blob: 985ad221864bc5a466f396c590a1f239b47e20ed [file] [log] [blame]
Paul Beesley8aa05052019-03-07 15:47:15 +00001Porting Guide
2=============
Douglas Raillard6f625742017-06-28 15:23:03 +01003
Douglas Raillard6f625742017-06-28 15:23:03 +01004Introduction
5------------
6
Dan Handley4def07d2018-03-01 18:44:00 +00007Porting Trusted Firmware-A (TF-A) to a new platform involves making some
Douglas Raillard6f625742017-06-28 15:23:03 +01008mandatory and optional modifications for both the cold and warm boot paths.
9Modifications consist of:
10
11- Implementing a platform-specific function or variable,
12- Setting up the execution context in a certain way, or
13- Defining certain constants (for example #defines).
14
15The platform-specific functions and variables are declared in
Paul Beesley34760952019-04-12 14:19:42 +010016``include/plat/common/platform.h``. The firmware provides a default
17implementation of variables and functions to fulfill the optional requirements.
18These implementations are all weakly defined; they are provided to ease the
19porting effort. Each platform port can override them with its own implementation
20if the default implementation is inadequate.
Douglas Raillard6f625742017-06-28 15:23:03 +010021
Douglas Raillard6f625742017-06-28 15:23:03 +010022Some modifications are common to all Boot Loader (BL) stages. Section 2
23discusses these in detail. The subsequent sections discuss the remaining
24modifications for each BL stage in detail.
25
Sandrine Bailleuxa6a1dcb2022-11-08 13:36:42 +010026Please refer to the :ref:`Platform Ports Policy` for the policy regarding
27compatibility and deprecation of these porting interfaces.
Soby Mathew6e93eef2018-09-26 11:17:23 +010028
Antonio Nino Diaz8f457da2019-02-13 14:07:38 +000029Only Arm development platforms (such as FVP and Juno) may use the
30functions/definitions in ``include/plat/arm/common/`` and the corresponding
31source files in ``plat/arm/common/``. This is done so that there are no
32dependencies between platforms maintained by different people/companies. If you
33want to use any of the functionality present in ``plat/arm`` files, please
34create a pull request that moves the code to ``plat/common`` so that it can be
35discussed.
36
Douglas Raillard6f625742017-06-28 15:23:03 +010037Common modifications
38--------------------
39
40This section covers the modifications that should be made by the platform for
41each BL stage to correctly port the firmware stack. They are categorized as
42either mandatory or optional.
43
44Common mandatory modifications
45------------------------------
46
47A platform port must enable the Memory Management Unit (MMU) as well as the
48instruction and data caches for each BL stage. Setting up the translation
49tables is the responsibility of the platform port because memory maps differ
50across platforms. A memory translation library (see ``lib/xlat_tables/``) is
Sandrine Bailleuxde3d7042017-07-20 16:11:01 +010051provided to help in this setup.
52
53Note that although this library supports non-identity mappings, this is intended
54only for re-mapping peripheral physical addresses and allows platforms with high
55I/O addresses to reduce their virtual address space. All other addresses
56corresponding to code and data must currently use an identity mapping.
57
Dan Handley4def07d2018-03-01 18:44:00 +000058Also, the only translation granule size supported in TF-A is 4KB, as various
59parts of the code assume that is the case. It is not possible to switch to
6016 KB or 64 KB granule sizes at the moment.
Douglas Raillard6f625742017-06-28 15:23:03 +010061
Dan Handley4def07d2018-03-01 18:44:00 +000062In Arm standard platforms, each BL stage configures the MMU in the
Douglas Raillard6f625742017-06-28 15:23:03 +010063platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
64an identity mapping for all addresses.
65
66If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
67block of identity mapped secure memory with Device-nGnRE attributes aligned to
68page boundary (4K) for each BL stage. All sections which allocate coherent
69memory are grouped under ``coherent_ram``. For ex: Bakery locks are placed in a
70section identified by name ``bakery_lock`` inside ``coherent_ram`` so that its
71possible for the firmware to place variables in it using the following C code
72directive:
73
74::
75
76 __section("bakery_lock")
77
78Or alternatively the following assembler code directive:
79
80::
81
82 .section bakery_lock
83
84The ``coherent_ram`` section is a sum of all sections like ``bakery_lock`` which are
85used to allocate any data structures that are accessed both when a CPU is
86executing with its MMU and caches enabled, and when it's running with its MMU
87and caches disabled. Examples are given below.
88
89The following variables, functions and constants must be defined by the platform
90for the firmware to work correctly.
91
Javier Almansa Sobrino69447292022-04-07 18:26:49 +010092.. _platform_def_mandatory:
93
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +010094File : platform_def.h [mandatory]
95~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +010096
97Each platform must ensure that a header file of this name is in the system
Antonio Nino Diaz5e447812019-02-01 12:22:22 +000098include path with the following constants defined. This will require updating
99the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
Douglas Raillard6f625742017-06-28 15:23:03 +0100100
Paul Beesley34760952019-04-12 14:19:42 +0100101Platform ports may optionally use the file ``include/plat/common/common_def.h``,
Douglas Raillard6f625742017-06-28 15:23:03 +0100102which provides typical values for some of the constants below. These values are
103likely to be suitable for all platform ports.
104
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100105- **#define : PLATFORM_LINKER_FORMAT**
Douglas Raillard6f625742017-06-28 15:23:03 +0100106
107 Defines the linker format used by the platform, for example
108 ``elf64-littleaarch64``.
109
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100110- **#define : PLATFORM_LINKER_ARCH**
Douglas Raillard6f625742017-06-28 15:23:03 +0100111
112 Defines the processor architecture for the linker by the platform, for
113 example ``aarch64``.
114
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100115- **#define : PLATFORM_STACK_SIZE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100116
117 Defines the normal stack memory available to each CPU. This constant is used
Paul Beesley34760952019-04-12 14:19:42 +0100118 by ``plat/common/aarch64/platform_mp_stack.S`` and
119 ``plat/common/aarch64/platform_up_stack.S``.
Douglas Raillard6f625742017-06-28 15:23:03 +0100120
David Horstmann5d9101b2020-11-12 15:19:04 +0000121- **#define : CACHE_WRITEBACK_GRANULE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100122
Max Yu5c60b8c2022-09-08 23:21:21 +0000123 Defines the size in bytes of the largest cache line across all the cache
Douglas Raillard6f625742017-06-28 15:23:03 +0100124 levels in the platform.
125
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100126- **#define : FIRMWARE_WELCOME_STR**
Douglas Raillard6f625742017-06-28 15:23:03 +0100127
128 Defines the character string printed by BL1 upon entry into the ``bl1_main()``
129 function.
130
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100131- **#define : PLATFORM_CORE_COUNT**
Douglas Raillard6f625742017-06-28 15:23:03 +0100132
133 Defines the total number of CPUs implemented by the platform across all
134 clusters in the system.
135
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100136- **#define : PLAT_NUM_PWR_DOMAINS**
Douglas Raillard6f625742017-06-28 15:23:03 +0100137
138 Defines the total number of nodes in the power domain topology
139 tree at all the power domain levels used by the platform.
140 This macro is used by the PSCI implementation to allocate
141 data structures to represent power domain topology.
142
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100143- **#define : PLAT_MAX_PWR_LVL**
Douglas Raillard6f625742017-06-28 15:23:03 +0100144
145 Defines the maximum power domain level that the power management operations
146 should apply to. More often, but not always, the power domain level
147 corresponds to affinity level. This macro allows the PSCI implementation
148 to know the highest power domain level that it should consider for power
149 management operations in the system that the platform implements. For
150 example, the Base AEM FVP implements two clusters with a configurable
151 number of CPUs and it reports the maximum power domain level as 1.
152
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100153- **#define : PLAT_MAX_OFF_STATE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100154
155 Defines the local power state corresponding to the deepest power down
156 possible at every power domain level in the platform. The local power
157 states for each level may be sparsely allocated between 0 and this value
158 with 0 being reserved for the RUN state. The PSCI implementation uses this
159 value to initialize the local power states of the power domain nodes and
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100160 to specify the requested power state for a PSCI_CPU_OFF call.
Douglas Raillard6f625742017-06-28 15:23:03 +0100161
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100162- **#define : PLAT_MAX_RET_STATE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100163
164 Defines the local power state corresponding to the deepest retention state
165 possible at every power domain level in the platform. This macro should be
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100166 a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
Douglas Raillard6f625742017-06-28 15:23:03 +0100167 PSCI implementation to distinguish between retention and power down local
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100168 power states within PSCI_CPU_SUSPEND call.
Douglas Raillard6f625742017-06-28 15:23:03 +0100169
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100170- **#define : PLAT_MAX_PWR_LVL_STATES**
Douglas Raillard6f625742017-06-28 15:23:03 +0100171
172 Defines the maximum number of local power states per power domain level
173 that the platform supports. The default value of this macro is 2 since
174 most platforms just support a maximum of two local power states at each
175 power domain level (power-down and retention). If the platform needs to
176 account for more local power states, then it must redefine this macro.
177
178 Currently, this macro is used by the Generic PSCI implementation to size
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100179 the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
Douglas Raillard6f625742017-06-28 15:23:03 +0100180
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100181- **#define : BL1_RO_BASE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100182
183 Defines the base address in secure ROM where BL1 originally lives. Must be
184 aligned on a page-size boundary.
185
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100186- **#define : BL1_RO_LIMIT**
Douglas Raillard6f625742017-06-28 15:23:03 +0100187
188 Defines the maximum address in secure ROM that BL1's actual content (i.e.
189 excluding any data section allocated at runtime) can occupy.
190
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100191- **#define : BL1_RW_BASE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100192
193 Defines the base address in secure RAM where BL1's read-write data will live
194 at runtime. Must be aligned on a page-size boundary.
195
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100196- **#define : BL1_RW_LIMIT**
Douglas Raillard6f625742017-06-28 15:23:03 +0100197
198 Defines the maximum address in secure RAM that BL1's read-write data can
199 occupy at runtime.
200
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100201- **#define : BL2_BASE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100202
203 Defines the base address in secure RAM where BL1 loads the BL2 binary image.
Jiafei Pan7d173fc2018-03-21 07:20:09 +0000204 Must be aligned on a page-size boundary. This constant is not applicable
205 when BL2_IN_XIP_MEM is set to '1'.
Douglas Raillard6f625742017-06-28 15:23:03 +0100206
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100207- **#define : BL2_LIMIT**
Douglas Raillard6f625742017-06-28 15:23:03 +0100208
209 Defines the maximum address in secure RAM that the BL2 image can occupy.
Jiafei Pan7d173fc2018-03-21 07:20:09 +0000210 This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
211
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100212- **#define : BL2_RO_BASE**
Jiafei Pan7d173fc2018-03-21 07:20:09 +0000213
214 Defines the base address in secure XIP memory where BL2 RO section originally
215 lives. Must be aligned on a page-size boundary. This constant is only needed
216 when BL2_IN_XIP_MEM is set to '1'.
217
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100218- **#define : BL2_RO_LIMIT**
Jiafei Pan7d173fc2018-03-21 07:20:09 +0000219
220 Defines the maximum address in secure XIP memory that BL2's actual content
221 (i.e. excluding any data section allocated at runtime) can occupy. This
222 constant is only needed when BL2_IN_XIP_MEM is set to '1'.
223
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100224- **#define : BL2_RW_BASE**
Jiafei Pan7d173fc2018-03-21 07:20:09 +0000225
226 Defines the base address in secure RAM where BL2's read-write data will live
227 at runtime. Must be aligned on a page-size boundary. This constant is only
228 needed when BL2_IN_XIP_MEM is set to '1'.
229
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100230- **#define : BL2_RW_LIMIT**
Jiafei Pan7d173fc2018-03-21 07:20:09 +0000231
232 Defines the maximum address in secure RAM that BL2's read-write data can
233 occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
234 to '1'.
Douglas Raillard6f625742017-06-28 15:23:03 +0100235
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100236- **#define : BL31_BASE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100237
238 Defines the base address in secure RAM where BL2 loads the BL31 binary
239 image. Must be aligned on a page-size boundary.
240
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100241- **#define : BL31_LIMIT**
Douglas Raillard6f625742017-06-28 15:23:03 +0100242
243 Defines the maximum address in secure RAM that the BL31 image can occupy.
244
Tamas Ban1bc78552022-09-16 14:09:30 +0200245- **#define : PLAT_RSS_COMMS_PAYLOAD_MAX_SIZE**
246
247 Defines the maximum message size between AP and RSS. Need to define if
248 platform supports RSS.
249
Douglas Raillard6f625742017-06-28 15:23:03 +0100250For every image, the platform must define individual identifiers that will be
251used by BL1 or BL2 to load the corresponding image into memory from non-volatile
252storage. For the sake of performance, integer numbers will be used as
253identifiers. The platform will use those identifiers to return the relevant
254information about the image to be loaded (file handler, load address,
255authentication information, etc.). The following image identifiers are
256mandatory:
257
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100258- **#define : BL2_IMAGE_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100259
260 BL2 image identifier, used by BL1 to load BL2.
261
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100262- **#define : BL31_IMAGE_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100263
264 BL31 image identifier, used by BL2 to load BL31.
265
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100266- **#define : BL33_IMAGE_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100267
268 BL33 image identifier, used by BL2 to load BL33.
269
270If Trusted Board Boot is enabled, the following certificate identifiers must
271also be defined:
272
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100273- **#define : TRUSTED_BOOT_FW_CERT_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100274
275 BL2 content certificate identifier, used by BL1 to load the BL2 content
276 certificate.
277
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100278- **#define : TRUSTED_KEY_CERT_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100279
280 Trusted key certificate identifier, used by BL2 to load the trusted key
281 certificate.
282
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100283- **#define : SOC_FW_KEY_CERT_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100284
285 BL31 key certificate identifier, used by BL2 to load the BL31 key
286 certificate.
287
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100288- **#define : SOC_FW_CONTENT_CERT_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100289
290 BL31 content certificate identifier, used by BL2 to load the BL31 content
291 certificate.
292
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100293- **#define : NON_TRUSTED_FW_KEY_CERT_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100294
295 BL33 key certificate identifier, used by BL2 to load the BL33 key
296 certificate.
297
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100298- **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100299
300 BL33 content certificate identifier, used by BL2 to load the BL33 content
301 certificate.
302
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100303- **#define : FWU_CERT_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100304
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100305 Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
Douglas Raillard6f625742017-06-28 15:23:03 +0100306 FWU content certificate.
307
Douglas Raillard6f625742017-06-28 15:23:03 +0100308If the AP Firmware Updater Configuration image, BL2U is used, the following
309must also be defined:
310
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100311- **#define : BL2U_BASE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100312
313 Defines the base address in secure memory where BL1 copies the BL2U binary
314 image. Must be aligned on a page-size boundary.
315
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100316- **#define : BL2U_LIMIT**
Douglas Raillard6f625742017-06-28 15:23:03 +0100317
318 Defines the maximum address in secure memory that the BL2U image can occupy.
319
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100320- **#define : BL2U_IMAGE_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100321
322 BL2U image identifier, used by BL1 to fetch an image descriptor
323 corresponding to BL2U.
324
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100325If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
Douglas Raillard6f625742017-06-28 15:23:03 +0100326must also be defined:
327
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100328- **#define : SCP_BL2U_IMAGE_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100329
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100330 SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
331 corresponding to SCP_BL2U.
Paul Beesleye1c50262019-03-13 16:20:44 +0000332
333 .. note::
334 TF-A does not provide source code for this image.
Douglas Raillard6f625742017-06-28 15:23:03 +0100335
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100336If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
Douglas Raillard6f625742017-06-28 15:23:03 +0100337also be defined:
338
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100339- **#define : NS_BL1U_BASE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100340
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100341 Defines the base address in non-secure ROM where NS_BL1U executes.
Douglas Raillard6f625742017-06-28 15:23:03 +0100342 Must be aligned on a page-size boundary.
Paul Beesleye1c50262019-03-13 16:20:44 +0000343
344 .. note::
345 TF-A does not provide source code for this image.
Douglas Raillard6f625742017-06-28 15:23:03 +0100346
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100347- **#define : NS_BL1U_IMAGE_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100348
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100349 NS_BL1U image identifier, used by BL1 to fetch an image descriptor
350 corresponding to NS_BL1U.
Douglas Raillard6f625742017-06-28 15:23:03 +0100351
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100352If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
Douglas Raillard6f625742017-06-28 15:23:03 +0100353be defined:
354
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100355- **#define : NS_BL2U_BASE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100356
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100357 Defines the base address in non-secure memory where NS_BL2U executes.
Douglas Raillard6f625742017-06-28 15:23:03 +0100358 Must be aligned on a page-size boundary.
Paul Beesleye1c50262019-03-13 16:20:44 +0000359
360 .. note::
361 TF-A does not provide source code for this image.
Douglas Raillard6f625742017-06-28 15:23:03 +0100362
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100363- **#define : NS_BL2U_IMAGE_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100364
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100365 NS_BL2U image identifier, used by BL1 to fetch an image descriptor
366 corresponding to NS_BL2U.
Douglas Raillard6f625742017-06-28 15:23:03 +0100367
368For the the Firmware update capability of TRUSTED BOARD BOOT, the following
369macros may also be defined:
370
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100371- **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
Douglas Raillard6f625742017-06-28 15:23:03 +0100372
373 Total number of images that can be loaded simultaneously. If the platform
374 doesn't specify any value, it defaults to 10.
375
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100376If a SCP_BL2 image is supported by the platform, the following constants must
Douglas Raillard6f625742017-06-28 15:23:03 +0100377also be defined:
378
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100379- **#define : SCP_BL2_IMAGE_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100380
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100381 SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
Paul Beesley8aabea32019-01-11 18:26:51 +0000382 from platform storage before being transferred to the SCP.
Douglas Raillard6f625742017-06-28 15:23:03 +0100383
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100384- **#define : SCP_FW_KEY_CERT_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100385
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100386 SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
Douglas Raillard6f625742017-06-28 15:23:03 +0100387 certificate (mandatory when Trusted Board Boot is enabled).
