// Generate a boot header. Note that the size doesn't include the header.
let header = ImageHeader {
magic: 0x96f3b83d,
load_addr: 0,
hdr_size: HDR_SIZE as u16,
_pad1: 0,
img_size: len as u32,
flags: tlv.get_flags(),
ver: ImageVersion {
major: (offset / (128 * 1024)) as u8,
minor: 0,
revision: 1,
build_num: offset as u32,
},
_pad2: 0,
};
let mut b_header = [0; HDR_SIZE];
b_header[..32].clone_from_slice(header.as_raw());
assert_eq!(b_header.len(), HDR_SIZE);
tlv.add_bytes(&b_header);
// The core of the image itself is just pseudorandom data.
let mut b_img = vec![0; len];
splat(&mut b_img, offset);
// TLV signatures work over plain image
tlv.add_bytes(&b_img);
// Generate encrypted images
let flag = TlvFlags::ENCRYPTED as u32;
let is_encrypted = (tlv.get_flags() & flag) == flag;
let mut b_encimg = vec![];
if is_encrypted {
let key = GenericArray::from_slice(AES_SEC_KEY);
let nonce = GenericArray::from_slice(&[0; 16]);
let mut cipher = Aes128Ctr::new(&key, &nonce);
b_encimg = b_img.clone();
cipher.apply_keystream(&mut b_encimg);
}
// Build the TLV itself.
let mut b_tlv = if bad_sig {
let good_sig = &mut tlv.make_tlv();
vec![0; good_sig.len()]
} else {
tlv.make_tlv()
};
// Pad the block to a flash alignment (8 bytes).
while b_tlv.len() % 8 != 0 {
//FIXME: should be erase_val?
b_tlv.push(0xFF);
}
let mut buf = vec![];
buf.append(&mut b_header.to_vec());
buf.append(&mut b_img);
buf.append(&mut b_tlv.clone());
let mut encbuf = vec![];
if is_encrypted {
encbuf.append(&mut b_header.to_vec());
encbuf.append(&mut b_encimg);
encbuf.append(&mut b_tlv);
}
let result: [Option<Vec<u8>>; 2];
// Since images are always non-encrypted in slot0, we first write an
// encrypted image, re-read to use for verification, erase + flash
// un-encrypted. In slot1 the image is written un-encrypted, and if
// encryption is requested, it follows an erase + flash encrypted.
let flash = flashmap.get_mut(&dev_id).unwrap();
if slot == 0 {
let enc_copy: Option<Vec<u8>>;
if is_encrypted {
flash.write(offset, &encbuf).unwrap();
let mut enc = vec![0u8; encbuf.len()];
flash.read(offset, &mut enc).unwrap();
enc_copy = Some(enc);
flash.erase(offset, slot_len).unwrap();
} else {
enc_copy = None;
}
flash.write(offset, &buf).unwrap();
let mut copy = vec![0u8; buf.len()];
flash.read(offset, &mut copy).unwrap();
result = [Some(copy), enc_copy];
} else {
flash.write(offset, &buf).unwrap();
let mut copy = vec![0u8; buf.len()];
flash.read(offset, &mut copy).unwrap();
let enc_copy: Option<Vec<u8>>;
if is_encrypted {
flash.erase(offset, slot_len).unwrap();
flash.write(offset, &encbuf).unwrap();
let mut enc = vec![0u8; encbuf.len()];
flash.read(offset, &mut enc).unwrap();
enc_copy = Some(enc);
} else {
enc_copy = None;
}
result = [Some(copy), enc_copy];
}
result
}
fn make_tlv() -> TlvGen {
if Caps::EcdsaP224.present() {
panic!("Ecdsa P224 not supported in Simulator");
}
if Caps::EncKw.present() {
if Caps::RSA2048.present() {
TlvGen::new_rsa_kw()
} else if Caps::EcdsaP256.present() {
TlvGen::new_ecdsa_kw()
} else {
TlvGen::new_enc_kw()
}
} else if Caps::EncRsa.present() {
if Caps::RSA2048.present() {
TlvGen::new_sig_enc_rsa()
} else {
TlvGen::new_enc_rsa()
}
} else {
// The non-encrypted configuration.
if Caps::RSA2048.present() {
TlvGen::new_rsa_pss()
} else if Caps::EcdsaP256.present() {
TlvGen::new_ecdsa()
} else {
TlvGen::new_hash_only()
}
}
}
fn find_image(images: &[Option<Vec<u8>>; 2], slot: usize) -> &Vec<u8> {
let slot = if Caps::EncRsa.present() || Caps::EncKw.present() {
slot
} else {
0
};
match &images[slot] {
Some(image) => return image,
None => panic!("Invalid image"),
}
}
/// Verify that given image is present in the flash at the given offset.
