blob: 95fa22e086db20ff4bde6827faab9c503b0d3959 [file] [log] [blame]
Douglas Raillard6f625742017-06-28 15:23:03 +01001ARM Trusted Firmware User Guide
2===============================
3
4
5.. section-numbering::
6 :suffix: .
7
8.. contents::
9
10This document describes how to build ARM Trusted Firmware (TF) and run it with a
11tested set of other software components using defined configurations on the Juno
12ARM development platform and ARM Fixed Virtual Platform (FVP) models. It is
13possible to use other software components, configurations and platforms but that
14is outside the scope of this document.
15
16This document assumes that the reader has previous experience running a fully
17bootable Linux software stack on Juno or FVP using the prebuilt binaries and
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +010018filesystems provided by `Linaro`_. Further information may be found in the
19`Linaro instructions`_. It also assumes that the user understands the role of
20the different software components required to boot a Linux system:
Douglas Raillard6f625742017-06-28 15:23:03 +010021
22- Specific firmware images required by the platform (e.g. SCP firmware on Juno)
23- Normal world bootloader (e.g. UEFI or U-Boot)
24- Device tree
25- Linux kernel image
26- Root filesystem
27
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +010028This document also assumes that the user is familiar with the `FVP models`_ and
Douglas Raillard6f625742017-06-28 15:23:03 +010029the different command line options available to launch the model.
30
31This document should be used in conjunction with the `Firmware Design`_.
32
33Host machine requirements
34-------------------------
35
36The minimum recommended machine specification for building the software and
37running the FVP models is a dual-core processor running at 2GHz with 12GB of
38RAM. For best performance, use a machine with a quad-core processor running at
392.6GHz with 16GB of RAM.
40
41The software has been tested on Ubuntu 14.04 LTS (64-bit). Packages used for
42building the software were installed from that distribution unless otherwise
43specified.
44
45The software has also been built on Windows 7 Enterprise SP1, using CMD.EXE,
David Cunado31f2f792017-06-29 12:01:33 +010046Cygwin, and Msys (MinGW) shells, using version 5.3.1 of the GNU toolchain.
Douglas Raillard6f625742017-06-28 15:23:03 +010047
48Tools
49-----
50
51Install the required packages to build Trusted Firmware with the following
52command:
53
54::
55
56 sudo apt-get install build-essential gcc make git libssl-dev
57
David Cunado31f2f792017-06-29 12:01:33 +010058ARM TF has been tested with `Linaro Release 17.04`_.
59
Douglas Raillard6f625742017-06-28 15:23:03 +010060Download and install the AArch32 or AArch64 little-endian GCC cross compiler.
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +010061The `Linaro Release Notes`_ documents which version of the compiler to use for a
62given Linaro Release. Also, these `Linaro instructions`_ provide further
63guidance and a script, which can be used to download Linaro deliverables
64automatically.
Douglas Raillard6f625742017-06-28 15:23:03 +010065
66Optionally, Trusted Firmware can be built using clang or ARM Compiler 6.
67See instructions below on how to switch the default compiler.
68
69In addition, the following optional packages and tools may be needed:
70
71- ``device-tree-compiler`` package if you need to rebuild the Flattened Device
72 Tree (FDT) source files (``.dts`` files) provided with this software.
73
74- For debugging, ARM `Development Studio 5 (DS-5)`_.
75
Antonio Nino Diaz6feb9e82017-05-23 11:49:22 +010076- To create and modify the diagram files included in the documentation, `Dia`_.
77 This tool can be found in most Linux distributions. Inkscape is needed to
78 generate the actual *.png files.
79
Douglas Raillard6f625742017-06-28 15:23:03 +010080Getting the Trusted Firmware source code
81----------------------------------------
82
83Download the Trusted Firmware source code from Github:
84
85::
86
87 git clone https://github.com/ARM-software/arm-trusted-firmware.git
88
89Building the Trusted Firmware
90-----------------------------
91
92- Before building Trusted Firmware, the environment variable ``CROSS_COMPILE``
93 must point to the Linaro cross compiler.
94
95 For AArch64:
96
97 ::
98
99 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
100
101 For AArch32:
102
103 ::
104
105 export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf-
106
107 It is possible to build Trusted Firmware using clang or ARM Compiler 6.
108 To do so ``CC`` needs to point to the clang or armclang binary. Only the
109 compiler is switched; the assembler and linker need to be provided by
110 the GNU toolchain, thus ``CROSS_COMPILE`` should be set as described above.
111
112 ARM Compiler 6 will be selected when the base name of the path assigned
113 to ``CC`` matches the string 'armclang'.
114
115 For AArch64 using ARM Compiler 6:
116
117 ::
118
119 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
120 make CC=<path-to-armclang>/bin/armclang PLAT=<platform> all
121
122 Clang will be selected when the base name of the path assigned to ``CC``
123 contains the string 'clang'. This is to allow both clang and clang-X.Y
124 to work.
125
126 For AArch64 using clang:
127
128 ::
129
130 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
131 make CC=<path-to-clang>/bin/clang PLAT=<platform> all
132
133- Change to the root directory of the Trusted Firmware source tree and build.
134
135 For AArch64:
136
137 ::
138
139 make PLAT=<platform> all
140
141 For AArch32:
142
143 ::
144
145 make PLAT=<platform> ARCH=aarch32 AARCH32_SP=sp_min all
146
147 Notes:
148
149 - If ``PLAT`` is not specified, ``fvp`` is assumed by default. See the
150 `Summary of build options`_ for more information on available build
151 options.
152
153 - (AArch32 only) Currently only ``PLAT=fvp`` is supported.
154
155 - (AArch32 only) ``AARCH32_SP`` is the AArch32 EL3 Runtime Software and it
156 corresponds to the BL32 image. A minimal ``AARCH32_SP``, sp\_min, is
157 provided by ARM Trusted Firmware to demonstrate how PSCI Library can
158 be integrated with an AArch32 EL3 Runtime Software. Some AArch32 EL3
159 Runtime Software may include other runtime services, for example
160 Trusted OS services. A guide to integrate PSCI library with AArch32
161 EL3 Runtime Software can be found `here`_.
162
163 - (AArch64 only) The TSP (Test Secure Payload), corresponding to the BL32
164 image, is not compiled in by default. Refer to the
165 `Building the Test Secure Payload`_ section below.
166
167 - By default this produces a release version of the build. To produce a
168 debug version instead, refer to the "Debugging options" section below.
169
170 - The build process creates products in a ``build`` directory tree, building
171 the objects and binaries for each boot loader stage in separate
172 sub-directories. The following boot loader binary files are created
173 from the corresponding ELF files:
174
175 - ``build/<platform>/<build-type>/bl1.bin``
176 - ``build/<platform>/<build-type>/bl2.bin``
177 - ``build/<platform>/<build-type>/bl31.bin`` (AArch64 only)
178 - ``build/<platform>/<build-type>/bl32.bin`` (mandatory for AArch32)
179
180 where ``<platform>`` is the name of the chosen platform and ``<build-type>``
181 is either ``debug`` or ``release``. The actual number of images might differ
182 depending on the platform.
183
184- Build products for a specific build variant can be removed using:
185
186 ::
187
188 make DEBUG=<D> PLAT=<platform> clean
189
190 ... where ``<D>`` is ``0`` or ``1``, as specified when building.
191
192 The build tree can be removed completely using:
193
194 ::
195
196 make realclean
197
198Summary of build options
199~~~~~~~~~~~~~~~~~~~~~~~~
200
201ARM Trusted Firmware build system supports the following build options. Unless
202mentioned otherwise, these options are expected to be specified at the build
203command line and are not to be modified in any component makefiles. Note that
204the build system doesn't track dependency for build options. Therefore, if any
205of the build options are changed from a previous build, a clean build must be
206performed.
207
208Common build options
209^^^^^^^^^^^^^^^^^^^^
210
211- ``AARCH32_SP`` : Choose the AArch32 Secure Payload component to be built as
212 as the BL32 image when ``ARCH=aarch32``. The value should be the path to the
213 directory containing the SP source, relative to the ``bl32/``; the directory
214 is expected to contain a makefile called ``<aarch32_sp-value>.mk``.
215
216- ``ARCH`` : Choose the target build architecture for ARM Trusted Firmware.
217 It can take either ``aarch64`` or ``aarch32`` as values. By default, it is
218 defined to ``aarch64``.
219
Douglas Raillard6f625742017-06-28 15:23:03 +0100220- ``ARM_ARCH_MAJOR``: The major version of ARM Architecture to target when
221 compiling ARM Trusted Firmware. Its value must be numeric, and defaults to
Etienne Carriere26e63c42017-11-08 13:48:40 +0100222 8 . See also, *ARMv8 Architecture Extensions* and
223 *ARMv7 Architecture Extensions* in `Firmware Design`_.
Douglas Raillard6f625742017-06-28 15:23:03 +0100224
225- ``ARM_ARCH_MINOR``: The minor version of ARM Architecture to target when
226 compiling ARM Trusted Firmware. Its value must be a numeric, and defaults
227 to 0. See also, *ARMv8 Architecture Extensions* in `Firmware Design`_.
228
229- ``ARM_GIC_ARCH``: Choice of ARM GIC architecture version used by the ARM
230 Legacy GIC driver for implementing the platform GIC API. This API is used
231 by the interrupt management framework. Default is 2 (that is, version 2.0).
232 This build option is deprecated.
233
234- ``ARM_PLAT_MT``: This flag determines whether the ARM platform layer has to
Jeenu Viswambharan11ad8f22016-11-15 13:53:57 +0000235 cater for the multi-threading ``MT`` bit when accessing MPIDR. When this flag
236 is set, the functions which deal with MPIDR assume that the ``MT`` bit in
237 MPIDR is set and access the bit-fields in MPIDR accordingly. Default value of
238 this flag is 0. Note that this option is not used on FVP platforms.
Douglas Raillard6f625742017-06-28 15:23:03 +0100239
240- ``BL2``: This is an optional build option which specifies the path to BL2
241 image for the ``fip`` target. In this case, the BL2 in the ARM Trusted
242 Firmware will not be built.
243
244- ``BL2U``: This is an optional build option which specifies the path to
245 BL2U image. In this case, the BL2U in the ARM Trusted Firmware will not
246 be built.
247
248- ``BL31``: This is an optional build option which specifies the path to
249 BL31 image for the ``fip`` target. In this case, the BL31 in the ARM
250 Trusted Firmware will not be built.
251
252- ``BL31_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
253 file that contains the BL31 private key in PEM format. If ``SAVE_KEYS=1``,
254 this file name will be used to save the key.
