Jeenu Viswambharan | 21b818c | 2017-09-22 08:32:10 +0100 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved. |
| 3 | * |
| 4 | * SPDX-License-Identifier: BSD-3-Clause |
| 5 | */ |
| 6 | |
| 7 | /* |
| 8 | * Exception handlers at EL3, their priority levels, and management. |
| 9 | */ |
| 10 | |
| 11 | #include <assert.h> |
| 12 | #include <cpu_data.h> |
| 13 | #include <debug.h> |
| 14 | #include <ehf.h> |
| 15 | #include <interrupt_mgmt.h> |
| 16 | #include <platform.h> |
| 17 | |
| 18 | /* Output EHF logs as verbose */ |
| 19 | #define EHF_LOG(...) VERBOSE("EHF: " __VA_ARGS__) |
| 20 | |
| 21 | #define EHF_INVALID_IDX (-1) |
| 22 | |
| 23 | /* For a valid handler, return the actual function pointer; otherwise, 0. */ |
| 24 | #define RAW_HANDLER(h) \ |
| 25 | ((ehf_handler_t) ((h & _EHF_PRI_VALID) ? (h & ~_EHF_PRI_VALID) : 0)) |
| 26 | |
| 27 | #define PRI_BIT(idx) (((ehf_pri_bits_t) 1) << idx) |
| 28 | |
| 29 | /* |
| 30 | * Convert index into secure priority using the platform-defined priority bits |
| 31 | * field. |
| 32 | */ |
| 33 | #define IDX_TO_PRI(idx) \ |
| 34 | ((idx << (7 - exception_data.pri_bits)) & 0x7f) |
| 35 | |
| 36 | /* Check whether a given index is valid */ |
| 37 | #define IS_IDX_VALID(idx) \ |
| 38 | ((exception_data.ehf_priorities[idx].ehf_handler & _EHF_PRI_VALID) != 0) |
| 39 | |
| 40 | /* Returns whether given priority is in secure priority range */ |
| 41 | #define IS_PRI_SECURE(pri) ((pri & 0x80) == 0) |
| 42 | |
| 43 | /* To be defined by the platform */ |
| 44 | extern const ehf_priorities_t exception_data; |
| 45 | |
| 46 | /* Translate priority to the index in the priority array */ |
| 47 | static int pri_to_idx(unsigned int priority) |
| 48 | { |
| 49 | int idx; |
| 50 | |
| 51 | idx = EHF_PRI_TO_IDX(priority, exception_data.pri_bits); |
| 52 | assert((idx >= 0) && (idx < exception_data.num_priorities)); |
| 53 | assert(IS_IDX_VALID(idx)); |
| 54 | |
| 55 | return idx; |
| 56 | } |
| 57 | |
| 58 | /* Return whether there are outstanding priority activation */ |
| 59 | static int has_valid_pri_activations(pe_exc_data_t *pe_data) |
| 60 | { |
| 61 | return pe_data->active_pri_bits != 0; |
| 62 | } |
| 63 | |
| 64 | static pe_exc_data_t *this_cpu_data(void) |
| 65 | { |
| 66 | return &get_cpu_data(ehf_data); |
| 67 | } |
| 68 | |
| 69 | /* |
| 70 | * Return the current priority index of this CPU. If no priority is active, |
| 71 | * return EHF_INVALID_IDX. |
| 72 | */ |
| 73 | static int get_pe_highest_active_idx(pe_exc_data_t *pe_data) |
| 74 | { |
| 75 | if (!has_valid_pri_activations(pe_data)) |
| 76 | return EHF_INVALID_IDX; |
| 77 | |
| 78 | /* Current priority is the right-most bit */ |
| 79 | return __builtin_ctz(pe_data->active_pri_bits); |
| 80 | } |
| 81 | |
| 82 | /* |
| 83 | * Mark priority active by setting the corresponding bit in active_pri_bits and |
| 84 | * programming the priority mask. |
| 85 | * |
| 86 | * This API is to be used as part of delegating to lower ELs other than for |
| 87 | * interrupts; e.g. while handling synchronous exceptions. |
| 88 | * |
| 89 | * This API is expected to be invoked before restoring context (Secure or |
| 90 | * Non-secure) in preparation for the respective dispatch. |