fn verify_image(flashmap: &SimFlashMap, slots: &[SlotInfo], slot: usize,
images: &[Option<Vec<u8>>; 2]) -> bool {
let image = find_image(images, slot);
let buf = image.as_slice();
let dev_id = slots[slot].dev_id;
let mut copy = vec![0u8; buf.len()];
let offset = slots[slot].base_off;
let flash = flashmap.get(&dev_id).unwrap();
flash.read(offset, &mut copy).unwrap();
if buf != &copy[..] {
for i in 0 .. buf.len() {
if buf[i] != copy[i] {
info!("First failure for slot{} at {:#x} {:#x}!={:#x}",
slot, offset + i, buf[i], copy[i]);
break;
}
}
false
} else {
true
}
}
fn verify_trailer(flashmap: &SimFlashMap, slots: &[SlotInfo], slot: usize,
magic: Option<u8>, image_ok: Option<u8>,
copy_done: Option<u8>) -> bool {
if Caps::OverwriteUpgrade.present() {
return true;
}
let offset = slots[slot].trailer_off;
let dev_id = slots[slot].dev_id;
let mut copy = vec![0u8; c::boot_magic_sz() + c::boot_max_align() * 2];
let mut failed = false;
let flash = flashmap.get(&dev_id).unwrap();
let erased_val = flash.erased_val();
flash.read(offset, &mut copy).unwrap();
failed |= match magic {
Some(v) => {
if v == 1 && &copy[16..] != MAGIC.unwrap() {
warn!("\"magic\" mismatch at {:#x}", offset);
true
} else if v == 3 {
let expected = [erased_val; 16];
if &copy[16..] != expected {
warn!("\"magic\" mismatch at {:#x}", offset);
true
} else {
false
}
} else {
false
}
},
None => false,
};
failed |= match image_ok {
Some(v) => {
if (v == 1 && copy[8] != v) || (v == 3 && copy[8] != erased_val) {
warn!("\"image_ok\" mismatch at {:#x} v={} val={:#x}", offset, v, copy[8]);
true
} else {
false
}
},
None => false,
};
failed |= match copy_done {
Some(v) => {
if (v == 1 && copy[0] != v) || (v == 3 && copy[0] != erased_val) {
warn!("\"copy_done\" mismatch at {:#x} v={} val={:#x}", offset, v, copy[0]);
true
} else {
false
}
},
None => false,
};
!failed
}
/// The image header
#[repr(C)]
pub struct ImageHeader {
magic: u32,
load_addr: u32,
hdr_size: u16,
_pad1: u16,
img_size: u32,
flags: u32,
ver: ImageVersion,
_pad2: u32,
}
impl AsRaw for ImageHeader {}
#[repr(C)]
pub struct ImageVersion {
major: u8,
minor: u8,
revision: u16,
build_num: u32,
}
#[derive(Clone)]
pub struct SlotInfo {
pub base_off: usize,
pub trailer_off: usize,
pub len: usize,
pub dev_id: u8,
}
pub struct Images {
pub flashmap: SimFlashMap,
pub areadesc: AreaDesc,
pub slots: [SlotInfo; 2],
pub primaries: [Option<Vec<u8>>; 2],
pub upgrades: [Option<Vec<u8>>; 2],
pub total_count: Option<i32>,
}
const MAGIC: Option<&[u8]> = Some(&[0x77, 0xc2, 0x95, 0xf3,
0x60, 0xd2, 0xef, 0x7f,
0x35, 0x52, 0x50, 0x0f,
0x2c, 0xb6, 0x79, 0x80]);
// Replicates defines found in bootutil.h
const BOOT_MAGIC_GOOD: Option<u8> = Some(1);
const BOOT_MAGIC_UNSET: Option<u8> = Some(3);
const BOOT_FLAG_SET: Option<u8> = Some(1);
const BOOT_FLAG_UNSET: Option<u8> = Some(3);
/// Write out the magic so that the loader tries doing an upgrade.
pub fn mark_upgrade(flashmap: &mut SimFlashMap, slot: &SlotInfo) {
let flash = flashmap.get_mut(&slot.dev_id).unwrap();
let offset = slot.trailer_off + c::boot_max_align() * 2;
flash.write(offset, MAGIC.unwrap()).unwrap();
}
/// Writes the image_ok flag which, guess what, tells the bootloader
/// the this image is ok (not a test, and no revert is to be performed).
fn mark_permanent_upgrade(flashmap: &mut SimFlashMap, slot: &SlotInfo) {
let flash = flashmap.get_mut(&slot.dev_id).unwrap();
let mut ok = [flash.erased_val(); 8];
ok[0] = 1u8;
let off = slot.trailer_off + c::boot_max_align();
let align = flash.align();
flash.write(off, &ok[..align]).unwrap();
}
// Drop some pseudo-random gibberish onto the data.
fn splat(data: &mut [u8], seed: usize) {
let seed_block = [0x135782ea, 0x92184728, data.len() as u32, seed as u32];
let mut rng: XorShiftRng = SeedableRng::from_seed(seed_block);
rng.fill_bytes(data);
}
/// Return a read-only view into the raw bytes of this object
trait AsRaw : Sized {
fn as_raw<'a>(&'a self) -> &'a [u8] {
unsafe { slice::from_raw_parts(self as *const _ as *const u8,
mem::size_of::<Self>()) }
}
}
pub fn show_sizes() {
// This isn't panic safe.
for min in &[1, 2, 4, 8] {
let msize = c::boot_trailer_sz(*min);
println!("{:2}: {} (0x{:x})", min, msize, msize);
}
}