255
256- ``BL32``: This is an optional build option which specifies the path to
257 BL32 image for the ``fip`` target. In this case, the BL32 in the ARM
258 Trusted Firmware will not be built.
259
Summer Qin71fb3962017-04-20 16:28:39 +0100260- ``BL32_EXTRA1``: This is an optional build option which specifies the path to
261 Trusted OS Extra1 image for the ``fip`` target.
262
263- ``BL32_EXTRA2``: This is an optional build option which specifies the path to
264 Trusted OS Extra2 image for the ``fip`` target.
265
Douglas Raillard6f625742017-06-28 15:23:03 +0100266- ``BL32_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
267 file that contains the BL32 private key in PEM format. If ``SAVE_KEYS=1``,
268 this file name will be used to save the key.
269
270- ``BL33``: Path to BL33 image in the host file system. This is mandatory for
271 ``fip`` target in case the BL2 from ARM Trusted Firmware is used.
272
273- ``BL33_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
274 file that contains the BL33 private key in PEM format. If ``SAVE_KEYS=1``,
275 this file name will be used to save the key.
276
277- ``BUILD_MESSAGE_TIMESTAMP``: String used to identify the time and date of the
278 compilation of each build. It must be set to a C string (including quotes
279 where applicable). Defaults to a string that contains the time and date of
280 the compilation.
281
282- ``BUILD_STRING``: Input string for VERSION\_STRING, which allows the TF build
283 to be uniquely identified. Defaults to the current git commit id.
284
285- ``CFLAGS``: Extra user options appended on the compiler's command line in
286 addition to the options set by the build system.
287
288- ``COLD_BOOT_SINGLE_CPU``: This option indicates whether the platform may
289 release several CPUs out of reset. It can take either 0 (several CPUs may be
290 brought up) or 1 (only one CPU will ever be brought up during cold reset).
291 Default is 0. If the platform always brings up a single CPU, there is no
292 need to distinguish between primary and secondary CPUs and the boot path can
293 be optimised. The ``plat_is_my_cpu_primary()`` and
294 ``plat_secondary_cold_boot_setup()`` platform porting interfaces do not need
295 to be implemented in this case.
296
297- ``CRASH_REPORTING``: A non-zero value enables a console dump of processor
298 register state when an unexpected exception occurs during execution of
299 BL31. This option defaults to the value of ``DEBUG`` - i.e. by default
300 this is only enabled for a debug build of the firmware.
301
302- ``CREATE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the
303 certificate generation tool to create new keys in case no valid keys are
304 present or specified. Allowed options are '0' or '1'. Default is '1'.
305
306- ``CTX_INCLUDE_AARCH32_REGS`` : Boolean option that, when set to 1, will cause
307 the AArch32 system registers to be included when saving and restoring the
308 CPU context. The option must be set to 0 for AArch64-only platforms (that
309 is on hardware that does not implement AArch32, or at least not at EL1 and
310 higher ELs). Default value is 1.
311
312- ``CTX_INCLUDE_FPREGS``: Boolean option that, when set to 1, will cause the FP
313 registers to be included when saving and restoring the CPU context. Default
314 is 0.
315
316- ``DEBUG``: Chooses between a debug and release build. It can take either 0
317 (release) or 1 (debug) as values. 0 is the default.
318
319- ``EL3_PAYLOAD_BASE``: This option enables booting an EL3 payload instead of
320 the normal boot flow. It must specify the entry point address of the EL3
321 payload. Please refer to the "Booting an EL3 payload" section for more
322 details.
323
324- ``ENABLE_ASSERTIONS``: This option controls whether or not calls to ``assert()``
325 are compiled out. For debug builds, this option defaults to 1, and calls to
326 ``assert()`` are left in place. For release builds, this option defaults to 0
327 and calls to ``assert()`` function are compiled out. This option can be set
328 independently of ``DEBUG``. It can also be used to hide any auxiliary code
329 that is only required for the assertion and does not fit in the assertion
330 itself.
331
332- ``ENABLE_PMF``: Boolean option to enable support for optional Performance
333 Measurement Framework(PMF). Default is 0.
334
335- ``ENABLE_PSCI_STAT``: Boolean option to enable support for optional PSCI
336 functions ``PSCI_STAT_RESIDENCY`` and ``PSCI_STAT_COUNT``. Default is 0.
337 In the absence of an alternate stat collection backend, ``ENABLE_PMF`` must
338 be enabled. If ``ENABLE_PMF`` is set, the residency statistics are tracked in
339 software.
340
341- ``ENABLE_RUNTIME_INSTRUMENTATION``: Boolean option to enable runtime
342 instrumentation which injects timestamp collection points into
343 Trusted Firmware to allow runtime performance to be measured.
344 Currently, only PSCI is instrumented. Enabling this option enables
345 the ``ENABLE_PMF`` build option as well. Default is 0.
346
Jeenu Viswambharanc1232c32017-07-19 13:52:12 +0100347- ``ENABLE_SPE_FOR_LOWER_ELS`` : Boolean option to enable Statistical Profiling
Dimitris Papastamosc776dee2017-10-13 15:07:45 +0100348 extensions. This is an optional architectural feature for AArch64.
349 The default is 1 but is automatically disabled when the target architecture
350 is AArch32.
Jeenu Viswambharanc1232c32017-07-19 13:52:12 +0100351
Douglas Raillard6f625742017-06-28 15:23:03 +0100352- ``ENABLE_STACK_PROTECTOR``: String option to enable the stack protection
353 checks in GCC. Allowed values are "all", "strong" and "0" (default).
354 "strong" is the recommended stack protection level if this feature is
355 desired. 0 disables the stack protection. For all values other than 0, the
356 ``plat_get_stack_protector_canary()`` platform hook needs to be implemented.
357 The value is passed as the last component of the option
358 ``-fstack-protector-$ENABLE_STACK_PROTECTOR``.
359
360- ``ERROR_DEPRECATED``: This option decides whether to treat the usage of
361 deprecated platform APIs, helper functions or drivers within Trusted
362 Firmware as error. It can take the value 1 (flag the use of deprecated
363 APIs as error) or 0. The default is 0.
364
Jeenu Viswambharan21b818c2017-09-22 08:32:10 +0100365- ``EL3_EXCEPTION_HANDLING``: When set to ``1``, enable handling of exceptions
366 targeted at EL3. When set ``0`` (default), no exceptions are expected or
367 handled at EL3, and a panic will result. This is supported only for AArch64
368 builds.
369
Douglas Raillard6f625742017-06-28 15:23:03 +0100370- ``FIP_NAME``: This is an optional build option which specifies the FIP
371 filename for the ``fip`` target. Default is ``fip.bin``.
372
373- ``FWU_FIP_NAME``: This is an optional build option which specifies the FWU
374 FIP filename for the ``fwu_fip`` target. Default is ``fwu_fip.bin``.
375
376- ``GENERATE_COT``: Boolean flag used to build and execute the ``cert_create``
377 tool to create certificates as per the Chain of Trust described in
378 `Trusted Board Boot`_. The build system then calls ``fiptool`` to
379 include the certificates in the FIP and FWU\_FIP. Default value is '0'.
380
381 Specify both ``TRUSTED_BOARD_BOOT=1`` and ``GENERATE_COT=1`` to include support
382 for the Trusted Board Boot feature in the BL1 and BL2 images, to generate
383 the corresponding certificates, and to include those certificates in the
384 FIP and FWU\_FIP.
385
386 Note that if ``TRUSTED_BOARD_BOOT=0`` and ``GENERATE_COT=1``, the BL1 and BL2
387 images will not include support for Trusted Board Boot. The FIP will still
388 include the corresponding certificates. This FIP can be used to verify the
389 Chain of Trust on the host machine through other mechanisms.
390
391 Note that if ``TRUSTED_BOARD_BOOT=1`` and ``GENERATE_COT=0``, the BL1 and BL2
392 images will include support for Trusted Board Boot, but the FIP and FWU\_FIP
393 will not include the corresponding certificates, causing a boot failure.
394
Jeenu Viswambharan74dce7f2017-09-22 08:32:09 +0100395- ``GICV2_G0_FOR_EL3``: Unlike GICv3, the GICv2 architecture doesn't have
396 inherent support for specific EL3 type interrupts. Setting this build option
397 to ``1`` assumes GICv2 *Group 0* interrupts are expected to target EL3, both
398 by `platform abstraction layer`__ and `Interrupt Management Framework`__.
399 This allows GICv2 platforms to enable features requiring EL3 interrupt type.
400 This also means that all GICv2 Group 0 interrupts are delivered to EL3, and
401 the Secure Payload interrupts needs to be synchronously handed over to Secure
402 EL1 for handling. The default value of this option is ``0``, which means the
403 Group 0 interrupts are assumed to be handled by Secure EL1.
404
405 .. __: `platform-interrupt-controller-API.rst`
406 .. __: `interrupt-framework-design.rst`
407
Douglas Raillard6f625742017-06-28 15:23:03 +0100408- ``HANDLE_EA_EL3_FIRST``: When defined External Aborts and SError Interrupts
409 will be always trapped in EL3 i.e. in BL31 at runtime.
410
411- ``HW_ASSISTED_COHERENCY``: On most ARM systems to-date, platform-specific
412 software operations are required for CPUs to enter and exit coherency.
413 However, there exists newer systems where CPUs' entry to and exit from
414 coherency is managed in hardware. Such systems require software to only
415 initiate the operations, and the rest is managed in hardware, minimizing
416 active software management. In such systems, this boolean option enables ARM
417 Trusted Firmware to carry out build and run-time optimizations during boot
418 and power management operations. This option defaults to 0 and if it is
419 enabled, then it implies ``WARMBOOT_ENABLE_DCACHE_EARLY`` is also enabled.
420
421- ``JUNO_AARCH32_EL3_RUNTIME``: This build flag enables you to execute EL3
422 runtime software in AArch32 mode, which is required to run AArch32 on Juno.
423 By default this flag is set to '0'. Enabling this flag builds BL1 and BL2 in
424 AArch64 and facilitates the loading of ``SP_MIN`` and BL33 as AArch32 executable
425 images.
426
Soby Mathew20917552017-08-31 11:49:32 +0100427- ``KEY_ALG``: This build flag enables the user to select the algorithm to be
428 used for generating the PKCS keys and subsequent signing of the certificate.
Qixiang Xu9a3088a2017-11-09 13:56:29 +0800429 It accepts 3 values viz. ``rsa``, ``rsa_1_5``, ``ecdsa``. The ``rsa_1_5`` is
Soby Mathewa8eb2862017-08-31 11:50:29 +0100430 the legacy PKCS#1 RSA 1.5 algorithm which is not TBBR compliant and is
431 retained only for compatibility. The default value of this flag is ``rsa``
432 which is the TBBR compliant PKCS#1 RSA 2.1 scheme.
Soby Mathew20917552017-08-31 11:49:32 +0100433
Qixiang Xu9a3088a2017-11-09 13:56:29 +0800434- ``HASH_ALG``: This build flag enables the user to select the secure hash
435 algorithm. It accepts 3 values viz. ``sha256``, ``sha384``, ``sha512``.