388
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100389- **#define : SCP_FW_CONTENT_CERT_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100390
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100391 SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
Douglas Raillard6f625742017-06-28 15:23:03 +0100392 content certificate (mandatory when Trusted Board Boot is enabled).
393
394If a BL32 image is supported by the platform, the following constants must
395also be defined:
396
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100397- **#define : BL32_IMAGE_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100398
399 BL32 image identifier, used by BL2 to load BL32.
400
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100401- **#define : TRUSTED_OS_FW_KEY_CERT_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100402
403 BL32 key certificate identifier, used by BL2 to load the BL32 key
404 certificate (mandatory when Trusted Board Boot is enabled).
405
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100406- **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
Douglas Raillard6f625742017-06-28 15:23:03 +0100407
408 BL32 content certificate identifier, used by BL2 to load the BL32 content
409 certificate (mandatory when Trusted Board Boot is enabled).
410
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100411- **#define : BL32_BASE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100412
413 Defines the base address in secure memory where BL2 loads the BL32 binary
414 image. Must be aligned on a page-size boundary.
415
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100416- **#define : BL32_LIMIT**
Douglas Raillard6f625742017-06-28 15:23:03 +0100417
418 Defines the maximum address that the BL32 image can occupy.
419
420If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
421platform, the following constants must also be defined:
422
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100423- **#define : TSP_SEC_MEM_BASE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100424
425 Defines the base address of the secure memory used by the TSP image on the
426 platform. This must be at the same address or below ``BL32_BASE``.
427
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100428- **#define : TSP_SEC_MEM_SIZE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100429
430 Defines the size of the secure memory used by the BL32 image on the
Paul Beesley8aabea32019-01-11 18:26:51 +0000431 platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
432 accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
433 and ``BL32_LIMIT``.
Douglas Raillard6f625742017-06-28 15:23:03 +0100434
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100435- **#define : TSP_IRQ_SEC_PHY_TIMER**
Douglas Raillard6f625742017-06-28 15:23:03 +0100436
437 Defines the ID of the secure physical generic timer interrupt used by the
438 TSP's interrupt handling code.
439
440If the platform port uses the translation table library code, the following
441constants must also be defined:
442
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100443- **#define : PLAT_XLAT_TABLES_DYNAMIC**
Douglas Raillard6f625742017-06-28 15:23:03 +0100444
445 Optional flag that can be set per-image to enable the dynamic allocation of
446 regions even when the MMU is enabled. If not defined, only static
447 functionality will be available, if defined and set to 1 it will also
448 include the dynamic functionality.
449
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100450- **#define : MAX_XLAT_TABLES**
Douglas Raillard6f625742017-06-28 15:23:03 +0100451
452 Defines the maximum number of translation tables that are allocated by the
453 translation table library code. To minimize the amount of runtime memory
454 used, choose the smallest value needed to map the required virtual addresses
455 for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
456 image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
457 as well.
458
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100459- **#define : MAX_MMAP_REGIONS**
Douglas Raillard6f625742017-06-28 15:23:03 +0100460
461 Defines the maximum number of regions that are allocated by the translation
462 table library code. A region consists of physical base address, virtual base
463 address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
464 defined in the ``mmap_region_t`` structure. The platform defines the regions
465 that should be mapped. Then, the translation table library will create the
466 corresponding tables and descriptors at runtime. To minimize the amount of
467 runtime memory used, choose the smallest value needed to register the
468 required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
469 enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
470 the dynamic regions as well.
471
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100472- **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100473
474 Defines the total size of the virtual address space in bytes. For example,
David Cunado57244812018-02-16 21:12:58 +0000475 for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
Douglas Raillard6f625742017-06-28 15:23:03 +0100476
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100477- **#define : PLAT_PHY_ADDR_SPACE_SIZE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100478
479 Defines the total size of the physical address space in bytes. For example,
David Cunado57244812018-02-16 21:12:58 +0000480 for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
Douglas Raillard6f625742017-06-28 15:23:03 +0100481
482If the platform port uses the IO storage framework, the following constants
483must also be defined:
484
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100485- **#define : MAX_IO_DEVICES**
Douglas Raillard6f625742017-06-28 15:23:03 +0100486
487 Defines the maximum number of registered IO devices. Attempting to register
488 more devices than this value using ``io_register_device()`` will fail with
489 -ENOMEM.
490
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100491- **#define : MAX_IO_HANDLES**
Douglas Raillard6f625742017-06-28 15:23:03 +0100492
493 Defines the maximum number of open IO handles. Attempting to open more IO
494 entities than this value using ``io_open()`` will fail with -ENOMEM.
495
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100496- **#define : MAX_IO_BLOCK_DEVICES**
Douglas Raillard6f625742017-06-28 15:23:03 +0100497
498 Defines the maximum number of registered IO block devices. Attempting to
499 register more devices this value using ``io_dev_open()`` will fail
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100500 with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
Douglas Raillard6f625742017-06-28 15:23:03 +0100501 With this macro, multiple block devices could be supported at the same
502 time.
503
504If the platform needs to allocate data within the per-cpu data framework in
505BL31, it should define the following macro. Currently this is only required if
506the platform decides not to use the coherent memory section by undefining the
507``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
508required memory within the the per-cpu data to minimize wastage.
509
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100510- **#define : PLAT_PCPU_DATA_SIZE**
Douglas Raillard6f625742017-06-28 15:23:03 +0100511
512 Defines the memory (in bytes) to be reserved within the per-cpu data
513 structure for use by the platform layer.
514
515The following constants are optional. They should be defined when the platform
Dan Handley4def07d2018-03-01 18:44:00 +0000516memory layout implies some image overlaying like in Arm standard platforms.
Douglas Raillard6f625742017-06-28 15:23:03 +0100517
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100518- **#define : BL31_PROGBITS_LIMIT**
Douglas Raillard6f625742017-06-28 15:23:03 +0100519
520 Defines the maximum address in secure RAM that the BL31's progbits sections
521 can occupy.
522
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100523- **#define : TSP_PROGBITS_LIMIT**
Douglas Raillard6f625742017-06-28 15:23:03 +0100524
525 Defines the maximum address that the TSP's progbits sections can occupy.
526
527If the platform port uses the PL061 GPIO driver, the following constant may
528optionally be defined:
529
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100530- **PLAT_PL061_MAX_GPIOS**
Douglas Raillard6f625742017-06-28 15:23:03 +0100531 Maximum number of GPIOs required by the platform. This allows control how
532 much memory is allocated for PL061 GPIO controllers. The default value is
533
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100534 #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
Douglas Raillard6f625742017-06-28 15:23:03 +0100535
536If the platform port uses the partition driver, the following constant may
537optionally be defined:
538
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100539- **PLAT_PARTITION_MAX_ENTRIES**
Douglas Raillard6f625742017-06-28 15:23:03 +0100540 Maximum number of partition entries required by the platform. This allows
541 control how much memory is allocated for partition entries. The default
542 value is 128.
Paul Beesley34760952019-04-12 14:19:42 +0100543 For example, define the build flag in ``platform.mk``:
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100544 PLAT_PARTITION_MAX_ENTRIES := 12
545 $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
Douglas Raillard6f625742017-06-28 15:23:03 +0100546
Haojian Zhuangf8631f52019-09-14 18:01:16 +0800547- **PLAT_PARTITION_BLOCK_SIZE**
548 The size of partition block. It could be either 512 bytes or 4096 bytes.
549 The default value is 512.
Paul Beesleybe653a62019-10-04 16:17:46 +0000550 For example, define the build flag in ``platform.mk``:
Haojian Zhuangf8631f52019-09-14 18:01:16 +0800551 PLAT_PARTITION_BLOCK_SIZE := 4096
552 $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
553
Douglas Raillard6f625742017-06-28 15:23:03 +0100554The following constant is optional. It should be defined to override the default
555behaviour of the ``assert()`` function (for example, to save memory).
556
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100557- **PLAT_LOG_LEVEL_ASSERT**
Douglas Raillard6f625742017-06-28 15:23:03 +0100558 If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
559 ``assert()`` prints the name of the file, the line number and the asserted
560 expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
561 name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
562 doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
563 defined, it defaults to ``LOG_LEVEL``.
564
Lucian Paul-Trifub3b227f2022-06-22 18:45:36 +0100565If the platform port uses the DRTM feature, the following constants must be
566defined:
567
568- **#define : PLAT_DRTM_EVENT_LOG_MAX_SIZE**
569
570 Maximum Event Log size used by the platform. Platform can decide the maximum
571 size of the Event Log buffer, depending upon the highest hash algorithm
572 chosen and the number of components selected to measure during the DRTM
573 execution flow.
574
575- **#define : PLAT_DRTM_MMAP_ENTRIES**
576
577 Number of the MMAP entries used by the DRTM implementation to calculate the
578 size of address map region of the platform.
579
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100580File : plat_macros.S [mandatory]
581~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +0100582
583Each platform must ensure a file of this name is in the system include path with
Dan Handley4def07d2018-03-01 18:44:00 +0000584the following macro defined. In the Arm development platforms, this file is
Douglas Raillard6f625742017-06-28 15:23:03 +0100585found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
586
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100587- **Macro : plat_crash_print_regs**
Douglas Raillard6f625742017-06-28 15:23:03 +0100588
589 This macro allows the crash reporting routine to print relevant platform
590 registers in case of an unhandled exception in BL31. This aids in debugging
591 and this macro can be defined to be empty in case register reporting is not
592 desired.
593
594 For instance, GIC or interconnect registers may be helpful for
595 troubleshooting.
596
597Handling Reset
598--------------
599
600BL1 by default implements the reset vector where execution starts from a cold
601or warm boot. BL31 can be optionally set as a reset vector using the
602``RESET_TO_BL31`` make variable.
603
604For each CPU, the reset vector code is responsible for the following tasks:
605
606#. Distinguishing between a cold boot and a warm boot.
607
608#. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
609 the CPU is placed in a platform-specific state until the primary CPU
610 performs the necessary steps to remove it from this state.
611
612#. In the case of a warm boot, ensuring that the CPU jumps to a platform-
613 specific address in the BL31 image in the same processor mode as it was
614 when released from reset.
615
616The following functions need to be implemented by the platform port to enable
617reset vector code to perform the above tasks.
618
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100619Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
620~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +0100621
622::
623
624 Argument : void
625 Return : uintptr_t
626
627This function is called with the MMU and caches disabled
628(``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
629distinguishing between a warm and cold reset for the current CPU using
630platform-specific means. If it's a warm reset, then it returns the warm
631reset entrypoint point provided to ``plat_setup_psci_ops()`` during
632BL31 initialization. If it's a cold reset then this function must return zero.
633
634This function does not follow the Procedure Call Standard used by the
Dan Handley4def07d2018-03-01 18:44:00 +0000635Application Binary Interface for the Arm 64-bit architecture. The caller should
Douglas Raillard6f625742017-06-28 15:23:03 +0100636not assume that callee saved registers are preserved across a call to this
637function.
638
639This function fulfills requirement 1 and 3 listed above.
640
641Note that for platforms that support programming the reset address, it is
642expected that a CPU will start executing code directly at the right address,
643both on a cold and warm reset. In this case, there is no need to identify the
644type of reset nor to query the warm reset entrypoint. Therefore, implementing
645this function is not required on such platforms.
646
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100647Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
648~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +0100649
650::
651
652 Argument : void
653
654This function is called with the MMU and data caches disabled. It is responsible
655for placing the executing secondary CPU in a platform-specific state until the
656primary CPU performs the necessary actions to bring it out of that state and
657allow entry into the OS. This function must not return.
658
Dan Handley4def07d2018-03-01 18:44:00 +0000659In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
Douglas Raillard6f625742017-06-28 15:23:03 +0100660itself off. The primary CPU is responsible for powering up the secondary CPUs
661when normal world software requires them. When booting an EL3 payload instead,
662they stay powered on and are put in a holding pen until their mailbox gets
663populated.
664
665This function fulfills requirement 2 above.
666
667Note that for platforms that can't release secondary CPUs out of reset, only the
668primary CPU will execute the cold boot code. Therefore, implementing this
669function is not required on such platforms.
670
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100671Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
672~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +0100673
674::
675
676 Argument : void
677 Return : unsigned int
678
679This function identifies whether the current CPU is the primary CPU or a
680secondary CPU. A return value of zero indicates that the CPU is not the
681primary CPU, while a non-zero return value indicates that the CPU is the
682primary CPU.
683
684Note that for platforms that can't release secondary CPUs out of reset, only the
685primary CPU will execute the cold boot code. Therefore, there is no need to
686distinguish between primary and secondary CPUs and implementing this function is
687not required.
688
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100689Function : platform_mem_init() [mandatory]
690~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +0100691
692::
693
694 Argument : void
695 Return : void
696
697This function is called before any access to data is made by the firmware, in
698order to carry out any essential memory initialization.
699
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100700Function: plat_get_rotpk_info()
701~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +0100702
703::
704
705 Argument : void *, void **, unsigned int *, unsigned int *
706 Return : int
707
708This function is mandatory when Trusted Board Boot is enabled. It returns a
709pointer to the ROTPK stored in the platform (or a hash of it) and its length.
710The ROTPK must be encoded in DER format according to the following ASN.1
711structure:
712
713::
714
715 AlgorithmIdentifier ::= SEQUENCE {
716 algorithm OBJECT IDENTIFIER,
717 parameters ANY DEFINED BY algorithm OPTIONAL
718 }
719
720 SubjectPublicKeyInfo ::= SEQUENCE {
721 algorithm AlgorithmIdentifier,
722 subjectPublicKey BIT STRING
723 }
724
725In case the function returns a hash of the key:
726
727::
728
729 DigestInfo ::= SEQUENCE {
730 digestAlgorithm AlgorithmIdentifier,
731 digest OCTET STRING
732 }
733
734The function returns 0 on success. Any other value is treated as error by the
735Trusted Board Boot. The function also reports extra information related
736to the ROTPK in the flags parameter:
737
738::
739
740 ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
741 hash.
742 ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
743 verification while the platform ROTPK is not deployed.
744 When this flag is set, the function does not need to
745 return a platform ROTPK, and the authentication
746 framework uses the ROTPK in the certificate without
747 verifying it against the platform value. This flag
748 must not be used in a deployed production environment.
749
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100750Function: plat_get_nv_ctr()
751~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +0100752
753::
754
755 Argument : void *, unsigned int *
756 Return : int
757
758This function is mandatory when Trusted Board Boot is enabled. It returns the
759non-volatile counter value stored in the platform in the second argument. The
760cookie in the first argument may be used to select the counter in case the
761platform provides more than one (for example, on platforms that use the default
762TBBR CoT, the cookie will correspond to the OID values defined in
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100763TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
Douglas Raillard6f625742017-06-28 15:23:03 +0100764
765The function returns 0 on success. Any other value means the counter value could
766not be retrieved from the platform.
767
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100768Function: plat_set_nv_ctr()
769~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +0100770
771::
772
773 Argument : void *, unsigned int
774 Return : int
775
776This function is mandatory when Trusted Board Boot is enabled. It sets a new
777counter value in the platform. The cookie in the first argument may be used to
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100778select the counter (as explained in plat_get_nv_ctr()). The second argument is
Douglas Raillard6f625742017-06-28 15:23:03 +0100779the updated counter value to be written to the NV counter.
780
781The function returns 0 on success. Any other value means the counter value could
782not be updated.
783
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +0100784Function: plat_set_nv_ctr2()
785~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +0100786
787::
788
789 Argument : void *, const auth_img_desc_t *, unsigned int
790 Return : int
791
792This function is optional when Trusted Board Boot is enabled. If this
793interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
794first argument passed is a cookie and is typically used to
795differentiate between a Non Trusted NV Counter and a Trusted NV
796Counter. The second argument is a pointer to an authentication image
797descriptor and may be used to decide if the counter is allowed to be
798updated or not. The third argument is the updated counter value to
799be written to the NV counter.
800
801The function returns 0 on success. Any other value means the counter value
802either could not be updated or the authentication image descriptor indicates
803that it is not allowed to be updated.
804
Nicolas Toromanoff40f9f642020-11-09 12:14:52 +0100805Function: plat_convert_pk()
806~~~~~~~~~~~~~~~~~~~~~~~~~~~
807
808::
809
810 Argument : void *, unsigned int, void **, unsigned int *
811 Return : int
812
813This function is optional when Trusted Board Boot is enabled, and only
814used if the platform saves a hash of the ROTPK.
815First argument is the Distinguished Encoding Rules (DER) ROTPK.
816Second argument is its size.
817Third argument is used to return a pointer to a buffer, which hash should
818be the one saved in OTP.
819Fourth argument is a pointer to return its size.
820
821Most platforms save the hash of the ROTPK, but some may save slightly different
822information - e.g the hash of the ROTPK plus some related information.
823Defining this function allows to transform the ROTPK used to verify
824the signature to the buffer (a platform specific public key) which
825hash is saved in OTP.
826
827The default implementation copies the input key and length to the output without
828modification.
829
830The function returns 0 on success. Any other value means the expected
831public key buffer cannot be extracted.
832
Lucian Paul-Trifub3b227f2022-06-22 18:45:36 +0100833Dynamic Root of Trust for Measurement support (in BL31)
834-------------------------------------------------------
835
836The functions mentioned in this section are mandatory, when platform enables
837DRTM_SUPPORT build flag.
838
839Function : plat_get_addr_mmap()
840~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
841
842::
843
844 Argument : void
845 Return : const mmap_region_t *
846
847This function is used to return the address of the platform *address-map* table,
848which describes the regions of normal memory, memory mapped I/O
849and non-volatile memory.
850
851Function : plat_has_non_host_platforms()
852~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
853
854::
855
856 Argument : void
857 Return : bool
858
859This function returns *true* if the platform has any trusted devices capable of
860DMA, otherwise returns *false*.
861
862Function : plat_has_unmanaged_dma_peripherals()
863~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
864
865::
866
867 Argument : void
868 Return : bool
869
870This function returns *true* if platform uses peripherals whose DMA is not
871managed by an SMMU, otherwise returns *false*.
