Christopher Collins | 92ea77f | 2016-12-12 15:59:26 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Licensed to the Apache Software Foundation (ASF) under one |
| 3 | * or more contributor license agreements. See the NOTICE file |
| 4 | * distributed with this work for additional information |
| 5 | * regarding copyright ownership. The ASF licenses this file |
| 6 | * to you under the Apache License, Version 2.0 (the |
| 7 | * "License"); you may not use this file except in compliance |
| 8 | * with the License. You may obtain a copy of the License at |
| 9 | * |
| 10 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 11 | * |
| 12 | * Unless required by applicable law or agreed to in writing, |
| 13 | * software distributed under the License is distributed on an |
| 14 | * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| 15 | * KIND, either express or implied. See the License for the |
| 16 | * specific language governing permissions and limitations |
| 17 | * under the License. |
| 18 | */ |
| 19 | |
| 20 | /** |
| 21 | * This file provides an interface to the boot loader. Functions defined in |
| 22 | * this file should only be called while the boot loader is running. |
| 23 | */ |
| 24 | |
| 25 | #include <assert.h> |
| 26 | #include <stddef.h> |
| 27 | #include <inttypes.h> |
| 28 | #include <stdlib.h> |
| 29 | #include <string.h> |
| 30 | #include "sysflash/sysflash.h" |
| 31 | #include "flash_map/flash_map.h" |
| 32 | #include <hal/hal_flash.h> |
| 33 | #include <os/os_malloc.h> |
| 34 | #include "bootutil/bootutil.h" |
| 35 | #include "bootutil/image.h" |
| 36 | #include "bootutil_priv.h" |
| 37 | |
| 38 | #define BOOT_MAX_IMG_SECTORS 120 |
| 39 | |
| 40 | /** Number of image slots in flash; currently limited to two. */ |
| 41 | #define BOOT_NUM_SLOTS 2 |
| 42 | |
| 43 | static struct { |
| 44 | struct { |
| 45 | struct image_header hdr; |
| 46 | struct flash_area *sectors; |
| 47 | } imgs[BOOT_NUM_SLOTS]; |
| 48 | |
| 49 | int num_img_sectors; |
| 50 | struct flash_area scratch_sector; |
| 51 | |
| 52 | uint8_t write_sz; |
| 53 | } boot_data; |
| 54 | |
| 55 | struct boot_status_table { |
| 56 | /** |
| 57 | * For each field, a value of 0 means "any". |
| 58 | */ |
| 59 | uint8_t bst_magic_slot0; |
| 60 | uint8_t bst_magic_scratch; |
| 61 | uint8_t bst_copy_done_slot0; |
| 62 | uint8_t bst_status_source; |
| 63 | }; |
| 64 | |
| 65 | /** |
| 66 | * This set of tables maps swap state contents to boot status location. |
| 67 | * When searching for a match, these tables must be iterated in order. |
| 68 | */ |
| 69 | static const struct boot_status_table boot_status_tables[] = { |
| 70 | { |
| 71 | /* | slot-0 | scratch | |
| 72 | * ----------+------------+------------| |
| 73 | * magic | Good | Any | |
| 74 | * copy-done | 0x01 | N/A | |
| 75 | * ----------+------------+------------' |
| 76 | * source: none | |
| 77 | * ------------------------------------' |
| 78 | */ |
| 79 | .bst_magic_slot0 = BOOT_MAGIC_GOOD, |
| 80 | .bst_magic_scratch = 0, |
| 81 | .bst_copy_done_slot0 = 0x01, |
| 82 | .bst_status_source = BOOT_STATUS_SOURCE_NONE, |
| 83 | }, |
| 84 | |
| 85 | { |
| 86 | /* | slot-0 | scratch | |
| 87 | * ----------+------------+------------| |
| 88 | * magic | Good | Any | |
| 89 | * copy-done | 0xff | N/A | |
| 90 | * ----------+------------+------------' |
| 91 | * source: slot 0 | |
| 92 | * ------------------------------------' |
| 93 | */ |
| 94 | .bst_magic_slot0 = BOOT_MAGIC_GOOD, |
| 95 | .bst_magic_scratch = 0, |
| 96 | .bst_copy_done_slot0 = 0xff, |
| 97 | .bst_status_source = BOOT_STATUS_SOURCE_SLOT0, |
| 98 | }, |
| 99 | |
| 100 | { |
| 101 | /* | slot-0 | scratch | |
| 102 | * ----------+------------+------------| |
| 103 | * magic | Any | Good | |
| 104 | * copy-done | Any | N/A | |
| 105 | * ----------+------------+------------' |
| 106 | * source: scratch | |
| 107 | * ------------------------------------' |
| 108 | */ |
| 109 | .bst_magic_slot0 = 0, |
| 110 | .bst_magic_scratch = BOOT_MAGIC_GOOD, |
| 111 | .bst_copy_done_slot0 = 0, |
| 112 | .bst_status_source = BOOT_STATUS_SOURCE_SCRATCH, |
| 113 | }, |
| 114 | |
| 115 | { |
| 116 | /* | slot-0 | scratch | |
| 117 | * ----------+------------+------------| |
| 118 | * magic | Unset | Any | |
| 119 | * copy-done | 0xff | N/A | |
| 120 | * ----------+------------+------------| |