436 The default value of this flag is ``sha256``.
437
Douglas Raillard6f625742017-06-28 15:23:03 +0100438- ``LDFLAGS``: Extra user options appended to the linkers' command line in
439 addition to the one set by the build system.
440
441- ``LOAD_IMAGE_V2``: Boolean option to enable support for new version (v2) of
442 image loading, which provides more flexibility and scalability around what
443 images are loaded and executed during boot. Default is 0.
444 Note: ``TRUSTED_BOARD_BOOT`` is currently only supported for AArch64 when
445 ``LOAD_IMAGE_V2`` is enabled.
446
447- ``LOG_LEVEL``: Chooses the log level, which controls the amount of console log
448 output compiled into the build. This should be one of the following:
449
450 ::
451
452 0 (LOG_LEVEL_NONE)
453 10 (LOG_LEVEL_NOTICE)
454 20 (LOG_LEVEL_ERROR)
455 30 (LOG_LEVEL_WARNING)
456 40 (LOG_LEVEL_INFO)
457 50 (LOG_LEVEL_VERBOSE)
458
459 All log output up to and including the log level is compiled into the build.
460 The default value is 40 in debug builds and 20 in release builds.
461
462- ``NON_TRUSTED_WORLD_KEY``: This option is used when ``GENERATE_COT=1``. It
463 specifies the file that contains the Non-Trusted World private key in PEM
464 format. If ``SAVE_KEYS=1``, this file name will be used to save the key.
465
466- ``NS_BL2U``: Path to NS\_BL2U image in the host file system. This image is
467 optional. It is only needed if the platform makefile specifies that it
468 is required in order to build the ``fwu_fip`` target.
469
470- ``NS_TIMER_SWITCH``: Enable save and restore for non-secure timer register
471 contents upon world switch. It can take either 0 (don't save and restore) or
472 1 (do save and restore). 0 is the default. An SPD may set this to 1 if it
473 wants the timer registers to be saved and restored.
474
475- ``PL011_GENERIC_UART``: Boolean option to indicate the PL011 driver that
476 the underlying hardware is not a full PL011 UART but a minimally compliant
477 generic UART, which is a subset of the PL011. The driver will not access
478 any register that is not part of the SBSA generic UART specification.
479 Default value is 0 (a full PL011 compliant UART is present).
480
481- ``PLAT``: Choose a platform to build ARM Trusted Firmware for. The chosen
482 platform name must be subdirectory of any depth under ``plat/``, and must
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +0100483 contain a platform makefile named ``platform.mk``. For example to build ARM
484 Trusted Firmware for ARM Juno board select PLAT=juno.
Douglas Raillard6f625742017-06-28 15:23:03 +0100485
486- ``PRELOADED_BL33_BASE``: This option enables booting a preloaded BL33 image
487 instead of the normal boot flow. When defined, it must specify the entry
488 point address for the preloaded BL33 image. This option is incompatible with
489 ``EL3_PAYLOAD_BASE``. If both are defined, ``EL3_PAYLOAD_BASE`` has priority
490 over ``PRELOADED_BL33_BASE``.
491
492- ``PROGRAMMABLE_RESET_ADDRESS``: This option indicates whether the reset
493 vector address can be programmed or is fixed on the platform. It can take
494 either 0 (fixed) or 1 (programmable). Default is 0. If the platform has a
495 programmable reset address, it is expected that a CPU will start executing
496 code directly at the right address, both on a cold and warm reset. In this
497 case, there is no need to identify the entrypoint on boot and the boot path
498 can be optimised. The ``plat_get_my_entrypoint()`` platform porting interface
499 does not need to be implemented in this case.
500
501- ``PSCI_EXTENDED_STATE_ID``: As per PSCI1.0 Specification, there are 2 formats
502 possible for the PSCI power-state parameter viz original and extended
503 State-ID formats. This flag if set to 1, configures the generic PSCI layer
504 to use the extended format. The default value of this flag is 0, which
505 means by default the original power-state format is used by the PSCI
506 implementation. This flag should be specified by the platform makefile
507 and it governs the return value of PSCI\_FEATURES API for CPU\_SUSPEND
508 smc function id. When this option is enabled on ARM platforms, the
509 option ``ARM_RECOM_STATE_ID_ENC`` needs to be set to 1 as well.
510
511- ``RESET_TO_BL31``: Enable BL31 entrypoint as the CPU reset vector instead
512 of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
513 entrypoint) or 1 (CPU reset to BL31 entrypoint).
514 The default value is 0.
515
516- ``RESET_TO_SP_MIN``: SP\_MIN is the minimal AArch32 Secure Payload provided in
517 ARM Trusted Firmware. This flag configures SP\_MIN entrypoint as the CPU
518 reset vector instead of the BL1 entrypoint. It can take the value 0 (CPU
519 reset to BL1 entrypoint) or 1 (CPU reset to SP\_MIN entrypoint). The default
520 value is 0.
521
522- ``ROT_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
523 file that contains the ROT private key in PEM format. If ``SAVE_KEYS=1``, this
524 file name will be used to save the key.
525
526- ``SAVE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the
527 certificate generation tool to save the keys used to establish the Chain of
528 Trust. Allowed options are '0' or '1'. Default is '0' (do not save).
529
530- ``SCP_BL2``: Path to SCP\_BL2 image in the host file system. This image is optional.
531 If a SCP\_BL2 image is present then this option must be passed for the ``fip``
532 target.
533
534- ``SCP_BL2_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
535 file that contains the SCP\_BL2 private key in PEM format. If ``SAVE_KEYS=1``,
536 this file name will be used to save the key.
537
538- ``SCP_BL2U``: Path to SCP\_BL2U image in the host file system. This image is
539 optional. It is only needed if the platform makefile specifies that it
540 is required in order to build the ``fwu_fip`` target.
541
Jeenu Viswambharanb7cb1332017-10-16 08:43:14 +0100542- ``SDEI_SUPPORT``: Setting this to ``1`` enables support for Software
543 Delegated Exception Interface to BL31 image. This defaults to ``0``.
544
545 When set to ``1``, the build option ``EL3_EXCEPTION_HANDLING`` must also be
546 set to ``1``.
547
Douglas Raillard6f625742017-06-28 15:23:03 +0100548- ``SEPARATE_CODE_AND_RODATA``: Whether code and read-only data should be
549 isolated on separate memory pages. This is a trade-off between security and
550 memory usage. See "Isolating code and read-only data on separate memory
551 pages" section in `Firmware Design`_. This flag is disabled by default and
552 affects all BL images.
553
554- ``SPD``: Choose a Secure Payload Dispatcher component to be built into the
555 Trusted Firmware. This build option is only valid if ``ARCH=aarch64``. The
556 value should be the path to the directory containing the SPD source,
557 relative to ``services/spd/``; the directory is expected to
558 contain a makefile called ``<spd-value>.mk``.
559
560- ``SPIN_ON_BL1_EXIT``: This option introduces an infinite loop in BL1. It can
561 take either 0 (no loop) or 1 (add a loop). 0 is the default. This loop stops
562 execution in BL1 just before handing over to BL31. At this point, all
563 firmware images have been loaded in memory, and the MMU and caches are
564 turned off. Refer to the "Debugging options" section for more details.
565
Etienne Carriere71816092017-08-09 15:48:53 +0200566- ``SP_MIN_WITH_SECURE_FIQ``: Boolean flag to indicate the SP_MIN handles
567 secure interrupts (caught through the FIQ line). Platforms can enable
568 this directive if they need to handle such interruption. When enabled,
569 the FIQ are handled in monitor mode and non secure world is not allowed
570 to mask these events. Platforms that enable FIQ handling in SP_MIN shall
571 implement the api ``sp_min_plat_fiq_handler()``. The default value is 0.
572
Douglas Raillard6f625742017-06-28 15:23:03 +0100573- ``TRUSTED_BOARD_BOOT``: Boolean flag to include support for the Trusted Board
574 Boot feature. When set to '1', BL1 and BL2 images include support to load
575 and verify the certificates and images in a FIP, and BL1 includes support
576 for the Firmware Update. The default value is '0'. Generation and inclusion
577 of certificates in the FIP and FWU\_FIP depends upon the value of the
578 ``GENERATE_COT`` option.
579
580 Note: This option depends on ``CREATE_KEYS`` to be enabled. If the keys
581 already exist in disk, they will be overwritten without further notice.
582
583- ``TRUSTED_WORLD_KEY``: This option is used when ``GENERATE_COT=1``. It
584 specifies the file that contains the Trusted World private key in PEM
585 format. If ``SAVE_KEYS=1``, this file name will be used to save the key.
586
587- ``TSP_INIT_ASYNC``: Choose BL32 initialization method as asynchronous or
588 synchronous, (see "Initializing a BL32 Image" section in
589 `Firmware Design`_). It can take the value 0 (BL32 is initialized using
590 synchronous method) or 1 (BL32 is initialized using asynchronous method).
591 Default is 0.
592
593- ``TSP_NS_INTR_ASYNC_PREEMPT``: A non zero value enables the interrupt
594 routing model which routes non-secure interrupts asynchronously from TSP
595 to EL3 causing immediate preemption of TSP. The EL3 is responsible
596 for saving and restoring the TSP context in this routing model. The
597 default routing model (when the value is 0) is to route non-secure
598 interrupts to TSP allowing it to save its context and hand over
599 synchronously to EL3 via an SMC.
600
601- ``USE_COHERENT_MEM``: This flag determines whether to include the coherent
602 memory region in the BL memory map or not (see "Use of Coherent memory in
603 Trusted Firmware" section in `Firmware Design`_). It can take the value 1
604 (Coherent memory region is included) or 0 (Coherent memory region is
605 excluded). Default is 1.
606
607- ``V``: Verbose build. If assigned anything other than 0, the build commands
608 are printed. Default is 0.
609
610- ``VERSION_STRING``: String used in the log output for each TF image. Defaults
611 to a string formed by concatenating the version number, build type and build
612 string.
613
614- ``WARMBOOT_ENABLE_DCACHE_EARLY`` : Boolean option to enable D-cache early on
615 the CPU after warm boot. This is applicable for platforms which do not
616 require interconnect programming to enable cache coherency (eg: single
617 cluster platforms). If this option is enabled, then warm boot path
618 enables D-caches immediately after enabling MMU. This option defaults to 0.
619
Douglas Raillard6f625742017-06-28 15:23:03 +0100620ARM development platform specific build options
621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
622
623- ``ARM_BL31_IN_DRAM``: Boolean option to select loading of BL31 in TZC secured
624 DRAM. By default, BL31 is in the secure SRAM. Set this flag to 1 to load
625 BL31 in TZC secured DRAM. If TSP is present, then setting this option also
626 sets the TSP location to DRAM and ignores the ``ARM_TSP_RAM_LOCATION`` build
627 flag.