872
873Note -
874If the platform has peripherals that are not managed by the SMMU, then the
875platform should investigate such peripherals to determine whether they can
876be trusted, and such peripherals should be moved under "Non-host platforms"
877if they can be trusted.
878
879Function : plat_get_total_num_smmus()
880~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
881
882::
883
884 Argument : void
885 Return : unsigned int
886
887This function returns the total number of SMMUs in the platform.
888
889Function : plat_enumerate_smmus()
890~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
891::
892
893
894 Argument : void
895 Return : const uintptr_t *, size_t
896
897This function returns an array of SMMU addresses and the actual number of SMMUs
898reported by the platform.
899
900Function : plat_drtm_get_dma_prot_features()
901~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
902
903::
904
905 Argument : void
906 Return : const plat_drtm_dma_prot_features_t*
907
908This function returns the address of plat_drtm_dma_prot_features_t structure
909containing the maximum number of protected regions and bitmap with the types
910of DMA protection supported by the platform.
911For more details see section 3.3 Table 6 of `DRTM`_ specification.
912
913Function : plat_drtm_dma_prot_get_max_table_bytes()
914~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
915
916::
917
918 Argument : void
919 Return : uint64_t
920
921This function returns the maximum size of DMA protected regions table in
922bytes.
923
924Function : plat_drtm_get_tpm_features()
925~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
926
927::
928
929 Argument : void
930 Return : const plat_drtm_tpm_features_t*
931
932This function returns the address of *plat_drtm_tpm_features_t* structure
933containing PCR usage schema, TPM-based hash, and firmware hash algorithm
934supported by the platform.
935
936Function : plat_drtm_get_min_size_normal_world_dce()
937~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
938
939::
940
941 Argument : void
942 Return : uint64_t
943
944This function returns the size normal-world DCE of the platform.
945
946Function : plat_drtm_get_imp_def_dlme_region_size()
947~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
948
949::
950
951 Argument : void
952 Return : uint64_t
953
954This function returns the size of implementation defined DLME region
955of the platform.
956
957Function : plat_drtm_get_tcb_hash_table_size()
958~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
959
960::
961
962 Argument : void
963 Return : uint64_t
964
965This function returns the size of TCB hash table of the platform.
966
967Function : plat_drtm_get_tcb_hash_features()
968~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
969
970::
971
972 Argument : void
973 Return : uint64_t
974
975This function returns the Maximum number of TCB hashes recorded by the
976platform.
977For more details see section 3.3 Table 6 of `DRTM`_ specification.
978
979Function : plat_drtm_validate_ns_region()
980~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
981
982::
983
984 Argument : uintptr_t, uintptr_t
985 Return : int
986
987This function validates that given region is within the Non-Secure region
988of DRAM. This function takes a region start address and size an input
989arguments, and returns 0 on success and -1 on failure.
990
991Function : plat_set_drtm_error()
992~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
993
994::
995
996 Argument : uint64_t
997 Return : int
998
999This function writes a 64 bit error code received as input into
1000non-volatile storage and returns 0 on success and -1 on failure.
1001
1002Function : plat_get_drtm_error()
1003~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1004
1005::
1006
1007 Argument : uint64_t*
1008 Return : int
1009
1010This function reads a 64 bit error code from the non-volatile storage
1011into the received address, and returns 0 on success and -1 on failure.
1012
Douglas Raillard6f625742017-06-28 15:23:03 +01001013Common mandatory function modifications
1014---------------------------------------
1015
1016The following functions are mandatory functions which need to be implemented
1017by the platform port.
1018
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001019Function : plat_my_core_pos()
1020~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001021
1022::
1023
1024 Argument : void
1025 Return : unsigned int
1026
Paul Beesley8aabea32019-01-11 18:26:51 +00001027This function returns the index of the calling CPU which is used as a
Douglas Raillard6f625742017-06-28 15:23:03 +01001028CPU-specific linear index into blocks of memory (for example while allocating
1029per-CPU stacks). This function will be invoked very early in the
1030initialization sequence which mandates that this function should be
Paul Beesley8aabea32019-01-11 18:26:51 +00001031implemented in assembly and should not rely on the availability of a C
Douglas Raillard6f625742017-06-28 15:23:03 +01001032runtime environment. This function can clobber x0 - x8 and must preserve
1033x9 - x29.
1034
1035This function plays a crucial role in the power domain topology framework in
Paul Beesley34760952019-04-12 14:19:42 +01001036PSCI and details of this can be found in
1037:ref:`PSCI Power Domain Tree Structure`.
Douglas Raillard6f625742017-06-28 15:23:03 +01001038
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001039Function : plat_core_pos_by_mpidr()
1040~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001041
1042::
1043
1044 Argument : u_register_t
1045 Return : int
1046
1047This function validates the ``MPIDR`` of a CPU and converts it to an index,
1048which can be used as a CPU-specific linear index into blocks of memory. In
1049case the ``MPIDR`` is invalid, this function returns -1. This function will only
1050be invoked by BL31 after the power domain topology is initialized and can
Dan Handley4def07d2018-03-01 18:44:00 +00001051utilize the C runtime environment. For further details about how TF-A
1052represents the power domain topology and how this relates to the linear CPU
Paul Beesley34760952019-04-12 14:19:42 +01001053index, please refer :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillard6f625742017-06-28 15:23:03 +01001054
Ambroise Vincent2374ab12019-04-10 12:50:27 +01001055Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
1056~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1057
1058::
1059
1060 Arguments : void **heap_addr, size_t *heap_size
1061 Return : int
1062
1063This function is invoked during Mbed TLS library initialisation to get a heap,
1064by means of a starting address and a size. This heap will then be used
1065internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
1066must be able to provide a heap to it.
1067
1068A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
1069which a heap is statically reserved during compile time inside every image
1070(i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
1071the function simply returns the address and size of this "pre-allocated" heap.
1072For a platform to use this default implementation, only a call to the helper
1073from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
1074
1075However, by writting their own implementation, platforms have the potential to
1076optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
1077shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
1078twice.
1079
1080On success the function should return 0 and a negative error code otherwise.
1081
Sumit Gargf97062a2019-11-15 18:47:53 +05301082Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
1083~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1084
1085::
1086
1087 Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
1088 size_t *key_len, unsigned int *flags, const uint8_t *img_id,
1089 size_t img_id_len
1090 Return : int
1091
1092This function provides a symmetric key (either SSK or BSSK depending on
1093fw_enc_status) which is invoked during runtime decryption of encrypted
1094firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
1095implementation for testing purposes which must be overridden by the platform
1096trying to implement a real world firmware encryption use-case.
1097
1098It also allows the platform to pass symmetric key identifier rather than
1099actual symmetric key which is useful in cases where the crypto backend provides
1100secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
1101flag must be set in ``flags``.
1102
1103In addition to above a platform may also choose to provide an image specific
1104symmetric key/identifier using img_id.
1105
1106On success the function should return 0 and a negative error code otherwise.
1107
Manish Pandey700e7682021-10-21 21:53:49 +01001108Note that this API depends on ``DECRYPTION_SUPPORT`` build flag.
Sumit Gargf97062a2019-11-15 18:47:53 +05301109
Manish V Badarkhe0f20e502021-06-20 21:14:46 +01001110Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]
1111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1112
1113::
1114
Sughosh Ganu6aaf2572021-11-17 17:08:10 +05301115 Argument : const struct fwu_metadata *metadata
Manish V Badarkhe0f20e502021-06-20 21:14:46 +01001116 Return : void
1117
1118This function is mandatory when PSA_FWU_SUPPORT is enabled.
1119It provides a means to retrieve image specification (offset in
1120non-volatile storage and length) of active/updated images using the passed
1121FWU metadata, and update I/O policies of active/updated images using retrieved
1122image specification information.
1123Further I/O layer operations such as I/O open, I/O read, etc. on these
1124images rely on this function call.
1125
1126In Arm platforms, this function is used to set an I/O policy of the FIP image,
1127container of all active/updated secure and non-secure images.
1128
1129Function : plat_fwu_set_metadata_image_source() [when PSA_FWU_SUPPORT == 1]
1130~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1131
1132::
1133
1134 Argument : unsigned int image_id, uintptr_t *dev_handle,
1135 uintptr_t *image_spec
1136 Return : int
1137
1138This function is mandatory when PSA_FWU_SUPPORT is enabled. It is
1139responsible for setting up the platform I/O policy of the requested metadata
1140image (either FWU_METADATA_IMAGE_ID or BKUP_FWU_METADATA_IMAGE_ID) that will
1141be used to load this image from the platform's non-volatile storage.
1142
1143FWU metadata can not be always stored as a raw image in non-volatile storage
1144to define its image specification (offset in non-volatile storage and length)
1145statically in I/O policy.
1146For example, the FWU metadata image is stored as a partition inside the GUID
1147partition table image. Its specification is defined in the partition table
1148that needs to be parsed dynamically.
1149This function provides a means to retrieve such dynamic information to set
1150the I/O policy of the FWU metadata image.
1151Further I/O layer operations such as I/O open, I/O read, etc. on FWU metadata
1152image relies on this function call.
1153
1154It returns '0' on success, otherwise a negative error value on error.
1155Alongside, returns device handle and image specification from the I/O policy
1156of the requested FWU metadata image.
1157
Sughosh Ganu40c175e2021-12-01 15:53:32 +05301158Function : plat_fwu_get_boot_idx() [when PSA_FWU_SUPPORT == 1]
1159~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1160
1161::
1162
1163 Argument : void
1164 Return : uint32_t
1165
1166This function is mandatory when PSA_FWU_SUPPORT is enabled. It provides the
1167means to retrieve the boot index value from the platform. The boot index is the
1168bank from which the platform has booted the firmware images.
1169
1170By default, the platform will read the metadata structure and try to boot from
1171the active bank. If the platform fails to boot from the active bank due to
1172reasons like an Authentication failure, or on crossing a set number of watchdog
1173resets while booting from the active bank, the platform can then switch to boot
1174from a different bank. This function then returns the bank that the platform
1175should boot its images from.
1176
Douglas Raillard6f625742017-06-28 15:23:03 +01001177Common optional modifications
1178-----------------------------
1179
1180The following are helper functions implemented by the firmware that perform
1181common platform-specific tasks. A platform may choose to override these
1182definitions.
1183
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001184Function : plat_set_my_stack()
1185~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001186
1187::
1188
1189 Argument : void
1190 Return : void
1191
1192This function sets the current stack pointer to the normal memory stack that
1193has been allocated for the current CPU. For BL images that only require a
1194stack for the primary CPU, the UP version of the function is used. The size
1195of the stack allocated to each CPU is specified by the platform defined
1196constant ``PLATFORM_STACK_SIZE``.
1197
1198Common implementations of this function for the UP and MP BL images are
Paul Beesley34760952019-04-12 14:19:42 +01001199provided in ``plat/common/aarch64/platform_up_stack.S`` and
1200``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillard6f625742017-06-28 15:23:03 +01001201
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001202Function : plat_get_my_stack()
1203~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001204
1205::
1206
1207 Argument : void
1208 Return : uintptr_t
1209
1210This function returns the base address of the normal memory stack that
1211has been allocated for the current CPU. For BL images that only require a
1212stack for the primary CPU, the UP version of the function is used. The size
1213of the stack allocated to each CPU is specified by the platform defined
1214constant ``PLATFORM_STACK_SIZE``.
1215
1216Common implementations of this function for the UP and MP BL images are
Paul Beesley34760952019-04-12 14:19:42 +01001217provided in ``plat/common/aarch64/platform_up_stack.S`` and
1218``plat/common/aarch64/platform_mp_stack.S``
Douglas Raillard6f625742017-06-28 15:23:03 +01001219
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001220Function : plat_report_exception()
1221~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001222
1223::
1224
1225 Argument : unsigned int
1226 Return : void
1227
1228A platform may need to report various information about its status when an
1229exception is taken, for example the current exception level, the CPU security
1230state (secure/non-secure), the exception type, and so on. This function is
1231called in the following circumstances:
1232
1233- In BL1, whenever an exception is taken.
1234- In BL2, whenever an exception is taken.
1235
1236The default implementation doesn't do anything, to avoid making assumptions
1237about the way the platform displays its status information.
1238
1239For AArch64, this function receives the exception type as its argument.
1240Possible values for exceptions types are listed in the
Paul Beesley34760952019-04-12 14:19:42 +01001241``include/common/bl_common.h`` header file. Note that these constants are not
Dan Handley4def07d2018-03-01 18:44:00 +00001242related to any architectural exception code; they are just a TF-A convention.
Douglas Raillard6f625742017-06-28 15:23:03 +01001243
1244For AArch32, this function receives the exception mode as its argument.
1245Possible values for exception modes are listed in the
Paul Beesley34760952019-04-12 14:19:42 +01001246``include/lib/aarch32/arch.h`` header file.
Douglas Raillard6f625742017-06-28 15:23:03 +01001247
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001248Function : plat_reset_handler()
1249~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001250
1251::
1252
1253 Argument : void
1254 Return : void
1255
1256A platform may need to do additional initialization after reset. This function
Paul Beesleybe653a62019-10-04 16:17:46 +00001257allows the platform to do the platform specific initializations. Platform
Paul Beesley8aabea32019-01-11 18:26:51 +00001258specific errata workarounds could also be implemented here. The API should
Douglas Raillard6f625742017-06-28 15:23:03 +01001259preserve the values of callee saved registers x19 to x29.
1260
1261The default implementation doesn't do anything. If a platform needs to override
Paul Beesley34760952019-04-12 14:19:42 +01001262the default implementation, refer to the :ref:`Firmware Design` for general
Douglas Raillard6f625742017-06-28 15:23:03 +01001263guidelines.
1264
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001265Function : plat_disable_acp()
1266~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001267
1268::
1269
1270 Argument : void
1271 Return : void
1272
John Tsichritzis4901c532018-07-23 09:18:04 +01001273This API allows a platform to disable the Accelerator Coherency Port (if
Douglas Raillard6f625742017-06-28 15:23:03 +01001274present) during a cluster power down sequence. The default weak implementation
John Tsichritzis4901c532018-07-23 09:18:04 +01001275doesn't do anything. Since this API is called during the power down sequence,
Douglas Raillard6f625742017-06-28 15:23:03 +01001276it has restrictions for stack usage and it can use the registers x0 - x17 as
1277scratch registers. It should preserve the value in x18 register as it is used
1278by the caller to store the return address.
1279
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001280Function : plat_error_handler()
1281~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001282
1283::
1284
1285 Argument : int
1286 Return : void
1287
1288This API is called when the generic code encounters an error situation from
1289which it cannot continue. It allows the platform to perform error reporting or
1290recovery actions (for example, reset the system). This function must not return.
1291
1292The parameter indicates the type of error using standard codes from ``errno.h``.
1293Possible errors reported by the generic code are:
1294
1295- ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
1296 Board Boot is enabled)
1297- ``-ENOENT``: the requested image or certificate could not be found or an IO
1298 error was detected
Dan Handley4def07d2018-03-01 18:44:00 +00001299- ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
1300 error is usually an indication of an incorrect array size
Douglas Raillard6f625742017-06-28 15:23:03 +01001301
1302The default implementation simply spins.
1303
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001304Function : plat_panic_handler()
1305~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001306
1307::
1308
1309 Argument : void
1310 Return : void
1311
1312This API is called when the generic code encounters an unexpected error
1313situation from which it cannot recover. This function must not return,
1314and must be implemented in assembly because it may be called before the C
1315environment is initialized.
1316
Paul Beesleye1c50262019-03-13 16:20:44 +00001317.. note::
1318 The address from where it was called is stored in x30 (Link Register).
1319 The default implementation simply spins.
Douglas Raillard6f625742017-06-28 15:23:03 +01001320
Lucian Paul-Trifub3b227f2022-06-22 18:45:36 +01001321Function : plat_system_reset()
1322~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1323
1324::
1325
1326 Argument : void
1327 Return : void
1328
1329This function is used by the platform to resets the system. It can be used
1330in any specific use-case where system needs to be resetted. For example,
1331in case of DRTM implementation this function reset the system after
1332writing the DRTM error code in the non-volatile storage. This function
1333never returns. Failure in reset results in panic.
1334
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001335Function : plat_get_bl_image_load_info()
1336~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001337
1338::
1339
1340 Argument : void
1341 Return : bl_load_info_t *
1342
1343This function returns pointer to the list of images that the platform has
Soby Mathew509af922018-09-27 16:46:41 +01001344populated to load. This function is invoked in BL2 to load the
1345BL3xx images.
Douglas Raillard6f625742017-06-28 15:23:03 +01001346
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001347Function : plat_get_next_bl_params()
1348~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001349
1350::
1351
1352 Argument : void
1353 Return : bl_params_t *
1354
1355This function returns a pointer to the shared memory that the platform has
Dan Handley4def07d2018-03-01 18:44:00 +00001356kept aside to pass TF-A related information that next BL image needs. This
Soby Mathew509af922018-09-27 16:46:41 +01001357function is invoked in BL2 to pass this information to the next BL
1358image.
Douglas Raillard6f625742017-06-28 15:23:03 +01001359
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001360Function : plat_get_stack_protector_canary()
1361~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001362
1363::
1364
1365 Argument : void
1366 Return : u_register_t
1367
1368This function returns a random value that is used to initialize the canary used
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001369when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
Douglas Raillard6f625742017-06-28 15:23:03 +01001370value will weaken the protection as the attacker could easily write the right
1371value as part of the attack most of the time. Therefore, it should return a
1372true random number.
1373
Paul Beesleye1c50262019-03-13 16:20:44 +00001374.. warning::
1375 For the protection to be effective, the global data need to be placed at
1376 a lower address than the stack bases. Failure to do so would allow an
1377 attacker to overwrite the canary as part of the stack buffer overflow attack.
Douglas Raillard6f625742017-06-28 15:23:03 +01001378
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001379Function : plat_flush_next_bl_params()
1380~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001381
1382::
1383
1384 Argument : void
1385 Return : void
1386
1387This function flushes to main memory all the image params that are passed to
Soby Mathew509af922018-09-27 16:46:41 +01001388next image. This function is invoked in BL2 to flush this information
1389to the next BL image.