| 121 | * source: varies | |
| 122 | * ------------------------------------+------------------------------+ |
| 123 | * This represents one of two cases: | |
| 124 | * o No swaps ever (no status to read, so no harm in checking). | |
| 125 | * o Mid-revert; status in slot 0. | |
| 126 | * -------------------------------------------------------------------' |
| 127 | */ |
| 128 | .bst_magic_slot0 = BOOT_MAGIC_UNSET, |
| 129 | .bst_magic_scratch = 0, |
| 130 | .bst_copy_done_slot0 = 0xff, |
| 131 | .bst_status_source = BOOT_STATUS_SOURCE_SLOT0, |
| 132 | }, |
| 133 | }; |
| 134 | |
| 135 | #define BOOT_STATUS_TABLES_COUNT \ |
| 136 | (sizeof boot_status_tables / sizeof boot_status_tables[0]) |
| 137 | |
| 138 | /** |
| 139 | * This table indicates the next swap type that should be performed. The first |
| 140 | * column contains the current swap type. The second column contains the swap |
| 141 | * type that should be effected after the first completes. |
| 142 | */ |
| 143 | static const uint8_t boot_swap_trans_table[][2] = { |
| 144 | /* From To */ |
| 145 | { BOOT_SWAP_TYPE_REVERT, BOOT_SWAP_TYPE_NONE }, |
| 146 | { BOOT_SWAP_TYPE_TEST, BOOT_SWAP_TYPE_REVERT }, |
| 147 | }; |
| 148 | |
| 149 | #define BOOT_SWAP_TRANS_TABLE_SIZE \ |
| 150 | (sizeof boot_swap_trans_table / sizeof boot_swap_trans_table[0]) |
| 151 | |
| 152 | /** |
| 153 | * Determines where in flash the most recent boot status is stored. The boot |
| 154 | * status is necessary for completing a swap that was interrupted by a boot |
| 155 | * loader reset. |
| 156 | * |
| 157 | * @return A BOOT_STATUS_SOURCE_[...] code indicating where * status should be read from. |
| 158 | */ |
| 159 | static int |
| 160 | boot_status_source(void) |
| 161 | { |
| 162 | const struct boot_status_table *table; |
| 163 | struct boot_swap_state state_scratch; |
| 164 | struct boot_swap_state state_slot0; |
| 165 | struct boot_swap_state state_slot1; |
| 166 | int rc; |
| 167 | int i; |
| 168 | |
| 169 | rc = boot_read_swap_state_img(0, &state_slot0); |
| 170 | assert(rc == 0); |
| 171 | |
| 172 | rc = boot_read_swap_state_img(1, &state_slot1); |
| 173 | assert(rc == 0); |
| 174 | |
| 175 | rc = boot_read_swap_state_scratch(&state_scratch); |
| 176 | assert(rc == 0); |
| 177 | |
| 178 | for (i = 0; i < BOOT_STATUS_TABLES_COUNT; i++) { |
| 179 | table = boot_status_tables + i; |
| 180 | |
| 181 | if ((table->bst_magic_slot0 == 0 || |
| 182 | table->bst_magic_slot0 == state_slot0.magic) && |
| 183 | (table->bst_magic_scratch == 0 || |
| 184 | table->bst_magic_scratch == state_scratch.magic) && |
| 185 | (table->bst_copy_done_slot0 == 0 || |
| 186 | table->bst_copy_done_slot0 == state_slot0.copy_done)) { |
| 187 | |
| 188 | return table->bst_status_source; |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | return BOOT_STATUS_SOURCE_NONE; |
| 193 | } |
| 194 | |
| 195 | /** |
| 196 | * Calculates the type of swap that just completed. |
| 197 | */ |
| 198 | static int |
| 199 | boot_previous_swap_type(void) |
| 200 | { |
| 201 | int post_swap_type; |
| 202 | int i; |
| 203 | |
| 204 | post_swap_type = boot_swap_type(); |
| 205 | |
| 206 | for (i = 0; i < BOOT_SWAP_TRANS_TABLE_SIZE; i++){ |
| 207 | if (boot_swap_trans_table[i][1] == post_swap_type) { |
| 208 | return boot_swap_trans_table[i][0]; |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | /* XXX: Temporary assert. */ |
| 213 | assert(0); |
| 214 | |
| 215 | return BOOT_SWAP_TYPE_REVERT; |
| 216 | } |
| 217 | |
| 218 | static int |
| 219 | boot_read_image_header(int slot, struct image_header *out_hdr) |
| 220 | { |
| 221 | const struct flash_area *fap; |
| 222 | int area_id; |
| 223 | int rc; |
| 224 | |
| 225 | area_id = flash_area_id_from_image_slot(slot); |
| 226 | rc = flash_area_open(area_id, &fap); |
| 227 | if (rc != 0) { |
| 228 | rc = BOOT_EFLASH; |
| 229 | goto done; |
| 230 | } |
| 231 | |
| 232 | rc = flash_area_read(fap, 0, out_hdr, sizeof *out_hdr); |
| 233 | if (rc != 0) { |
| 234 | rc = BOOT_EFLASH; |
| 235 | goto done; |
| 236 | } |
| 237 | |
| 238 | rc = 0; |
| 239 | |
| 240 | done: |
| 241 | flash_area_close(fap); |
| 242 | return rc; |
| 243 | } |
| 244 | |
| 245 | static int |
| 246 | boot_read_image_headers(void) |
| 247 | { |
| 248 | int rc; |
| 249 | int i; |
| 250 | |
| 251 | for (i = 0; i < BOOT_NUM_SLOTS; i++) { |