628
629- ``ARM_BOARD_OPTIMISE_MEM``: Boolean option to enable or disable optimisation
630 of the memory reserved for each image. This affects the maximum size of each
631 BL image as well as the number of allocated memory regions and translation
632 tables. By default this flag is 0, which means it uses the default
633 unoptimised values for these macros. ARM development platforms that wish to
634 optimise memory usage need to set this flag to 1 and must override the
635 related macros.
636
637- ``ARM_CONFIG_CNTACR``: boolean option to unlock access to the ``CNTBase<N>``
638 frame registers by setting the ``CNTCTLBase.CNTACR<N>`` register bits. The
639 frame number ``<N>`` is defined by ``PLAT_ARM_NSTIMER_FRAME_ID``, which should
640 match the frame used by the Non-Secure image (normally the Linux kernel).
641 Default is true (access to the frame is allowed).
642
643- ``ARM_DISABLE_TRUSTED_WDOG``: boolean option to disable the Trusted Watchdog.
644 By default, ARM platforms use a watchdog to trigger a system reset in case
645 an error is encountered during the boot process (for example, when an image
646 could not be loaded or authenticated). The watchdog is enabled in the early
647 platform setup hook at BL1 and disabled in the BL1 prepare exit hook. The
648 Trusted Watchdog may be disabled at build time for testing or development
649 purposes.
650
651- ``ARM_RECOM_STATE_ID_ENC``: The PSCI1.0 specification recommends an encoding
652 for the construction of composite state-ID in the power-state parameter.
653 The existing PSCI clients currently do not support this encoding of
654 State-ID yet. Hence this flag is used to configure whether to use the
655 recommended State-ID encoding or not. The default value of this flag is 0,
656 in which case the platform is configured to expect NULL in the State-ID
657 field of power-state parameter.
658
659- ``ARM_ROTPK_LOCATION``: used when ``TRUSTED_BOARD_BOOT=1``. It specifies the
660 location of the ROTPK hash returned by the function ``plat_get_rotpk_info()``
661 for ARM platforms. Depending on the selected option, the proper private key
662 must be specified using the ``ROT_KEY`` option when building the Trusted
663 Firmware. This private key will be used by the certificate generation tool
664 to sign the BL2 and Trusted Key certificates. Available options for
665 ``ARM_ROTPK_LOCATION`` are:
666
667 - ``regs`` : return the ROTPK hash stored in the Trusted root-key storage
668 registers. The private key corresponding to this ROTPK hash is not
669 currently available.
670 - ``devel_rsa`` : return a development public key hash embedded in the BL1
671 and BL2 binaries. This hash has been obtained from the RSA public key
672 ``arm_rotpk_rsa.der``, located in ``plat/arm/board/common/rotpk``. To use
673 this option, ``arm_rotprivk_rsa.pem`` must be specified as ``ROT_KEY`` when
674 creating the certificates.
Qixiang Xu9db9c652017-08-24 15:12:20 +0800675 - ``devel_ecdsa`` : return a development public key hash embedded in the BL1
676 and BL2 binaries. This hash has been obtained from the ECDSA public key
677 ``arm_rotpk_ecdsa.der``, located in ``plat/arm/board/common/rotpk``. To use
678 this option, ``arm_rotprivk_ecdsa.pem`` must be specified as ``ROT_KEY``
679 when creating the certificates.
Douglas Raillard6f625742017-06-28 15:23:03 +0100680
681- ``ARM_TSP_RAM_LOCATION``: location of the TSP binary. Options:
682
Qixiang Xu7ca267b2017-10-13 09:04:12 +0800683 - ``tsram`` : Trusted SRAM (default option when TBB is not enabled)
Douglas Raillard6f625742017-06-28 15:23:03 +0100684 - ``tdram`` : Trusted DRAM (if available)
Qixiang Xu7ca267b2017-10-13 09:04:12 +0800685 - ``dram`` : Secure region in DRAM (default option when TBB is enabled,
686 configured by the TrustZone controller)
Douglas Raillard6f625742017-06-28 15:23:03 +0100687
688- ``ARM_XLAT_TABLES_LIB_V1``: boolean option to compile the Trusted Firmware
689 with version 1 of the translation tables library instead of version 2. It is
690 set to 0 by default, which selects version 2.
691
692- ``ARM_CRYPTOCELL_INTEG`` : bool option to enable Trusted Firmware to invoke
693 ARM® TrustZone® CryptoCell functionality for Trusted Board Boot on capable
694 ARM platforms. If this option is specified, then the path to the CryptoCell
695 SBROM library must be specified via ``CCSBROM_LIB_PATH`` flag.
696
697For a better understanding of these options, the ARM development platform memory
698map is explained in the `Firmware Design`_.
699
700ARM CSS platform specific build options
701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
702
703- ``CSS_DETECT_PRE_1_7_0_SCP``: Boolean flag to detect SCP version
704 incompatibility. Version 1.7.0 of the SCP firmware made a non-backwards
705 compatible change to the MTL protocol, used for AP/SCP communication.
706 Trusted Firmware no longer supports earlier SCP versions. If this option is
707 set to 1 then Trusted Firmware will detect if an earlier version is in use.
708 Default is 1.
709
710- ``CSS_LOAD_SCP_IMAGES``: Boolean flag, which when set, adds SCP\_BL2 and
711 SCP\_BL2U to the FIP and FWU\_FIP respectively, and enables them to be loaded
712 during boot. Default is 1.
713
Soby Mathew18e279e2017-06-12 12:37:10 +0100714- ``CSS_USE_SCMI_SDS_DRIVER``: Boolean flag which selects SCMI/SDS drivers
715 instead of SCPI/BOM driver for communicating with the SCP during power
716 management operations and for SCP RAM Firmware transfer. If this option
717 is set to 1, then SCMI/SDS drivers will be used. Default is 0.
Douglas Raillard6f625742017-06-28 15:23:03 +0100718
719ARM FVP platform specific build options
720^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
721
722- ``FVP_CLUSTER_COUNT`` : Configures the cluster count to be used to
723 build the topology tree within Trusted Firmware. By default the
724 Trusted Firmware is configured for dual cluster topology and this option
725 can be used to override the default value.
726
727- ``FVP_INTERCONNECT_DRIVER``: Selects the interconnect driver to be built. The
728 default interconnect driver depends on the value of ``FVP_CLUSTER_COUNT`` as
729 explained in the options below:
730
731 - ``FVP_CCI`` : The CCI driver is selected. This is the default
732 if 0 < ``FVP_CLUSTER_COUNT`` <= 2.
733 - ``FVP_CCN`` : The CCN driver is selected. This is the default
734 if ``FVP_CLUSTER_COUNT`` > 2.
735
Jeenu Viswambharan11ad8f22016-11-15 13:53:57 +0000736- ``FVP_MAX_PE_PER_CPU``: Sets the maximum number of PEs implemented on any CPU
737 in the system. This option defaults to 1. Note that the build option
738 ``ARM_PLAT_MT`` doesn't have any effect on FVP platforms.
739
Douglas Raillard6f625742017-06-28 15:23:03 +0100740- ``FVP_USE_GIC_DRIVER`` : Selects the GIC driver to be built. Options:
741
742 - ``FVP_GIC600`` : The GIC600 implementation of GICv3 is selected
743 - ``FVP_GICV2`` : The GICv2 only driver is selected
744 - ``FVP_GICV3`` : The GICv3 only driver is selected (default option)
745 - ``FVP_GICV3_LEGACY``: The Legacy GICv3 driver is selected (deprecated)
746 Note: If Trusted Firmware is compiled with this option on FVPs with
747 GICv3 hardware, then it configures the hardware to run in GICv2
748 emulation mode
749
750- ``FVP_USE_SP804_TIMER`` : Use the SP804 timer instead of the Generic Timer
751 for functions that wait for an arbitrary time length (udelay and mdelay).
752 The default value is 0.
753
754Debugging options
755~~~~~~~~~~~~~~~~~
756
757To compile a debug version and make the build more verbose use
758
759::
760
761 make PLAT=<platform> DEBUG=1 V=1 all
762
763AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
764example DS-5) might not support this and may need an older version of DWARF
765symbols to be emitted by GCC. This can be achieved by using the
766``-gdwarf-<version>`` flag, with the version being set to 2 or 3. Setting the
767version to 2 is recommended for DS-5 versions older than 5.16.
768
769When debugging logic problems it might also be useful to disable all compiler
770optimizations by using ``-O0``.
771
772NOTE: Using ``-O0`` could cause output images to be larger and base addresses
773might need to be recalculated (see the **Memory layout on ARM development
774platforms** section in the `Firmware Design`_).
775
776Extra debug options can be passed to the build system by setting ``CFLAGS`` or
777``LDFLAGS``:
778
779.. code:: makefile
780
781 CFLAGS='-O0 -gdwarf-2' \
782 make PLAT=<platform> DEBUG=1 V=1 all
783
784Note that using ``-Wl,`` style compilation driver options in ``CFLAGS`` will be
785ignored as the linker is called directly.
786
787It is also possible to introduce an infinite loop to help in debugging the
788post-BL2 phase of the Trusted Firmware. This can be done by rebuilding BL1 with
Douglas Raillard668c5022017-06-28 16:14:55 +0100789the ``SPIN_ON_BL1_EXIT=1`` build flag. Refer to the `Summary of build options`_
Douglas Raillard6f625742017-06-28 15:23:03 +0100790section. In this case, the developer may take control of the target using a
791debugger when indicated by the console output. When using DS-5, the following
792commands can be used:
793
794::
795
796 # Stop target execution
797 interrupt
798
799 #
800 # Prepare your debugging environment, e.g. set breakpoints
801 #
802
803 # Jump over the debug loop
804 set var $AARCH64::$Core::$PC = $AARCH64::$Core::$PC + 4
805
806 # Resume execution
807 continue
808
809Building the Test Secure Payload
810~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
811
812The TSP is coupled with a companion runtime service in the BL31 firmware,
813called the TSPD. Therefore, if you intend to use the TSP, the BL31 image
814must be recompiled as well. For more information on SPs and SPDs, see the
815`Secure-EL1 Payloads and Dispatchers`_ section in the `Firmware Design`_.
816
817First clean the Trusted Firmware build directory to get rid of any previous
818BL31 binary. Then to build the TSP image use:
819
820::
821
822 make PLAT=<platform> SPD=tspd all
823
824An additional boot loader binary file is created in the ``build`` directory:
825
826::
827
828 build/<platform>/<build-type>/bl32.bin
829
830Checking source code style
831~~~~~~~~~~~~~~~~~~~~~~~~~~
832
833When making changes to the source for submission to the project, the source
834must be in compliance with the Linux style guide, and to assist with this check
835the project Makefile contains two targets, which both utilise the
836``checkpatch.pl`` script that ships with the Linux source tree.