Douglas Raillard6f625742017-06-28 15:23:03 +01001390
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001391Function : plat_log_get_prefix()
1392~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathew7f56e9a2017-09-04 11:49:29 +01001393
1394::
1395
1396 Argument : unsigned int
1397 Return : const char *
1398
1399This function defines the prefix string corresponding to the `log_level` to be
Dan Handley4def07d2018-03-01 18:44:00 +00001400prepended to all the log output from TF-A. The `log_level` (argument) will
1401correspond to one of the standard log levels defined in debug.h. The platform
1402can override the common implementation to define a different prefix string for
John Tsichritzis6d01a462018-06-07 16:31:34 +01001403the log output. The implementation should be robust to future changes that
Dan Handley4def07d2018-03-01 18:44:00 +00001404increase the number of log levels.
Soby Mathew7f56e9a2017-09-04 11:49:29 +01001405
Manish V Badarkhe0e753432020-02-22 08:43:00 +00001406Function : plat_get_soc_version()
Manish V Badarkhe2b066102020-03-26 14:20:27 +00001407~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhe0e753432020-02-22 08:43:00 +00001408
1409::
1410
1411 Argument : void
1412 Return : int32_t
1413
1414This function returns soc version which mainly consist of below fields
1415
1416::
1417
1418 soc_version[30:24] = JEP-106 continuation code for the SiP
1419 soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
Manish V Badarkhe6f0a2f02020-07-23 20:23:01 +01001420 soc_version[15:0] = Implementation defined SoC ID
Manish V Badarkhe0e753432020-02-22 08:43:00 +00001421
1422Function : plat_get_soc_revision()
Manish V Badarkhe2b066102020-03-26 14:20:27 +00001423~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Manish V Badarkhe0e753432020-02-22 08:43:00 +00001424
1425::
1426
1427 Argument : void
1428 Return : int32_t
1429
1430This function returns soc revision in below format
1431
1432::
1433
1434 soc_revision[0:30] = SOC revision of specific SOC
1435
Manish V Badarkhe6f0a2f02020-07-23 20:23:01 +01001436Function : plat_is_smccc_feature_available()
1437~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1438
1439::
1440
1441 Argument : u_register_t
1442 Return : int32_t
1443
1444This function returns SMC_ARCH_CALL_SUCCESS if the platform supports
1445the SMCCC function specified in the argument; otherwise returns
1446SMC_ARCH_CALL_NOT_SUPPORTED.
1447
Manish V Badarkhe9b3004c2021-09-20 15:19:59 +01001448Function : plat_mboot_measure_image()
1449~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1450
1451::
1452
1453 Argument : unsigned int, image_info_t *
Manish V Badarkhe43997d22021-10-21 09:06:18 +01001454 Return : int
Manish V Badarkhe9b3004c2021-09-20 15:19:59 +01001455
1456When the MEASURED_BOOT flag is enabled:
1457
1458- This function measures the given image and records its measurement using
1459 the measured boot backend driver.
1460- On the Arm FVP port, this function measures the given image using its
1461 passed id and information and then records that measurement in the
1462 Event Log buffer.
Manish V Badarkhe43997d22021-10-21 09:06:18 +01001463- This function must return 0 on success, a signed integer error code
1464 otherwise.
1465
1466When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1467
1468Function : plat_mboot_measure_critical_data()
1469~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1470
1471::
1472
1473 Argument : unsigned int, const void *, size_t
1474 Return : int
1475
1476When the MEASURED_BOOT flag is enabled:
1477
1478- This function measures the given critical data structure and records its
1479 measurement using the measured boot backend driver.
1480- This function must return 0 on success, a signed integer error code
1481 otherwise.
Manish V Badarkhe9b3004c2021-09-20 15:19:59 +01001482
1483When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1484
Okash Khawaja04c73032022-11-04 12:38:01 +00001485Function : plat_can_cmo()
1486~~~~~~~~~~~~~~~~~~~~~~~~~
1487
1488::
1489
1490 Argument : void
1491 Return : uint64_t
1492
1493When CONDITIONAL_CMO flag is enabled:
1494
1495- This function indicates whether cache management operations should be
1496 performed. It returns 0 if CMOs should be skipped and non-zero
1497 otherwise.
Okash Khawajaa2e01232022-11-14 12:50:30 +00001498- The function must not clobber x1, x2 and x3. It's also not safe to rely on
1499 stack. Otherwise obey AAPCS.
Okash Khawaja04c73032022-11-04 12:38:01 +00001500
Douglas Raillard6f625742017-06-28 15:23:03 +01001501Modifications specific to a Boot Loader stage
1502---------------------------------------------
1503
1504Boot Loader Stage 1 (BL1)
1505-------------------------
1506
1507BL1 implements the reset vector where execution starts from after a cold or
1508warm boot. For each CPU, BL1 is responsible for the following tasks:
1509
1510#. Handling the reset as described in section 2.2
1511
1512#. In the case of a cold boot and the CPU being the primary CPU, ensuring that
1513 only this CPU executes the remaining BL1 code, including loading and passing
1514 control to the BL2 stage.
1515
1516#. Identifying and starting the Firmware Update process (if required).
1517
1518#. Loading the BL2 image from non-volatile storage into secure memory at the
1519 address specified by the platform defined constant ``BL2_BASE``.
1520
1521#. Populating a ``meminfo`` structure with the following information in memory,
1522 accessible by BL2 immediately upon entry.
1523
1524 ::
1525
1526 meminfo.total_base = Base address of secure RAM visible to BL2
1527 meminfo.total_size = Size of secure RAM visible to BL2
Douglas Raillard6f625742017-06-28 15:23:03 +01001528
Soby Mathew509af922018-09-27 16:46:41 +01001529 By default, BL1 places this ``meminfo`` structure at the end of secure
1530 memory visible to BL2.
Douglas Raillard6f625742017-06-28 15:23:03 +01001531
Soby Mathewb2a68f82018-02-16 14:52:52 +00001532 It is possible for the platform to decide where it wants to place the
1533 ``meminfo`` structure for BL2 or restrict the amount of memory visible to
1534 BL2 by overriding the weak default implementation of
1535 ``bl1_plat_handle_post_image_load`` API.
Douglas Raillard6f625742017-06-28 15:23:03 +01001536
1537The following functions need to be implemented by the platform port to enable
1538BL1 to perform the above tasks.
1539
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001540Function : bl1_early_platform_setup() [mandatory]
1541~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001542
1543::
1544
1545 Argument : void
1546 Return : void
1547
1548This function executes with the MMU and data caches disabled. It is only called
1549by the primary CPU.
1550
Dan Handley4def07d2018-03-01 18:44:00 +00001551On Arm standard platforms, this function:
Douglas Raillard6f625742017-06-28 15:23:03 +01001552
1553- Enables a secure instance of SP805 to act as the Trusted Watchdog.
1554
1555- Initializes a UART (PL011 console), which enables access to the ``printf``
1556 family of functions in BL1.
1557
1558- Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
1559 the CCI slave interface corresponding to the cluster that includes the
1560 primary CPU.
1561
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001562Function : bl1_plat_arch_setup() [mandatory]
1563~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001564
1565::
1566
1567 Argument : void
1568 Return : void
1569
1570This function performs any platform-specific and architectural setup that the
1571platform requires. Platform-specific setup might include configuration of
1572memory controllers and the interconnect.
1573
Dan Handley4def07d2018-03-01 18:44:00 +00001574In Arm standard platforms, this function enables the MMU.
Douglas Raillard6f625742017-06-28 15:23:03 +01001575
1576This function helps fulfill requirement 2 above.
1577
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001578Function : bl1_platform_setup() [mandatory]
1579~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001580
1581::
1582
1583 Argument : void
1584 Return : void
1585
1586This function executes with the MMU and data caches enabled. It is responsible
1587for performing any remaining platform-specific setup that can occur after the
1588MMU and data cache have been enabled.
1589
Roberto Vargas2a350df2017-12-12 10:39:44 +00001590if support for multiple boot sources is required, it initializes the boot
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001591sequence used by plat_try_next_boot_source().
Roberto Vargas2a350df2017-12-12 10:39:44 +00001592
Dan Handley4def07d2018-03-01 18:44:00 +00001593In Arm standard platforms, this function initializes the storage abstraction
Douglas Raillard6f625742017-06-28 15:23:03 +01001594layer used to load the next bootloader image.
1595
1596This function helps fulfill requirement 4 above.
1597
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001598Function : bl1_plat_sec_mem_layout() [mandatory]
1599~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001600
1601::
1602
1603 Argument : void
1604 Return : meminfo *
1605
1606This function should only be called on the cold boot path. It executes with the
1607MMU and data caches enabled. The pointer returned by this function must point to
1608a ``meminfo`` structure containing the extents and availability of secure RAM for
1609the BL1 stage.
1610
1611::
1612
1613 meminfo.total_base = Base address of secure RAM visible to BL1
1614 meminfo.total_size = Size of secure RAM visible to BL1
Douglas Raillard6f625742017-06-28 15:23:03 +01001615
1616This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
1617populates a similar structure to tell BL2 the extents of memory available for
1618its own use.
1619
1620This function helps fulfill requirements 4 and 5 above.
1621
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001622Function : bl1_plat_prepare_exit() [optional]
1623~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001624
1625::
1626
1627 Argument : entry_point_info_t *
1628 Return : void
1629
1630This function is called prior to exiting BL1 in response to the
1631``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
1632platform specific clean up or bookkeeping operations before transferring
1633control to the next image. It receives the address of the ``entry_point_info_t``
1634structure passed from BL2. This function runs with MMU disabled.
1635
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001636Function : bl1_plat_set_ep_info() [optional]
1637~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001638
1639::
1640
1641 Argument : unsigned int image_id, entry_point_info_t *ep_info
1642 Return : void
1643
1644This function allows platforms to override ``ep_info`` for the given ``image_id``.
1645
1646The default implementation just returns.
1647
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001648Function : bl1_plat_get_next_image_id() [optional]
1649~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001650
1651::
1652
1653 Argument : void
1654 Return : unsigned int
1655
1656This and the following function must be overridden to enable the FWU feature.
1657
1658BL1 calls this function after platform setup to identify the next image to be
1659loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
1660with the normal boot sequence, which loads and executes BL2. If the platform
1661returns a different image id, BL1 assumes that Firmware Update is required.
1662
Dan Handley4def07d2018-03-01 18:44:00 +00001663The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
Douglas Raillard6f625742017-06-28 15:23:03 +01001664platforms override this function to detect if firmware update is required, and
1665if so, return the first image in the firmware update process.
1666
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001667Function : bl1_plat_get_image_desc() [optional]
1668~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001669
1670::
1671
1672 Argument : unsigned int image_id
1673 Return : image_desc_t *
1674
1675BL1 calls this function to get the image descriptor information ``image_desc_t``
1676for the provided ``image_id`` from the platform.
1677
Dan Handley4def07d2018-03-01 18:44:00 +00001678The default implementation always returns a common BL2 image descriptor. Arm
Douglas Raillard6f625742017-06-28 15:23:03 +01001679standard platforms return an image descriptor corresponding to BL2 or one of
1680the firmware update images defined in the Trusted Board Boot Requirements
1681specification.
1682
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001683Function : bl1_plat_handle_pre_image_load() [optional]
1684~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada11f001c2018-02-01 16:46:18 +09001685
1686::
1687
Soby Mathew566034f2018-02-08 17:45:12 +00001688 Argument : unsigned int image_id
Masahiro Yamada11f001c2018-02-01 16:46:18 +09001689 Return : int
1690
1691This function can be used by the platforms to update/use image information
Soby Mathew566034f2018-02-08 17:45:12 +00001692corresponding to ``image_id``. This function is invoked in BL1, both in cold
1693boot and FWU code path, before loading the image.
Masahiro Yamada11f001c2018-02-01 16:46:18 +09001694
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001695Function : bl1_plat_handle_post_image_load() [optional]
1696~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamada11f001c2018-02-01 16:46:18 +09001697
1698::
1699
Soby Mathew566034f2018-02-08 17:45:12 +00001700 Argument : unsigned int image_id
Masahiro Yamada11f001c2018-02-01 16:46:18 +09001701 Return : int
1702
1703This function can be used by the platforms to update/use image information
Soby Mathew566034f2018-02-08 17:45:12 +00001704corresponding to ``image_id``. This function is invoked in BL1, both in cold
1705boot and FWU code path, after loading and authenticating the image.
Masahiro Yamada11f001c2018-02-01 16:46:18 +09001706
Soby Mathewb2a68f82018-02-16 14:52:52 +00001707The default weak implementation of this function calculates the amount of
1708Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
1709structure at the beginning of this free memory and populates it. The address
1710of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
1711information to BL2.
1712
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001713Function : bl1_plat_fwu_done() [optional]
1714~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001715
1716::
1717
1718 Argument : unsigned int image_id, uintptr_t image_src,
1719 unsigned int image_size
1720 Return : void
1721
1722BL1 calls this function when the FWU process is complete. It must not return.
1723The platform may override this function to take platform specific action, for
1724example to initiate the normal boot flow.
1725
1726The default implementation spins forever.
1727
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001728Function : bl1_plat_mem_check() [mandatory]
1729~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001730
1731::
1732
1733 Argument : uintptr_t mem_base, unsigned int mem_size,
1734 unsigned int flags
1735 Return : int
1736
1737BL1 calls this function while handling FWU related SMCs, more specifically when
1738copying or authenticating an image. Its responsibility is to ensure that the
1739region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
1740that this memory corresponds to either a secure or non-secure memory region as
1741indicated by the security state of the ``flags`` argument.
1742
1743This function can safely assume that the value resulting from the addition of
1744``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
1745overflow.
1746
1747This function must return 0 on success, a non-null error code otherwise.
1748
1749The default implementation of this function asserts therefore platforms must
1750override it when using the FWU feature.
1751
Manish V Badarkhe9b3004c2021-09-20 15:19:59 +01001752Function : bl1_plat_mboot_init() [optional]
1753~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1754
1755::
1756
1757 Argument : void
1758 Return : void
1759
1760When the MEASURED_BOOT flag is enabled:
1761
1762- This function is used to initialize the backend driver(s) of measured boot.
1763- On the Arm FVP port, this function is used to initialize the Event Log
1764 backend driver, and also to write header information in the Event Log buffer.
1765
1766When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1767
1768Function : bl1_plat_mboot_finish() [optional]
1769~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1770
1771::
1772
1773 Argument : void
1774 Return : void
1775
1776When the MEASURED_BOOT flag is enabled:
1777
1778- This function is used to finalize the measured boot backend driver(s),
1779 and also, set the information for the next bootloader component to
1780 extend the measurement if needed.
1781- On the Arm FVP port, this function is used to pass the base address of
1782 the Event Log buffer and its size to BL2 via tb_fw_config to extend the
1783 Event Log buffer with the measurement of various images loaded by BL2.
1784 It results in panic on error.
1785
1786When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1787
Douglas Raillard6f625742017-06-28 15:23:03 +01001788Boot Loader Stage 2 (BL2)
1789-------------------------
1790
1791The BL2 stage is executed only by the primary CPU, which is determined in BL1
1792using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
Soby Mathew509af922018-09-27 16:46:41 +01001793``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
1794``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
1795non-volatile storage to secure/non-secure RAM. After all the images are loaded
1796then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
1797images to be passed to the next BL image.
Douglas Raillard6f625742017-06-28 15:23:03 +01001798
1799The following functions must be implemented by the platform port to enable BL2
1800to perform the above tasks.
1801
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001802Function : bl2_early_platform_setup2() [mandatory]
1803~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001804
1805::
1806
Soby Mathew509af922018-09-27 16:46:41 +01001807 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillard6f625742017-06-28 15:23:03 +01001808 Return : void
1809
1810This function executes with the MMU and data caches disabled. It is only called
Soby Mathew509af922018-09-27 16:46:41 +01001811by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
1812are platform specific.
Douglas Raillard6f625742017-06-28 15:23:03 +01001813
Soby Mathew509af922018-09-27 16:46:41 +01001814On Arm standard platforms, the arguments received are :
1815
Manish V Badarkhed1c54e52020-06-24 15:58:38 +01001816 arg0 - Points to load address of FW_CONFIG
Soby Mathew509af922018-09-27 16:46:41 +01001817
1818 arg1 - ``meminfo`` structure populated by BL1. The platform copies
1819 the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
Douglas Raillard6f625742017-06-28 15:23:03 +01001820
Dan Handley4def07d2018-03-01 18:44:00 +00001821On Arm standard platforms, this function also:
Douglas Raillard6f625742017-06-28 15:23:03 +01001822
1823- Initializes a UART (PL011 console), which enables access to the ``printf``
1824 family of functions in BL2.
1825
1826- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001827 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1828 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Douglas Raillard6f625742017-06-28 15:23:03 +01001829
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001830Function : bl2_plat_arch_setup() [mandatory]
1831~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001832
1833::
1834
1835 Argument : void
1836 Return : void
1837
1838This function executes with the MMU and data caches disabled. It is only called
1839by the primary CPU.
1840
1841The purpose of this function is to perform any architectural initialization
1842that varies across platforms.
1843
Dan Handley4def07d2018-03-01 18:44:00 +00001844On Arm standard platforms, this function enables the MMU.
Douglas Raillard6f625742017-06-28 15:23:03 +01001845
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001846Function : bl2_platform_setup() [mandatory]
1847~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001848
1849::
1850
1851 Argument : void
1852 Return : void
1853
1854This function may execute with the MMU and data caches enabled if the platform
1855port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
1856called by the primary CPU.
1857
1858The purpose of this function is to perform any platform initialization
1859specific to BL2.
1860
Dan Handley4def07d2018-03-01 18:44:00 +00001861In Arm standard platforms, this function performs security setup, including
Douglas Raillard6f625742017-06-28 15:23:03 +01001862configuration of the TrustZone controller to allow non-secure masters access
1863to most of DRAM. Part of DRAM is reserved for secure world use.
1864
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001865Function : bl2_plat_handle_pre_image_load() [optional]
1866~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01001867
1868::
1869
1870 Argument : unsigned int
1871 Return : int
1872
1873This function can be used by the platforms to update/use image information
Masahiro Yamadaba68ef52018-02-01 16:45:51 +09001874for given ``image_id``. This function is currently invoked in BL2 before
Soby Mathew509af922018-09-27 16:46:41 +01001875loading each image.