| 252 | rc = boot_read_image_header(i, &boot_data.imgs[i].hdr); |
| 253 | if (rc != 0) { |
| 254 | return rc; |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | return 0; |
| 259 | } |
| 260 | |
| 261 | static uint8_t |
| 262 | boot_write_sz(void) |
| 263 | { |
| 264 | uint8_t elem_sz; |
| 265 | uint8_t align; |
| 266 | |
| 267 | /* Figure out what size to write update status update as. The size depends |
| 268 | * on what the minimum write size is for scratch area, active image slot. |
| 269 | * We need to use the bigger of those 2 values. |
| 270 | */ |
| 271 | elem_sz = hal_flash_align(boot_data.imgs[0].sectors[0].fa_device_id); |
| 272 | align = hal_flash_align(boot_data.scratch_sector.fa_device_id); |
| 273 | if (align > elem_sz) { |
| 274 | elem_sz = align; |
| 275 | } |
| 276 | |
| 277 | return elem_sz; |
| 278 | } |
| 279 | |
| 280 | /** |
| 281 | * Determines the sector layout of both image slots and the scratch area. |
| 282 | * This information is necessary for calculating the number of bytes to erase |
| 283 | * and copy during an image swap. The information collected during this |
| 284 | * function is used to populate the boot_data global. |
| 285 | */ |
| 286 | static int |
| 287 | boot_read_sectors(void) |
| 288 | { |
| 289 | const struct flash_area *sector0; |
| 290 | const struct flash_area *sector1; |
| 291 | const struct flash_area *scratch; |
| 292 | int num_sectors_slot0; |
| 293 | int num_sectors_slot1; |
| 294 | int rc; |
| 295 | int i; |
| 296 | |
| 297 | num_sectors_slot0 = BOOT_MAX_IMG_SECTORS; |
| 298 | rc = flash_area_to_sectors(FLASH_AREA_IMAGE_0, &num_sectors_slot0, |
| 299 | boot_data.imgs[0].sectors); |
| 300 | if (rc != 0) { |
| 301 | return BOOT_EFLASH; |
| 302 | } |
| 303 | |
| 304 | num_sectors_slot1 = BOOT_MAX_IMG_SECTORS; |
| 305 | rc = flash_area_to_sectors(FLASH_AREA_IMAGE_1, &num_sectors_slot1, |
| 306 | boot_data.imgs[1].sectors); |
| 307 | if (rc != 0) { |
| 308 | return BOOT_EFLASH; |
| 309 | } |
| 310 | |
| 311 | rc = flash_area_open(FLASH_AREA_IMAGE_SCRATCH, &scratch); |
| 312 | if (rc != 0) { |
| 313 | return BOOT_EFLASH; |
| 314 | } |
| 315 | boot_data.scratch_sector = *scratch; |
| 316 | boot_data.write_sz = hal_flash_align(scratch->fa_device_id); |
| 317 | |
| 318 | /* Ensure both image slots have identical sector layouts. */ |
| 319 | if (num_sectors_slot0 != num_sectors_slot1) { |
| 320 | return BOOT_EFLASH; |
| 321 | } |
| 322 | for (i = 0; i < num_sectors_slot0; i++) { |
| 323 | sector0 = boot_data.imgs[0].sectors + i; |
| 324 | sector1 = boot_data.imgs[1].sectors + i; |
| 325 | if (sector0->fa_size != sector1->fa_size) { |
| 326 | return BOOT_EFLASH; |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | boot_data.num_img_sectors = num_sectors_slot0; |
| 331 | |
| 332 | boot_data.write_sz = boot_write_sz(); |
| 333 | |
| 334 | return 0; |
| 335 | } |
| 336 | |
| 337 | static uint32_t |
| 338 | boot_status_internal_off(int idx, int state, int elem_sz) |
| 339 | { |
| 340 | int idx_sz; |
| 341 | |
| 342 | idx_sz = elem_sz * BOOT_STATUS_STATE_COUNT; |
| 343 | |
| 344 | return idx * idx_sz + state * elem_sz; |
| 345 | } |
| 346 | |
| 347 | /** |
| 348 | * Reads the status of a partially-completed swap, if any. This is necessary |
| 349 | * to recover in case the boot lodaer was reset in the middle of a swap |
| 350 | * operation. |
| 351 | */ |
| 352 | static int |
| 353 | boot_read_status_bytes(const struct flash_area *fap, struct boot_status *bs) |
| 354 | { |
| 355 | uint32_t off; |
| 356 | uint8_t status; |
| 357 | int found; |
| 358 | int rc; |
| 359 | int i; |
| 360 | |
| 361 | off = boot_status_off(fap); |
| 362 | |
| 363 | found = 0; |
| 364 | for (i = 0; i < BOOT_STATUS_MAX_ENTRIES; i++) { |
| 365 | rc = flash_area_read(fap, off + i * boot_data.write_sz, &status, 1); |
| 366 | if (rc != 0) { |
| 367 | return BOOT_EFLASH; |
| 368 | } |
| 369 | |
| 370 | if (status == 0xff) { |
| 371 | if (found) { |
| 372 | break; |
| 373 | } |
| 374 | } else if (!found) { |
| 375 | found = 1; |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | if (found) { |
| 380 | i--; |
| 381 | bs->idx = i / BOOT_STATUS_STATE_COUNT; |
| 382 | bs->state = i % BOOT_STATUS_STATE_COUNT; |
| 383 | } |
| 384 | |
| 385 | return 0; |
| 386 | } |
| 387 | |
| 388 | /** |
| 389 | * Reads the boot status from the flash. The boot status contains |