837
838To check the entire source tree, you must first download a copy of
839``checkpatch.pl`` (or the full Linux source), set the ``CHECKPATCH`` environment
840variable to point to the script and build the target checkcodebase:
841
842::
843
844 make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase
845
846To just check the style on the files that differ between your local branch and
847the remote master, use:
848
849::
850
851 make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch
852
853If you wish to check your patch against something other than the remote master,
854set the ``BASE_COMMIT`` variable to your desired branch. By default, ``BASE_COMMIT``
855is set to ``origin/master``.
856
857Building and using the FIP tool
858~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
859
860Firmware Image Package (FIP) is a packaging format used by the Trusted Firmware
861project to package firmware images in a single binary. The number and type of
862images that should be packed in a FIP is platform specific and may include TF
863images and other firmware images required by the platform. For example, most
864platforms require a BL33 image which corresponds to the normal world bootloader
865(e.g. UEFI or U-Boot).
866
867The TF build system provides the make target ``fip`` to create a FIP file for the
868specified platform using the FIP creation tool included in the TF project.
869Examples below show how to build a FIP file for FVP, packaging TF images and a
870BL33 image.
871
872For AArch64:
873
874::
875
876 make PLAT=fvp BL33=<path/to/bl33.bin> fip
877
878For AArch32:
879
880::
881
882 make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=<path/to/bl33.bin> fip
883
884Note that AArch32 support for Normal world boot loader (BL33), like U-boot or
885UEFI, on FVP is not available upstream. Hence custom solutions are required to
886allow Linux boot on FVP. These instructions assume such a custom boot loader
887(BL33) is available.
888
889The resulting FIP may be found in:
890
891::
892
893 build/fvp/<build-type>/fip.bin
894
895For advanced operations on FIP files, it is also possible to independently build
896the tool and create or modify FIPs using this tool. To do this, follow these
897steps:
898
899It is recommended to remove old artifacts before building the tool:
900
901::
902
903 make -C tools/fiptool clean
904
905Build the tool:
906
907::
908
909 make [DEBUG=1] [V=1] fiptool
910
911The tool binary can be located in:
912
913::
914
915 ./tools/fiptool/fiptool
916
917Invoking the tool with ``--help`` will print a help message with all available
918options.
919
920Example 1: create a new Firmware package ``fip.bin`` that contains BL2 and BL31:
921
922::
923
924 ./tools/fiptool/fiptool create \
925 --tb-fw build/<platform>/<build-type>/bl2.bin \
926 --soc-fw build/<platform>/<build-type>/bl31.bin \
927 fip.bin
928
929Example 2: view the contents of an existing Firmware package:
930
931::
932
933 ./tools/fiptool/fiptool info <path-to>/fip.bin
934
935Example 3: update the entries of an existing Firmware package:
936
937::
938
939 # Change the BL2 from Debug to Release version
940 ./tools/fiptool/fiptool update \
941 --tb-fw build/<platform>/release/bl2.bin \
942 build/<platform>/debug/fip.bin
943
944Example 4: unpack all entries from an existing Firmware package:
945
946::
947
948 # Images will be unpacked to the working directory
949 ./tools/fiptool/fiptool unpack <path-to>/fip.bin
950
951Example 5: remove an entry from an existing Firmware package:
952
953::
954
955 ./tools/fiptool/fiptool remove \
956 --tb-fw build/<platform>/debug/fip.bin
957
958Note that if the destination FIP file exists, the create, update and
959remove operations will automatically overwrite it.
960
961The unpack operation will fail if the images already exist at the
962destination. In that case, use -f or --force to continue.
963
964More information about FIP can be found in the `Firmware Design`_ document.
965
966Migrating from fip\_create to fiptool
967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
968
969The previous version of fiptool was called fip\_create. A compatibility script
970that emulates the basic functionality of the previous fip\_create is provided.
971However, users are strongly encouraged to migrate to fiptool.
972
973- To create a new FIP file, replace "fip\_create" with "fiptool create".
974- To update a FIP file, replace "fip\_create" with "fiptool update".
975- To dump the contents of a FIP file, replace "fip\_create --dump"
976 with "fiptool info".
977
978Building FIP images with support for Trusted Board Boot
979~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
980
981Trusted Board Boot primarily consists of the following two features:
982
983- Image Authentication, described in `Trusted Board Boot`_, and
984- Firmware Update, described in `Firmware Update`_
985
986The following steps should be followed to build FIP and (optionally) FWU\_FIP
987images with support for these features:
988
989#. Fulfill the dependencies of the ``mbedtls`` cryptographic and image parser
990 modules by checking out a recent version of the `mbed TLS Repository`_. It
991 is important to use a version that is compatible with TF and fixes any
992 known security vulnerabilities. See `mbed TLS Security Center`_ for more
993 information. The latest version of TF is tested with tag ``mbedtls-2.4.2``.
994
995 The ``drivers/auth/mbedtls/mbedtls_*.mk`` files contain the list of mbed TLS
996 source files the modules depend upon.
997 ``include/drivers/auth/mbedtls/mbedtls_config.h`` contains the configuration
998 options required to build the mbed TLS sources.
999
1000 Note that the mbed TLS library is licensed under the Apache version 2.0
1001 license. Using mbed TLS source code will affect the licensing of
1002 Trusted Firmware binaries that are built using this library.
1003
1004#. To build the FIP image, ensure the following command line variables are set
1005 while invoking ``make`` to build Trusted Firmware:
1006
1007 - ``MBEDTLS_DIR=<path of the directory containing mbed TLS sources>``
1008 - ``TRUSTED_BOARD_BOOT=1``
1009 - ``GENERATE_COT=1``
1010
1011 In the case of ARM platforms, the location of the ROTPK hash must also be
1012 specified at build time. Two locations are currently supported (see
1013 ``ARM_ROTPK_LOCATION`` build option):
1014
1015 - ``ARM_ROTPK_LOCATION=regs``: the ROTPK hash is obtained from the Trusted
1016 root-key storage registers present in the platform. On Juno, this
1017 registers are read-only. On FVP Base and Cortex models, the registers
1018 are read-only, but the value can be specified using the command line
1019 option ``bp.trusted_key_storage.public_key`` when launching the model.
1020 On both Juno and FVP models, the default value corresponds to an
1021 ECDSA-SECP256R1 public key hash, whose private part is not currently
1022 available.
1023
1024 - ``ARM_ROTPK_LOCATION=devel_rsa``: use the ROTPK hash that is hardcoded
1025 in the ARM platform port. The private/public RSA key pair may be
1026 found in ``plat/arm/board/common/rotpk``.
1027
Qixiang Xu9db9c652017-08-24 15:12:20 +08001028 - ``ARM_ROTPK_LOCATION=devel_ecdsa``: use the ROTPK hash that is hardcoded
1029 in the ARM platform port. The private/public ECDSA key pair may be
1030 found in ``plat/arm/board/common/rotpk``.
1031
Douglas Raillard6f625742017-06-28 15:23:03 +01001032 Example of command line using RSA development keys:
1033
1034 ::
1035
1036 MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
1037 make PLAT=<platform> TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
1038 ARM_ROTPK_LOCATION=devel_rsa \
1039 ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
1040 BL33=<path-to>/<bl33_image> \
1041 all fip
1042
1043 The result of this build will be the bl1.bin and the fip.bin binaries. This
1044 FIP will include the certificates corresponding to the Chain of Trust
1045 described in the TBBR-client document. These certificates can also be found
1046 in the output build directory.
1047
1048#. The optional FWU\_FIP contains any additional images to be loaded from
1049 Non-Volatile storage during the `Firmware Update`_ process. To build the
1050 FWU\_FIP, any FWU images required by the platform must be specified on the
1051 command line. On ARM development platforms like Juno, these are:
1052
1053 - NS\_BL2U. The AP non-secure Firmware Updater image.
1054 - SCP\_BL2U. The SCP Firmware Update Configuration image.
1055
1056 Example of Juno command line for generating both ``fwu`` and ``fwu_fip``
1057 targets using RSA development:
1058
1059 ::
1060
1061 MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
1062 make PLAT=juno TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
1063 ARM_ROTPK_LOCATION=devel_rsa \
1064 ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
1065 BL33=<path-to>/<bl33_image> \
1066 SCP_BL2=<path-to>/<scp_bl2_image> \
1067 SCP_BL2U=<path-to>/<scp_bl2u_image> \
1068 NS_BL2U=<path-to>/<ns_bl2u_image> \
1069 all fip fwu_fip
1070
1071 Note: The BL2U image will be built by default and added to the FWU\_FIP.
1072 The user may override this by adding ``BL2U=<path-to>/<bl2u_image>``
1073 to the command line above.
1074
1075 Note: Building and installing the non-secure and SCP FWU images (NS\_BL1U,
1076 NS\_BL2U and SCP\_BL2U) is outside the scope of this document.
1077
1078 The result of this build will be bl1.bin, fip.bin and fwu\_fip.bin binaries.
1079 Both the FIP and FWU\_FIP will include the certificates corresponding to the
1080 Chain of Trust described in the TBBR-client document. These certificates
1081 can also be found in the output build directory.
1082
1083Building the Certificate Generation Tool
1084~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1085
1086The ``cert_create`` tool is built as part of the TF build process when the ``fip``
1087make target is specified and TBB is enabled (as described in the previous
1088section), but it can also be built separately with the following command:
1089
1090::
1091
1092 make PLAT=<platform> [DEBUG=1] [V=1] certtool
1093
1094For platforms that do not require their own IDs in certificate files,
1095the generic 'cert\_create' tool can be built with the following command:
1096
1097::
1098
1099 make USE_TBBR_DEFS=1 [DEBUG=1] [V=1] certtool
1100
1101``DEBUG=1`` builds the tool in debug mode. ``V=1`` makes the build process more
1102verbose. The following command should be used to obtain help about the tool:
1103
1104::
1105
1106 ./tools/cert_create/cert_create -h
1107
1108Building a FIP for Juno and FVP
1109-------------------------------
1110
1111This section provides Juno and FVP specific instructions to build Trusted
1112Firmware, obtain the additional required firmware, and pack it all together in
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001113a single FIP binary. It assumes that a `Linaro Release`_ has been installed.
Douglas Raillard6f625742017-06-28 15:23:03 +01001114
David Cunado31f2f792017-06-29 12:01:33 +01001115Note: Pre-built binaries for AArch32 are available from Linaro Release 16.12
1116onwards. Before that release, pre-built binaries are only available for AArch64.
Douglas Raillard6f625742017-06-28 15:23:03 +01001117
1118Note: follow the full instructions for one platform before switching to a
1119different one. Mixing instructions for different platforms may result in
1120corrupted binaries.
