blob: 8131a701b055df373906a071b6b3d67db6b4a79a [file] [log] [blame]
use docopt::Docopt;
use log::{warn, error};
use std::{
fmt,
process,
};
use serde_derive::Deserialize;
mod caps;
mod image;
mod tlv;
pub mod testlog;
use simflash::{SimFlash, SimFlashMap};
use mcuboot_sys::{c, AreaDesc, FlashId};
use crate::image::{
Images,
install_image,
mark_upgrade,
SlotInfo,
show_sizes,
};
const USAGE: &'static str = "
Mcuboot simulator
Usage:
bootsim sizes
bootsim run --device TYPE [--align SIZE]
bootsim runall
bootsim (--help | --version)
Options:
-h, --help Show this message
--version Version
--device TYPE MCU to simulate
Valid values: stm32f4, k64f
--align SIZE Flash write alignment
";
#[derive(Debug, Deserialize)]
struct Args {
flag_help: bool,
flag_version: bool,
flag_device: Option<DeviceName>,
flag_align: Option<AlignArg>,
cmd_sizes: bool,
cmd_run: bool,
cmd_runall: bool,
}
#[derive(Copy, Clone, Debug, Deserialize)]
pub enum DeviceName { Stm32f4, K64f, K64fBig, Nrf52840, Nrf52840SpiFlash, }
pub static ALL_DEVICES: &'static [DeviceName] = &[
DeviceName::Stm32f4,
DeviceName::K64f,
DeviceName::K64fBig,
DeviceName::Nrf52840,
DeviceName::Nrf52840SpiFlash,
];
impl fmt::Display for DeviceName {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let name = match *self {
DeviceName::Stm32f4 => "stm32f4",
DeviceName::K64f => "k64f",
DeviceName::K64fBig => "k64fbig",
DeviceName::Nrf52840 => "nrf52840",
DeviceName::Nrf52840SpiFlash => "Nrf52840SpiFlash",
};
f.write_str(name)
}
}
#[derive(Debug)]
struct AlignArg(u8);
struct AlignArgVisitor;
impl<'de> serde::de::Visitor<'de> for AlignArgVisitor {
type Value = AlignArg;
fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter.write_str("1, 2, 4 or 8")
}
fn visit_u8<E>(self, n: u8) -> Result<Self::Value, E>
where E: serde::de::Error
{
Ok(match n {
1 | 2 | 4 | 8 => AlignArg(n),
n => {
let err = format!("Could not deserialize '{}' as alignment", n);
return Err(E::custom(err));
}
})
}
}
impl<'de> serde::de::Deserialize<'de> for AlignArg {
fn deserialize<D>(d: D) -> Result<AlignArg, D::Error>
where D: serde::de::Deserializer<'de>
{
d.deserialize_u8(AlignArgVisitor)
}
}
pub fn main() {
let args: Args = Docopt::new(USAGE)
.and_then(|d| d.deserialize())
.unwrap_or_else(|e| e.exit());
// println!("args: {:#?}", args);
if args.cmd_sizes {
show_sizes();
return;
}
let mut status = RunStatus::new();
if args.cmd_run {
let align = args.flag_align.map(|x| x.0).unwrap_or(1);
let device = match args.flag_device {
None => panic!("Missing mandatory device argument"),
Some(dev) => dev,
};
status.run_single(device, align, 0xff);
}
if args.cmd_runall {
for &dev in ALL_DEVICES {
for &align in &[1, 2, 4, 8] {
for &erased_val in &[0, 0xff] {
status.run_single(dev, align, erased_val);
}
}
}
}
if status.failures > 0 {
error!("{} Tests ran with {} failures", status.failures + status.passes, status.failures);
process::exit(1);
} else {
error!("{} Tests ran successfully", status.passes);
process::exit(0);
}
}
/// A test run, intended to be run from "cargo test", so panics on failure.