| 390 | * the current state of an interrupted image copy operation. If the boot |
| 391 | * status is not present, or it indicates that previous copy finished, |
| 392 | * there is no operation in progress. |
| 393 | */ |
| 394 | static int |
| 395 | boot_read_status(struct boot_status *bs) |
| 396 | { |
| 397 | const struct flash_area *fap; |
| 398 | int status_loc; |
| 399 | int area_id; |
| 400 | int rc; |
| 401 | |
| 402 | memset(bs, 0, sizeof *bs); |
| 403 | |
| 404 | status_loc = boot_status_source(); |
| 405 | switch (status_loc) { |
| 406 | case BOOT_STATUS_SOURCE_NONE: |
| 407 | return 0; |
| 408 | |
| 409 | case BOOT_STATUS_SOURCE_SCRATCH: |
| 410 | area_id = FLASH_AREA_IMAGE_SCRATCH; |
| 411 | break; |
| 412 | |
| 413 | case BOOT_STATUS_SOURCE_SLOT0: |
| 414 | area_id = FLASH_AREA_IMAGE_0; |
| 415 | break; |
| 416 | |
| 417 | default: |
| 418 | assert(0); |
| 419 | return BOOT_EBADARGS; |
| 420 | } |
| 421 | |
| 422 | rc = flash_area_open(area_id, &fap); |
| 423 | if (rc != 0) { |
| 424 | return BOOT_EFLASH; |
| 425 | } |
| 426 | |
| 427 | rc = boot_read_status_bytes(fap, bs); |
| 428 | if (rc != 0) { |
| 429 | return rc; |
| 430 | } |
| 431 | |
| 432 | return 0; |
| 433 | } |
| 434 | |
| 435 | /** |
| 436 | * Writes the supplied boot status to the flash file system. The boot status |
| 437 | * contains the current state of an in-progress image copy operation. |
| 438 | * |
| 439 | * @param bs The boot status to write. |
| 440 | * |
| 441 | * @return 0 on success; nonzero on failure. |
| 442 | */ |
| 443 | int |
| 444 | boot_write_status(struct boot_status *bs) |
| 445 | { |
| 446 | const struct flash_area *fap; |
| 447 | uint32_t off; |
| 448 | int area_id; |
| 449 | int rc; |
| 450 | |
| 451 | if (bs->idx == 0) { |
| 452 | /* Write to scratch. */ |
| 453 | area_id = FLASH_AREA_IMAGE_SCRATCH; |
| 454 | } else { |
| 455 | /* Write to slot 0. */ |
| 456 | area_id = FLASH_AREA_IMAGE_0; |
| 457 | } |
| 458 | |
| 459 | rc = flash_area_open(area_id, &fap); |
| 460 | if (rc != 0) { |
| 461 | rc = BOOT_EFLASH; |
| 462 | goto done; |
| 463 | } |
| 464 | |
| 465 | off = boot_status_off(fap) + |
| 466 | boot_status_internal_off(bs->idx, bs->state, boot_data.write_sz); |
| 467 | |
| 468 | rc = flash_area_write(fap, off, &bs->state, 1); |
| 469 | if (rc != 0) { |
| 470 | rc = BOOT_EFLASH; |
| 471 | goto done; |
| 472 | } |
| 473 | |
| 474 | rc = 0; |
| 475 | |
| 476 | done: |
| 477 | flash_area_close(fap); |
| 478 | return rc; |
| 479 | } |
| 480 | |
| 481 | /* |
| 482 | * Validate image hash/signature in a slot. |
| 483 | */ |
| 484 | static int |
| 485 | boot_image_check(struct image_header *hdr, const struct flash_area *fap) |
| 486 | { |
David Brown | db1d9d3 | 2017-01-06 11:07:54 -0700 | [diff] [blame^] | 487 | static uint8_t tmpbuf[BOOT_TMPBUF_SZ]; |
Christopher Collins | 92ea77f | 2016-12-12 15:59:26 -0800 | [diff] [blame] | 488 | |
Christopher Collins | 92ea77f | 2016-12-12 15:59:26 -0800 | [diff] [blame] | 489 | if (bootutil_img_validate(hdr, fap, tmpbuf, BOOT_TMPBUF_SZ, |
| 490 | NULL, 0, NULL)) { |
| 491 | return BOOT_EBADIMAGE; |
| 492 | } |
| 493 | return 0; |
| 494 | } |
| 495 | |
| 496 | static int |
| 497 | split_image_check(struct image_header *app_hdr, |
| 498 | const struct flash_area *app_fap, |
| 499 | struct image_header *loader_hdr, |
| 500 | const struct flash_area *loader_fap) |
| 501 | { |
| 502 | static void *tmpbuf; |
| 503 | uint8_t loader_hash[32]; |
| 504 | |
| 505 | if (!tmpbuf) { |
| 506 | tmpbuf = malloc(BOOT_TMPBUF_SZ); |
| 507 | if (!tmpbuf) { |
| 508 | return BOOT_ENOMEM; |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | if (bootutil_img_validate(loader_hdr, loader_fap, tmpbuf, BOOT_TMPBUF_SZ, |
| 513 | NULL, 0, loader_hash)) { |
| 514 | return BOOT_EBADIMAGE; |
| 515 | } |
| 516 | |
| 517 | if (bootutil_img_validate(app_hdr, app_fap, tmpbuf, BOOT_TMPBUF_SZ, |
| 518 | loader_hash, 32, NULL)) { |
| 519 | return BOOT_EBADIMAGE; |
| 520 | } |
| 521 | |
| 522 | return 0; |
| 523 | } |
| 524 | |
| 525 | static int |
| 526 | boot_validate_slot1(void) |
| 527 | { |
| 528 | const struct flash_area *fap; |
| 529 | int rc; |
| 530 | |
| 531 | if (boot_data.imgs[1].hdr.ih_magic == 0xffffffff || |
| 532 | boot_data.imgs[1].hdr.ih_flags & IMAGE_F_NON_BOOTABLE) { |
| 533 | |
| 534 | /* No bootable image in slot 1; continue booting from slot 0. */ |
