| /* |
| * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * Redistributions of source code must retain the above copyright notice, this |
| * list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * Neither the name of ARM nor the names of its contributors may be used |
| * to endorse or promote products derived from this software without specific |
| * prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include <arch.h> |
| #include <arch_helpers.h> |
| #include <assert.h> |
| #include <bl_common.h> |
| #include <context.h> |
| #include <context_mgmt.h> |
| #include <debug.h> |
| #include <platform.h> |
| #include <string.h> |
| #include "psci_private.h" |
| |
| /* |
| * SPD power management operations, expected to be supplied by the registered |
| * SPD on successful SP initialization |
| */ |
| const spd_pm_ops_t *psci_spd_pm; |
| |
| /******************************************************************************* |
| * Arrays that hold the platform's power domain tree information for state |
| * management of power domains. |
| * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain |
| * which is an ancestor of a CPU power domain. |
| * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain |
| ******************************************************************************/ |
| non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS] |
| #if USE_COHERENT_MEM |
| __attribute__ ((section("tzfw_coherent_mem"))) |
| #endif |
| ; |
| |
| cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT]; |
| |
| /******************************************************************************* |
| * Pointer to functions exported by the platform to complete power mgmt. ops |
| ******************************************************************************/ |
| const plat_pm_ops_t *psci_plat_pm_ops; |
| |
| /******************************************************************************* |
| * Check that the maximum power level supported by the platform makes sense |
| * ****************************************************************************/ |
| CASSERT(PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL && \ |
| PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL, \ |
| assert_platform_max_pwrlvl_check); |
| |
| /******************************************************************************* |
| * This function is passed a cpu_index and the highest level in the topology |
| * tree. It iterates through the nodes to find the highest power level at which |
| * a domain is physically powered off. |
| ******************************************************************************/ |
| uint32_t psci_find_max_phys_off_pwrlvl(uint32_t end_pwrlvl, |
| unsigned int cpu_idx) |
| { |
| int max_pwrlvl, level; |
| unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; |
| |
| if (psci_get_phys_state(cpu_idx, PSCI_CPU_PWR_LVL) != PSCI_STATE_OFF) |
| return PSCI_INVALID_DATA; |
| |
| max_pwrlvl = PSCI_CPU_PWR_LVL; |
| |
| for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) { |
| if (psci_get_phys_state(parent_idx, level) == PSCI_STATE_OFF) |
| max_pwrlvl = level; |
| |
| parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; |
| } |
| |
| return max_pwrlvl; |
| } |
| |
| /******************************************************************************* |
| * This function verifies that the all the other cores in the system have been |
| * turned OFF and the current CPU is the last running CPU in the system. |
| * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false) |
| * otherwise. |
| ******************************************************************************/ |
| unsigned int psci_is_last_on_cpu(void) |
| { |
| unsigned long mpidr = read_mpidr_el1() & MPIDR_AFFINITY_MASK; |
| unsigned int i; |
| |
| for (i = 0; i < PLATFORM_CORE_COUNT; i++) { |
| if (psci_cpu_pd_nodes[i].mpidr == mpidr) { |
| assert(psci_get_state(i, PSCI_CPU_PWR_LVL) |
| == PSCI_STATE_ON); |
| continue; |
| } |
| |
| if (psci_get_state(i, PSCI_CPU_PWR_LVL) != PSCI_STATE_OFF) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /******************************************************************************* |
| * Routine to return the maximum power level to traverse to after a cpu has |
| * been physically powered up. It is expected to be called immediately after |
| * reset from assembler code. |
| ******************************************************************************/ |
| int get_power_on_target_pwrlvl(void) |
| { |
| int pwrlvl; |
| |
| #if DEBUG |
| unsigned int state; |
| |
| /* |
| * Sanity check the state of the cpu. It should be either suspend or "on |
| * pending" |
| */ |