pub struct Run {
flashmap: SimFlashMap,
areadesc: AreaDesc,
slots: [SlotInfo; 2],
}
impl Run {
pub fn new(device: DeviceName, align: u8, erased_val: u8) -> Run {
let (flashmap, areadesc) = make_device(device, align, erased_val);
let (slot0_base, slot0_len, slot0_dev_id) = areadesc.find(FlashId::Image0);
let (slot1_base, slot1_len, slot1_dev_id) = areadesc.find(FlashId::Image1);
// NOTE: not accounting "swap_size" because it is not used by sim...
let offset_from_end = c::boot_magic_sz() + c::boot_max_align() * 2;
// Construct a primary image.
let slot0 = SlotInfo {
base_off: slot0_base as usize,
trailer_off: slot0_base + slot0_len - offset_from_end,
len: slot0_len as usize,
dev_id: slot0_dev_id,
};
// And an upgrade image.
let slot1 = SlotInfo {
base_off: slot1_base as usize,
trailer_off: slot1_base + slot1_len - offset_from_end,
len: slot1_len as usize,
dev_id: slot1_dev_id,
};
Run {
flashmap: flashmap,
areadesc: areadesc,
slots: [slot0, slot1],
}
}
pub fn each_device<F>(f: F)
where F: Fn(&mut Run)
{
for &dev in ALL_DEVICES {
for &align in &[1, 2, 4, 8] {
for &erased_val in &[0, 0xff] {
let mut run = Run::new(dev, align, erased_val);
f(&mut run);
}
}
}
}
/// Construct an `Images` that doesn't expect an upgrade to happen.
pub fn make_no_upgrade_image(&self) -> Images {
let mut flashmap = self.flashmap.clone();
let primaries = install_image(&mut flashmap, &self.slots, 0, 32784, false);
let upgrades = install_image(&mut flashmap, &self.slots, 1, 41928, false);
Images {
flashmap: flashmap,
areadesc: self.areadesc.clone(),
slots: [self.slots[0].clone(), self.slots[1].clone()],
primaries: primaries,
upgrades: upgrades,
total_count: None,
}
}
/// Construct an `Images` for normal testing.
pub fn make_image(&self) -> Images {
let mut images = self.make_no_upgrade_image();
mark_upgrade(&mut images.flashmap, &images.slots[1]);
// upgrades without fails, counts number of flash operations
let total_count = match images.run_basic_upgrade() {
Ok(v) => v,
Err(_) => {
panic!("Unable to perform basic upgrade");
},
};
images.total_count = Some(total_count);
images
}
pub fn make_bad_slot1_image(&self) -> Images {
let mut bad_flashmap = self.flashmap.clone();
let primaries = install_image(&mut bad_flashmap, &self.slots, 0, 32784, false);
let upgrades = install_image(&mut bad_flashmap, &self.slots, 1, 41928, true);
Images {
flashmap: bad_flashmap,
areadesc: self.areadesc.clone(),
slots: [self.slots[0].clone(), self.slots[1].clone()],
primaries: primaries,
upgrades: upgrades,
total_count: None,
}
}
}
pub struct RunStatus {
failures: usize,
passes: usize,
}
impl RunStatus {
pub fn new() -> RunStatus {
RunStatus {
failures: 0,
passes: 0,
}
}
pub fn run_single(&mut self, device: DeviceName, align: u8, erased_val: u8) {
warn!("Running on device {} with alignment {}", device, align);
let run = Run::new(device, align, erased_val);
let mut failed = false;
// Creates a badly signed image in slot1 to check that it is not
// upgraded to
let bad_slot1_image = run.make_bad_slot1_image();
failed |= bad_slot1_image.run_signfail_upgrade();
let images = run.make_no_upgrade_image();
failed |= images.run_norevert_newimage();
let images = run.make_image();
failed |= images.run_basic_revert();
failed |= images.run_revert_with_fails();
failed |= images.run_perm_with_fails();
failed |= images.run_perm_with_random_fails(5);
failed |= images.run_norevert();
failed |= images.run_with_status_fails_complete();
failed |= images.run_with_status_fails_with_reset();
//show_flash(&flash);
if failed {
self.failures += 1;
} else {
self.passes += 1;
}
}
pub fn failures(&self) -> usize {
self.failures
}
}
/// Build the Flash and area descriptor for a given device.
pub fn make_device(device: DeviceName, align: u8, erased_val: u8) -> (SimFlashMap, AreaDesc) {
match device {
DeviceName::Stm32f4 => {
// STM style flash. Large sectors, with a large scratch area.
let flash = SimFlash::new(vec![16 * 1024, 16 * 1024, 16 * 1024, 16 * 1024,
64 * 1024,
128 * 1024, 128 * 1024, 128 * 1024],
align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &flash);
areadesc.add_image(0x020000, 0x020000, FlashId::Image0, dev_id);
areadesc.add_image(0x040000, 0x020000, FlashId::Image1, dev_id);
areadesc.add_image(0x060000, 0x020000, FlashId::ImageScratch, dev_id);
let mut flashmap = SimFlashMap::new();
flashmap.insert(dev_id, flash);
(flashmap, areadesc)
}
DeviceName::K64f => {
// NXP style flash. Small sectors, one small sector for scratch.
let flash = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &flash);
areadesc.add_image(0x020000, 0x020000, FlashId::Image0, dev_id);
areadesc.add_image(0x040000, 0x020000, FlashId::Image1, dev_id);
areadesc.add_image(0x060000, 0x001000, FlashId::ImageScratch, dev_id);
let mut flashmap = SimFlashMap::new();
flashmap.insert(dev_id, flash);
(flashmap, areadesc)
}
DeviceName::K64fBig => {
// Simulating an STM style flash on top of an NXP style flash. Underlying flash device
// uses small sectors, but we tell the bootloader they are large.
let flash = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &flash);
areadesc.add_simple_image(0x020000, 0x020000, FlashId::Image0, dev_id);
areadesc.add_simple_image(0x040000, 0x020000, FlashId::Image1, dev_id);
areadesc.add_simple_image(0x060000, 0x020000, FlashId::ImageScratch, dev_id);
let mut flashmap = SimFlashMap::new();
flashmap.insert(dev_id, flash);
(flashmap, areadesc)
}
DeviceName::Nrf52840 => {
// Simulating the flash on the nrf52840 with partitions set up so that the scratch size
// does not divide into the image size.
let flash = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let dev_id = 0;
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(dev_id, &flash);
areadesc.add_image(0x008000, 0x034000, FlashId::Image0, dev_id);
areadesc.add_image(0x03c000, 0x034000, FlashId::Image1, dev_id);
areadesc.add_image(0x070000, 0x00d000, FlashId::ImageScratch, dev_id);
let mut flashmap = SimFlashMap::new();
flashmap.insert(dev_id, flash);
(flashmap, areadesc)
}
DeviceName::Nrf52840SpiFlash => {
// Simulate nrf52840 with external SPI flash. The external SPI flash
// has a larger sector size so for now store scratch on that flash.
let flash0 = SimFlash::new(vec![4096; 128], align as usize, erased_val);
let flash1 = SimFlash::new(vec![8192; 64], align as usize, erased_val);
let mut areadesc = AreaDesc::new();
areadesc.add_flash_sectors(0, &flash0);
areadesc.add_flash_sectors(1, &flash1);
areadesc.add_image(0x008000, 0x068000, FlashId::Image0, 0);
areadesc.add_image(0x000000, 0x068000, FlashId::Image1, 1);
areadesc.add_image(0x068000, 0x018000, FlashId::ImageScratch, 1);
let mut flashmap = SimFlashMap::new();
flashmap.insert(0, flash0);
flashmap.insert(1, flash1);
(flashmap, areadesc)
}
}
}