Masahiro Yamadaba68ef52018-02-01 16:45:51 +09001876
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001877Function : bl2_plat_handle_post_image_load() [optional]
1878~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Masahiro Yamadaba68ef52018-02-01 16:45:51 +09001879
1880::
1881
1882 Argument : unsigned int
1883 Return : int
1884
1885This function can be used by the platforms to update/use image information
1886for given ``image_id``. This function is currently invoked in BL2 after
Soby Mathew509af922018-09-27 16:46:41 +01001887loading each image.
Douglas Raillard6f625742017-06-28 15:23:03 +01001888
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001889Function : bl2_plat_preload_setup [optional]
1890~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargas01f62b62017-09-26 12:53:01 +01001891
1892::
John Tsichritzis677ad322018-06-06 09:38:10 +01001893
Roberto Vargas01f62b62017-09-26 12:53:01 +01001894 Argument : void
1895 Return : void
1896
1897This optional function performs any BL2 platform initialization
1898required before image loading, that is not done later in
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001899bl2_platform_setup(). Specifically, if support for multiple
Roberto Vargas01f62b62017-09-26 12:53:01 +01001900boot sources is required, it initializes the boot sequence used by
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001901plat_try_next_boot_source().
Roberto Vargas01f62b62017-09-26 12:53:01 +01001902
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001903Function : plat_try_next_boot_source() [optional]
1904~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargas01f62b62017-09-26 12:53:01 +01001905
1906::
John Tsichritzis677ad322018-06-06 09:38:10 +01001907
Roberto Vargas01f62b62017-09-26 12:53:01 +01001908 Argument : void
1909 Return : int
1910
1911This optional function passes to the next boot source in the redundancy
1912sequence.
1913
1914This function moves the current boot redundancy source to the next
1915element in the boot sequence. If there are no more boot sources then it
1916must return 0, otherwise it must return 1. The default implementation
1917of this always returns 0.
1918
Sandrine Bailleuxa0915ba2022-07-13 10:07:54 +02001919Function : bl2_plat_mboot_init() [optional]
1920~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1921
1922::
1923
1924 Argument : void
1925 Return : void
1926
1927When the MEASURED_BOOT flag is enabled:
1928
1929- This function is used to initialize the backend driver(s) of measured boot.
1930- On the Arm FVP port, this function is used to initialize the Event Log
1931 backend driver with the Event Log buffer information (base address and
1932 size) received from BL1. It results in panic on error.
1933
1934When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1935
1936Function : bl2_plat_mboot_finish() [optional]
1937~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1938
1939::
1940
1941 Argument : void
1942 Return : void
1943
1944When the MEASURED_BOOT flag is enabled:
1945
1946- This function is used to finalize the measured boot backend driver(s),
1947 and also, set the information for the next bootloader component to extend
1948 the measurement if needed.
1949- On the Arm FVP port, this function is used to pass the Event Log buffer
1950 information (base address and size) to non-secure(BL33) and trusted OS(BL32)
1951 via nt_fw and tos_fw config respectively. It results in panic on error.
1952
1953When the MEASURED_BOOT flag is disabled, this function doesn't do anything.
1954
Roberto Vargas4cd17692017-11-20 13:36:10 +00001955Boot Loader Stage 2 (BL2) at EL3
1956--------------------------------
1957
Dan Handley4def07d2018-03-01 18:44:00 +00001958When the platform has a non-TF-A Boot ROM it is desirable to jump
1959directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
Paul Beesley34760952019-04-12 14:19:42 +01001960execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
1961document for more information.
Roberto Vargas4cd17692017-11-20 13:36:10 +00001962
1963All mandatory functions of BL2 must be implemented, except the functions
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001964bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
1965their work is done now by bl2_el3_early_platform_setup and
1966bl2_el3_plat_arch_setup. These functions should generally implement
1967the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
Roberto Vargas4cd17692017-11-20 13:36:10 +00001968
1969
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001970Function : bl2_el3_early_platform_setup() [mandatory]
1971~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargas4cd17692017-11-20 13:36:10 +00001972
1973::
John Tsichritzis677ad322018-06-06 09:38:10 +01001974
Roberto Vargas4cd17692017-11-20 13:36:10 +00001975 Argument : u_register_t, u_register_t, u_register_t, u_register_t
1976 Return : void
1977
1978This function executes with the MMU and data caches disabled. It is only called
1979by the primary CPU. This function receives four parameters which can be used
1980by the platform to pass any needed information from the Boot ROM to BL2.
1981
Dan Handley4def07d2018-03-01 18:44:00 +00001982On Arm standard platforms, this function does the following:
Roberto Vargas4cd17692017-11-20 13:36:10 +00001983
1984- Initializes a UART (PL011 console), which enables access to the ``printf``
1985 family of functions in BL2.
1986
1987- Initializes the storage abstraction layer used to load further bootloader
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001988 images. It is necessary to do this early on platforms with a SCP_BL2 image,
1989 since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
Roberto Vargas4cd17692017-11-20 13:36:10 +00001990
1991- Initializes the private variables that define the memory layout used.
1992
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01001993Function : bl2_el3_plat_arch_setup() [mandatory]
1994~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargas4cd17692017-11-20 13:36:10 +00001995
1996::
John Tsichritzis677ad322018-06-06 09:38:10 +01001997
Roberto Vargas4cd17692017-11-20 13:36:10 +00001998 Argument : void
1999 Return : void
2000
2001This function executes with the MMU and data caches disabled. It is only called
2002by the primary CPU.
2003
2004The purpose of this function is to perform any architectural initialization
2005that varies across platforms.
2006
Dan Handley4def07d2018-03-01 18:44:00 +00002007On Arm standard platforms, this function enables the MMU.
Roberto Vargas4cd17692017-11-20 13:36:10 +00002008
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002009Function : bl2_el3_plat_prepare_exit() [optional]
2010~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roberto Vargas4cd17692017-11-20 13:36:10 +00002011
2012::
John Tsichritzis677ad322018-06-06 09:38:10 +01002013
Roberto Vargas4cd17692017-11-20 13:36:10 +00002014 Argument : void
2015 Return : void
2016
2017This function is called prior to exiting BL2 and run the next image.
2018It should be used to perform platform specific clean up or bookkeeping
2019operations before transferring control to the next image. This function
2020runs with MMU disabled.
2021
Douglas Raillard6f625742017-06-28 15:23:03 +01002022FWU Boot Loader Stage 2 (BL2U)
2023------------------------------
2024
2025The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
2026process and is executed only by the primary CPU. BL1 passes control to BL2U at
2027``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
2028
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002029#. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
2030 memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
2031 ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
2032 should be copied from. Subsequent handling of the SCP_BL2U image is
Douglas Raillard6f625742017-06-28 15:23:03 +01002033 implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
2034 If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
2035
2036#. Any platform specific setup required to perform the FWU process. For
Dan Handley4def07d2018-03-01 18:44:00 +00002037 example, Arm standard platforms initialize the TZC controller so that the
Douglas Raillard6f625742017-06-28 15:23:03 +01002038 normal world can access DDR memory.
2039
2040The following functions must be implemented by the platform port to enable
2041BL2U to perform the tasks mentioned above.
2042
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002043Function : bl2u_early_platform_setup() [mandatory]
2044~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01002045
2046::
2047
2048 Argument : meminfo *mem_info, void *plat_info
2049 Return : void
2050
2051This function executes with the MMU and data caches disabled. It is only
2052called by the primary CPU. The arguments to this function is the address
2053of the ``meminfo`` structure and platform specific info provided by BL1.
2054
2055The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
2056private storage as the original memory may be subsequently overwritten by BL2U.
2057
Dan Handley4def07d2018-03-01 18:44:00 +00002058On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002059to extract SCP_BL2U image information, which is then copied into a private
Douglas Raillard6f625742017-06-28 15:23:03 +01002060variable.
2061
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002062Function : bl2u_plat_arch_setup() [mandatory]
2063~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01002064
2065::
2066
2067 Argument : void
2068 Return : void
2069
2070This function executes with the MMU and data caches disabled. It is only
2071called by the primary CPU.
2072
2073The purpose of this function is to perform any architectural initialization
2074that varies across platforms, for example enabling the MMU (since the memory
2075map differs across platforms).
2076
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002077Function : bl2u_platform_setup() [mandatory]
2078~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01002079
2080::
2081
2082 Argument : void
2083 Return : void
2084
2085This function may execute with the MMU and data caches enabled if the platform
2086port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
2087called by the primary CPU.
2088
2089The purpose of this function is to perform any platform initialization
2090specific to BL2U.
2091
Dan Handley4def07d2018-03-01 18:44:00 +00002092In Arm standard platforms, this function performs security setup, including
Douglas Raillard6f625742017-06-28 15:23:03 +01002093configuration of the TrustZone controller to allow non-secure masters access
2094to most of DRAM. Part of DRAM is reserved for secure world use.
2095
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002096Function : bl2u_plat_handle_scp_bl2u() [optional]
2097~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01002098
2099::
2100
2101 Argument : void
2102 Return : int
2103
2104This function is used to perform any platform-specific actions required to
2105handle the SCP firmware. Typically it transfers the image into SCP memory using
2106a platform-specific protocol and waits until SCP executes it and signals to the
2107Application Processor (AP) for BL2U execution to continue.
2108
2109This function returns 0 on success, a negative error code otherwise.
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002110This function is included if SCP_BL2U_BASE is defined.
Douglas Raillard6f625742017-06-28 15:23:03 +01002111
2112Boot Loader Stage 3-1 (BL31)
2113----------------------------
2114
2115During cold boot, the BL31 stage is executed only by the primary CPU. This is
2116determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
2117control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
2118CPUs. BL31 executes at EL3 and is responsible for:
2119
2120#. Re-initializing all architectural and platform state. Although BL1 performs
2121 some of this initialization, BL31 remains resident in EL3 and must ensure
2122 that EL3 architectural and platform state is completely initialized. It
2123 should make no assumptions about the system state when it receives control.
2124
2125#. Passing control to a normal world BL image, pre-loaded at a platform-
Soby Mathew509af922018-09-27 16:46:41 +01002126 specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
2127 populated by BL2 in memory to do this.
Douglas Raillard6f625742017-06-28 15:23:03 +01002128
2129#. Providing runtime firmware services. Currently, BL31 only implements a
2130 subset of the Power State Coordination Interface (PSCI) API as a runtime
2131 service. See Section 3.3 below for details of porting the PSCI
2132 implementation.
2133
2134#. Optionally passing control to the BL32 image, pre-loaded at a platform-
Paul Beesley8aabea32019-01-11 18:26:51 +00002135 specific address by BL2. BL31 exports a set of APIs that allow runtime
Douglas Raillard6f625742017-06-28 15:23:03 +01002136 services to specify the security state in which the next image should be
Soby Mathew509af922018-09-27 16:46:41 +01002137 executed and run the corresponding image. On ARM platforms, BL31 uses the
2138 ``bl_params`` list populated by BL2 in memory to do this.
Douglas Raillard6f625742017-06-28 15:23:03 +01002139
2140If BL31 is a reset vector, It also needs to handle the reset as specified in
2141section 2.2 before the tasks described above.
2142
2143The following functions must be implemented by the platform port to enable BL31
2144to perform the above tasks.
2145
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002146Function : bl31_early_platform_setup2() [mandatory]
2147~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01002148
2149::
2150
Soby Mathew509af922018-09-27 16:46:41 +01002151 Argument : u_register_t, u_register_t, u_register_t, u_register_t
Douglas Raillard6f625742017-06-28 15:23:03 +01002152 Return : void
2153
2154This function executes with the MMU and data caches disabled. It is only called
Soby Mathew509af922018-09-27 16:46:41 +01002155by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
2156platform specific.
Douglas Raillard6f625742017-06-28 15:23:03 +01002157
Soby Mathew509af922018-09-27 16:46:41 +01002158In Arm standard platforms, the arguments received are :
Douglas Raillard6f625742017-06-28 15:23:03 +01002159
Soby Mathew509af922018-09-27 16:46:41 +01002160 arg0 - The pointer to the head of `bl_params_t` list
2161 which is list of executable images following BL31,
Douglas Raillard6f625742017-06-28 15:23:03 +01002162
Soby Mathew509af922018-09-27 16:46:41 +01002163 arg1 - Points to load address of SOC_FW_CONFIG if present
Mikael Olsson5d5fb102021-02-12 17:30:16 +01002164 except in case of Arm FVP and Juno platform.
Manish V Badarkhed1c54e52020-06-24 15:58:38 +01002165
Mikael Olsson5d5fb102021-02-12 17:30:16 +01002166 In case of Arm FVP and Juno platform, points to load address
Manish V Badarkhed1c54e52020-06-24 15:58:38 +01002167 of FW_CONFIG.
Soby Mathew509af922018-09-27 16:46:41 +01002168
2169 arg2 - Points to load address of HW_CONFIG if present
2170
2171 arg3 - A special value to verify platform parameters from BL2 to BL31. Not
2172 used in release builds.
2173
2174The function runs through the `bl_param_t` list and extracts the entry point
2175information for BL32 and BL33. It also performs the following:
Douglas Raillard6f625742017-06-28 15:23:03 +01002176
2177- Initialize a UART (PL011 console), which enables access to the ``printf``
2178 family of functions in BL31.
2179
2180- Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
2181 CCI slave interface corresponding to the cluster that includes the primary
2182 CPU.
2183
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002184Function : bl31_plat_arch_setup() [mandatory]
2185~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01002186
2187::
2188
2189 Argument : void
2190 Return : void
2191
2192This function executes with the MMU and data caches disabled. It is only called
2193by the primary CPU.
2194
2195The purpose of this function is to perform any architectural initialization
2196that varies across platforms.
2197
Dan Handley4def07d2018-03-01 18:44:00 +00002198On Arm standard platforms, this function enables the MMU.
Douglas Raillard6f625742017-06-28 15:23:03 +01002199
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002200Function : bl31_platform_setup() [mandatory]
Douglas Raillard6f625742017-06-28 15:23:03 +01002201~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2202
2203::
2204
2205 Argument : void
2206 Return : void
2207
2208This function may execute with the MMU and data caches enabled if the platform
2209port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
2210called by the primary CPU.
2211
2212The purpose of this function is to complete platform initialization so that both
2213BL31 runtime services and normal world software can function correctly.
2214
Dan Handley4def07d2018-03-01 18:44:00 +00002215On Arm standard platforms, this function does the following:
Douglas Raillard6f625742017-06-28 15:23:03 +01002216
2217- Initialize the generic interrupt controller.
2218
2219 Depending on the GIC driver selected by the platform, the appropriate GICv2
2220 or GICv3 initialization will be done, which mainly consists of:
2221
2222 - Enable secure interrupts in the GIC CPU interface.
2223 - Disable the legacy interrupt bypass mechanism.
2224 - Configure the priority mask register to allow interrupts of all priorities
2225 to be signaled to the CPU interface.
2226 - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
2227 - Target all secure SPIs to CPU0.
2228 - Enable these secure interrupts in the GIC distributor.
2229 - Configure all other interrupts as non-secure.
2230 - Enable signaling of secure interrupts in the GIC distributor.
2231
2232- Enable system-level implementation of the generic timer counter through the
2233 memory mapped interface.
2234
2235- Grant access to the system counter timer module
2236
2237- Initialize the power controller device.
2238
2239 In particular, initialise the locks that prevent concurrent accesses to the
2240 power controller device.
2241
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002242Function : bl31_plat_runtime_setup() [optional]
2243~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01002244
2245::
2246
2247 Argument : void
2248 Return : void
2249
2250The purpose of this function is allow the platform to perform any BL31 runtime
2251setup just prior to BL31 exit during cold boot. The default weak
Julius Werner17cd67d2017-09-18 16:49:48 -07002252implementation of this function will invoke ``console_switch_state()`` to switch
2253console output to consoles marked for use in the ``runtime`` state.
Douglas Raillard6f625742017-06-28 15:23:03 +01002254
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002255Function : bl31_plat_get_next_image_ep_info() [mandatory]
2256~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01002257
2258::
2259
Sandrine Bailleux1ec1ebf2018-05-14 14:25:47 +02002260 Argument : uint32_t
Douglas Raillard6f625742017-06-28 15:23:03 +01002261 Return : entry_point_info *
2262
2263This function may execute with the MMU and data caches enabled if the platform
2264port does the necessary initializations in ``bl31_plat_arch_setup()``.
2265
2266This function is called by ``bl31_main()`` to retrieve information provided by
2267BL2 for the next image in the security state specified by the argument. BL31
2268uses this information to pass control to that image in the specified security
2269state. This function must return a pointer to the ``entry_point_info`` structure
2270(that was copied during ``bl31_early_platform_setup()``) if the image exists. It
2271should return NULL otherwise.
2272
Javier Almansa Sobrino8c980a42021-11-24 18:37:37 +00002273Function : plat_rmmd_get_cca_attest_token() [mandatory when ENABLE_RME == 1]
Soby Mathew0f9159b2022-03-22 16:19:39 +00002274~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2275
2276::
2277
2278 Argument : uintptr_t, size_t *, uintptr_t, size_t
2279 Return : int
2280
2281This function returns the Platform attestation token.
2282
2283The parameters of the function are:
2284
2285 arg0 - A pointer to the buffer where the Platform token should be copied by
2286 this function. The buffer must be big enough to hold the Platform
2287 token.
2288
2289 arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
2290 function returns the platform token length in this parameter.
2291
2292 arg2 - A pointer to the buffer where the challenge object is stored.
2293
2294 arg3 - The length of the challenge object in bytes. Possible values are 32,
2295 48 and 64.
2296
2297The function returns 0 on success, -EINVAL on failure.