| state = psci_get_state(plat_my_core_pos(), PSCI_CPU_PWR_LVL); |
| assert(state == PSCI_STATE_SUSPEND || state == PSCI_STATE_ON_PENDING); |
| #endif |
| |
| /* |
| * Assume that this cpu was suspended and retrieve its target power |
| * level. If it is invalid then it could only have been turned off |
| * earlier. PLAT_MAX_PWR_LVL will be the highest power level a |
| * cpu can be turned off to. |
| */ |
| pwrlvl = psci_get_suspend_pwrlvl(); |
| if (pwrlvl == PSCI_INVALID_DATA) |
| pwrlvl = PLAT_MAX_PWR_LVL; |
| return pwrlvl; |
| } |
| |
| /******************************************************************************* |
| * PSCI helper function to get the parent nodes corresponding to a cpu_index. |
| ******************************************************************************/ |
| void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx, |
| int end_lvl, |
| unsigned int node_index[]) |
| { |
| unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node; |
| int i; |
| |
| for (i = PSCI_CPU_PWR_LVL + 1; i <= end_lvl; i++) { |
| *node_index++ = parent_node; |
| parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node; |
| } |
| } |
| |
| /******************************************************************************* |
| * This function is passed a cpu_index and the highest level in the topology |
| * tree and the state which each node should transition to. It updates the |
| * state of each node between the specified power levels. |
| ******************************************************************************/ |
| void psci_do_state_coordination(int end_pwrlvl, |
| unsigned int cpu_idx, |
| uint32_t state) |
| { |
| int level; |
| unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; |
| psci_set_state(cpu_idx, state, PSCI_CPU_PWR_LVL); |
| |
| for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) { |
| psci_set_state(parent_idx, state, level); |
| parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; |
| } |
| } |
| |
| /******************************************************************************* |
| * This function is passed a cpu_index and the highest level in the topology |
| * tree that the operation should be applied to. It picks up locks in order of |
| * increasing power domain level in the range specified. |
| ******************************************************************************/ |
| void psci_acquire_pwr_domain_locks(int end_pwrlvl, unsigned int cpu_idx) |
| { |
| unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; |
| int level; |
| |
| /* No locking required for level 0. Hence start locking from level 1 */ |
| for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) { |
| psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]); |
| parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; |
| } |
| } |
| |
| /******************************************************************************* |
| * This function is passed a cpu_index and the highest level in the topology |
| * tree that the operation should be applied to. It releases the locks in order |
| * of decreasing power domain level in the range specified. |
| ******************************************************************************/ |
| void psci_release_pwr_domain_locks(int end_pwrlvl, unsigned int cpu_idx) |
| { |
| unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0}; |
| int level; |
| |
| /* Get the parent nodes */ |
| psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes); |
| |
| /* Unlock top down. No unlocking required for level 0. */ |
| for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1; level--) { |
| parent_idx = parent_nodes[level - 1]; |
| psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]); |
| } |
| } |
| |
| /******************************************************************************* |
| * Simple routine to determine whether a mpidr is valid or not. |
| ******************************************************************************/ |
| int psci_validate_mpidr(unsigned long mpidr) |
| { |
| if (plat_core_pos_by_mpidr(mpidr) < 0) |
| return PSCI_E_INVALID_PARAMS; |
| |
| return PSCI_E_SUCCESS; |
| } |
| |
| /******************************************************************************* |
| * This function determines the full entrypoint information for the requested |
| * PSCI entrypoint on power on/resume and returns it. |
| ******************************************************************************/ |
| int psci_get_ns_ep_info(entry_point_info_t *ep, |
| uint64_t entrypoint, uint64_t context_id) |
| { |
| uint32_t ep_attr, mode, sctlr, daif, ee; |
| uint32_t ns_scr_el3 = read_scr_el3(); |
| uint32_t ns_sctlr_el1 = read_sctlr_el1(); |
| |
| sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1; |
| ee = 0; |
| |
| ep_attr = NON_SECURE | EP_ST_DISABLE; |
| if (sctlr & SCTLR_EE_BIT) { |
| ep_attr |= EP_EE_BIG; |
| ee = 1; |
| } |
| SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); |
| |
| ep->pc = entrypoint; |
| memset(&ep->args, 0, sizeof(ep->args)); |
| ep->args.arg0 = context_id; |
| |
| /* |
| * Figure out whether the cpu enters the non-secure address space |
| * in aarch32 or aarch64 |
| */ |
| if (ns_scr_el3 & SCR_RW_BIT) { |
| |
| /* |
| * Check whether a Thumb entry point has been provided for an |
| * aarch64 EL |
| */ |
| if (entrypoint & 0x1) |
| return PSCI_E_INVALID_PARAMS; |
| |
| mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1; |
| |
| ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); |
| } else { |
| |
| mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; |
| |
| /* |
| * TODO: Choose async. exception bits if HYP mode is not |
| * implemented according to the values of SCR.{AW, FW} bits |
| */ |
| daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; |
| |
| ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif); |
| } |
| |
| return PSCI_E_SUCCESS; |
| } |
| |
| /******************************************************************************* |
| * This function takes an index and level of a power domain node in the topology |
| * tree and returns its state. State of a non-leaf node needs to be calculated. |
| ******************************************************************************/ |
| unsigned short psci_get_state(unsigned int idx, |
| int level) |
| { |
| /* A cpu node just contains the state which can be directly returned */ |
| if (level == PSCI_CPU_PWR_LVL) { |
| flush_cpu_data_by_index(idx, psci_svc_cpu_data.psci_state); |
| return get_cpu_data_by_index(idx, psci_svc_cpu_data.psci_state); |
| } |
| |
| #if !USE_COHERENT_MEM |
| flush_dcache_range((uint64_t) &psci_non_cpu_pd_nodes[idx], |
| sizeof(psci_non_cpu_pd_nodes[idx])); |
| #endif |
| /* |
| * For a power level higher than a cpu, the state has to be |
| * calculated. It depends upon the value of the reference count |
| * which is managed by each node at the next lower power level |
| * e.g. for a cluster, each cpu increments/decrements the reference |
| * count. If the reference count is 0 then the power level is |
| * OFF else ON. |
| */ |
| if (psci_non_cpu_pd_nodes[idx].ref_count) |
| return PSCI_STATE_ON; |
| else |
| return PSCI_STATE_OFF; |
| } |
| |
| /******************************************************************************* |
| * This function takes an index and level of a power domain node in the topology |
| * tree and a target state. State of a non-leaf node needs to be converted to |
| * a reference count. State of a leaf node can be set directly. |
| ******************************************************************************/ |
| void psci_set_state(unsigned int idx, |
| unsigned short state, |
| int level) |
| { |
| /* |
| * For a power level higher than a cpu, the state is used |
| * to decide whether the reference count is incremented or |
| * decremented. Entry into the ON_PENDING state does not have |
| * effect. |
| */ |
| if (level > PSCI_CPU_PWR_LVL) { |
| switch (state) { |
| case PSCI_STATE_ON: |
| psci_non_cpu_pd_nodes[idx].ref_count++; |
| break; |
| case PSCI_STATE_OFF: |
| case PSCI_STATE_SUSPEND: |
| psci_non_cpu_pd_nodes[idx].ref_count--; |
| break; |
| case PSCI_STATE_ON_PENDING: |
| /* |
| * A power level higher than a cpu will not undergo |
| * a state change when it is about to be turned on |
| */ |
| return; |
| default: |
| assert(0); |
| |
| #if !USE_COHERENT_MEM |
| flush_dcache_range((uint64_t) &psci_non_cpu_pd_nodes[idx], |
| sizeof(psci_non_cpu_pd_nodes[idx])); |
| #endif |
| } |
| } else { |
| set_cpu_data_by_index(idx, psci_svc_cpu_data.psci_state, state); |
| flush_cpu_data_by_index(idx, psci_svc_cpu_data.psci_state); |
| } |
| } |
| |
| /******************************************************************************* |
| * A power domain could be on, on_pending, suspended or off. These are the |
| * logical states it can be in. Physically either it is off or on. When it is in |
| * the state on_pending then it is about to be turned on. It is not possible to |
| * tell whether that's actually happened or not. So we err on the side of |
| * caution & treat the power domain as being turned off. |
| ******************************************************************************/ |
| unsigned short psci_get_phys_state(unsigned int idx, |
| int level) |
| { |
| unsigned int state; |
| |
| state = psci_get_state(idx, level); |
| return get_phys_state(state); |
| } |
| |