1121
1122#. Clean the working directory
1123
1124 ::
1125
1126 make realclean
1127
1128#. Obtain SCP\_BL2 (Juno) and BL33 (all platforms)
1129
1130 Use the fiptool to extract the SCP\_BL2 and BL33 images from the FIP
1131 package included in the Linaro release:
1132
1133 ::
1134
1135 # Build the fiptool
1136 make [DEBUG=1] [V=1] fiptool
1137
1138 # Unpack firmware images from Linaro FIP
1139 ./tools/fiptool/fiptool unpack \
1140 <path/to/linaro/release>/fip.bin
1141
1142 The unpack operation will result in a set of binary images extracted to the
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001143 current working directory. The SCP\_BL2 image corresponds to
1144 ``scp-fw.bin`` and BL33 corresponds to ``nt-fw.bin``.
Douglas Raillard6f625742017-06-28 15:23:03 +01001145
1146 Note: the fiptool will complain if the images to be unpacked already
1147 exist in the current directory. If that is the case, either delete those
1148 files or use the ``--force`` option to overwrite.
1149
1150 Note for AArch32, the instructions below assume that nt-fw.bin is a custom
1151 Normal world boot loader that supports AArch32.
1152
1153#. Build TF images and create a new FIP for FVP
1154
1155 ::
1156
1157 # AArch64
1158 make PLAT=fvp BL33=nt-fw.bin all fip
1159
1160 # AArch32
1161 make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=nt-fw.bin all fip
1162
1163#. Build TF images and create a new FIP for Juno
1164
1165 For AArch64:
1166
1167 Building for AArch64 on Juno simply requires the addition of ``SCP_BL2``
1168 as a build parameter.
1169
1170 ::
1171
1172 make PLAT=juno all fip \
1173 BL33=<path-to-juno-oe-uboot>/SOFTWARE/bl33-uboot.bin \
1174 SCP_BL2=<path-to-juno-busybox-uboot>/SOFTWARE/scp_bl2.bin
1175
1176 For AArch32:
1177
1178 Hardware restrictions on Juno prevent cold reset into AArch32 execution mode,
1179 therefore BL1 and BL2 must be compiled for AArch64, and BL32 is compiled
1180 separately for AArch32.
1181
1182 - Before building BL32, the environment variable ``CROSS_COMPILE`` must point
1183 to the AArch32 Linaro cross compiler.
1184
1185 ::
1186
1187 export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf-
1188
1189 - Build BL32 in AArch32.
1190
1191 ::
1192
1193 make ARCH=aarch32 PLAT=juno AARCH32_SP=sp_min \
1194 RESET_TO_SP_MIN=1 JUNO_AARCH32_EL3_RUNTIME=1 bl32
1195
1196 - Before building BL1 and BL2, the environment variable ``CROSS_COMPILE``
1197 must point to the AArch64 Linaro cross compiler.
1198
1199 ::
1200
1201 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
1202
1203 - The following parameters should be used to build BL1 and BL2 in AArch64
1204 and point to the BL32 file.
1205
1206 ::
1207
1208 make ARCH=aarch64 PLAT=juno LOAD_IMAGE_V2=1 JUNO_AARCH32_EL3_RUNTIME=1 \
1209 BL33=<path-to-juno32-oe-uboot>/SOFTWARE/bl33-uboot.bin \
1210 SCP_BL2=<path-to-juno32-oe-uboot>/SOFTWARE/scp_bl2.bin SPD=tspd \
1211 BL32=<path-to-bl32>/bl32.bin all fip
1212
1213The resulting BL1 and FIP images may be found in:
1214
1215::
1216
1217 # Juno
1218 ./build/juno/release/bl1.bin
1219 ./build/juno/release/fip.bin
1220
1221 # FVP
1222 ./build/fvp/release/bl1.bin
1223 ./build/fvp/release/fip.bin
1224
Roberto Vargase29ee462017-10-17 10:19:00 +01001225
1226Booting Firmware Update images
1227-------------------------------------
1228
1229When Firmware Update (FWU) is enabled there are at least 2 new images
1230that have to be loaded, the Non-Secure FWU ROM (NS-BL1U), and the
1231FWU FIP.
1232
1233Juno
1234~~~~
1235
1236The new images must be programmed in flash memory by adding
1237an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
1238on the Juno SD card (where ``x`` depends on the revision of the Juno board).
1239Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
1240programming" for more information. User should ensure these do not
1241overlap with any other entries in the file.
1242
1243::
1244
1245 NOR10UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
1246 NOR10ADDRESS: 0x00400000 ;Image Flash Address [ns_bl2u_base_address]
1247 NOR10FILE: \SOFTWARE\fwu_fip.bin ;Image File Name
1248 NOR10LOAD: 00000000 ;Image Load Address
1249 NOR10ENTRY: 00000000 ;Image Entry Point
1250
1251 NOR11UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
1252 NOR11ADDRESS: 0x03EB8000 ;Image Flash Address [ns_bl1u_base_address]
1253 NOR11FILE: \SOFTWARE\ns_bl1u.bin ;Image File Name
1254 NOR11LOAD: 00000000 ;Image Load Address
1255
1256The address ns_bl1u_base_address is the value of NS_BL1U_BASE - 0x8000000.
1257In the same way, the address ns_bl2u_base_address is the value of
1258NS_BL2U_BASE - 0x8000000.
1259
1260FVP
1261~~~
1262
1263The additional fip images must be loaded with:
1264
1265::
1266
1267 --data cluster0.cpu0="<path_to>/ns_bl1u.bin"@0x0beb8000 [ns_bl1u_base_address]
1268 --data cluster0.cpu0="<path_to>/fwu_fip.bin"@0x08400000 [ns_bl2u_base_address]
1269
1270The address ns_bl1u_base_address is the value of NS_BL1U_BASE.
1271In the same way, the address ns_bl2u_base_address is the value of
1272NS_BL2U_BASE.
1273
1274
Douglas Raillard6f625742017-06-28 15:23:03 +01001275EL3 payloads alternative boot flow
1276----------------------------------
1277
1278On a pre-production system, the ability to execute arbitrary, bare-metal code at
1279the highest exception level is required. It allows full, direct access to the
1280hardware, for example to run silicon soak tests.
1281
1282Although it is possible to implement some baremetal secure firmware from
1283scratch, this is a complex task on some platforms, depending on the level of
1284configuration required to put the system in the expected state.
1285
1286Rather than booting a baremetal application, a possible compromise is to boot
1287``EL3 payloads`` through the Trusted Firmware instead. This is implemented as an
1288alternative boot flow, where a modified BL2 boots an EL3 payload, instead of
1289loading the other BL images and passing control to BL31. It reduces the
1290complexity of developing EL3 baremetal code by:
1291
1292- putting the system into a known architectural state;
1293- taking care of platform secure world initialization;
1294- loading the SCP\_BL2 image if required by the platform.
1295
1296When booting an EL3 payload on ARM standard platforms, the configuration of the
1297TrustZone controller is simplified such that only region 0 is enabled and is
1298configured to permit secure access only. This gives full access to the whole
1299DRAM to the EL3 payload.
1300
1301The system is left in the same state as when entering BL31 in the default boot
1302flow. In particular:
1303
1304- Running in EL3;
1305- Current state is AArch64;
1306- Little-endian data access;
1307- All exceptions disabled;
1308- MMU disabled;
1309- Caches disabled.
1310
1311Booting an EL3 payload
1312~~~~~~~~~~~~~~~~~~~~~~
1313
1314The EL3 payload image is a standalone image and is not part of the FIP. It is
1315not loaded by the Trusted Firmware. Therefore, there are 2 possible scenarios:
1316
1317- The EL3 payload may reside in non-volatile memory (NVM) and execute in
1318 place. In this case, booting it is just a matter of specifying the right
1319 address in NVM through ``EL3_PAYLOAD_BASE`` when building the TF.
1320
1321- The EL3 payload needs to be loaded in volatile memory (e.g. DRAM) at
1322 run-time.
1323
1324To help in the latter scenario, the ``SPIN_ON_BL1_EXIT=1`` build option can be
1325used. The infinite loop that it introduces in BL1 stops execution at the right
1326moment for a debugger to take control of the target and load the payload (for
1327example, over JTAG).
1328
1329It is expected that this loading method will work in most cases, as a debugger
1330connection is usually available in a pre-production system. The user is free to
1331use any other platform-specific mechanism to load the EL3 payload, though.
1332
1333Booting an EL3 payload on FVP
1334^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1335
1336The EL3 payloads boot flow requires the CPU's mailbox to be cleared at reset for
1337the secondary CPUs holding pen to work properly. Unfortunately, its reset value
1338is undefined on the FVP platform and the FVP platform code doesn't clear it.
1339Therefore, one must modify the way the model is normally invoked in order to
1340clear the mailbox at start-up.
1341
1342One way to do that is to create an 8-byte file containing all zero bytes using
1343the following command:
1344
1345::
1346
1347 dd if=/dev/zero of=mailbox.dat bs=1 count=8
1348
1349and pre-load it into the FVP memory at the mailbox address (i.e. ``0x04000000``)
1350using the following model parameters:
1351
1352::
1353
1354 --data cluster0.cpu0=mailbox.dat@0x04000000 [Base FVPs]
1355 --data=mailbox.dat@0x04000000 [Foundation FVP]
1356
1357To provide the model with the EL3 payload image, the following methods may be
1358used:
1359
1360#. If the EL3 payload is able to execute in place, it may be programmed into
1361 flash memory. On Base Cortex and AEM FVPs, the following model parameter
1362 loads it at the base address of the NOR FLASH1 (the NOR FLASH0 is already
1363 used for the FIP):
1364
1365 ::
1366
1367 -C bp.flashloader1.fname="/path/to/el3-payload"
1368
1369 On Foundation FVP, there is no flash loader component and the EL3 payload
1370 may be programmed anywhere in flash using method 3 below.
1371
1372#. When using the ``SPIN_ON_BL1_EXIT=1`` loading method, the following DS-5
1373 command may be used to load the EL3 payload ELF image over JTAG:
1374
1375 ::
1376
1377 load /path/to/el3-payload.elf
1378
1379#. The EL3 payload may be pre-loaded in volatile memory using the following
1380 model parameters:
1381
1382 ::
1383
1384 --data cluster0.cpu0="/path/to/el3-payload"@address [Base FVPs]
1385 --data="/path/to/el3-payload"@address [Foundation FVP]
1386
1387 The address provided to the FVP must match the ``EL3_PAYLOAD_BASE`` address
1388 used when building the Trusted Firmware.
1389
1390Booting an EL3 payload on Juno
1391^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1392
1393If the EL3 payload is able to execute in place, it may be programmed in flash
1394memory by adding an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
1395on the Juno SD card (where ``x`` depends on the revision of the Juno board).