2298
Javier Almansa Sobrino8c980a42021-11-24 18:37:37 +00002299Function : plat_rmmd_get_cca_realm_attest_key() [mandatory when ENABLE_RME == 1]
2300~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soby Mathewa0435102022-03-22 16:21:19 +00002301
2302::
2303
2304 Argument : uintptr_t, size_t *, unsigned int
2305 Return : int
2306
2307This function returns the delegated realm attestation key which will be used to
2308sign Realm attestation token. The API currently only supports P-384 ECC curve
2309key.
2310
2311The parameters of the function are:
2312
2313 arg0 - A pointer to the buffer where the attestation key should be copied
2314 by this function. The buffer must be big enough to hold the
2315 attestation key.
2316
2317 arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
2318 function returns the attestation key length in this parameter.
2319
2320 arg2 - The type of the elliptic curve to which the requested attestation key
2321 belongs.
2322
2323The function returns 0 on success, -EINVAL on failure.
2324
Javier Almansa Sobrino8c980a42021-11-24 18:37:37 +00002325Function : plat_rmmd_get_el3_rmm_shared_mem() [when ENABLE_RME == 1]
2326~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2327
2328::
2329
2330 Argument : uintptr_t *
2331 Return : size_t
2332
2333This function returns the size of the shared area between EL3 and RMM (or 0 on
2334failure). A pointer to the shared area (or a NULL pointer on failure) is stored
2335in the pointer passed as argument.
2336
Javier Almansa Sobrino1d0ca402022-04-25 17:18:15 +01002337Function : plat_rmmd_load_manifest() [when ENABLE_RME == 1]
2338~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2339
2340::
2341
2342 Arguments : rmm_manifest_t *manifest
2343 Return : int
2344
2345When ENABLE_RME is enabled, this function populates a boot manifest for the
2346RMM image and stores it in the area specified by manifest.
2347
2348When ENABLE_RME is disabled, this function is not used.
2349
Jeenu Viswambharan64ee2632018-04-27 15:17:03 +01002350Function : bl31_plat_enable_mmu [optional]
2351~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2352
2353::
2354
2355 Argument : uint32_t
2356 Return : void
2357
2358This function enables the MMU. The boot code calls this function with MMU and
2359caches disabled. This function should program necessary registers to enable
2360translation, and upon return, the MMU on the calling PE must be enabled.
2361
2362The function must honor flags passed in the first argument. These flags are
2363defined by the translation library, and can be found in the file
2364``include/lib/xlat_tables/xlat_mmu_helpers.h``.
2365
2366On DynamIQ systems, this function must not use stack while enabling MMU, which
Paul Beesley8aabea32019-01-11 18:26:51 +00002367is how the function in xlat table library version 2 is implemented.
Jeenu Viswambharan64ee2632018-04-27 15:17:03 +01002368
Alexei Fedoroved108b52019-09-13 14:11:59 +01002369Function : plat_init_apkey [optional]
2370~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Antonio Nino Diazb86048c2019-02-19 11:53:51 +00002371
2372::
2373
2374 Argument : void
Alexei Fedoroved108b52019-09-13 14:11:59 +01002375 Return : uint128_t
Antonio Nino Diazb86048c2019-02-19 11:53:51 +00002376
Alexei Fedoroved108b52019-09-13 14:11:59 +01002377This function returns the 128-bit value which can be used to program ARMv8.3
2378pointer authentication keys.
Antonio Nino Diazb86048c2019-02-19 11:53:51 +00002379
2380The value should be obtained from a reliable source of randomness.
2381
2382This function is only needed if ARMv8.3 pointer authentication is used in the
Alexei Fedoroved108b52019-09-13 14:11:59 +01002383Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
Antonio Nino Diazb86048c2019-02-19 11:53:51 +00002384
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002385Function : plat_get_syscnt_freq2() [mandatory]
2386~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01002387
2388::
2389
2390 Argument : void
2391 Return : unsigned int
2392
2393This function is used by the architecture setup code to retrieve the counter
2394frequency for the CPU's generic timer. This value will be programmed into the
Dan Handley4def07d2018-03-01 18:44:00 +00002395``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
Douglas Raillard6f625742017-06-28 15:23:03 +01002396of the system counter, which is retrieved from the first entry in the frequency
2397modes table.
2398
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002399#define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
2400~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01002401
2402When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
2403bytes) aligned to the cache line boundary that should be allocated per-cpu to
2404accommodate all the bakery locks.
2405
2406If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
2407calculates the size of the ``bakery_lock`` input section, aligns it to the
2408nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
2409and stores the result in a linker symbol. This constant prevents a platform
2410from relying on the linker and provide a more efficient mechanism for
2411accessing per-cpu bakery lock information.
2412
2413If this constant is defined and its value is not equal to the value
2414calculated by the linker then a link time assertion is raised. A compile time
2415assertion is raised if the value of the constant is not aligned to the cache
2416line boundary.
2417
Paul Beesley34760952019-04-12 14:19:42 +01002418.. _porting_guide_sdei_requirements:
2419
Jeenu Viswambharanb7cb1332017-10-16 08:43:14 +01002420SDEI porting requirements
2421~~~~~~~~~~~~~~~~~~~~~~~~~
2422
Paul Beesley8f62ca72019-03-13 13:58:02 +00002423The |SDEI| dispatcher requires the platform to provide the following macros
Jeenu Viswambharanb7cb1332017-10-16 08:43:14 +01002424and functions, of which some are optional, and some others mandatory.
2425
2426Macros
2427......
2428
2429Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
2430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2431
2432This macro must be defined to the EL3 exception priority level associated with
Paul Beesley8f62ca72019-03-13 13:58:02 +00002433Normal |SDEI| events on the platform. This must have a higher value
2434(therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
Jeenu Viswambharanb7cb1332017-10-16 08:43:14 +01002435
2436Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
2437^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2438
2439This macro must be defined to the EL3 exception priority level associated with
Paul Beesley8f62ca72019-03-13 13:58:02 +00002440Critical |SDEI| events on the platform. This must have a lower value
2441(therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
Jeenu Viswambharanb7cb1332017-10-16 08:43:14 +01002442
Paul Beesley8f62ca72019-03-13 13:58:02 +00002443**Note**: |SDEI| exception priorities must be the lowest among Secure
2444priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
2445be higher than Normal |SDEI| priority.
Jeenu Viswambharanb7cb1332017-10-16 08:43:14 +01002446
2447Functions
2448.........
2449
Sandrine Bailleuxb62a5312020-05-15 12:05:51 +02002450Function: int plat_sdei_validate_entry_point() [optional]
2451^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Jeenu Viswambharanb7cb1332017-10-16 08:43:14 +01002452
2453::
2454
Sandrine Bailleuxb62a5312020-05-15 12:05:51 +02002455 Argument: uintptr_t ep, unsigned int client_mode
Jeenu Viswambharanb7cb1332017-10-16 08:43:14 +01002456 Return: int
2457
Sandrine Bailleuxb62a5312020-05-15 12:05:51 +02002458This function validates the entry point address of the event handler provided by
2459the client for both event registration and *Complete and Resume* |SDEI| calls.
2460The function ensures that the address is valid in the client translation regime.
2461
2462The second argument is the exception level that the client is executing in. It
2463can be Non-Secure EL1 or Non-Secure EL2.
2464
2465The function must return ``0`` for successful validation, or ``-1`` upon failure.
Jeenu Viswambharanb7cb1332017-10-16 08:43:14 +01002466
Dan Handley4def07d2018-03-01 18:44:00 +00002467The default implementation always returns ``0``. On Arm platforms, this function
Sandrine Bailleuxb62a5312020-05-15 12:05:51 +02002468translates the entry point address within the client translation regime and
2469further ensures that the resulting physical address is located in Non-secure
2470DRAM.
Jeenu Viswambharanb7cb1332017-10-16 08:43:14 +01002471
2472Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
2473^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2474
2475::
2476
2477 Argument: uint64_t
2478 Argument: unsigned int
2479 Return: void
2480
Paul Beesley8f62ca72019-03-13 13:58:02 +00002481|SDEI| specification requires that a PE comes out of reset with the events
2482masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
2483|SDEI| events on the PE. No |SDEI| events can be dispatched until such
2484time.
Jeenu Viswambharanb7cb1332017-10-16 08:43:14 +01002485
Paul Beesley8f62ca72019-03-13 13:58:02 +00002486Should a PE receive an interrupt that was bound to an |SDEI| event while the
Jeenu Viswambharanb7cb1332017-10-16 08:43:14 +01002487events are masked on the PE, the dispatcher implementation invokes the function
2488``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
2489interrupt and the interrupt ID are passed as parameters.
2490
2491The default implementation only prints out a warning message.
2492
Jimmy Brisson7dfb9912020-06-22 14:18:42 -05002493.. _porting_guide_trng_requirements:
2494
2495TRNG porting requirements
2496~~~~~~~~~~~~~~~~~~~~~~~~~
2497
2498The |TRNG| backend requires the platform to provide the following values
2499and mandatory functions.
2500
2501Values
2502......
2503
2504value: uuid_t plat_trng_uuid [mandatory]
2505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2506
2507This value must be defined to the UUID of the TRNG backend that is specific to
Jayanth Dodderi Chidanand0b22e592022-10-11 17:16:07 +01002508the hardware after ``plat_entropy_setup`` function is called. This value must
Jimmy Brisson7dfb9912020-06-22 14:18:42 -05002509conform to the SMCCC calling convention; The most significant 32 bits of the
2510UUID must not equal ``0xffffffff`` or the signed integer ``-1`` as this value in
2511w0 indicates failure to get a TRNG source.
2512
2513Functions
2514.........
2515
2516Function: void plat_entropy_setup(void) [mandatory]
2517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2518
2519::
2520
2521 Argument: none
2522 Return: none
2523
2524This function is expected to do platform-specific initialization of any TRNG
2525hardware. This may include generating a UUID from a hardware-specific seed.
2526
2527Function: bool plat_get_entropy(uint64_t \*out) [mandatory]
2528^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2529
2530::
2531
2532 Argument: uint64_t *
2533 Return: bool
2534 Out : when the return value is true, the entropy has been written into the
2535 storage pointed to
2536
2537This function writes entropy into storage provided by the caller. If no entropy
2538is available, it must return false and the storage must not be written.
2539
Douglas Raillard6f625742017-06-28 15:23:03 +01002540Power State Coordination Interface (in BL31)
2541--------------------------------------------
2542
Dan Handley4def07d2018-03-01 18:44:00 +00002543The TF-A implementation of the PSCI API is based around the concept of a
2544*power domain*. A *power domain* is a CPU or a logical group of CPUs which
2545share some state on which power management operations can be performed as
2546specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
2547a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
2548*power domains* are arranged in a hierarchical tree structure and each
2549*power domain* can be identified in a system by the cpu index of any CPU that
2550is part of that domain and a *power domain level*. A processing element (for
2551example, a CPU) is at level 0. If the *power domain* node above a CPU is a
2552logical grouping of CPUs that share some state, then level 1 is that group of
2553CPUs (for example, a cluster), and level 2 is a group of clusters (for
2554example, the system). More details on the power domain topology and its
Paul Beesley34760952019-04-12 14:19:42 +01002555organization can be found in :ref:`PSCI Power Domain Tree Structure`.
Douglas Raillard6f625742017-06-28 15:23:03 +01002556
2557BL31's platform initialization code exports a pointer to the platform-specific
2558power management operations required for the PSCI implementation to function
2559correctly. This information is populated in the ``plat_psci_ops`` structure. The
2560PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
2561power management operations on the power domains. For example, the target
2562CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
2563handler (if present) is called for the CPU power domain.
2564
2565The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
2566describe composite power states specific to a platform. The PSCI implementation
Antonio Nino Diaz73308612019-02-28 13:35:21 +00002567defines a generic representation of the power-state parameter, which is an
Douglas Raillard6f625742017-06-28 15:23:03 +01002568array of local power states where each index corresponds to a power domain
2569level. Each entry contains the local power state the power domain at that power
2570level could enter. It depends on the ``validate_power_state()`` handler to
2571convert the power-state parameter (possibly encoding a composite power state)
2572passed in a PSCI ``CPU_SUSPEND`` call to this representation.
2573
2574The following functions form part of platform port of PSCI functionality.
2575
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002576Function : plat_psci_stat_accounting_start() [optional]
2577~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01002578
2579::
2580
2581 Argument : const psci_power_state_t *
2582 Return : void
2583
2584This is an optional hook that platforms can implement for residency statistics
2585accounting before entering a low power state. The ``pwr_domain_state`` field of
2586``state_info`` (first argument) can be inspected if stat accounting is done
2587differently at CPU level versus higher levels. As an example, if the element at
2588index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2589state, special hardware logic may be programmed in order to keep track of the
2590residency statistics. For higher levels (array indices > 0), the residency
2591statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2592default implementation will use PMF to capture timestamps.
2593
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002594Function : plat_psci_stat_accounting_stop() [optional]
2595~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01002596
2597::
2598
2599 Argument : const psci_power_state_t *
2600 Return : void
2601
2602This is an optional hook that platforms can implement for residency statistics
2603accounting after exiting from a low power state. The ``pwr_domain_state`` field
2604of ``state_info`` (first argument) can be inspected if stat accounting is done
2605differently at CPU level versus higher levels. As an example, if the element at
2606index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
2607state, special hardware logic may be programmed in order to keep track of the
2608residency statistics. For higher levels (array indices > 0), the residency
2609statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
2610default implementation will use PMF to capture timestamps.
2611
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002612Function : plat_psci_stat_get_residency() [optional]
2613~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01002614
2615::
2616
Deepika Bhavnani5b33ad12019-12-13 10:23:18 -06002617 Argument : unsigned int, const psci_power_state_t *, unsigned int
Douglas Raillard6f625742017-06-28 15:23:03 +01002618 Return : u_register_t
2619
2620This is an optional interface that is is invoked after resuming from a low power
2621state and provides the time spent resident in that low power state by the power
2622domain at a particular power domain level. When a CPU wakes up from suspend,
2623all its parent power domain levels are also woken up. The generic PSCI code
2624invokes this function for each parent power domain that is resumed and it
2625identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
2626argument) describes the low power state that the power domain has resumed from.
2627The current CPU is the first CPU in the power domain to resume from the low
2628power state and the ``last_cpu_idx`` (third parameter) is the index of the last
2629CPU in the power domain to suspend and may be needed to calculate the residency
2630for that power domain.
2631
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002632Function : plat_get_target_pwr_state() [optional]
2633~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01002634
2635::
2636
2637 Argument : unsigned int, const plat_local_state_t *, unsigned int
2638 Return : plat_local_state_t
2639
2640The PSCI generic code uses this function to let the platform participate in
2641state coordination during a power management operation. The function is passed
2642a pointer to an array of platform specific local power state ``states`` (second
2643argument) which contains the requested power state for each CPU at a particular
2644power domain level ``lvl`` (first argument) within the power domain. The function
2645is expected to traverse this array of upto ``ncpus`` (third argument) and return
2646a coordinated target power state by the comparing all the requested power
2647states. The target power state should not be deeper than any of the requested
2648power states.
2649
2650A weak definition of this API is provided by default wherein it assumes
2651that the platform assigns a local state value in order of increasing depth
2652of the power state i.e. for two power states X & Y, if X < Y
2653then X represents a shallower power state than Y. As a result, the
2654coordinated target local power state for a power domain will be the minimum
2655of the requested local power state values.
2656
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002657Function : plat_get_power_domain_tree_desc() [mandatory]
2658~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01002659
2660::
2661
2662 Argument : void
2663 Return : const unsigned char *
2664
2665This function returns a pointer to the byte array containing the power domain
2666topology tree description. The format and method to construct this array are
Paul Beesley34760952019-04-12 14:19:42 +01002667described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
2668initialization code requires this array to be described by the platform, either
2669statically or dynamically, to initialize the power domain topology tree. In case
2670the array is populated dynamically, then plat_core_pos_by_mpidr() and
2671plat_my_core_pos() should also be implemented suitably so that the topology tree
2672description matches the CPU indices returned by these APIs. These APIs together
2673form the platform interface for the PSCI topology framework.
Douglas Raillard6f625742017-06-28 15:23:03 +01002674
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002675Function : plat_setup_psci_ops() [mandatory]
2676~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01002677
2678::
2679
2680 Argument : uintptr_t, const plat_psci_ops **
2681 Return : int
2682
2683This function may execute with the MMU and data caches enabled if the platform
2684port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
2685called by the primary CPU.
2686
2687This function is called by PSCI initialization code. Its purpose is to let
2688the platform layer know about the warm boot entrypoint through the
2689``sec_entrypoint`` (first argument) and to export handler routines for
2690platform-specific psci power management actions by populating the passed
2691pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
2692
2693A description of each member of this structure is given below. Please refer to
Dan Handley4def07d2018-03-01 18:44:00 +00002694the Arm FVP specific implementation of these handlers in
Paul Beesley34760952019-04-12 14:19:42 +01002695``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
Douglas Raillard6f625742017-06-28 15:23:03 +01002696platform wants to support, the associated operation or operations in this
2697structure must be provided and implemented (Refer section 4 of
Paul Beesley34760952019-04-12 14:19:42 +01002698:ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
Dan Handley4def07d2018-03-01 18:44:00 +00002699function in a platform port, the operation should be removed from this
Douglas Raillard6f625742017-06-28 15:23:03 +01002700structure instead of providing an empty implementation.
2701
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002702plat_psci_ops.cpu_standby()
2703...........................
Douglas Raillard6f625742017-06-28 15:23:03 +01002704
2705Perform the platform-specific actions to enter the standby state for a cpu
2706indicated by the passed argument. This provides a fast path for CPU standby
Paul Beesley8aabea32019-01-11 18:26:51 +00002707wherein overheads of PSCI state management and lock acquisition is avoided.
Douglas Raillard6f625742017-06-28 15:23:03 +01002708For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
2709the suspend state type specified in the ``power-state`` parameter should be
2710STANDBY and the target power domain level specified should be the CPU. The
2711handler should put the CPU into a low power retention state (usually by
2712issuing a wfi instruction) and ensure that it can be woken up from that
2713state by a normal interrupt. The generic code expects the handler to succeed.
2714
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002715plat_psci_ops.pwr_domain_on()
2716.............................