| 91 | */ |
| 92 | void ehf_activate_priority(unsigned int priority) |
| 93 | { |
| 94 | int idx, cur_pri_idx; |
| 95 | unsigned int old_mask, run_pri; |
| 96 | pe_exc_data_t *pe_data = this_cpu_data(); |
| 97 | |
| 98 | /* |
| 99 | * Query interrupt controller for the running priority, or idle priority |
| 100 | * if no interrupts are being handled. The requested priority must be |
| 101 | * less (higher priority) than the active running priority. |
| 102 | */ |
| 103 | run_pri = plat_ic_get_running_priority(); |
| 104 | if (priority >= run_pri) { |
| 105 | ERROR("Running priority higher (0x%x) than requested (0x%x)\n", |
| 106 | run_pri, priority); |
| 107 | panic(); |
| 108 | } |
| 109 | |
| 110 | /* |
| 111 | * If there were priority activations already, the requested priority |
| 112 | * must be less (higher priority) than the current highest priority |
| 113 | * activation so far. |
| 114 | */ |
| 115 | cur_pri_idx = get_pe_highest_active_idx(pe_data); |
| 116 | idx = pri_to_idx(priority); |
| 117 | if ((cur_pri_idx != EHF_INVALID_IDX) && (idx >= cur_pri_idx)) { |
| 118 | ERROR("Activation priority mismatch: req=0x%x current=0x%x\n", |
| 119 | priority, IDX_TO_PRI(cur_pri_idx)); |
| 120 | panic(); |
| 121 | } |
| 122 | |
| 123 | /* Set the bit corresponding to the requested priority */ |
| 124 | pe_data->active_pri_bits |= PRI_BIT(idx); |
| 125 | |
| 126 | /* |
| 127 | * Program priority mask for the activated level. Check that the new |
| 128 | * priority mask is setting a higher priority level than the existing |
| 129 | * mask. |
| 130 | */ |
| 131 | old_mask = plat_ic_set_priority_mask(priority); |
| 132 | if (priority >= old_mask) { |
| 133 | ERROR("Requested priority (0x%x) lower than Priority Mask (0x%x)\n", |
| 134 | priority, old_mask); |
| 135 | panic(); |
| 136 | } |
| 137 | |
| 138 | /* |
| 139 | * If this is the first activation, save the priority mask. This will be |
| 140 | * restored after the last deactivation. |
| 141 | */ |
| 142 | if (cur_pri_idx == EHF_INVALID_IDX) |
| 143 | pe_data->init_pri_mask = old_mask; |
| 144 | |
| 145 | EHF_LOG("activate prio=%d\n", get_pe_highest_active_idx(pe_data)); |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | * Mark priority inactive by clearing the corresponding bit in active_pri_bits, |
| 150 | * and programming the priority mask. |
| 151 | * |
| 152 | * This API is expected to be used as part of delegating to to lower ELs other |
| 153 | * than for interrupts; e.g. while handling synchronous exceptions. |
| 154 | * |
| 155 | * This API is expected to be invoked after saving context (Secure or |
| 156 | * Non-secure), having concluded the respective dispatch. |
| 157 | */ |
| 158 | void ehf_deactivate_priority(unsigned int priority) |
| 159 | { |
| 160 | int idx, cur_pri_idx; |
| 161 | pe_exc_data_t *pe_data = this_cpu_data(); |
| 162 | unsigned int old_mask, run_pri; |
| 163 | |
| 164 | /* |
| 165 | * Query interrupt controller for the running priority, or idle priority |
| 166 | * if no interrupts are being handled. The requested priority must be |
| 167 | * less (higher priority) than the active running priority. |
| 168 | */ |
| 169 | run_pri = plat_ic_get_running_priority(); |
| 170 | if (priority >= run_pri) { |