1396Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
1397programming" for more information.
1398
1399Alternatively, the same DS-5 command mentioned in the FVP section above can
1400be used to load the EL3 payload's ELF file over JTAG on Juno.
1401
1402Preloaded BL33 alternative boot flow
1403------------------------------------
1404
1405Some platforms have the ability to preload BL33 into memory instead of relying
1406on Trusted Firmware to load it. This may simplify packaging of the normal world
1407code and improve performance in a development environment. When secure world
1408cold boot is complete, Trusted Firmware simply jumps to a BL33 base address
1409provided at build time.
1410
1411For this option to be used, the ``PRELOADED_BL33_BASE`` build option has to be
1412used when compiling the Trusted Firmware. For example, the following command
1413will create a FIP without a BL33 and prepare to jump to a BL33 image loaded at
1414address 0x80000000:
1415
1416::
1417
1418 make PRELOADED_BL33_BASE=0x80000000 PLAT=fvp all fip
1419
1420Boot of a preloaded bootwrapped kernel image on Base FVP
1421~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1422
1423The following example uses the AArch64 boot wrapper. This simplifies normal
1424world booting while also making use of TF features. It can be obtained from its
1425repository with:
1426
1427::
1428
1429 git clone git://git.kernel.org/pub/scm/linux/kernel/git/mark/boot-wrapper-aarch64.git
1430
1431After compiling it, an ELF file is generated. It can be loaded with the
1432following command:
1433
1434::
1435
1436 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1437 -C bp.secureflashloader.fname=bl1.bin \
1438 -C bp.flashloader0.fname=fip.bin \
1439 -a cluster0.cpu0=<bootwrapped-kernel.elf> \
1440 --start cluster0.cpu0=0x0
1441
1442The ``-a cluster0.cpu0=<bootwrapped-kernel.elf>`` option loads the ELF file. It
1443also sets the PC register to the ELF entry point address, which is not the
1444desired behaviour, so the ``--start cluster0.cpu0=0x0`` option forces the PC back
1445to 0x0 (the BL1 entry point address) on CPU #0. The ``PRELOADED_BL33_BASE`` define
1446used when compiling the FIP must match the ELF entry point.
1447
1448Boot of a preloaded bootwrapped kernel image on Juno
1449~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1450
1451The procedure to obtain and compile the boot wrapper is very similar to the case
1452of the FVP. The execution must be stopped at the end of bl2\_main(), and the
1453loading method explained above in the EL3 payload boot flow section may be used
1454to load the ELF file over JTAG on Juno.
1455
1456Running the software on FVP
1457---------------------------
1458
1459The latest version of the AArch64 build of ARM Trusted Firmware has been tested
1460on the following ARM FVPs (64-bit host machine only).
1461
Eleanor Bonnici99f38f52017-10-04 15:03:33 +01001462NOTE: Unless otherwise stated, the model version is Version 11.1 Build 11.1.22.
David Cunado64d50c72017-06-27 17:31:12 +01001463
1464- ``Foundation_Platform``
Eleanor Bonnici99f38f52017-10-04 15:03:33 +01001465- ``FVP_Base_AEMv8A-AEMv8A`` (Version 8.7, Build 0.8.8702)
David Cunado64d50c72017-06-27 17:31:12 +01001466- ``FVP_Base_Cortex-A35x4``
1467- ``FVP_Base_Cortex-A53x4``
1468- ``FVP_Base_Cortex-A57x4-A53x4``
1469- ``FVP_Base_Cortex-A57x4``
1470- ``FVP_Base_Cortex-A72x4-A53x4``
1471- ``FVP_Base_Cortex-A72x4``
1472- ``FVP_Base_Cortex-A73x4-A53x4``
1473- ``FVP_Base_Cortex-A73x4``
Douglas Raillard6f625742017-06-28 15:23:03 +01001474
1475The latest version of the AArch32 build of ARM Trusted Firmware has been tested
1476on the following ARM FVPs (64-bit host machine only).
1477
Eleanor Bonnici99f38f52017-10-04 15:03:33 +01001478- ``FVP_Base_AEMv8A-AEMv8A`` (Version 8.7, Build 0.8.8702)
David Cunado64d50c72017-06-27 17:31:12 +01001479- ``FVP_Base_Cortex-A32x4``
Douglas Raillard6f625742017-06-28 15:23:03 +01001480
1481NOTE: The build numbers quoted above are those reported by launching the FVP
1482with the ``--version`` parameter.
1483
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001484NOTE: Linaro provides a ramdisk image in prebuilt FVP configurations and full
1485file systems that can be downloaded separately. To run an FVP with a virtio
1486file system image an additional FVP configuration option
1487``-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>`` can be
1488used.
1489
Douglas Raillard6f625742017-06-28 15:23:03 +01001490NOTE: The software will not work on Version 1.0 of the Foundation FVP.
1491The commands below would report an ``unhandled argument`` error in this case.
1492
1493NOTE: FVPs can be launched with ``--cadi-server`` option such that a
1494CADI-compliant debugger (for example, ARM DS-5) can connect to and control its
1495execution.
1496
Eleanor Bonnici99f38f52017-10-04 15:03:33 +01001497NOTE: Since FVP model Version 11.0 Build 11.0.34 and Version 8.5 Build 0.8.5202
David Cunado279fedc2017-07-31 12:24:51 +01001498the internal synchronisation timings changed compared to older versions of the
1499models. The models can be launched with ``-Q 100`` option if they are required
1500to match the run time characteristics of the older versions.
1501
Douglas Raillard6f625742017-06-28 15:23:03 +01001502The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
1503downloaded for free from `ARM's website`_.
1504
David Cunado64d50c72017-06-27 17:31:12 +01001505The Cortex-A models listed above are also available to download from
1506`ARM's website`_.
1507
Douglas Raillard6f625742017-06-28 15:23:03 +01001508Please refer to the FVP documentation for a detailed description of the model
1509parameter options. A brief description of the important ones that affect the ARM
1510Trusted Firmware and normal world software behavior is provided below.
1511
Douglas Raillard6f625742017-06-28 15:23:03 +01001512Obtaining the Flattened Device Trees
1513~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1514
1515Depending on the FVP configuration and Linux configuration used, different
1516FDT files are required. FDTs for the Foundation and Base FVPs can be found in
1517the Trusted Firmware source directory under ``fdts/``. The Foundation FVP has a
1518subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
1519and MMC support, and has only one CPU cluster.
1520
1521Note: It is not recommended to use the FDTs built along the kernel because not
1522all FDTs are available from there.
1523
1524- ``fvp-base-gicv2-psci.dtb``
1525
1526 For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
1527 Base memory map configuration.
1528
1529- ``fvp-base-gicv2-psci-aarch32.dtb``
1530
1531 For use with AEMv8 and Cortex-A32 Base FVPs running Linux in AArch32 state
1532 with Base memory map configuration.
1533
1534- ``fvp-base-gicv3-psci.dtb``
1535
1536 (Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base
1537 memory map configuration and Linux GICv3 support.
1538
1539- ``fvp-base-gicv3-psci-aarch32.dtb``
1540
1541 For use with AEMv8 and Cortex-A32 Base FVPs running Linux in AArch32 state
1542 with Base memory map configuration and Linux GICv3 support.
1543
1544- ``fvp-foundation-gicv2-psci.dtb``
1545
1546 For use with Foundation FVP with Base memory map configuration.
1547
1548- ``fvp-foundation-gicv3-psci.dtb``
1549
1550 (Default) For use with Foundation FVP with Base memory map configuration
1551 and Linux GICv3 support.
1552
1553Running on the Foundation FVP with reset to BL1 entrypoint
1554~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1555
1556The following ``Foundation_Platform`` parameters should be used to boot Linux with
15574 CPUs using the AArch64 build of ARM Trusted Firmware.
1558
1559::
1560
1561 <path-to>/Foundation_Platform \
1562 --cores=4 \
1563 --secure-memory \
1564 --visualization \
1565 --gicv3 \
1566 --data="<path-to>/<bl1-binary>"@0x0 \
1567 --data="<path-to>/<FIP-binary>"@0x08000000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001568 --data="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001569 --data="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001570 --data="<path-to>/<ramdisk-binary>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001571
1572Notes:
1573
1574- BL1 is loaded at the start of the Trusted ROM.
1575- The Firmware Image Package is loaded at the start of NOR FLASH0.
1576- The Linux kernel image and device tree are loaded in DRAM.
1577- The default use-case for the Foundation FVP is to use the ``--gicv3`` option
1578 and enable the GICv3 device in the model. Note that without this option,
1579 the Foundation FVP defaults to legacy (Versatile Express) memory map which
1580 is not supported by ARM Trusted Firmware.
1581
1582Running on the AEMv8 Base FVP with reset to BL1 entrypoint
1583~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1584
1585The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
1586with 8 CPUs using the AArch64 build of ARM Trusted Firmware.
1587
1588::
1589
1590 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1591 -C pctl.startup=0.0.0.0 \
1592 -C bp.secure_memory=1 \
1593 -C bp.tzc_400.diagnostics=1 \
1594 -C cluster0.NUM_CORES=4 \
1595 -C cluster1.NUM_CORES=4 \
1596 -C cache_state_modelled=1 \
1597 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1598 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001599 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001600 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001601 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001602
1603Running on the AEMv8 Base FVP (AArch32) with reset to BL1 entrypoint
1604~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1605
1606The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
1607with 8 CPUs using the AArch32 build of ARM Trusted Firmware.
1608
1609::
1610
1611 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1612 -C pctl.startup=0.0.0.0 \
1613 -C bp.secure_memory=1 \
1614 -C bp.tzc_400.diagnostics=1 \
1615 -C cluster0.NUM_CORES=4 \
1616 -C cluster1.NUM_CORES=4 \
1617 -C cache_state_modelled=1 \
1618 -C cluster0.cpu0.CONFIG64=0 \
1619 -C cluster0.cpu1.CONFIG64=0 \
1620 -C cluster0.cpu2.CONFIG64=0 \
1621 -C cluster0.cpu3.CONFIG64=0 \
1622 -C cluster1.cpu0.CONFIG64=0 \
1623 -C cluster1.cpu1.CONFIG64=0 \
1624 -C cluster1.cpu2.CONFIG64=0 \
1625 -C cluster1.cpu3.CONFIG64=0 \
1626 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1627 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001628 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001629 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001630 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001631
1632Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint
1633~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1634
1635The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
1636boot Linux with 8 CPUs using the AArch64 build of ARM Trusted Firmware.