Douglas Raillard6f625742017-06-28 15:23:03 +01002717
2718Perform the platform specific actions to power on a CPU, specified
2719by the ``MPIDR`` (first argument). The generic code expects the platform to
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002720return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
Douglas Raillard6f625742017-06-28 15:23:03 +01002721
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002722plat_psci_ops.pwr_domain_off()
2723..............................
Douglas Raillard6f625742017-06-28 15:23:03 +01002724
2725Perform the platform specific actions to prepare to power off the calling CPU
2726and its higher parent power domain levels as indicated by the ``target_state``
2727(first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
2728
2729The ``target_state`` encodes the platform coordinated target local power states
2730for the CPU power domain and its parent power domain levels. The handler
2731needs to perform power management operation corresponding to the local state
2732at each power level.
2733
2734For this handler, the local power state for the CPU power domain will be a
2735power down state where as it could be either power down, retention or run state
2736for the higher power domain levels depending on the result of state
2737coordination. The generic code expects the handler to succeed.
2738
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002739plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
2740...........................................................
Varun Wadekar1862d622017-07-10 16:02:05 -07002741
2742This optional function may be used as a performance optimization to replace
2743or complement pwr_domain_suspend() on some platforms. Its calling semantics
2744are identical to pwr_domain_suspend(), except the PSCI implementation only
2745calls this function when suspending to a power down state, and it guarantees
2746that data caches are enabled.
2747
2748When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
2749before calling pwr_domain_suspend(). If the target_state corresponds to a
2750power down state and it is safe to perform some or all of the platform
2751specific actions in that function with data caches enabled, it may be more
2752efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
2753= 1, data caches remain enabled throughout, and so there is no advantage to
2754moving platform specific actions to this function.
2755
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002756plat_psci_ops.pwr_domain_suspend()
2757..................................
Douglas Raillard6f625742017-06-28 15:23:03 +01002758
2759Perform the platform specific actions to prepare to suspend the calling
2760CPU and its higher parent power domain levels as indicated by the
2761``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
2762API implementation.
2763
2764The ``target_state`` has a similar meaning as described in
2765the ``pwr_domain_off()`` operation. It encodes the platform coordinated
2766target local power states for the CPU power domain and its parent
2767power domain levels. The handler needs to perform power management operation
2768corresponding to the local state at each power level. The generic code
2769expects the handler to succeed.
2770
Douglas Raillardc5229f82017-08-02 16:57:32 +01002771The difference between turning a power domain off versus suspending it is that
2772in the former case, the power domain is expected to re-initialize its state
2773when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
2774case, the power domain is expected to save enough state so that it can resume
2775execution by restoring this state when its powered on (see
Douglas Raillard6f625742017-06-28 15:23:03 +01002776``pwr_domain_suspend_finish()``).
2777
Douglas Raillardc5229f82017-08-02 16:57:32 +01002778When suspending a core, the platform can also choose to power off the GICv3
2779Redistributor and ITS through an implementation-defined sequence. To achieve
2780this safely, the ITS context must be saved first. The architectural part is
2781implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
2782sequence is implementation defined and it is therefore the responsibility of
2783the platform code to implement the necessary sequence. Then the GIC
2784Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
2785Powering off the Redistributor requires the implementation to support it and it
2786is the responsibility of the platform code to execute the right implementation
2787defined sequence.
2788
2789When a system suspend is requested, the platform can also make use of the
2790``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
2791it has saved the context of the Redistributors and ITS of all the cores in the
2792system. The context of the Distributor can be large and may require it to be
2793allocated in a special area if it cannot fit in the platform's global static
2794data, for example in DRAM. The Distributor can then be powered down using an
2795implementation-defined sequence.
2796
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002797plat_psci_ops.pwr_domain_pwr_down_wfi()
2798.......................................
Douglas Raillard6f625742017-06-28 15:23:03 +01002799
2800This is an optional function and, if implemented, is expected to perform
2801platform specific actions including the ``wfi`` invocation which allows the
2802CPU to powerdown. Since this function is invoked outside the PSCI locks,
2803the actions performed in this hook must be local to the CPU or the platform
2804must ensure that races between multiple CPUs cannot occur.
2805
2806The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
2807operation and it encodes the platform coordinated target local power states for
2808the CPU power domain and its parent power domain levels. This function must
Boyan Karatotev028c4e42022-10-05 13:41:56 +01002809not return back to the caller (by calling wfi in an infinite loop to ensure
2810some CPUs power down mitigations work properly).
Douglas Raillard6f625742017-06-28 15:23:03 +01002811
2812If this function is not implemented by the platform, PSCI generic
2813implementation invokes ``psci_power_down_wfi()`` for power down.
2814
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002815plat_psci_ops.pwr_domain_on_finish()
2816....................................
Douglas Raillard6f625742017-06-28 15:23:03 +01002817
2818This function is called by the PSCI implementation after the calling CPU is
2819powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
2820It performs the platform-specific setup required to initialize enough state for
2821this CPU to enter the normal world and also provide secure runtime firmware
2822services.
2823
2824The ``target_state`` (first argument) is the prior state of the power domains
2825immediately before the CPU was turned on. It indicates which power domains
2826above the CPU might require initialization due to having previously been in
2827low power states. The generic code expects the handler to succeed.
2828
Madhukar Pappireddy10107702019-08-12 18:31:33 -05002829plat_psci_ops.pwr_domain_on_finish_late() [optional]
2830...........................................................
2831
2832This optional function is called by the PSCI implementation after the calling
2833CPU is fully powered on with respective data caches enabled. The calling CPU and
2834the associated cluster are guaranteed to be participating in coherency. This
2835function gives the flexibility to perform any platform-specific actions safely,
2836such as initialization or modification of shared data structures, without the
2837overhead of explicit cache maintainace operations.
2838
2839The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
2840operation. The generic code expects the handler to succeed.
2841
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002842plat_psci_ops.pwr_domain_suspend_finish()
2843.........................................
Douglas Raillard6f625742017-06-28 15:23:03 +01002844
2845This function is called by the PSCI implementation after the calling CPU is
2846powered on and released from reset in response to an asynchronous wakeup
2847event, for example a timer interrupt that was programmed by the CPU during the
2848``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
2849setup required to restore the saved state for this CPU to resume execution
2850in the normal world and also provide secure runtime firmware services.
2851
2852The ``target_state`` (first argument) has a similar meaning as described in
2853the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
2854to succeed.
2855
Douglas Raillardc5229f82017-08-02 16:57:32 +01002856If the Distributor, Redistributors or ITS have been powered off as part of a
2857suspend, their context must be restored in this function in the reverse order
2858to how they were saved during suspend sequence.
2859
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002860plat_psci_ops.system_off()
2861..........................
Douglas Raillard6f625742017-06-28 15:23:03 +01002862
2863This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
2864call. It performs the platform-specific system poweroff sequence after
2865notifying the Secure Payload Dispatcher.
2866
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002867plat_psci_ops.system_reset()
2868............................
Douglas Raillard6f625742017-06-28 15:23:03 +01002869
2870This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
2871call. It performs the platform-specific system reset sequence after
2872notifying the Secure Payload Dispatcher.
2873
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002874plat_psci_ops.validate_power_state()
2875....................................
Douglas Raillard6f625742017-06-28 15:23:03 +01002876
2877This function is called by the PSCI implementation during the ``CPU_SUSPEND``
2878call to validate the ``power_state`` parameter of the PSCI API and if valid,
2879populate it in ``req_state`` (second argument) array as power domain level
2880specific local states. If the ``power_state`` is invalid, the platform must
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002881return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
Douglas Raillard6f625742017-06-28 15:23:03 +01002882normal world PSCI client.
2883
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002884plat_psci_ops.validate_ns_entrypoint()
2885......................................
Douglas Raillard6f625742017-06-28 15:23:03 +01002886
2887This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
2888``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
2889parameter passed by the normal world. If the ``entry_point`` is invalid,
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002890the platform must return PSCI_E_INVALID_ADDRESS as error, which is
Douglas Raillard6f625742017-06-28 15:23:03 +01002891propagated back to the normal world PSCI client.
2892
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002893plat_psci_ops.get_sys_suspend_power_state()
2894...........................................
Douglas Raillard6f625742017-06-28 15:23:03 +01002895
2896This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
2897call to get the ``req_state`` parameter from platform which encodes the power
2898domain level specific local states to suspend to system affinity level. The
2899``req_state`` will be utilized to do the PSCI state coordination and
2900``pwr_domain_suspend()`` will be invoked with the coordinated target state to
2901enter system suspend.
2902
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002903plat_psci_ops.get_pwr_lvl_state_idx()
2904.....................................
Douglas Raillard6f625742017-06-28 15:23:03 +01002905
2906This is an optional function and, if implemented, is invoked by the PSCI
2907implementation to convert the ``local_state`` (first argument) at a specified
2908``pwr_lvl`` (second argument) to an index between 0 and
2909``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
2910supports more than two local power states at each power domain level, that is
2911``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
2912local power states.
2913
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002914plat_psci_ops.translate_power_state_by_mpidr()
2915..............................................
Douglas Raillard6f625742017-06-28 15:23:03 +01002916
2917This is an optional function and, if implemented, verifies the ``power_state``
2918(second argument) parameter of the PSCI API corresponding to a target power
2919domain. The target power domain is identified by using both ``MPIDR`` (first
2920argument) and the power domain level encoded in ``power_state``. The power domain
2921level specific local states are to be extracted from ``power_state`` and be
2922populated in the ``output_state`` (third argument) array. The functionality
2923is similar to the ``validate_power_state`` function described above and is
2924envisaged to be used in case the validity of ``power_state`` depend on the
2925targeted power domain. If the ``power_state`` is invalid for the targeted power
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002926domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
Douglas Raillard6f625742017-06-28 15:23:03 +01002927function is not implemented, then the generic implementation relies on
2928``validate_power_state`` function to translate the ``power_state``.
2929
2930This function can also be used in case the platform wants to support local
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002931power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
Douglas Raillard6f625742017-06-28 15:23:03 +01002932APIs as described in Section 5.18 of `PSCI`_.
2933
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002934plat_psci_ops.get_node_hw_state()
2935.................................
Douglas Raillard6f625742017-06-28 15:23:03 +01002936
2937This is an optional function. If implemented this function is intended to return
2938the power state of a node (identified by the first parameter, the ``MPIDR``) in
2939the power domain topology (identified by the second parameter, ``power_level``),
2940as retrieved from a power controller or equivalent component on the platform.
2941Upon successful completion, the implementation must map and return the final
2942status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
2943must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
2944appropriate.
2945
2946Implementations are not expected to handle ``power_levels`` greater than
2947``PLAT_MAX_PWR_LVL``.
2948
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002949plat_psci_ops.system_reset2()
2950.............................
Roberto Vargasfe3e40e2017-09-12 10:28:35 +01002951
2952This is an optional function. If implemented this function is
2953called during the ``SYSTEM_RESET2`` call to perform a reset
2954based on the first parameter ``reset_type`` as specified in
2955`PSCI`_. The parameter ``cookie`` can be used to pass additional
2956reset information. If the ``reset_type`` is not supported, the
2957function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
2958resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
2959and vendor reset can return other PSCI error codes as defined
2960in `PSCI`_. On success this function will not return.
2961
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002962plat_psci_ops.write_mem_protect()
2963.................................
Roberto Vargasfe3e40e2017-09-12 10:28:35 +01002964
2965This is an optional function. If implemented it enables or disables the
2966``MEM_PROTECT`` functionality based on the value of ``val``.
2967A non-zero value enables ``MEM_PROTECT`` and a value of zero
2968disables it. Upon encountering failures it must return a negative value
2969and on success it must return 0.
2970
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002971plat_psci_ops.read_mem_protect()
2972................................
Roberto Vargasfe3e40e2017-09-12 10:28:35 +01002973
2974This is an optional function. If implemented it returns the current
2975state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
2976failures it must return a negative value and on success it must
2977return 0.
2978
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01002979plat_psci_ops.mem_protect_chk()
2980...............................
Roberto Vargasfe3e40e2017-09-12 10:28:35 +01002981
2982This is an optional function. If implemented it checks if a memory
2983region defined by a base address ``base`` and with a size of ``length``
2984bytes is protected by ``MEM_PROTECT``. If the region is protected
2985then it must return 0, otherwise it must return a negative number.
2986
Paul Beesley34760952019-04-12 14:19:42 +01002987.. _porting_guide_imf_in_bl31:
2988
Douglas Raillard6f625742017-06-28 15:23:03 +01002989Interrupt Management framework (in BL31)
2990----------------------------------------
2991
2992BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
2993generated in either security state and targeted to EL1 or EL2 in the non-secure
2994state or EL3/S-EL1 in the secure state. The design of this framework is
Paul Beesley34760952019-04-12 14:19:42 +01002995described in the :ref:`Interrupt Management Framework`
Douglas Raillard6f625742017-06-28 15:23:03 +01002996
2997A platform should export the following APIs to support the IMF. The following
Paul Beesley8aabea32019-01-11 18:26:51 +00002998text briefly describes each API and its implementation in Arm standard
Douglas Raillard6f625742017-06-28 15:23:03 +01002999platforms. The API implementation depends upon the type of interrupt controller
Dan Handley4def07d2018-03-01 18:44:00 +00003000present in the platform. Arm standard platform layer supports both
3001`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
3002and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
3003FVP can be configured to use either GICv2 or GICv3 depending on the build flag
Paul Beesley43f35ef2019-05-29 13:59:40 +01003004``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
3005details).
Douglas Raillard6f625742017-06-28 15:23:03 +01003006
Madhukar Pappireddy6844c342020-07-29 09:37:25 -05003007See also: :ref:`Interrupt Controller Abstraction APIs<Platform Interrupt Controller API>`.
Jeenu Viswambharaneb68ea92017-09-22 08:32:09 +01003008
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01003009Function : plat_interrupt_type_to_line() [mandatory]
3010~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01003011
3012::
3013
3014 Argument : uint32_t, uint32_t
3015 Return : uint32_t
3016
Dan Handley4def07d2018-03-01 18:44:00 +00003017The Arm processor signals an interrupt exception either through the IRQ or FIQ
Douglas Raillard6f625742017-06-28 15:23:03 +01003018interrupt line. The specific line that is signaled depends on how the interrupt
3019controller (IC) reports different interrupt types from an execution context in
3020either security state. The IMF uses this API to determine which interrupt line
3021the platform IC uses to signal each type of interrupt supported by the framework
3022from a given security state. This API must be invoked at EL3.
3023
3024The first parameter will be one of the ``INTR_TYPE_*`` values (see
Paul Beesley34760952019-04-12 14:19:42 +01003025:ref:`Interrupt Management Framework`) indicating the target type of the
3026interrupt, the second parameter is the security state of the originating
3027execution context. The return result is the bit position in the ``SCR_EL3``
3028register of the respective interrupt trap: IRQ=1, FIQ=2.
Douglas Raillard6f625742017-06-28 15:23:03 +01003029
Dan Handley4def07d2018-03-01 18:44:00 +00003030In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
Douglas Raillard6f625742017-06-28 15:23:03 +01003031configured as FIQs and Non-secure interrupts as IRQs from either security
3032state.
3033
Dan Handley4def07d2018-03-01 18:44:00 +00003034In the case of Arm standard platforms using GICv3, the interrupt line to be
Douglas Raillard6f625742017-06-28 15:23:03 +01003035configured depends on the security state of the execution context when the
3036interrupt is signalled and are as follows:
3037
3038- The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
3039 NS-EL0/1/2 context.
3040- The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
3041 in the NS-EL0/1/2 context.
3042- The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
3043 context.
3044
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01003045Function : plat_ic_get_pending_interrupt_type() [mandatory]
3046~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01003047
3048::
3049
3050 Argument : void
3051 Return : uint32_t
3052
3053This API returns the type of the highest priority pending interrupt at the
3054platform IC. The IMF uses the interrupt type to retrieve the corresponding
3055handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
3056pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
3057``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
3058
Dan Handley4def07d2018-03-01 18:44:00 +00003059In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillard6f625742017-06-28 15:23:03 +01003060Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
3061the pending interrupt. The type of interrupt depends upon the id value as
3062follows.
3063
3064#. id < 1022 is reported as a S-EL1 interrupt
3065#. id = 1022 is reported as a Non-secure interrupt.
3066#. id = 1023 is reported as an invalid interrupt type.
3067
Dan Handley4def07d2018-03-01 18:44:00 +00003068In the case of Arm standard platforms using GICv3, the system register
Douglas Raillard6f625742017-06-28 15:23:03 +01003069``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
3070is read to determine the id of the pending interrupt. The type of interrupt
3071depends upon the id value as follows.
3072
3073#. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
3074#. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
3075#. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
3076#. All other interrupt id's are reported as EL3 interrupt.
3077
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01003078Function : plat_ic_get_pending_interrupt_id() [mandatory]
3079~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01003080
3081::
3082
3083 Argument : void
3084 Return : uint32_t
3085
3086This API returns the id of the highest priority pending interrupt at the
3087platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
3088pending.
3089
Dan Handley4def07d2018-03-01 18:44:00 +00003090In the case of Arm standard platforms using GICv2, the *Highest Priority
Douglas Raillard6f625742017-06-28 15:23:03 +01003091Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
3092pending interrupt. The id that is returned by API depends upon the value of
3093the id read from the interrupt controller as follows.
3094
3095#. id < 1022. id is returned as is.
3096#. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
3097 (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
3098 This id is returned by the API.
3099#. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
3100
Dan Handley4def07d2018-03-01 18:44:00 +00003101In the case of Arm standard platforms using GICv3, if the API is invoked from
Douglas Raillard6f625742017-06-28 15:23:03 +01003102EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
3103group 0 Register*, is read to determine the id of the pending interrupt. The id
3104that is returned by API depends upon the value of the id read from the
3105interrupt controller as follows.
3106
3107#. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
3108#. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
3109 register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
3110 Register* is read to determine the id of the group 1 interrupt. This id
3111 is returned by the API as long as it is a valid interrupt id
3112#. If the id is any of the special interrupt identifiers,
3113 ``INTR_ID_UNAVAILABLE`` is returned.
3114
3115When the API invoked from S-EL1 for GICv3 systems, the id read from system
3116register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01003117Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
Douglas Raillard6f625742017-06-28 15:23:03 +01003118``INTR_ID_UNAVAILABLE`` is returned.
3119
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01003120Function : plat_ic_acknowledge_interrupt() [mandatory]
3121~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01003122
3123::
3124
3125 Argument : void
3126 Return : uint32_t
3127
3128This API is used by the CPU to indicate to the platform IC that processing of
Jeenu Viswambharan4ee8d0b2017-10-24 15:13:59 +01003129the highest pending interrupt has begun. It should return the raw, unmodified
3130value obtained from the interrupt controller when acknowledging an interrupt.
3131The actual interrupt number shall be extracted from this raw value using the API
Madhukar Pappireddy6844c342020-07-29 09:37:25 -05003132`plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>`.
Douglas Raillard6f625742017-06-28 15:23:03 +01003133
Dan Handley4def07d2018-03-01 18:44:00 +00003134This function in Arm standard platforms using GICv2, reads the *Interrupt
Douglas Raillard6f625742017-06-28 15:23:03 +01003135Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
3136priority pending interrupt from pending to active in the interrupt controller.
Jeenu Viswambharan4ee8d0b2017-10-24 15:13:59 +01003137It returns the value read from the ``GICC_IAR``, unmodified.
Douglas Raillard6f625742017-06-28 15:23:03 +01003138
Dan Handley4def07d2018-03-01 18:44:00 +00003139In the case of Arm standard platforms using GICv3, if the API is invoked
Douglas Raillard6f625742017-06-28 15:23:03 +01003140from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
3141Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
3142reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
3143group 1*. The read changes the state of the highest pending interrupt from
3144pending to active in the interrupt controller. The value read is returned
Jeenu Viswambharan4ee8d0b2017-10-24 15:13:59 +01003145unmodified.
Douglas Raillard6f625742017-06-28 15:23:03 +01003146
3147The TSP uses this API to start processing of the secure physical timer
3148interrupt.
3149
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01003150Function : plat_ic_end_of_interrupt() [mandatory]
3151~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01003152
3153::
3154
3155 Argument : uint32_t
3156 Return : void
3157
3158This API is used by the CPU to indicate to the platform IC that processing of
3159the interrupt corresponding to the id (passed as the parameter) has
3160finished. The id should be the same as the id returned by the
3161``plat_ic_acknowledge_interrupt()`` API.
3162
Dan Handley4def07d2018-03-01 18:44:00 +00003163Arm standard platforms write the id to the *End of Interrupt Register*
Douglas Raillard6f625742017-06-28 15:23:03 +01003164(``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
3165system register in case of GICv3 depending on where the API is invoked from,
3166EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
3167controller.
3168
3169The TSP uses this API to finish processing of the secure physical timer
3170interrupt.
3171
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01003172Function : plat_ic_get_interrupt_type() [mandatory]
3173~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01003174
3175::
3176
3177 Argument : uint32_t
3178 Return : uint32_t
3179
3180This API returns the type of the interrupt id passed as the parameter.
3181``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
3182interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
3183returned depending upon how the interrupt has been configured by the platform
3184IC. This API must be invoked at EL3.
3185
Dan Handley4def07d2018-03-01 18:44:00 +00003186Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
Douglas Raillard6f625742017-06-28 15:23:03 +01003187and Non-secure interrupts as Group1 interrupts. It reads the group value
3188corresponding to the interrupt id from the relevant *Interrupt Group Register*
3189(``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
3190
Dan Handley4def07d2018-03-01 18:44:00 +00003191In the case of Arm standard platforms using GICv3, both the *Interrupt Group
Douglas Raillard6f625742017-06-28 15:23:03 +01003192Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
3193(``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
3194as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
3195
Manish Pandey5988a802022-11-02 16:30:09 +00003196Common helper functions
3197-----------------------
3198
3199Function : do_panic()
3200~~~~~~~~~~~~~~~~~~~~~
3201
3202::
3203
3204 Argument : void
3205 Return : void
3206
3207This API is called from assembly files when encountering a critical failure that
3208cannot be recovered from. It also invokes elx_panic() which allows to report a
3209crash from lower exception level. This function assumes that it is invoked from
3210a C runtime environment i.e. valid stack exists. This call **must not** return.
3211
3212Function : panic()
3213~~~~~~~~~~~~~~~~~~
3214
3215::
3216
3217 Argument : void
3218 Return : void
3219
3220This API called from C files when encountering a critical failure that cannot
3221be recovered from. This function in turn prints backtrace (if enabled) and calls
3222do_panic(). This call **must not** return.
3223
Douglas Raillard6f625742017-06-28 15:23:03 +01003224Crash Reporting mechanism (in BL31)
3225-----------------------------------
3226
Julius Werner17cd67d2017-09-18 16:49:48 -07003227BL31 implements a crash reporting mechanism which prints the various registers
Antonio Nino Diaz6c9ada32018-10-16 14:32:34 +01003228of the CPU to enable quick crash analysis and debugging. This mechanism relies
Paul Beesley8aabea32019-01-11 18:26:51 +00003229on the platform implementing ``plat_crash_console_init``,
Antonio Nino Diaz6c9ada32018-10-16 14:32:34 +01003230``plat_crash_console_putc`` and ``plat_crash_console_flush``.
3231
3232The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
3233implementation of all of them. Platforms may include this file to their
3234makefiles in order to benefit from them. By default, they will cause the crash
Julius Werner17cd67d2017-09-18 16:49:48 -07003235output to be routed over the normal console infrastructure and get printed on
3236consoles configured to output in crash state. ``console_set_scope()`` can be
3237used to control whether a console is used for crash output.
Paul Beesleye1c50262019-03-13 16:20:44 +00003238
3239.. note::
3240 Platforms are responsible for making sure that they only mark consoles for
3241 use in the crash scope that are able to support this, i.e. that are written
3242 in assembly and conform with the register clobber rules for putc()
3243 (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
Julius Werner17cd67d2017-09-18 16:49:48 -07003244
3245In some cases (such as debugging very early crashes that happen before the
3246normal boot console can be set up), platforms may want to control crash output
Julius Werner63c52d02018-11-19 14:25:55 -08003247more explicitly. These platforms may instead provide custom implementations for
3248these. They are executed outside of a C environment and without a stack. Many
3249console drivers provide functions named ``console_xxx_core_init/putc/flush``
3250that are designed to be used by these functions. See Arm platforms (like juno)
3251for an example of this.
Antonio Nino Diaz6c9ada32018-10-16 14:32:34 +01003252
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01003253Function : plat_crash_console_init [mandatory]
3254~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01003255
3256::
3257
3258 Argument : void
3259 Return : int
3260
3261This API is used by the crash reporting mechanism to initialize the crash
Julius Werner17cd67d2017-09-18 16:49:48 -07003262console. It must only use the general purpose registers x0 through x7 to do the
Douglas Raillard6f625742017-06-28 15:23:03 +01003263initialization and returns 1 on success.
3264
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01003265Function : plat_crash_console_putc [mandatory]
3266~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01003267
3268::
3269
3270 Argument : int
3271 Return : int
3272
3273This API is used by the crash reporting mechanism to print a character on the
3274designated crash console. It must only use general purpose registers x1 and
3275x2 to do its work. The parameter and the return value are in general purpose
3276register x0.
3277
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01003278Function : plat_crash_console_flush [mandatory]
3279~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Douglas Raillard6f625742017-06-28 15:23:03 +01003280
3281::
3282
3283 Argument : void
Jimmy Brisson831b0e92020-08-05 13:44:05 -05003284 Return : void
Douglas Raillard6f625742017-06-28 15:23:03 +01003285
3286This API is used by the crash reporting mechanism to force write of all buffered
3287data on the designated crash console. It should only use general purpose
Jimmy Brisson831b0e92020-08-05 13:44:05 -05003288registers x0 through x5 to do its work.
Douglas Raillard6f625742017-06-28 15:23:03 +01003289
Manish Pandeyc3233c12020-06-30 00:46:08 +01003290.. _External Abort handling and RAS Support:
3291
Jeenu Viswambharan63eb2412018-10-12 08:48:36 +01003292External Abort handling and RAS Support
3293---------------------------------------
Jeenu Viswambharan4431aae2018-07-12 10:00:01 +01003294
3295Function : plat_ea_handler
3296~~~~~~~~~~~~~~~~~~~~~~~~~~
3297
3298::
3299
3300 Argument : int
3301 Argument : uint64_t
3302 Argument : void *
3303 Argument : void *
3304 Argument : uint64_t
3305 Return : void
3306
3307This function is invoked by the RAS framework for the platform to handle an
3308External Abort received at EL3. The intention of the function is to attempt to
3309resolve the cause of External Abort and return; if that's not possible, to
3310initiate orderly shutdown of the system.
3311
3312The first parameter (``int ea_reason``) indicates the reason for External Abort.
3313Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
3314
3315The second parameter (``uint64_t syndrome``) is the respective syndrome
3316presented to EL3 after having received the External Abort. Depending on the
3317nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
3318can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
3319
3320The third parameter (``void *cookie``) is unused for now. The fourth parameter
3321(``void *handle``) is a pointer to the preempted context. The fifth parameter
3322(``uint64_t flags``) indicates the preempted security state. These parameters
3323are received from the top-level exception handler.
3324
3325If ``RAS_EXTENSION`` is set to ``1``, the default implementation of this
3326function iterates through RAS handlers registered by the platform. If any of the
3327RAS handlers resolve the External Abort, no further action is taken.
3328
3329If ``RAS_EXTENSION`` is set to ``0``, or if none of the platform RAS handlers
3330could resolve the External Abort, the default implementation prints an error
3331message, and panics.
3332
3333Function : plat_handle_uncontainable_ea
3334~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3335
3336::
3337
3338 Argument : int
3339 Argument : uint64_t
3340 Return : void
3341
3342This function is invoked by the RAS framework when an External Abort of
3343Uncontainable type is received at EL3. Due to the critical nature of
3344Uncontainable errors, the intention of this function is to initiate orderly
3345shutdown of the system, and is not expected to return.
3346
3347This function must be implemented in assembly.
3348
3349The first and second parameters are the same as that of ``plat_ea_handler``.
3350
3351The default implementation of this function calls
3352``report_unhandled_exception``.
3353
3354Function : plat_handle_double_fault
3355~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3356
3357::
3358
3359 Argument : int
3360 Argument : uint64_t
3361 Return : void
3362
3363This function is invoked by the RAS framework when another External Abort is
3364received at EL3 while one is already being handled. I.e., a call to
3365``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
3366this function is to initiate orderly shutdown of the system, and is not expected
3367recover or return.
3368
3369This function must be implemented in assembly.
3370
3371The first and second parameters are the same as that of ``plat_ea_handler``.
3372
3373The default implementation of this function calls
3374``report_unhandled_exception``.
3375
3376Function : plat_handle_el3_ea
3377~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3378
3379::
3380
3381 Return : void
3382
3383This function is invoked when an External Abort is received while executing in
3384EL3. Due to its critical nature, the intention of this function is to initiate
3385orderly shutdown of the system, and is not expected recover or return.
3386
3387This function must be implemented in assembly.
3388
3389The default implementation of this function calls
3390``report_unhandled_exception``.
3391
Douglas Raillard6f625742017-06-28 15:23:03 +01003392Build flags
3393-----------
3394
Douglas Raillard6f625742017-06-28 15:23:03 +01003395There are some build flags which can be defined by the platform to control
3396inclusion or exclusion of certain BL stages from the FIP image. These flags
3397need to be defined in the platform makefile which will get included by the
3398build system.
3399
Sandrine Bailleuxab4a90c2019-02-08 14:44:53 +01003400- **NEED_BL33**
Douglas Raillard6f625742017-06-28 15:23:03 +01003401 By default, this flag is defined ``yes`` by the build system and ``BL33``
3402 build option should be supplied as a build option. The platform has the
3403 option of excluding the BL33 image in the ``fip`` image by defining this flag
3404 to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
3405 are used, this flag will be set to ``no`` automatically.
3406
Paul Beesleye63f5d12019-05-16 13:33:18 +01003407Platform include paths
3408----------------------
3409
3410Platforms are allowed to add more include paths to be passed to the compiler.
3411The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
3412particular for the file ``platform_def.h``.
3413
3414Example:
3415
3416.. code:: c
3417
3418 PLAT_INCLUDES += -Iinclude/plat/myplat/include
3419
Douglas Raillard6f625742017-06-28 15:23:03 +01003420C Library
3421---------
3422
3423To avoid subtle toolchain behavioral dependencies, the header files provided
3424by the compiler are not used. The software is built with the ``-nostdinc`` flag
3425to ensure no headers are included from the toolchain inadvertently. Instead the
Dan Handley4def07d2018-03-01 18:44:00 +00003426required headers are included in the TF-A source tree. The library only
3427contains those C library definitions required by the local implementation. If
3428more functionality is required, the needed library functions will need to be
3429added to the local implementation.
Douglas Raillard6f625742017-06-28 15:23:03 +01003430
Antonio Nino Diaz27989a82018-08-17 10:45:47 +01003431Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
Paul Beesleybe653a62019-10-04 16:17:46 +00003432been written specifically for TF-A. Some implementation files have been obtained
Antonio Nino Diaz27989a82018-08-17 10:45:47 +01003433from `FreeBSD`_, others have been written specifically for TF-A as well. The
3434files can be found in ``include/lib/libc`` and ``lib/libc``.
Douglas Raillard6f625742017-06-28 15:23:03 +01003435
Sandrine Bailleux9aa6b632019-02-08 14:46:42 +01003436SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
3437can be obtained from http://github.com/freebsd/freebsd.
Douglas Raillard6f625742017-06-28 15:23:03 +01003438
3439Storage abstraction layer
3440-------------------------
3441
Louis Mayencourtdbeace12019-07-15 13:56:03 +01003442In order to improve platform independence and portability a storage abstraction
3443layer is used to load data from non-volatile platform storage. Currently
3444storage access is only required by BL1 and BL2 phases and performed inside the
3445``load_image()`` function in ``bl_common.c``.
Douglas Raillard6f625742017-06-28 15:23:03 +01003446
Louis Mayencourtdbeace12019-07-15 13:56:03 +01003447.. uml:: ../resources/diagrams/plantuml/io_framework_usage_overview.puml
Douglas Raillard6f625742017-06-28 15:23:03 +01003448
Dan Handley4def07d2018-03-01 18:44:00 +00003449It is mandatory to implement at least one storage driver. For the Arm
Douglas Raillard6f625742017-06-28 15:23:03 +01003450development platforms the Firmware Image Package (FIP) driver is provided as
Paul Beesley43f35ef2019-05-29 13:59:40 +01003451the default means to load data from storage (see :ref:`firmware_design_fip`).
3452The storage layer is described in the header file
3453``include/drivers/io/io_storage.h``. The implementation of the common library is
3454in ``drivers/io/io_storage.c`` and the driver files are located in
Douglas Raillard6f625742017-06-28 15:23:03 +01003455``drivers/io/``.
3456
Louis Mayencourtdbeace12019-07-15 13:56:03 +01003457.. uml:: ../resources/diagrams/plantuml/io_arm_class_diagram.puml
3458
Douglas Raillard6f625742017-06-28 15:23:03 +01003459Each IO driver must provide ``io_dev_*`` structures, as described in
3460``drivers/io/io_driver.h``. These are returned via a mandatory registration
3461function that is called on platform initialization. The semi-hosting driver
3462implementation in ``io_semihosting.c`` can be used as an example.
3463
Louis Mayencourtdbeace12019-07-15 13:56:03 +01003464Each platform should register devices and their drivers via the storage
3465abstraction layer. These drivers then need to be initialized by bootloader
3466phases as required in their respective ``blx_platform_setup()`` functions.
3467
3468.. uml:: ../resources/diagrams/plantuml/io_dev_registration.puml
3469
3470The storage abstraction layer provides mechanisms (``io_dev_init()``) to
3471initialize storage devices before IO operations are called.
3472
3473.. uml:: ../resources/diagrams/plantuml/io_dev_init_and_check.puml
3474
3475The basic operations supported by the layer
Douglas Raillard6f625742017-06-28 15:23:03 +01003476include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
3477Drivers do not have to implement all operations, but each platform must
3478provide at least one driver for a device capable of supporting generic
3479operations such as loading a bootloader image.
3480
3481The current implementation only allows for known images to be loaded by the
3482firmware. These images are specified by using their identifiers, as defined in
Antonio Nino Diaz8f457da2019-02-13 14:07:38 +00003483``include/plat/common/common_def.h`` (or a separate header file included from
Douglas Raillard6f625742017-06-28 15:23:03 +01003484there). The platform layer (``plat_get_image_source()``) then returns a reference
3485to a device and a driver-specific ``spec`` which will be understood by the driver
3486to allow access to the image data.
3487
3488The layer is designed in such a way that is it possible to chain drivers with
3489other drivers. For example, file-system drivers may be implemented on top of
3490physical block devices, both represented by IO devices with corresponding
3491drivers. In such a case, the file-system "binding" with the block device may
3492be deferred until the file-system device is initialised.
3493
3494The abstraction currently depends on structures being statically allocated
3495by the drivers and callers, as the system does not yet provide a means of
3496dynamically allocating memory. This may also have the affect of limiting the
3497amount of open resources per driver.
3498
3499--------------
3500
Soby Mathewa0435102022-03-22 16:21:19 +00003501*Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved.*
Douglas Raillard6f625742017-06-28 15:23:03 +01003502
Douglas Raillard6f625742017-06-28 15:23:03 +01003503.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
Dan Handley4def07d2018-03-01 18:44:00 +00003504.. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
Douglas Raillard6f625742017-06-28 15:23:03 +01003505.. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
Paul Beesleydd4e9a72019-02-08 16:43:05 +00003506.. _FreeBSD: https://www.freebsd.org
Antonio Nino Diaz27989a82018-08-17 10:45:47 +01003507.. _SCC: http://www.simple-cc.org/
Lucian Paul-Trifub3b227f2022-06-22 18:45:36 +01003508.. _DRTM: https://developer.arm.com/documentation/den0113/a