| 171 | ERROR("Running priority higher (0x%x) than requested (0x%x)\n", |
| 172 | run_pri, priority); |
| 173 | panic(); |
| 174 | } |
| 175 | |
| 176 | /* |
| 177 | * Deactivation is allowed only when there are priority activations, and |
| 178 | * the deactivation priority level must match the current activated |
| 179 | * priority. |
| 180 | */ |
| 181 | cur_pri_idx = get_pe_highest_active_idx(pe_data); |
| 182 | idx = pri_to_idx(priority); |
| 183 | if ((cur_pri_idx == EHF_INVALID_IDX) || (idx != cur_pri_idx)) { |
| 184 | ERROR("Deactivation priority mismatch: req=0x%x current=0x%x\n", |
| 185 | priority, IDX_TO_PRI(cur_pri_idx)); |
| 186 | panic(); |
| 187 | } |
| 188 | |
| 189 | /* Clear bit corresponding to highest priority */ |
| 190 | pe_data->active_pri_bits &= (pe_data->active_pri_bits - 1); |
| 191 | |
| 192 | /* |
| 193 | * Restore priority mask corresponding to the next priority, or the |
| 194 | * one stashed earlier if there are no more to deactivate. |
| 195 | */ |
| 196 | idx = get_pe_highest_active_idx(pe_data); |
| 197 | if (idx == EHF_INVALID_IDX) |
| 198 | old_mask = plat_ic_set_priority_mask(pe_data->init_pri_mask); |
| 199 | else |
| 200 | old_mask = plat_ic_set_priority_mask(priority); |
| 201 | |
| 202 | if (old_mask >= priority) { |
| 203 | ERROR("Deactivation priority (0x%x) lower than Priority Mask (0x%x)\n", |
| 204 | priority, old_mask); |
| 205 | panic(); |
| 206 | } |
| 207 | |
| 208 | EHF_LOG("deactivate prio=%d\n", get_pe_highest_active_idx(pe_data)); |
| 209 | } |
| 210 | |
| 211 | /* |
| 212 | * Top-level EL3 interrupt handler. |
| 213 | */ |
| 214 | static uint64_t ehf_el3_interrupt_handler(uint32_t id, uint32_t flags, |
| 215 | void *handle, void *cookie) |
| 216 | { |
| 217 | int pri, idx, intr, intr_raw, ret = 0; |
| 218 | ehf_handler_t handler; |
| 219 | |
| 220 | /* |
| 221 | * Top-level interrupt type handler from Interrupt Management Framework |
| 222 | * doesn't acknowledge the interrupt; so the interrupt ID must be |
| 223 | * invalid. |
| 224 | */ |
| 225 | assert(id == INTR_ID_UNAVAILABLE); |
| 226 | |
| 227 | /* |
| 228 | * Acknowledge interrupt. Proceed with handling only for valid interrupt |
| 229 | * IDs. This situation may arise because of Interrupt Management |
| 230 | * Framework identifying an EL3 interrupt, but before it's been |
| 231 | * acknowledged here, the interrupt was either deasserted, or there was |
| 232 | * a higher-priority interrupt of another type. |
| 233 | */ |
| 234 | intr_raw = plat_ic_acknowledge_interrupt(); |
| 235 | intr = plat_ic_get_interrupt_id(intr_raw); |
| 236 | if (intr == INTR_ID_UNAVAILABLE) |
| 237 | return 0; |
| 238 | |
| 239 | /* Having acknowledged the interrupt, get the running priority */ |
| 240 | pri = plat_ic_get_running_priority(); |
| 241 | |
| 242 | /* Check EL3 interrupt priority is in secure range */ |
| 243 | assert(IS_PRI_SECURE(pri)); |
| 244 | |
| 245 | /* |
| 246 | * Translate the priority to a descriptor index. We do this by masking |
| 247 | * and shifting the running priority value (platform-supplied). |
| 248 | */ |
| 249 | idx = pri_to_idx(pri); |
| 250 | |
| 251 | /* Validate priority */ |
| 252 | assert(pri == IDX_TO_PRI(idx)); |
| 253 | |
| 254 | handler = RAW_HANDLER(exception_data.ehf_priorities[idx].ehf_handler); |
| 255 | if (!handler) { |
| 256 | ERROR("No EL3 exception handler for priority 0x%x\n", |
| 257 | IDX_TO_PRI(idx)); |
| 258 | panic(); |
| 259 | } |
| 260 | |
| 261 | /* |
| 262 | * Call registered handler. Pass the raw interrupt value to registered |
| 263 | * handlers. |
| 264 | */ |
| 265 | ret = handler(intr_raw, flags, handle, cookie); |
| 266 | |
| 267 | return ret; |
| 268 | } |
| 269 | |
| 270 | /* |
| 271 | * Initialize the EL3 exception handling. |
| 272 | */ |
| 273 | void ehf_init(void) |
| 274 | { |
| 275 | unsigned int flags = 0; |
| 276 | int ret __unused; |
| 277 | |
| 278 | /* Ensure EL3 interrupts are supported */ |
| 279 | assert(plat_ic_has_interrupt_type(INTR_TYPE_EL3)); |
| 280 | |
| 281 | /* |
| 282 | * Make sure that priority water mark has enough bits to represent the |
| 283 | * whole priority array. |
| 284 | */ |
| 285 | assert(exception_data.num_priorities <= (sizeof(ehf_pri_bits_t) * 8)); |
| 286 | |
| 287 | assert(exception_data.ehf_priorities); |
| 288 | |
| 289 | /* |
| 290 | * Bit 7 of GIC priority must be 0 for secure interrupts. This means |
| 291 | * platforms must use at least 1 of the remaining 7 bits. |
| 292 | */ |
| 293 | assert((exception_data.pri_bits >= 1) || (exception_data.pri_bits < 8)); |
| 294 | |
| 295 | /* Route EL3 interrupts when in Secure and Non-secure. */ |
| 296 | set_interrupt_rm_flag(flags, NON_SECURE); |
| 297 | set_interrupt_rm_flag(flags, SECURE); |
| 298 | |
| 299 | /* Register handler for EL3 interrupts */ |
| 300 | ret = register_interrupt_type_handler(INTR_TYPE_EL3, |
| 301 | ehf_el3_interrupt_handler, flags); |
| 302 | assert(ret == 0); |
| 303 | } |
| 304 | |
| 305 | /* |
| 306 | * Register a handler at the supplied priority. Registration is allowed only if |
| 307 | * a handler hasn't been registered before, or one wasn't provided at build |
| 308 | * time. The priority for which the handler is being registered must also accord |
| 309 | * with the platform-supplied data. |
| 310 | */ |
| 311 | void ehf_register_priority_handler(unsigned int pri, ehf_handler_t handler) |
| 312 | { |
| 313 | int idx; |
| 314 | |
| 315 | /* Sanity check for handler */ |
| 316 | assert(handler != NULL); |
| 317 | |
| 318 | /* Handler ought to be 4-byte aligned */ |
| 319 | assert((((uintptr_t) handler) & 3) == 0); |
| 320 | |
| 321 | /* Ensure we register for valid priority */ |
| 322 | idx = pri_to_idx(pri); |
| 323 | assert(idx < exception_data.num_priorities); |
| 324 | assert(IDX_TO_PRI(idx) == pri); |
| 325 | |
| 326 | /* Return failure if a handler was already registered */ |
| 327 | if (exception_data.ehf_priorities[idx].ehf_handler != _EHF_NO_HANDLER) { |
| 328 | ERROR("Handler already registered for priority 0x%x\n", pri); |
| 329 | panic(); |
| 330 | } |
| 331 | |
| 332 | /* |
| 333 | * Install handler, and retain the valid bit. We assume that the handler |
| 334 | * is 4-byte aligned, which is usually the case. |
| 335 | */ |
| 336 | exception_data.ehf_priorities[idx].ehf_handler = |
| 337 | (((uintptr_t) handler) | _EHF_PRI_VALID); |
| 338 | |
| 339 | EHF_LOG("register pri=0x%x handler=%p\n", pri, handler); |
| 340 | } |