| 535 | return -1; |
| 536 | } |
| 537 | |
| 538 | /* Image in slot 1 is invalid. Erase the image and continue booting |
| 539 | * from slot 0. |
| 540 | */ |
| 541 | rc = flash_area_open(FLASH_AREA_IMAGE_1, &fap); |
| 542 | if (rc != 0) { |
| 543 | return BOOT_EFLASH; |
| 544 | } |
| 545 | |
| 546 | if (boot_data.imgs[1].hdr.ih_magic != IMAGE_MAGIC || |
| 547 | boot_image_check(&boot_data.imgs[1].hdr, fap) != 0) { |
| 548 | |
| 549 | /* Image in slot 1 is invalid. Erase the image and continue booting |
| 550 | * from slot 0. |
| 551 | */ |
| 552 | flash_area_erase(fap, 0, fap->fa_size); |
| 553 | return -1; |
| 554 | } |
| 555 | |
| 556 | flash_area_close(fap); |
| 557 | |
| 558 | /* Image in slot 1 is valid. */ |
| 559 | return 0; |
| 560 | } |
| 561 | |
| 562 | /** |
| 563 | * Determines which swap operation to perform, if any. If it is determined |
| 564 | * that a swap operation is required, the image in the second slot is checked |
| 565 | * for validity. If the image in the second slot is invalid, it is erased, and |
| 566 | * a swap type of "none" is indicated. |
| 567 | * |
| 568 | * @return The type of swap to perform (BOOT_SWAP_TYPE...) |
| 569 | */ |
| 570 | static int |
| 571 | boot_validated_swap_type(void) |
| 572 | { |
| 573 | int swap_type; |
| 574 | int rc; |
| 575 | |
| 576 | swap_type = boot_swap_type(); |
| 577 | if (swap_type == BOOT_SWAP_TYPE_NONE) { |
| 578 | /* Continue using slot 0. */ |
| 579 | return BOOT_SWAP_TYPE_NONE; |
| 580 | } |
| 581 | |
| 582 | /* Boot loader wants to switch to slot 1. Ensure image is valid. */ |
| 583 | rc = boot_validate_slot1(); |
| 584 | if (rc != 0) { |
| 585 | return BOOT_SWAP_TYPE_FAIL; |
| 586 | } |
| 587 | |
| 588 | return swap_type; |
| 589 | } |
| 590 | |
| 591 | /** |
| 592 | * Calculates the number of sectors the scratch area can contain. A "last" |
| 593 | * source sector is specified because images are copied backwards in flash |
| 594 | * (final index to index number 0). |
| 595 | * |
| 596 | * @param last_sector_idx The index of the last source sector |
| 597 | * (inclusive). |
| 598 | * @param out_first_sector_idx The index of the first source sector |
| 599 | * (inclusive) gets written here. |
| 600 | * |
| 601 | * @return The number of bytes comprised by the |
| 602 | * [first-sector, last-sector] range. |
| 603 | */ |
| 604 | static uint32_t |
| 605 | boot_copy_sz(int last_sector_idx, int *out_first_sector_idx) |
| 606 | { |
| 607 | uint32_t new_sz; |
| 608 | uint32_t sz; |
| 609 | int i; |
| 610 | |
| 611 | sz = 0; |
| 612 | |
| 613 | for (i = last_sector_idx; i >= 0; i--) { |
| 614 | new_sz = sz + boot_data.imgs[0].sectors[i].fa_size; |
| 615 | if (new_sz > boot_data.scratch_sector.fa_size) { |
| 616 | break; |
| 617 | } |
| 618 | sz = new_sz; |
| 619 | } |
| 620 | |
| 621 | /* i currently refers to a sector that doesn't fit or it is -1 because all |
| 622 | * sectors have been processed. In both cases, exclude sector i. |
| 623 | */ |
| 624 | *out_first_sector_idx = i + 1; |
| 625 | return sz; |
| 626 | } |
| 627 | |
| 628 | /** |
| 629 | * Erases a region of flash. |
| 630 | * |
| 631 | * @param flash_area_idx The ID of the flash area containing the region |
| 632 | * to erase. |
| 633 | * @param off The offset within the flash area to start the |
| 634 | * erase. |
| 635 | * @param sz The number of bytes to erase. |
| 636 | * |
| 637 | * @return 0 on success; nonzero on failure. |
| 638 | */ |
| 639 | static int |
| 640 | boot_erase_sector(int flash_area_id, uint32_t off, uint32_t sz) |
| 641 | { |
| 642 | const struct flash_area *fap; |
| 643 | int rc; |
| 644 | |
| 645 | rc = flash_area_open(flash_area_id, &fap); |
| 646 | if (rc != 0) { |
| 647 | rc = BOOT_EFLASH; |
| 648 | goto done; |
| 649 | } |
| 650 | |
| 651 | rc = flash_area_erase(fap, off, sz); |
| 652 | if (rc != 0) { |
| 653 | rc = BOOT_EFLASH; |
| 654 | goto done; |
| 655 | } |
| 656 | |
| 657 | rc = 0; |
| 658 | |
| 659 | done: |
| 660 | flash_area_close(fap); |
| 661 | return rc; |
| 662 | } |
| 663 | |
| 664 | /** |
| 665 | * Copies the contents of one flash region to another. You must erase the |
| 666 | * destination region prior to calling this function. |
| 667 | * |
| 668 | * @param flash_area_id_src The ID of the source flash area. |
| 669 | * @param flash_area_id_dst The ID of the destination flash area. |
| 670 | * @param off_src The offset within the source flash area to |
| 671 | * copy from. |
| 672 | * @param off_dst The offset within the destination flash area to |
| 673 | * copy to. |
| 674 | * @param sz The number of bytes to copy. |
| 675 | * |
| 676 | * @return 0 on success; nonzero on failure. |
| 677 | */ |
| 678 | static int |
| 679 | boot_copy_sector(int flash_area_id_src, int flash_area_id_dst, |
| 680 | uint32_t off_src, uint32_t off_dst, uint32_t sz) |
| 681 | { |
| 682 | const struct flash_area *fap_src; |
| 683 | const struct flash_area *fap_dst; |
| 684 | uint32_t bytes_copied; |
| 685 | int chunk_sz; |
| 686 | int rc; |
| 687 | |
| 688 | static uint8_t buf[1024]; |
| 689 | |
| 690 | fap_src = NULL; |
| 691 | fap_dst = NULL; |
| 692 | |
| 693 | rc = flash_area_open(flash_area_id_src, &fap_src); |
| 694 | if (rc != 0) { |
| 695 | rc = BOOT_EFLASH; |
| 696 | goto done; |
| 697 | } |
| 698 | |
| 699 | rc = flash_area_open(flash_area_id_dst, &fap_dst); |
| 700 | if (rc != 0) { |
| 701 | rc = BOOT_EFLASH; |
| 702 | goto done; |
| 703 | } |
| 704 | |
| 705 | bytes_copied = 0; |
| 706 | while (bytes_copied < sz) { |
| 707 | if (sz - bytes_copied > sizeof buf) { |
| 708 | chunk_sz = sizeof buf; |
| 709 | } else { |
| 710 | chunk_sz = sz - bytes_copied; |
| 711 | } |
| 712 | |
| 713 | rc = flash_area_read(fap_src, off_src + bytes_copied, buf, chunk_sz); |
| 714 | if (rc != 0) { |
| 715 | rc = BOOT_EFLASH; |
| 716 | goto done; |
| 717 | } |
| 718 | |
| 719 | rc = flash_area_write(fap_dst, off_dst + bytes_copied, buf, chunk_sz); |
| 720 | if (rc != 0) { |
| 721 | rc = BOOT_EFLASH; |
| 722 | goto done; |
| 723 | } |
| 724 | |
| 725 | bytes_copied += chunk_sz; |
| 726 | } |
| 727 | |
| 728 | rc = 0; |
| 729 | |
| 730 | done: |
| 731 | flash_area_close(fap_src); |
| 732 | flash_area_close(fap_dst); |
| 733 | return rc; |
| 734 | } |
| 735 | |
| 736 | /** |
| 737 | * Swaps the contents of two flash regions within the two image slots. |
| 738 | * |
| 739 | * @param idx The index of the first sector in the range of |
| 740 | * sectors being swapped. |
| 741 | * @param sz The number of bytes to swap. |
| 742 | * @param bs The current boot status. This struct gets |
| 743 | * updated according to the outcome. |
| 744 | * |
| 745 | * @return 0 on success; nonzero on failure. |
| 746 | */ |
| 747 | static int |
| 748 | boot_swap_sectors(int idx, uint32_t sz, struct boot_status *bs) |
| 749 | { |
| 750 | uint32_t copy_sz; |
| 751 | uint32_t img_off; |
| 752 | int rc; |
| 753 | |
| 754 | /* Calculate offset from start of image area. */ |
| 755 | img_off = boot_data.imgs[0].sectors[idx].fa_off - |
| 756 | boot_data.imgs[0].sectors[0].fa_off; |
| 757 | |
| 758 | if (bs->state == 0) { |
| 759 | rc = boot_erase_sector(FLASH_AREA_IMAGE_SCRATCH, 0, sz); |
| 760 | if (rc != 0) { |
| 761 | return rc; |
| 762 | } |
| 763 | |
| 764 | rc = boot_copy_sector(FLASH_AREA_IMAGE_1, FLASH_AREA_IMAGE_SCRATCH, |
| 765 | img_off, 0, sz); |
| 766 | if (rc != 0) { |
| 767 | return rc; |
| 768 | } |
| 769 | |
| 770 | bs->state = 1; |
| 771 | (void)boot_write_status(bs); |
| 772 | } |
| 773 | if (bs->state == 1) { |
| 774 | rc = boot_erase_sector(FLASH_AREA_IMAGE_1, img_off, sz); |
| 775 | if (rc != 0) { |
| 776 | return rc; |
| 777 | } |
| 778 | |
| 779 | copy_sz = sz; |
| 780 | if (boot_data.imgs[0].sectors[idx].fa_off + sz >= |
| 781 | boot_data.imgs[1].sectors[0].fa_off) { |
| 782 | |
| 783 | /* This is the end of the area. Don't copy the image state into |
| 784 | * slot 1. |
| 785 | */ |
| 786 | copy_sz -= boot_trailer_sz(boot_data.write_sz); |
| 787 | } |
| 788 | |
| 789 | rc = boot_copy_sector(FLASH_AREA_IMAGE_0, FLASH_AREA_IMAGE_1, |
| 790 | img_off, img_off, copy_sz); |
| 791 | if (rc != 0) { |
| 792 | return rc; |
| 793 | } |
| 794 | |
| 795 | bs->state = 2; |
| 796 | (void)boot_write_status(bs); |
| 797 | } |
| 798 | if (bs->state == 2) { |
| 799 | rc = boot_erase_sector(FLASH_AREA_IMAGE_0, img_off, sz); |
| 800 | if (rc != 0) { |
| 801 | return rc; |
| 802 | } |
| 803 | |
| 804 | rc = boot_copy_sector(FLASH_AREA_IMAGE_SCRATCH, FLASH_AREA_IMAGE_0, |
| 805 | 0, img_off, sz); |
| 806 | if (rc != 0) { |
| 807 | return rc; |
| 808 | } |
| 809 | |
| 810 | bs->idx++; |
| 811 | bs->state = 0; |
| 812 | (void)boot_write_status(bs); |
| 813 | } |
| 814 | |
| 815 | return 0; |
| 816 | } |
| 817 | |
| 818 | /** |
| 819 | * Swaps the two images in flash. If a prior copy operation was interrupted |
| 820 | * by a system reset, this function completes that operation. |
| 821 | * |
| 822 | * @param bs The current boot status. This function reads |
| 823 | * this struct to determine if it is resuming |
| 824 | * an interrupted swap operation. This |
| 825 | * function writes the updated status to this |
| 826 | * function on return. |
| 827 | * |
| 828 | * @return 0 on success; nonzero on failure. |
| 829 | */ |
| 830 | static int |
| 831 | boot_copy_image(struct boot_status *bs) |
| 832 | { |
| 833 | uint32_t sz; |
| 834 | int first_sector_idx; |
| 835 | int last_sector_idx; |
| 836 | int swap_idx; |
| 837 | |
| 838 | swap_idx = 0; |
| 839 | last_sector_idx = boot_data.num_img_sectors - 1; |
| 840 | while (last_sector_idx >= 0) { |
| 841 | sz = boot_copy_sz(last_sector_idx, &first_sector_idx); |
| 842 | if (swap_idx >= bs->idx) { |
| 843 | boot_swap_sectors(first_sector_idx, sz, bs); |
| 844 | } |
| 845 | |
| 846 | last_sector_idx = first_sector_idx - 1; |
| 847 | swap_idx++; |
| 848 | } |
| 849 | |
| 850 | return 0; |
| 851 | } |
| 852 | |
| 853 | /** |
| 854 | * Marks a test image in slot 0 as fully copied. |
| 855 | */ |
| 856 | static int |
| 857 | boot_finalize_test_swap(void) |
| 858 | { |
| 859 | const struct flash_area *fap; |
| 860 | int rc; |
| 861 | |
| 862 | rc = flash_area_open(FLASH_AREA_IMAGE_0, &fap); |
| 863 | if (rc != 0) { |
| 864 | return BOOT_EFLASH; |
| 865 | } |
| 866 | |
| 867 | rc = boot_write_copy_done(fap); |
| 868 | if (rc != 0) { |
| 869 | return rc; |
| 870 | } |
| 871 | |
| 872 | return 0; |
| 873 | } |
| 874 | |
| 875 | /** |
| 876 | * Marks a reverted image in slot 0 as confirmed. This is necessary to ensure |
| 877 | * the status bytes from the image revert operation don't get processed on a |
| 878 | * subsequent boot. |
| 879 | */ |
| 880 | static int |
| 881 | boot_finalize_revert_swap(void) |
| 882 | { |
| 883 | const struct flash_area *fap; |
| 884 | struct boot_swap_state state_slot0; |
| 885 | int rc; |
| 886 | |
| 887 | rc = flash_area_open(FLASH_AREA_IMAGE_0, &fap); |
| 888 | if (rc != 0) { |
| 889 | return BOOT_EFLASH; |
| 890 | } |
| 891 | |
| 892 | rc = boot_read_swap_state(fap, &state_slot0); |
| 893 | if (rc != 0) { |
| 894 | return BOOT_EFLASH; |
| 895 | } |
| 896 | |
| 897 | if (state_slot0.magic == BOOT_MAGIC_UNSET) { |
| 898 | rc = boot_write_magic(fap); |
| 899 | if (rc != 0) { |
| 900 | return rc; |
| 901 | } |
| 902 | } |
| 903 | |
| 904 | if (state_slot0.copy_done == 0xff) { |
| 905 | rc = boot_write_copy_done(fap); |
| 906 | if (rc != 0) { |
| 907 | return rc; |
| 908 | } |
| 909 | } |
| 910 | |
| 911 | if (state_slot0.image_ok == 0xff) { |
| 912 | rc = boot_write_image_ok(fap); |
| 913 | if (rc != 0) { |
| 914 | return rc; |
| 915 | } |
| 916 | } |
| 917 | |
| 918 | return 0; |
| 919 | } |
| 920 | |
| 921 | /** |
| 922 | * Prepares the booting process. This function moves images around in flash as |
| 923 | * appropriate, and tells you what address to boot from. |
| 924 | * |
| 925 | * @param rsp On success, indicates how booting should occur. |
| 926 | * |
| 927 | * @return 0 on success; nonzero on failure. |
| 928 | */ |
| 929 | int |
| 930 | boot_go(struct boot_rsp *rsp) |
| 931 | { |
| 932 | struct boot_status bs; |
| 933 | int swap_type; |
| 934 | int slot; |
| 935 | int rc; |
| 936 | |
| 937 | /* The array of slot sectors are defined here (as opposed to file scope) so |
| 938 | * that they don't get allocated for non-boot-loader apps. This is |
| 939 | * necessary because the gcc option "-fdata-sections" doesn't seem to have |
| 940 | * any effect for some reason. |
| 941 | */ |
| 942 | static struct flash_area slot0_sectors[BOOT_MAX_IMG_SECTORS]; |
| 943 | static struct flash_area slot1_sectors[BOOT_MAX_IMG_SECTORS]; |
| 944 | boot_data.imgs[0].sectors = slot0_sectors; |
| 945 | boot_data.imgs[1].sectors = slot1_sectors; |
| 946 | |
| 947 | /* Determine the sector layout of the image slots and scratch area. */ |
| 948 | rc = boot_read_sectors(); |
| 949 | if (rc != 0) { |
| 950 | return rc; |
| 951 | } |
| 952 | |
| 953 | /* Attempt to read an image header from each slot. */ |
| 954 | rc = boot_read_image_headers(); |
| 955 | if (rc != 0) { |
| 956 | return rc; |
| 957 | } |
| 958 | |
| 959 | /* Determine if we rebooted in the middle of an image swap operation. */ |
| 960 | rc = boot_read_status(&bs); |
| 961 | if (rc != 0) { |
| 962 | return rc; |
| 963 | } |
| 964 | |
| 965 | /* If a partial swap was detected, complete it. */ |
| 966 | if (bs.idx != 0 || bs.state != 0) { |
| 967 | rc = boot_copy_image(&bs); |
| 968 | assert(rc == 0); |
| 969 | |
| 970 | /* Extrapolate the type of the partial swap. We need this information |
| 971 | * to know how to mark the swap complete in flash. |
| 972 | */ |
| 973 | swap_type = boot_previous_swap_type(); |
| 974 | } else { |
| 975 | swap_type = boot_validated_swap_type(); |
| 976 | switch (swap_type) { |
| 977 | case BOOT_SWAP_TYPE_TEST: |
| 978 | case BOOT_SWAP_TYPE_REVERT: |
| 979 | rc = boot_copy_image(&bs); |
| 980 | assert(rc == 0); |
| 981 | break; |
| 982 | } |
| 983 | } |
| 984 | |
| 985 | switch (swap_type) { |
| 986 | case BOOT_SWAP_TYPE_NONE: |
| 987 | slot = 0; |
| 988 | break; |
| 989 | |
| 990 | case BOOT_SWAP_TYPE_TEST: |
| 991 | slot = 1; |
| 992 | boot_finalize_test_swap(); |
| 993 | break; |
| 994 | |
| 995 | case BOOT_SWAP_TYPE_REVERT: |
| 996 | slot = 1; |
| 997 | boot_finalize_revert_swap(); |
| 998 | break; |
| 999 | |
| 1000 | case BOOT_SWAP_TYPE_FAIL: |
| 1001 | /* The image in slot 1 was invalid and is now erased. Ensure we don't |
| 1002 | * try to boot into it again on the next reboot. Do this by pretending |
| 1003 | * we just reverted back to slot 0. |
| 1004 | */ |
| 1005 | slot = 0; |
| 1006 | boot_finalize_revert_swap(); |
| 1007 | break; |
| 1008 | |
| 1009 | default: |
| 1010 | assert(0); |
| 1011 | slot = 0; |
| 1012 | break; |
| 1013 | } |
| 1014 | |
| 1015 | /* Always boot from the primary slot. */ |
| 1016 | rsp->br_flash_id = boot_data.imgs[0].sectors[0].fa_device_id; |
| 1017 | rsp->br_image_addr = boot_data.imgs[0].sectors[0].fa_off; |
| 1018 | rsp->br_hdr = &boot_data.imgs[slot].hdr; |
| 1019 | |
| 1020 | return 0; |
| 1021 | } |
| 1022 | |
| 1023 | int |
| 1024 | split_go(int loader_slot, int split_slot, void **entry) |
| 1025 | { |
| 1026 | const struct flash_area *loader_fap; |
| 1027 | const struct flash_area *app_fap; |
| 1028 | struct flash_area *sectors; |
| 1029 | uint32_t entry_val; |
| 1030 | int loader_flash_id; |
| 1031 | int app_flash_id; |
| 1032 | int rc; |
| 1033 | |
| 1034 | app_fap = NULL; |
| 1035 | loader_fap = NULL; |
| 1036 | |
| 1037 | sectors = malloc(BOOT_MAX_IMG_SECTORS * 2 * sizeof *sectors); |
| 1038 | if (sectors == NULL) { |
| 1039 | rc = SPLIT_GO_ERR; |
| 1040 | goto done; |
| 1041 | } |
| 1042 | boot_data.imgs[0].sectors = sectors + 0; |
| 1043 | boot_data.imgs[1].sectors = sectors + BOOT_MAX_IMG_SECTORS; |
| 1044 | |
| 1045 | /* Determine the sector layout of the image slots and scratch area. */ |
| 1046 | rc = boot_read_sectors(); |
| 1047 | if (rc != 0) { |
| 1048 | rc = SPLIT_GO_ERR; |
| 1049 | goto done; |
| 1050 | } |
| 1051 | |
| 1052 | rc = boot_read_image_headers(); |
| 1053 | if (rc != 0) { |
| 1054 | goto done; |
| 1055 | } |
| 1056 | |
| 1057 | app_flash_id = flash_area_id_from_image_slot(split_slot); |
| 1058 | rc = flash_area_open(app_flash_id, &app_fap); |
| 1059 | if (rc != 0) { |
| 1060 | rc = BOOT_EFLASH; |
| 1061 | goto done; |
| 1062 | } |
| 1063 | |
| 1064 | loader_flash_id = flash_area_id_from_image_slot(loader_slot); |
| 1065 | rc = flash_area_open(loader_flash_id, &loader_fap); |
| 1066 | if (rc != 0) { |
| 1067 | rc = BOOT_EFLASH; |
| 1068 | goto done; |
| 1069 | } |
| 1070 | |
| 1071 | /* Don't check the bootable image flag because we could really call a |
| 1072 | * bootable or non-bootable image. Just validate that the image check |
| 1073 | * passes which is distinct from the normal check. |
| 1074 | */ |
| 1075 | rc = split_image_check(&boot_data.imgs[split_slot].hdr, |
| 1076 | app_fap, |
| 1077 | &boot_data.imgs[loader_slot].hdr, |
| 1078 | loader_fap); |
| 1079 | if (rc != 0) { |
| 1080 | rc = SPLIT_GO_NON_MATCHING; |
| 1081 | goto done; |
| 1082 | } |
| 1083 | |
| 1084 | entry_val = boot_data.imgs[split_slot].sectors[0].fa_off + |
| 1085 | boot_data.imgs[split_slot].hdr.ih_hdr_size; |
| 1086 | *entry = (void*) entry_val; |
| 1087 | rc = SPLIT_GO_OK; |
| 1088 | |
| 1089 | done: |
| 1090 | free(sectors); |
| 1091 | flash_area_close(app_fap); |
| 1092 | flash_area_close(loader_fap); |
| 1093 | return rc; |
| 1094 | } |