| /******************************************************************************* |
| * Generic handler which is called when a cpu is physically powered on. It |
| * traverses the node information and finds the highest power level powered |
| * off and performs generic, architectural, platform setup and state management |
| * to power on that power level and power levels below it. |
| * e.g. For a cpu that's been powered on, it will call the platform specific |
| * code to enable the gic cpu interface and for a cluster it will enable |
| * coherency at the interconnect level in addition to gic cpu interface. |
| ******************************************************************************/ |
| void psci_power_up_finish(int end_pwrlvl, |
| pwrlvl_power_on_finisher_t pon_handler) |
| { |
| unsigned int cpu_idx = plat_my_core_pos(); |
| unsigned int max_phys_off_pwrlvl; |
| |
| /* |
| * This function acquires the lock corresponding to each power |
| * level so that by the time all locks are taken, the system topology |
| * is snapshot and state management can be done safely. |
| */ |
| psci_acquire_pwr_domain_locks(end_pwrlvl, |
| cpu_idx); |
| |
| max_phys_off_pwrlvl = psci_find_max_phys_off_pwrlvl(end_pwrlvl, |
| cpu_idx); |
| assert(max_phys_off_pwrlvl != PSCI_INVALID_DATA); |
| |
| /* Perform generic, architecture and platform specific handling */ |
| pon_handler(cpu_idx, max_phys_off_pwrlvl); |
| |
| /* |
| * This function updates the state of each power instance |
| * corresponding to the cpu index in the range of power levels |
| * specified. |
| */ |
| psci_do_state_coordination(end_pwrlvl, |
| cpu_idx, |
| PSCI_STATE_ON); |
| |
| /* |
| * This loop releases the lock corresponding to each power level |
| * in the reverse order to which they were acquired. |
| */ |
| psci_release_pwr_domain_locks(end_pwrlvl, |
| cpu_idx); |
| } |
| |
| /******************************************************************************* |
| * This function initializes the set of hooks that PSCI invokes as part of power |
| * management operation. The power management hooks are expected to be provided |
| * by the SPD, after it finishes all its initialization |
| ******************************************************************************/ |
| void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) |
| { |
| assert(pm); |
| psci_spd_pm = pm; |
| |
| if (pm->svc_migrate) |
| psci_caps |= define_psci_cap(PSCI_MIG_AARCH64); |
| |
| if (pm->svc_migrate_info) |
| psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64) |
| | define_psci_cap(PSCI_MIG_INFO_TYPE); |
| } |
| |
| /******************************************************************************* |
| * This function invokes the migrate info hook in the spd_pm_ops. It performs |
| * the necessary return value validation. If the Secure Payload is UP and |
| * migrate capable, it returns the mpidr of the CPU on which the Secure payload |
| * is resident through the mpidr parameter. Else the value of the parameter on |
| * return is undefined. |
| ******************************************************************************/ |
| int psci_spd_migrate_info(uint64_t *mpidr) |
| { |
| int rc; |
| |
| if (!psci_spd_pm || !psci_spd_pm->svc_migrate_info) |
| return PSCI_E_NOT_SUPPORTED; |
| |
| rc = psci_spd_pm->svc_migrate_info(mpidr); |
| |
| assert(rc == PSCI_TOS_UP_MIG_CAP || rc == PSCI_TOS_NOT_UP_MIG_CAP \ |
| || rc == PSCI_TOS_NOT_PRESENT_MP || rc == PSCI_E_NOT_SUPPORTED); |
| |
| return rc; |
| } |
| |
| |
| /******************************************************************************* |
| * This function prints the state of all power domains present in the |
| * system |
| ******************************************************************************/ |
| void psci_print_power_domain_map(void) |
| { |
| #if LOG_LEVEL >= LOG_LEVEL_INFO |
| unsigned int idx, state; |
| |
| /* This array maps to the PSCI_STATE_X definitions in psci.h */ |
| static const char *psci_state_str[] = { |
| "ON", |
| "OFF", |
| "ON_PENDING", |
| "SUSPEND" |
| }; |
| |
| INFO("PSCI Power Domain Map:\n"); |
| for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT); idx++) { |
| state = psci_get_state(idx, psci_non_cpu_pd_nodes[idx].level); |
| INFO(" Domain Node : Level %u, parent_node %d, State %s\n", |
| psci_non_cpu_pd_nodes[idx].level, |
| psci_non_cpu_pd_nodes[idx].parent_node, |
| psci_state_str[state]); |
| } |
| |
| for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) { |
| state = psci_get_state(idx, PSCI_CPU_PWR_LVL); |
| INFO(" CPU Node : MPID 0x%lx, parent_node %d, State %s\n", |
| psci_cpu_pd_nodes[idx].mpidr, |
| psci_cpu_pd_nodes[idx].parent_node, |
| psci_state_str[state]); |
| } |
| #endif |
| } |