1637
1638::
1639
1640 <path-to>/FVP_Base_Cortex-A57x4-A53x4 \
1641 -C pctl.startup=0.0.0.0 \
1642 -C bp.secure_memory=1 \
1643 -C bp.tzc_400.diagnostics=1 \
1644 -C cache_state_modelled=1 \
1645 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1646 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001647 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001648 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001649 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001650
1651Running on the Cortex-A32 Base FVP (AArch32) with reset to BL1 entrypoint
1652~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1653
1654The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
1655boot Linux with 4 CPUs using the AArch32 build of ARM Trusted Firmware.
1656
1657::
1658
1659 <path-to>/FVP_Base_Cortex-A32x4 \
1660 -C pctl.startup=0.0.0.0 \
1661 -C bp.secure_memory=1 \
1662 -C bp.tzc_400.diagnostics=1 \
1663 -C cache_state_modelled=1 \
1664 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1665 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001666 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001667 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001668 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001669
1670Running on the AEMv8 Base FVP with reset to BL31 entrypoint
1671~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1672
1673The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
1674with 8 CPUs using the AArch64 build of ARM Trusted Firmware.
1675
1676::
1677
1678 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1679 -C pctl.startup=0.0.0.0 \
1680 -C bp.secure_memory=1 \
1681 -C bp.tzc_400.diagnostics=1 \
1682 -C cluster0.NUM_CORES=4 \
1683 -C cluster1.NUM_CORES=4 \
1684 -C cache_state_modelled=1 \
Qixiang Xufd5763e2017-08-31 11:45:32 +08001685 -C cluster0.cpu0.RVBAR=0x04020000 \
1686 -C cluster0.cpu1.RVBAR=0x04020000 \
1687 -C cluster0.cpu2.RVBAR=0x04020000 \
1688 -C cluster0.cpu3.RVBAR=0x04020000 \
1689 -C cluster1.cpu0.RVBAR=0x04020000 \
1690 -C cluster1.cpu1.RVBAR=0x04020000 \
1691 -C cluster1.cpu2.RVBAR=0x04020000 \
1692 -C cluster1.cpu3.RVBAR=0x04020000 \
1693 --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04020000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001694 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1695 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001696 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001697 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001698 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001699
1700Notes:
1701
1702- Since a FIP is not loaded when using BL31 as reset entrypoint, the
1703 ``--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>``
1704 parameter is needed to load the individual bootloader images in memory.
1705 BL32 image is only needed if BL31 has been built to expect a Secure-EL1
1706 Payload.
1707
1708- The ``-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>`` parameter, where
1709 X and Y are the cluster and CPU numbers respectively, is used to set the
1710 reset vector for each core.
1711
1712- Changing the default value of ``ARM_TSP_RAM_LOCATION`` will also require
1713 changing the value of
1714 ``--data="<path-to><bl32-binary>"@<base-address-of-bl32>`` to the new value of
1715 ``BL32_BASE``.
1716
1717Running on the AEMv8 Base FVP (AArch32) with reset to SP\_MIN entrypoint
1718~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1719
1720The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
1721with 8 CPUs using the AArch32 build of ARM Trusted Firmware.
1722
1723::
1724
1725 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1726 -C pctl.startup=0.0.0.0 \
1727 -C bp.secure_memory=1 \
1728 -C bp.tzc_400.diagnostics=1 \
1729 -C cluster0.NUM_CORES=4 \
1730 -C cluster1.NUM_CORES=4 \
1731 -C cache_state_modelled=1 \
1732 -C cluster0.cpu0.CONFIG64=0 \
1733 -C cluster0.cpu1.CONFIG64=0 \
1734 -C cluster0.cpu2.CONFIG64=0 \
1735 -C cluster0.cpu3.CONFIG64=0 \
1736 -C cluster1.cpu0.CONFIG64=0 \
1737 -C cluster1.cpu1.CONFIG64=0 \
1738 -C cluster1.cpu2.CONFIG64=0 \
1739 -C cluster1.cpu3.CONFIG64=0 \
1740 -C cluster0.cpu0.RVBAR=0x04001000 \
1741 -C cluster0.cpu1.RVBAR=0x04001000 \
1742 -C cluster0.cpu2.RVBAR=0x04001000 \
1743 -C cluster0.cpu3.RVBAR=0x04001000 \
1744 -C cluster1.cpu0.RVBAR=0x04001000 \
1745 -C cluster1.cpu1.RVBAR=0x04001000 \
1746 -C cluster1.cpu2.RVBAR=0x04001000 \
1747 -C cluster1.cpu3.RVBAR=0x04001000 \
1748 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1749 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001750 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001751 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001752 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001753
1754Note: The load address of ``<bl32-binary>`` depends on the value ``BL32_BASE``.
1755It should match the address programmed into the RVBAR register as well.
1756
1757Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint
1758~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1759
1760The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
1761boot Linux with 8 CPUs using the AArch64 build of ARM Trusted Firmware.
1762
1763::
1764
1765 <path-to>/FVP_Base_Cortex-A57x4-A53x4 \
1766 -C pctl.startup=0.0.0.0 \
1767 -C bp.secure_memory=1 \
1768 -C bp.tzc_400.diagnostics=1 \
1769 -C cache_state_modelled=1 \
Qixiang Xufd5763e2017-08-31 11:45:32 +08001770 -C cluster0.cpu0.RVBARADDR=0x04020000 \
1771 -C cluster0.cpu1.RVBARADDR=0x04020000 \
1772 -C cluster0.cpu2.RVBARADDR=0x04020000 \
1773 -C cluster0.cpu3.RVBARADDR=0x04020000 \
1774 -C cluster1.cpu0.RVBARADDR=0x04020000 \
1775 -C cluster1.cpu1.RVBARADDR=0x04020000 \
1776 -C cluster1.cpu2.RVBARADDR=0x04020000 \
1777 -C cluster1.cpu3.RVBARADDR=0x04020000 \
1778 --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04020000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001779 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1780 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001781 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001782 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001783 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001784
1785Running on the Cortex-A32 Base FVP (AArch32) with reset to SP\_MIN entrypoint
1786~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1787
1788The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
1789boot Linux with 4 CPUs using the AArch32 build of ARM Trusted Firmware.
1790
1791::
1792
1793 <path-to>/FVP_Base_Cortex-A32x4 \
1794 -C pctl.startup=0.0.0.0 \
1795 -C bp.secure_memory=1 \
1796 -C bp.tzc_400.diagnostics=1 \
1797 -C cache_state_modelled=1 \
1798 -C cluster0.cpu0.RVBARADDR=0x04001000 \
1799 -C cluster0.cpu1.RVBARADDR=0x04001000 \
1800 -C cluster0.cpu2.RVBARADDR=0x04001000 \
1801 -C cluster0.cpu3.RVBARADDR=0x04001000 \
1802 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1803 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001804 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001805 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001806 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001807
1808Running the software on Juno
1809----------------------------
1810
David Cunado31f2f792017-06-29 12:01:33 +01001811This version of the ARM Trusted Firmware has been tested on variants r0, r1 and
1812r2 of Juno.
Douglas Raillard6f625742017-06-28 15:23:03 +01001813
1814To execute the software stack on Juno, the version of the Juno board recovery
1815image indicated in the `Linaro Release Notes`_ must be installed. If you have an
1816earlier version installed or are unsure which version is installed, please
1817re-install the recovery image by following the
1818`Instructions for using Linaro's deliverables on Juno`_.
1819
1820Preparing Trusted Firmware images
1821~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1822
1823After building Trusted Firmware, the files ``bl1.bin`` and ``fip.bin`` need copying
1824to the ``SOFTWARE/`` directory of the Juno SD card.
1825
1826Other Juno software information
1827~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1828
1829Please visit the `ARM Platforms Portal`_ to get support and obtain any other Juno
1830software information. Please also refer to the `Juno Getting Started Guide`_ to
1831get more detailed information about the Juno ARM development platform and how to
1832configure it.
1833
1834Testing SYSTEM SUSPEND on Juno
1835~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1836
1837The SYSTEM SUSPEND is a PSCI API which can be used to implement system suspend
1838to RAM. For more details refer to section 5.16 of `PSCI`_. To test system suspend
1839on Juno, at the linux shell prompt, issue the following command:
1840
1841::
1842
1843 echo +10 > /sys/class/rtc/rtc0/wakealarm
1844 echo -n mem > /sys/power/state
1845
1846The Juno board should suspend to RAM and then wakeup after 10 seconds due to
1847wakeup interrupt from RTC.
1848
1849--------------
1850
1851*Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.*
1852
David Cunado31f2f792017-06-29 12:01:33 +01001853.. _Linaro: `Linaro Release Notes`_
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001854.. _Linaro Release: `Linaro Release Notes`_
Douglas Raillard6f625742017-06-28 15:23:03 +01001855.. _Linaro Release Notes: https://community.arm.com/tools/dev-platforms/b/documents/posts/linaro-release-notes-deprecated
David Cunado31f2f792017-06-29 12:01:33 +01001856.. _Linaro Release 17.04: https://community.arm.com/tools/dev-platforms/b/documents/posts/linaro-release-notes-deprecated#LinaroRelease17.04
Douglas Raillard6f625742017-06-28 15:23:03 +01001857.. _Linaro instructions: https://community.arm.com/dev-platforms/b/documents/posts/instructions-for-using-the-linaro-software-deliverables
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001858.. _Instructions for using Linaro's deliverables on Juno: https://community.arm.com/dev-platforms/b/documents/posts/using-linaros-deliverables-on-juno
1859.. _ARM Platforms Portal: https://community.arm.com/dev-platforms/
Douglas Raillard6f625742017-06-28 15:23:03 +01001860.. _Development Studio 5 (DS-5): http://www.arm.com/products/tools/software-tools/ds-5/index.php
Antonio Nino Diaz6feb9e82017-05-23 11:49:22 +01001861.. _Dia: https://wiki.gnome.org/Apps/Dia/Download
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001862.. _here: psci-lib-integration-guide.rst
Douglas Raillard6f625742017-06-28 15:23:03 +01001863.. _Trusted Board Boot: trusted-board-boot.rst
1864.. _Secure-EL1 Payloads and Dispatchers: firmware-design.rst#user-content-secure-el1-payloads-and-dispatchers
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001865.. _Firmware Update: firmware-update.rst
1866.. _Firmware Design: firmware-design.rst
Douglas Raillard6f625742017-06-28 15:23:03 +01001867.. _mbed TLS Repository: https://github.com/ARMmbed/mbedtls.git
1868.. _mbed TLS Security Center: https://tls.mbed.org/security
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001869.. _ARM's website: `FVP models`_
1870.. _FVP models: https://developer.arm.com/products/system-design/fixed-virtual-platforms
Douglas Raillard6f625742017-06-28 15:23:03 +01001871.. _Juno Getting Started Guide: http://infocenter.arm.com/help/topic/com.arm.doc.dui0928e/DUI0928E_juno_arm_development_platform_gsg.pdf
David Cunado31f2f792017-06-29 12:01:33 +01001872.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf