blob: 0eecde90a5b693e04fff4c43d90462973a8dd34b [file] [log] [blame]
Douglas Raillard6f625742017-06-28 15:23:03 +01001ARM Trusted Firmware User Guide
2===============================
3
4
5.. section-numbering::
6 :suffix: .
7
8.. contents::
9
10This document describes how to build ARM Trusted Firmware (TF) and run it with a
11tested set of other software components using defined configurations on the Juno
12ARM development platform and ARM Fixed Virtual Platform (FVP) models. It is
13possible to use other software components, configurations and platforms but that
14is outside the scope of this document.
15
16This document assumes that the reader has previous experience running a fully
17bootable Linux software stack on Juno or FVP using the prebuilt binaries and
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +010018filesystems provided by `Linaro`_. Further information may be found in the
19`Linaro instructions`_. It also assumes that the user understands the role of
20the different software components required to boot a Linux system:
Douglas Raillard6f625742017-06-28 15:23:03 +010021
22- Specific firmware images required by the platform (e.g. SCP firmware on Juno)
23- Normal world bootloader (e.g. UEFI or U-Boot)
24- Device tree
25- Linux kernel image
26- Root filesystem
27
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +010028This document also assumes that the user is familiar with the `FVP models`_ and
Douglas Raillard6f625742017-06-28 15:23:03 +010029the different command line options available to launch the model.
30
31This document should be used in conjunction with the `Firmware Design`_.
32
33Host machine requirements
34-------------------------
35
36The minimum recommended machine specification for building the software and
37running the FVP models is a dual-core processor running at 2GHz with 12GB of
38RAM. For best performance, use a machine with a quad-core processor running at
392.6GHz with 16GB of RAM.
40
41The software has been tested on Ubuntu 14.04 LTS (64-bit). Packages used for
42building the software were installed from that distribution unless otherwise
43specified.
44
45The software has also been built on Windows 7 Enterprise SP1, using CMD.EXE,
David Cunado31f2f792017-06-29 12:01:33 +010046Cygwin, and Msys (MinGW) shells, using version 5.3.1 of the GNU toolchain.
Douglas Raillard6f625742017-06-28 15:23:03 +010047
48Tools
49-----
50
51Install the required packages to build Trusted Firmware with the following
52command:
53
54::
55
56 sudo apt-get install build-essential gcc make git libssl-dev
57
David Cunado31f2f792017-06-29 12:01:33 +010058ARM TF has been tested with `Linaro Release 17.04`_.
59
Douglas Raillard6f625742017-06-28 15:23:03 +010060Download and install the AArch32 or AArch64 little-endian GCC cross compiler.
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +010061The `Linaro Release Notes`_ documents which version of the compiler to use for a
62given Linaro Release. Also, these `Linaro instructions`_ provide further
63guidance and a script, which can be used to download Linaro deliverables
64automatically.
Douglas Raillard6f625742017-06-28 15:23:03 +010065
66Optionally, Trusted Firmware can be built using clang or ARM Compiler 6.
67See instructions below on how to switch the default compiler.
68
69In addition, the following optional packages and tools may be needed:
70
71- ``device-tree-compiler`` package if you need to rebuild the Flattened Device
72 Tree (FDT) source files (``.dts`` files) provided with this software.
73
74- For debugging, ARM `Development Studio 5 (DS-5)`_.
75
Antonio Nino Diaz6feb9e82017-05-23 11:49:22 +010076- To create and modify the diagram files included in the documentation, `Dia`_.
77 This tool can be found in most Linux distributions. Inkscape is needed to
78 generate the actual *.png files.
79
Douglas Raillard6f625742017-06-28 15:23:03 +010080Getting the Trusted Firmware source code
81----------------------------------------
82
83Download the Trusted Firmware source code from Github:
84
85::
86
87 git clone https://github.com/ARM-software/arm-trusted-firmware.git
88
89Building the Trusted Firmware
90-----------------------------
91
92- Before building Trusted Firmware, the environment variable ``CROSS_COMPILE``
93 must point to the Linaro cross compiler.
94
95 For AArch64:
96
97 ::
98
99 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
100
101 For AArch32:
102
103 ::
104
105 export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf-
106
107 It is possible to build Trusted Firmware using clang or ARM Compiler 6.
108 To do so ``CC`` needs to point to the clang or armclang binary. Only the
109 compiler is switched; the assembler and linker need to be provided by
110 the GNU toolchain, thus ``CROSS_COMPILE`` should be set as described above.
111
112 ARM Compiler 6 will be selected when the base name of the path assigned
113 to ``CC`` matches the string 'armclang'.
114
115 For AArch64 using ARM Compiler 6:
116
117 ::
118
119 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
120 make CC=<path-to-armclang>/bin/armclang PLAT=<platform> all
121
122 Clang will be selected when the base name of the path assigned to ``CC``
123 contains the string 'clang'. This is to allow both clang and clang-X.Y
124 to work.
125
126 For AArch64 using clang:
127
128 ::
129
130 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
131 make CC=<path-to-clang>/bin/clang PLAT=<platform> all
132
133- Change to the root directory of the Trusted Firmware source tree and build.
134
135 For AArch64:
136
137 ::
138
139 make PLAT=<platform> all
140
141 For AArch32:
142
143 ::
144
145 make PLAT=<platform> ARCH=aarch32 AARCH32_SP=sp_min all
146
147 Notes:
148
149 - If ``PLAT`` is not specified, ``fvp`` is assumed by default. See the
150 `Summary of build options`_ for more information on available build
151 options.
152
153 - (AArch32 only) Currently only ``PLAT=fvp`` is supported.
154
155 - (AArch32 only) ``AARCH32_SP`` is the AArch32 EL3 Runtime Software and it
156 corresponds to the BL32 image. A minimal ``AARCH32_SP``, sp\_min, is
157 provided by ARM Trusted Firmware to demonstrate how PSCI Library can
158 be integrated with an AArch32 EL3 Runtime Software. Some AArch32 EL3
159 Runtime Software may include other runtime services, for example
160 Trusted OS services. A guide to integrate PSCI library with AArch32
161 EL3 Runtime Software can be found `here`_.
162
163 - (AArch64 only) The TSP (Test Secure Payload), corresponding to the BL32
164 image, is not compiled in by default. Refer to the
165 `Building the Test Secure Payload`_ section below.
166
167 - By default this produces a release version of the build. To produce a
168 debug version instead, refer to the "Debugging options" section below.
169
170 - The build process creates products in a ``build`` directory tree, building
171 the objects and binaries for each boot loader stage in separate
172 sub-directories. The following boot loader binary files are created
173 from the corresponding ELF files:
174
175 - ``build/<platform>/<build-type>/bl1.bin``
176 - ``build/<platform>/<build-type>/bl2.bin``
177 - ``build/<platform>/<build-type>/bl31.bin`` (AArch64 only)
178 - ``build/<platform>/<build-type>/bl32.bin`` (mandatory for AArch32)
179
180 where ``<platform>`` is the name of the chosen platform and ``<build-type>``
181 is either ``debug`` or ``release``. The actual number of images might differ
182 depending on the platform.
183
184- Build products for a specific build variant can be removed using:
185
186 ::
187
188 make DEBUG=<D> PLAT=<platform> clean
189
190 ... where ``<D>`` is ``0`` or ``1``, as specified when building.
191
192 The build tree can be removed completely using:
193
194 ::
195
196 make realclean
197
198Summary of build options
199~~~~~~~~~~~~~~~~~~~~~~~~
200
201ARM Trusted Firmware build system supports the following build options. Unless
202mentioned otherwise, these options are expected to be specified at the build
203command line and are not to be modified in any component makefiles. Note that
204the build system doesn't track dependency for build options. Therefore, if any
205of the build options are changed from a previous build, a clean build must be
206performed.
207
208Common build options
209^^^^^^^^^^^^^^^^^^^^
210
211- ``AARCH32_SP`` : Choose the AArch32 Secure Payload component to be built as
212 as the BL32 image when ``ARCH=aarch32``. The value should be the path to the
213 directory containing the SP source, relative to the ``bl32/``; the directory
214 is expected to contain a makefile called ``<aarch32_sp-value>.mk``.
215
216- ``ARCH`` : Choose the target build architecture for ARM Trusted Firmware.
217 It can take either ``aarch64`` or ``aarch32`` as values. By default, it is
218 defined to ``aarch64``.
219
Douglas Raillard6f625742017-06-28 15:23:03 +0100220- ``ARM_ARCH_MAJOR``: The major version of ARM Architecture to target when
221 compiling ARM Trusted Firmware. Its value must be numeric, and defaults to
222 8 . See also, *ARMv8 Architecture Extensions* in `Firmware Design`_.
223
224- ``ARM_ARCH_MINOR``: The minor version of ARM Architecture to target when
225 compiling ARM Trusted Firmware. Its value must be a numeric, and defaults
226 to 0. See also, *ARMv8 Architecture Extensions* in `Firmware Design`_.
227
228- ``ARM_GIC_ARCH``: Choice of ARM GIC architecture version used by the ARM
229 Legacy GIC driver for implementing the platform GIC API. This API is used
230 by the interrupt management framework. Default is 2 (that is, version 2.0).
231 This build option is deprecated.
232
233- ``ARM_PLAT_MT``: This flag determines whether the ARM platform layer has to
Jeenu Viswambharan11ad8f22016-11-15 13:53:57 +0000234 cater for the multi-threading ``MT`` bit when accessing MPIDR. When this flag
235 is set, the functions which deal with MPIDR assume that the ``MT`` bit in
236 MPIDR is set and access the bit-fields in MPIDR accordingly. Default value of
237 this flag is 0. Note that this option is not used on FVP platforms.
Douglas Raillard6f625742017-06-28 15:23:03 +0100238
239- ``BL2``: This is an optional build option which specifies the path to BL2
240 image for the ``fip`` target. In this case, the BL2 in the ARM Trusted
241 Firmware will not be built.
242
243- ``BL2U``: This is an optional build option which specifies the path to
244 BL2U image. In this case, the BL2U in the ARM Trusted Firmware will not
245 be built.
246
247- ``BL31``: This is an optional build option which specifies the path to
248 BL31 image for the ``fip`` target. In this case, the BL31 in the ARM
249 Trusted Firmware will not be built.
250
251- ``BL31_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
252 file that contains the BL31 private key in PEM format. If ``SAVE_KEYS=1``,
253 this file name will be used to save the key.
254
255- ``BL32``: This is an optional build option which specifies the path to
256 BL32 image for the ``fip`` target. In this case, the BL32 in the ARM
257 Trusted Firmware will not be built.
258
Summer Qin71fb3962017-04-20 16:28:39 +0100259- ``BL32_EXTRA1``: This is an optional build option which specifies the path to
260 Trusted OS Extra1 image for the ``fip`` target.
261
262- ``BL32_EXTRA2``: This is an optional build option which specifies the path to
263 Trusted OS Extra2 image for the ``fip`` target.
264
Douglas Raillard6f625742017-06-28 15:23:03 +0100265- ``BL32_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
266 file that contains the BL32 private key in PEM format. If ``SAVE_KEYS=1``,
267 this file name will be used to save the key.
268
269- ``BL33``: Path to BL33 image in the host file system. This is mandatory for
270 ``fip`` target in case the BL2 from ARM Trusted Firmware is used.
271
272- ``BL33_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
273 file that contains the BL33 private key in PEM format. If ``SAVE_KEYS=1``,
274 this file name will be used to save the key.
275
276- ``BUILD_MESSAGE_TIMESTAMP``: String used to identify the time and date of the
277 compilation of each build. It must be set to a C string (including quotes
278 where applicable). Defaults to a string that contains the time and date of
279 the compilation.
280
281- ``BUILD_STRING``: Input string for VERSION\_STRING, which allows the TF build
282 to be uniquely identified. Defaults to the current git commit id.
283
284- ``CFLAGS``: Extra user options appended on the compiler's command line in
285 addition to the options set by the build system.
286
287- ``COLD_BOOT_SINGLE_CPU``: This option indicates whether the platform may
288 release several CPUs out of reset. It can take either 0 (several CPUs may be
289 brought up) or 1 (only one CPU will ever be brought up during cold reset).
290 Default is 0. If the platform always brings up a single CPU, there is no
291 need to distinguish between primary and secondary CPUs and the boot path can
292 be optimised. The ``plat_is_my_cpu_primary()`` and
293 ``plat_secondary_cold_boot_setup()`` platform porting interfaces do not need
294 to be implemented in this case.
295
296- ``CRASH_REPORTING``: A non-zero value enables a console dump of processor
297 register state when an unexpected exception occurs during execution of
298 BL31. This option defaults to the value of ``DEBUG`` - i.e. by default
299 this is only enabled for a debug build of the firmware.
300
301- ``CREATE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the
302 certificate generation tool to create new keys in case no valid keys are
303 present or specified. Allowed options are '0' or '1'. Default is '1'.
304
305- ``CTX_INCLUDE_AARCH32_REGS`` : Boolean option that, when set to 1, will cause
306 the AArch32 system registers to be included when saving and restoring the
307 CPU context. The option must be set to 0 for AArch64-only platforms (that
308 is on hardware that does not implement AArch32, or at least not at EL1 and
309 higher ELs). Default value is 1.
310
311- ``CTX_INCLUDE_FPREGS``: Boolean option that, when set to 1, will cause the FP
312 registers to be included when saving and restoring the CPU context. Default
313 is 0.
314
315- ``DEBUG``: Chooses between a debug and release build. It can take either 0
316 (release) or 1 (debug) as values. 0 is the default.
317
318- ``EL3_PAYLOAD_BASE``: This option enables booting an EL3 payload instead of
319 the normal boot flow. It must specify the entry point address of the EL3
320 payload. Please refer to the "Booting an EL3 payload" section for more
321 details.
322
323- ``ENABLE_ASSERTIONS``: This option controls whether or not calls to ``assert()``
324 are compiled out. For debug builds, this option defaults to 1, and calls to
325 ``assert()`` are left in place. For release builds, this option defaults to 0
326 and calls to ``assert()`` function are compiled out. This option can be set
327 independently of ``DEBUG``. It can also be used to hide any auxiliary code
328 that is only required for the assertion and does not fit in the assertion
329 itself.
330
331- ``ENABLE_PMF``: Boolean option to enable support for optional Performance
332 Measurement Framework(PMF). Default is 0.
333
334- ``ENABLE_PSCI_STAT``: Boolean option to enable support for optional PSCI
335 functions ``PSCI_STAT_RESIDENCY`` and ``PSCI_STAT_COUNT``. Default is 0.
336 In the absence of an alternate stat collection backend, ``ENABLE_PMF`` must
337 be enabled. If ``ENABLE_PMF`` is set, the residency statistics are tracked in
338 software.
339
340- ``ENABLE_RUNTIME_INSTRUMENTATION``: Boolean option to enable runtime
341 instrumentation which injects timestamp collection points into
342 Trusted Firmware to allow runtime performance to be measured.
343 Currently, only PSCI is instrumented. Enabling this option enables
344 the ``ENABLE_PMF`` build option as well. Default is 0.
345
Jeenu Viswambharanc1232c32017-07-19 13:52:12 +0100346- ``ENABLE_SPE_FOR_LOWER_ELS`` : Boolean option to enable Statistical Profiling
347 extensions. This is an optional architectural feature available only for
348 AArch64 8.2 onwards. This option defaults to 1 but is automatically
349 disabled when the target architecture is AArch32 or AArch64 8.0/8.1.
350
Douglas Raillard6f625742017-06-28 15:23:03 +0100351- ``ENABLE_STACK_PROTECTOR``: String option to enable the stack protection
352 checks in GCC. Allowed values are "all", "strong" and "0" (default).
353 "strong" is the recommended stack protection level if this feature is
354 desired. 0 disables the stack protection. For all values other than 0, the
355 ``plat_get_stack_protector_canary()`` platform hook needs to be implemented.
356 The value is passed as the last component of the option
357 ``-fstack-protector-$ENABLE_STACK_PROTECTOR``.
358
359- ``ERROR_DEPRECATED``: This option decides whether to treat the usage of
360 deprecated platform APIs, helper functions or drivers within Trusted
361 Firmware as error. It can take the value 1 (flag the use of deprecated
362 APIs as error) or 0. The default is 0.
363
Jeenu Viswambharan21b818c2017-09-22 08:32:10 +0100364- ``EL3_EXCEPTION_HANDLING``: When set to ``1``, enable handling of exceptions
365 targeted at EL3. When set ``0`` (default), no exceptions are expected or
366 handled at EL3, and a panic will result. This is supported only for AArch64
367 builds.
368
Douglas Raillard6f625742017-06-28 15:23:03 +0100369- ``FIP_NAME``: This is an optional build option which specifies the FIP
370 filename for the ``fip`` target. Default is ``fip.bin``.
371
372- ``FWU_FIP_NAME``: This is an optional build option which specifies the FWU
373 FIP filename for the ``fwu_fip`` target. Default is ``fwu_fip.bin``.
374
375- ``GENERATE_COT``: Boolean flag used to build and execute the ``cert_create``
376 tool to create certificates as per the Chain of Trust described in
377 `Trusted Board Boot`_. The build system then calls ``fiptool`` to
378 include the certificates in the FIP and FWU\_FIP. Default value is '0'.
379
380 Specify both ``TRUSTED_BOARD_BOOT=1`` and ``GENERATE_COT=1`` to include support
381 for the Trusted Board Boot feature in the BL1 and BL2 images, to generate
382 the corresponding certificates, and to include those certificates in the
383 FIP and FWU\_FIP.
384
385 Note that if ``TRUSTED_BOARD_BOOT=0`` and ``GENERATE_COT=1``, the BL1 and BL2
386 images will not include support for Trusted Board Boot. The FIP will still
387 include the corresponding certificates. This FIP can be used to verify the
388 Chain of Trust on the host machine through other mechanisms.
389
390 Note that if ``TRUSTED_BOARD_BOOT=1`` and ``GENERATE_COT=0``, the BL1 and BL2
391 images will include support for Trusted Board Boot, but the FIP and FWU\_FIP
392 will not include the corresponding certificates, causing a boot failure.
393
Jeenu Viswambharan74dce7f2017-09-22 08:32:09 +0100394- ``GICV2_G0_FOR_EL3``: Unlike GICv3, the GICv2 architecture doesn't have
395 inherent support for specific EL3 type interrupts. Setting this build option
396 to ``1`` assumes GICv2 *Group 0* interrupts are expected to target EL3, both
397 by `platform abstraction layer`__ and `Interrupt Management Framework`__.
398 This allows GICv2 platforms to enable features requiring EL3 interrupt type.
399 This also means that all GICv2 Group 0 interrupts are delivered to EL3, and
400 the Secure Payload interrupts needs to be synchronously handed over to Secure
401 EL1 for handling. The default value of this option is ``0``, which means the
402 Group 0 interrupts are assumed to be handled by Secure EL1.
403
404 .. __: `platform-interrupt-controller-API.rst`
405 .. __: `interrupt-framework-design.rst`
406
Douglas Raillard6f625742017-06-28 15:23:03 +0100407- ``HANDLE_EA_EL3_FIRST``: When defined External Aborts and SError Interrupts
408 will be always trapped in EL3 i.e. in BL31 at runtime.
409
410- ``HW_ASSISTED_COHERENCY``: On most ARM systems to-date, platform-specific
411 software operations are required for CPUs to enter and exit coherency.
412 However, there exists newer systems where CPUs' entry to and exit from
413 coherency is managed in hardware. Such systems require software to only
414 initiate the operations, and the rest is managed in hardware, minimizing
415 active software management. In such systems, this boolean option enables ARM
416 Trusted Firmware to carry out build and run-time optimizations during boot
417 and power management operations. This option defaults to 0 and if it is
418 enabled, then it implies ``WARMBOOT_ENABLE_DCACHE_EARLY`` is also enabled.
419
420- ``JUNO_AARCH32_EL3_RUNTIME``: This build flag enables you to execute EL3
421 runtime software in AArch32 mode, which is required to run AArch32 on Juno.
422 By default this flag is set to '0'. Enabling this flag builds BL1 and BL2 in
423 AArch64 and facilitates the loading of ``SP_MIN`` and BL33 as AArch32 executable
424 images.
425
Soby Mathew20917552017-08-31 11:49:32 +0100426- ``KEY_ALG``: This build flag enables the user to select the algorithm to be
427 used for generating the PKCS keys and subsequent signing of the certificate.
Qixiang Xu9a3088a2017-11-09 13:56:29 +0800428 It accepts 3 values viz. ``rsa``, ``rsa_1_5``, ``ecdsa``. The ``rsa_1_5`` is
Soby Mathewa8eb2862017-08-31 11:50:29 +0100429 the legacy PKCS#1 RSA 1.5 algorithm which is not TBBR compliant and is
430 retained only for compatibility. The default value of this flag is ``rsa``
431 which is the TBBR compliant PKCS#1 RSA 2.1 scheme.
Soby Mathew20917552017-08-31 11:49:32 +0100432
Qixiang Xu9a3088a2017-11-09 13:56:29 +0800433- ``HASH_ALG``: This build flag enables the user to select the secure hash
434 algorithm. It accepts 3 values viz. ``sha256``, ``sha384``, ``sha512``.
435 The default value of this flag is ``sha256``.
436
Douglas Raillard6f625742017-06-28 15:23:03 +0100437- ``LDFLAGS``: Extra user options appended to the linkers' command line in
438 addition to the one set by the build system.
439
440- ``LOAD_IMAGE_V2``: Boolean option to enable support for new version (v2) of
441 image loading, which provides more flexibility and scalability around what
442 images are loaded and executed during boot. Default is 0.
443 Note: ``TRUSTED_BOARD_BOOT`` is currently only supported for AArch64 when
444 ``LOAD_IMAGE_V2`` is enabled.
445
446- ``LOG_LEVEL``: Chooses the log level, which controls the amount of console log
447 output compiled into the build. This should be one of the following:
448
449 ::
450
451 0 (LOG_LEVEL_NONE)
452 10 (LOG_LEVEL_NOTICE)
453 20 (LOG_LEVEL_ERROR)
454 30 (LOG_LEVEL_WARNING)
455 40 (LOG_LEVEL_INFO)
456 50 (LOG_LEVEL_VERBOSE)
457
458 All log output up to and including the log level is compiled into the build.
459 The default value is 40 in debug builds and 20 in release builds.
460
461- ``NON_TRUSTED_WORLD_KEY``: This option is used when ``GENERATE_COT=1``. It
462 specifies the file that contains the Non-Trusted World private key in PEM
463 format. If ``SAVE_KEYS=1``, this file name will be used to save the key.
464
465- ``NS_BL2U``: Path to NS\_BL2U image in the host file system. This image is
466 optional. It is only needed if the platform makefile specifies that it
467 is required in order to build the ``fwu_fip`` target.
468
469- ``NS_TIMER_SWITCH``: Enable save and restore for non-secure timer register
470 contents upon world switch. It can take either 0 (don't save and restore) or
471 1 (do save and restore). 0 is the default. An SPD may set this to 1 if it
472 wants the timer registers to be saved and restored.
473
474- ``PL011_GENERIC_UART``: Boolean option to indicate the PL011 driver that
475 the underlying hardware is not a full PL011 UART but a minimally compliant
476 generic UART, which is a subset of the PL011. The driver will not access
477 any register that is not part of the SBSA generic UART specification.
478 Default value is 0 (a full PL011 compliant UART is present).
479
480- ``PLAT``: Choose a platform to build ARM Trusted Firmware for. The chosen
481 platform name must be subdirectory of any depth under ``plat/``, and must
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +0100482 contain a platform makefile named ``platform.mk``. For example to build ARM
483 Trusted Firmware for ARM Juno board select PLAT=juno.
Douglas Raillard6f625742017-06-28 15:23:03 +0100484
485- ``PRELOADED_BL33_BASE``: This option enables booting a preloaded BL33 image
486 instead of the normal boot flow. When defined, it must specify the entry
487 point address for the preloaded BL33 image. This option is incompatible with
488 ``EL3_PAYLOAD_BASE``. If both are defined, ``EL3_PAYLOAD_BASE`` has priority
489 over ``PRELOADED_BL33_BASE``.
490
491- ``PROGRAMMABLE_RESET_ADDRESS``: This option indicates whether the reset
492 vector address can be programmed or is fixed on the platform. It can take
493 either 0 (fixed) or 1 (programmable). Default is 0. If the platform has a
494 programmable reset address, it is expected that a CPU will start executing
495 code directly at the right address, both on a cold and warm reset. In this
496 case, there is no need to identify the entrypoint on boot and the boot path
497 can be optimised. The ``plat_get_my_entrypoint()`` platform porting interface
498 does not need to be implemented in this case.
499
500- ``PSCI_EXTENDED_STATE_ID``: As per PSCI1.0 Specification, there are 2 formats
501 possible for the PSCI power-state parameter viz original and extended
502 State-ID formats. This flag if set to 1, configures the generic PSCI layer
503 to use the extended format. The default value of this flag is 0, which
504 means by default the original power-state format is used by the PSCI
505 implementation. This flag should be specified by the platform makefile
506 and it governs the return value of PSCI\_FEATURES API for CPU\_SUSPEND
507 smc function id. When this option is enabled on ARM platforms, the
508 option ``ARM_RECOM_STATE_ID_ENC`` needs to be set to 1 as well.
509
510- ``RESET_TO_BL31``: Enable BL31 entrypoint as the CPU reset vector instead
511 of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
512 entrypoint) or 1 (CPU reset to BL31 entrypoint).
513 The default value is 0.
514
515- ``RESET_TO_SP_MIN``: SP\_MIN is the minimal AArch32 Secure Payload provided in
516 ARM Trusted Firmware. This flag configures SP\_MIN entrypoint as the CPU
517 reset vector instead of the BL1 entrypoint. It can take the value 0 (CPU
518 reset to BL1 entrypoint) or 1 (CPU reset to SP\_MIN entrypoint). The default
519 value is 0.
520
521- ``ROT_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
522 file that contains the ROT private key in PEM format. If ``SAVE_KEYS=1``, this
523 file name will be used to save the key.
524
525- ``SAVE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the
526 certificate generation tool to save the keys used to establish the Chain of
527 Trust. Allowed options are '0' or '1'. Default is '0' (do not save).
528
529- ``SCP_BL2``: Path to SCP\_BL2 image in the host file system. This image is optional.
530 If a SCP\_BL2 image is present then this option must be passed for the ``fip``
531 target.
532
533- ``SCP_BL2_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
534 file that contains the SCP\_BL2 private key in PEM format. If ``SAVE_KEYS=1``,
535 this file name will be used to save the key.
536
537- ``SCP_BL2U``: Path to SCP\_BL2U image in the host file system. This image is
538 optional. It is only needed if the platform makefile specifies that it
539 is required in order to build the ``fwu_fip`` target.
540
Jeenu Viswambharanb7cb1332017-10-16 08:43:14 +0100541- ``SDEI_SUPPORT``: Setting this to ``1`` enables support for Software
542 Delegated Exception Interface to BL31 image. This defaults to ``0``.
543
544 When set to ``1``, the build option ``EL3_EXCEPTION_HANDLING`` must also be
545 set to ``1``.
546
Douglas Raillard6f625742017-06-28 15:23:03 +0100547- ``SEPARATE_CODE_AND_RODATA``: Whether code and read-only data should be
548 isolated on separate memory pages. This is a trade-off between security and
549 memory usage. See "Isolating code and read-only data on separate memory
550 pages" section in `Firmware Design`_. This flag is disabled by default and
551 affects all BL images.
552
553- ``SPD``: Choose a Secure Payload Dispatcher component to be built into the
554 Trusted Firmware. This build option is only valid if ``ARCH=aarch64``. The
555 value should be the path to the directory containing the SPD source,
556 relative to ``services/spd/``; the directory is expected to
557 contain a makefile called ``<spd-value>.mk``.
558
559- ``SPIN_ON_BL1_EXIT``: This option introduces an infinite loop in BL1. It can
560 take either 0 (no loop) or 1 (add a loop). 0 is the default. This loop stops
561 execution in BL1 just before handing over to BL31. At this point, all
562 firmware images have been loaded in memory, and the MMU and caches are
563 turned off. Refer to the "Debugging options" section for more details.
564
Etienne Carriere71816092017-08-09 15:48:53 +0200565- ``SP_MIN_WITH_SECURE_FIQ``: Boolean flag to indicate the SP_MIN handles
566 secure interrupts (caught through the FIQ line). Platforms can enable
567 this directive if they need to handle such interruption. When enabled,
568 the FIQ are handled in monitor mode and non secure world is not allowed
569 to mask these events. Platforms that enable FIQ handling in SP_MIN shall
570 implement the api ``sp_min_plat_fiq_handler()``. The default value is 0.
571
Douglas Raillard6f625742017-06-28 15:23:03 +0100572- ``TRUSTED_BOARD_BOOT``: Boolean flag to include support for the Trusted Board
573 Boot feature. When set to '1', BL1 and BL2 images include support to load
574 and verify the certificates and images in a FIP, and BL1 includes support
575 for the Firmware Update. The default value is '0'. Generation and inclusion
576 of certificates in the FIP and FWU\_FIP depends upon the value of the
577 ``GENERATE_COT`` option.
578
579 Note: This option depends on ``CREATE_KEYS`` to be enabled. If the keys
580 already exist in disk, they will be overwritten without further notice.
581
582- ``TRUSTED_WORLD_KEY``: This option is used when ``GENERATE_COT=1``. It
583 specifies the file that contains the Trusted World private key in PEM
584 format. If ``SAVE_KEYS=1``, this file name will be used to save the key.
585
586- ``TSP_INIT_ASYNC``: Choose BL32 initialization method as asynchronous or
587 synchronous, (see "Initializing a BL32 Image" section in
588 `Firmware Design`_). It can take the value 0 (BL32 is initialized using
589 synchronous method) or 1 (BL32 is initialized using asynchronous method).
590 Default is 0.
591
592- ``TSP_NS_INTR_ASYNC_PREEMPT``: A non zero value enables the interrupt
593 routing model which routes non-secure interrupts asynchronously from TSP
594 to EL3 causing immediate preemption of TSP. The EL3 is responsible
595 for saving and restoring the TSP context in this routing model. The
596 default routing model (when the value is 0) is to route non-secure
597 interrupts to TSP allowing it to save its context and hand over
598 synchronously to EL3 via an SMC.
599
600- ``USE_COHERENT_MEM``: This flag determines whether to include the coherent
601 memory region in the BL memory map or not (see "Use of Coherent memory in
602 Trusted Firmware" section in `Firmware Design`_). It can take the value 1
603 (Coherent memory region is included) or 0 (Coherent memory region is
604 excluded). Default is 1.
605
606- ``V``: Verbose build. If assigned anything other than 0, the build commands
607 are printed. Default is 0.
608
609- ``VERSION_STRING``: String used in the log output for each TF image. Defaults
610 to a string formed by concatenating the version number, build type and build
611 string.
612
613- ``WARMBOOT_ENABLE_DCACHE_EARLY`` : Boolean option to enable D-cache early on
614 the CPU after warm boot. This is applicable for platforms which do not
615 require interconnect programming to enable cache coherency (eg: single
616 cluster platforms). If this option is enabled, then warm boot path
617 enables D-caches immediately after enabling MMU. This option defaults to 0.
618
Douglas Raillard6f625742017-06-28 15:23:03 +0100619ARM development platform specific build options
620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
621
622- ``ARM_BL31_IN_DRAM``: Boolean option to select loading of BL31 in TZC secured
623 DRAM. By default, BL31 is in the secure SRAM. Set this flag to 1 to load
624 BL31 in TZC secured DRAM. If TSP is present, then setting this option also
625 sets the TSP location to DRAM and ignores the ``ARM_TSP_RAM_LOCATION`` build
626 flag.
627
628- ``ARM_BOARD_OPTIMISE_MEM``: Boolean option to enable or disable optimisation
629 of the memory reserved for each image. This affects the maximum size of each
630 BL image as well as the number of allocated memory regions and translation
631 tables. By default this flag is 0, which means it uses the default
632 unoptimised values for these macros. ARM development platforms that wish to
633 optimise memory usage need to set this flag to 1 and must override the
634 related macros.
635
636- ``ARM_CONFIG_CNTACR``: boolean option to unlock access to the ``CNTBase<N>``
637 frame registers by setting the ``CNTCTLBase.CNTACR<N>`` register bits. The
638 frame number ``<N>`` is defined by ``PLAT_ARM_NSTIMER_FRAME_ID``, which should
639 match the frame used by the Non-Secure image (normally the Linux kernel).
640 Default is true (access to the frame is allowed).
641
642- ``ARM_DISABLE_TRUSTED_WDOG``: boolean option to disable the Trusted Watchdog.
643 By default, ARM platforms use a watchdog to trigger a system reset in case
644 an error is encountered during the boot process (for example, when an image
645 could not be loaded or authenticated). The watchdog is enabled in the early
646 platform setup hook at BL1 and disabled in the BL1 prepare exit hook. The
647 Trusted Watchdog may be disabled at build time for testing or development
648 purposes.
649
650- ``ARM_RECOM_STATE_ID_ENC``: The PSCI1.0 specification recommends an encoding
651 for the construction of composite state-ID in the power-state parameter.
652 The existing PSCI clients currently do not support this encoding of
653 State-ID yet. Hence this flag is used to configure whether to use the
654 recommended State-ID encoding or not. The default value of this flag is 0,
655 in which case the platform is configured to expect NULL in the State-ID
656 field of power-state parameter.
657
658- ``ARM_ROTPK_LOCATION``: used when ``TRUSTED_BOARD_BOOT=1``. It specifies the
659 location of the ROTPK hash returned by the function ``plat_get_rotpk_info()``
660 for ARM platforms. Depending on the selected option, the proper private key
661 must be specified using the ``ROT_KEY`` option when building the Trusted
662 Firmware. This private key will be used by the certificate generation tool
663 to sign the BL2 and Trusted Key certificates. Available options for
664 ``ARM_ROTPK_LOCATION`` are:
665
666 - ``regs`` : return the ROTPK hash stored in the Trusted root-key storage
667 registers. The private key corresponding to this ROTPK hash is not
668 currently available.
669 - ``devel_rsa`` : return a development public key hash embedded in the BL1
670 and BL2 binaries. This hash has been obtained from the RSA public key
671 ``arm_rotpk_rsa.der``, located in ``plat/arm/board/common/rotpk``. To use
672 this option, ``arm_rotprivk_rsa.pem`` must be specified as ``ROT_KEY`` when
673 creating the certificates.
Qixiang Xu9db9c652017-08-24 15:12:20 +0800674 - ``devel_ecdsa`` : return a development public key hash embedded in the BL1
675 and BL2 binaries. This hash has been obtained from the ECDSA public key
676 ``arm_rotpk_ecdsa.der``, located in ``plat/arm/board/common/rotpk``. To use
677 this option, ``arm_rotprivk_ecdsa.pem`` must be specified as ``ROT_KEY``
678 when creating the certificates.
Douglas Raillard6f625742017-06-28 15:23:03 +0100679
680- ``ARM_TSP_RAM_LOCATION``: location of the TSP binary. Options:
681
Qixiang Xu7ca267b2017-10-13 09:04:12 +0800682 - ``tsram`` : Trusted SRAM (default option when TBB is not enabled)
Douglas Raillard6f625742017-06-28 15:23:03 +0100683 - ``tdram`` : Trusted DRAM (if available)
Qixiang Xu7ca267b2017-10-13 09:04:12 +0800684 - ``dram`` : Secure region in DRAM (default option when TBB is enabled,
685 configured by the TrustZone controller)
Douglas Raillard6f625742017-06-28 15:23:03 +0100686
687- ``ARM_XLAT_TABLES_LIB_V1``: boolean option to compile the Trusted Firmware
688 with version 1 of the translation tables library instead of version 2. It is
689 set to 0 by default, which selects version 2.
690
691- ``ARM_CRYPTOCELL_INTEG`` : bool option to enable Trusted Firmware to invoke
692 ARM® TrustZone® CryptoCell functionality for Trusted Board Boot on capable
693 ARM platforms. If this option is specified, then the path to the CryptoCell
694 SBROM library must be specified via ``CCSBROM_LIB_PATH`` flag.
695
696For a better understanding of these options, the ARM development platform memory
697map is explained in the `Firmware Design`_.
698
699ARM CSS platform specific build options
700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
701
702- ``CSS_DETECT_PRE_1_7_0_SCP``: Boolean flag to detect SCP version
703 incompatibility. Version 1.7.0 of the SCP firmware made a non-backwards
704 compatible change to the MTL protocol, used for AP/SCP communication.
705 Trusted Firmware no longer supports earlier SCP versions. If this option is
706 set to 1 then Trusted Firmware will detect if an earlier version is in use.
707 Default is 1.
708
709- ``CSS_LOAD_SCP_IMAGES``: Boolean flag, which when set, adds SCP\_BL2 and
710 SCP\_BL2U to the FIP and FWU\_FIP respectively, and enables them to be loaded
711 during boot. Default is 1.
712
Soby Mathew18e279e2017-06-12 12:37:10 +0100713- ``CSS_USE_SCMI_SDS_DRIVER``: Boolean flag which selects SCMI/SDS drivers
714 instead of SCPI/BOM driver for communicating with the SCP during power
715 management operations and for SCP RAM Firmware transfer. If this option
716 is set to 1, then SCMI/SDS drivers will be used. Default is 0.
Douglas Raillard6f625742017-06-28 15:23:03 +0100717
718ARM FVP platform specific build options
719^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
720
721- ``FVP_CLUSTER_COUNT`` : Configures the cluster count to be used to
722 build the topology tree within Trusted Firmware. By default the
723 Trusted Firmware is configured for dual cluster topology and this option
724 can be used to override the default value.
725
726- ``FVP_INTERCONNECT_DRIVER``: Selects the interconnect driver to be built. The
727 default interconnect driver depends on the value of ``FVP_CLUSTER_COUNT`` as
728 explained in the options below:
729
730 - ``FVP_CCI`` : The CCI driver is selected. This is the default
731 if 0 < ``FVP_CLUSTER_COUNT`` <= 2.
732 - ``FVP_CCN`` : The CCN driver is selected. This is the default
733 if ``FVP_CLUSTER_COUNT`` > 2.
734
Jeenu Viswambharan11ad8f22016-11-15 13:53:57 +0000735- ``FVP_MAX_PE_PER_CPU``: Sets the maximum number of PEs implemented on any CPU
736 in the system. This option defaults to 1. Note that the build option
737 ``ARM_PLAT_MT`` doesn't have any effect on FVP platforms.
738
Douglas Raillard6f625742017-06-28 15:23:03 +0100739- ``FVP_USE_GIC_DRIVER`` : Selects the GIC driver to be built. Options:
740
741 - ``FVP_GIC600`` : The GIC600 implementation of GICv3 is selected
742 - ``FVP_GICV2`` : The GICv2 only driver is selected
743 - ``FVP_GICV3`` : The GICv3 only driver is selected (default option)
744 - ``FVP_GICV3_LEGACY``: The Legacy GICv3 driver is selected (deprecated)
745 Note: If Trusted Firmware is compiled with this option on FVPs with
746 GICv3 hardware, then it configures the hardware to run in GICv2
747 emulation mode
748
749- ``FVP_USE_SP804_TIMER`` : Use the SP804 timer instead of the Generic Timer
750 for functions that wait for an arbitrary time length (udelay and mdelay).
751 The default value is 0.
752
753Debugging options
754~~~~~~~~~~~~~~~~~
755
756To compile a debug version and make the build more verbose use
757
758::
759
760 make PLAT=<platform> DEBUG=1 V=1 all
761
762AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
763example DS-5) might not support this and may need an older version of DWARF
764symbols to be emitted by GCC. This can be achieved by using the
765``-gdwarf-<version>`` flag, with the version being set to 2 or 3. Setting the
766version to 2 is recommended for DS-5 versions older than 5.16.
767
768When debugging logic problems it might also be useful to disable all compiler
769optimizations by using ``-O0``.
770
771NOTE: Using ``-O0`` could cause output images to be larger and base addresses
772might need to be recalculated (see the **Memory layout on ARM development
773platforms** section in the `Firmware Design`_).
774
775Extra debug options can be passed to the build system by setting ``CFLAGS`` or
776``LDFLAGS``:
777
778.. code:: makefile
779
780 CFLAGS='-O0 -gdwarf-2' \
781 make PLAT=<platform> DEBUG=1 V=1 all
782
783Note that using ``-Wl,`` style compilation driver options in ``CFLAGS`` will be
784ignored as the linker is called directly.
785
786It is also possible to introduce an infinite loop to help in debugging the
787post-BL2 phase of the Trusted Firmware. This can be done by rebuilding BL1 with
Douglas Raillard668c5022017-06-28 16:14:55 +0100788the ``SPIN_ON_BL1_EXIT=1`` build flag. Refer to the `Summary of build options`_
Douglas Raillard6f625742017-06-28 15:23:03 +0100789section. In this case, the developer may take control of the target using a
790debugger when indicated by the console output. When using DS-5, the following
791commands can be used:
792
793::
794
795 # Stop target execution
796 interrupt
797
798 #
799 # Prepare your debugging environment, e.g. set breakpoints
800 #
801
802 # Jump over the debug loop
803 set var $AARCH64::$Core::$PC = $AARCH64::$Core::$PC + 4
804
805 # Resume execution
806 continue
807
808Building the Test Secure Payload
809~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
810
811The TSP is coupled with a companion runtime service in the BL31 firmware,
812called the TSPD. Therefore, if you intend to use the TSP, the BL31 image
813must be recompiled as well. For more information on SPs and SPDs, see the
814`Secure-EL1 Payloads and Dispatchers`_ section in the `Firmware Design`_.
815
816First clean the Trusted Firmware build directory to get rid of any previous
817BL31 binary. Then to build the TSP image use:
818
819::
820
821 make PLAT=<platform> SPD=tspd all
822
823An additional boot loader binary file is created in the ``build`` directory:
824
825::
826
827 build/<platform>/<build-type>/bl32.bin
828
829Checking source code style
830~~~~~~~~~~~~~~~~~~~~~~~~~~
831
832When making changes to the source for submission to the project, the source
833must be in compliance with the Linux style guide, and to assist with this check
834the project Makefile contains two targets, which both utilise the
835``checkpatch.pl`` script that ships with the Linux source tree.
836
837To check the entire source tree, you must first download a copy of
838``checkpatch.pl`` (or the full Linux source), set the ``CHECKPATCH`` environment
839variable to point to the script and build the target checkcodebase:
840
841::
842
843 make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase
844
845To just check the style on the files that differ between your local branch and
846the remote master, use:
847
848::
849
850 make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch
851
852If you wish to check your patch against something other than the remote master,
853set the ``BASE_COMMIT`` variable to your desired branch. By default, ``BASE_COMMIT``
854is set to ``origin/master``.
855
856Building and using the FIP tool
857~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
858
859Firmware Image Package (FIP) is a packaging format used by the Trusted Firmware
860project to package firmware images in a single binary. The number and type of
861images that should be packed in a FIP is platform specific and may include TF
862images and other firmware images required by the platform. For example, most
863platforms require a BL33 image which corresponds to the normal world bootloader
864(e.g. UEFI or U-Boot).
865
866The TF build system provides the make target ``fip`` to create a FIP file for the
867specified platform using the FIP creation tool included in the TF project.
868Examples below show how to build a FIP file for FVP, packaging TF images and a
869BL33 image.
870
871For AArch64:
872
873::
874
875 make PLAT=fvp BL33=<path/to/bl33.bin> fip
876
877For AArch32:
878
879::
880
881 make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=<path/to/bl33.bin> fip
882
883Note that AArch32 support for Normal world boot loader (BL33), like U-boot or
884UEFI, on FVP is not available upstream. Hence custom solutions are required to
885allow Linux boot on FVP. These instructions assume such a custom boot loader
886(BL33) is available.
887
888The resulting FIP may be found in:
889
890::
891
892 build/fvp/<build-type>/fip.bin
893
894For advanced operations on FIP files, it is also possible to independently build
895the tool and create or modify FIPs using this tool. To do this, follow these
896steps:
897
898It is recommended to remove old artifacts before building the tool:
899
900::
901
902 make -C tools/fiptool clean
903
904Build the tool:
905
906::
907
908 make [DEBUG=1] [V=1] fiptool
909
910The tool binary can be located in:
911
912::
913
914 ./tools/fiptool/fiptool
915
916Invoking the tool with ``--help`` will print a help message with all available
917options.
918
919Example 1: create a new Firmware package ``fip.bin`` that contains BL2 and BL31:
920
921::
922
923 ./tools/fiptool/fiptool create \
924 --tb-fw build/<platform>/<build-type>/bl2.bin \
925 --soc-fw build/<platform>/<build-type>/bl31.bin \
926 fip.bin
927
928Example 2: view the contents of an existing Firmware package:
929
930::
931
932 ./tools/fiptool/fiptool info <path-to>/fip.bin
933
934Example 3: update the entries of an existing Firmware package:
935
936::
937
938 # Change the BL2 from Debug to Release version
939 ./tools/fiptool/fiptool update \
940 --tb-fw build/<platform>/release/bl2.bin \
941 build/<platform>/debug/fip.bin
942
943Example 4: unpack all entries from an existing Firmware package:
944
945::
946
947 # Images will be unpacked to the working directory
948 ./tools/fiptool/fiptool unpack <path-to>/fip.bin
949
950Example 5: remove an entry from an existing Firmware package:
951
952::
953
954 ./tools/fiptool/fiptool remove \
955 --tb-fw build/<platform>/debug/fip.bin
956
957Note that if the destination FIP file exists, the create, update and
958remove operations will automatically overwrite it.
959
960The unpack operation will fail if the images already exist at the
961destination. In that case, use -f or --force to continue.
962
963More information about FIP can be found in the `Firmware Design`_ document.
964
965Migrating from fip\_create to fiptool
966^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
967
968The previous version of fiptool was called fip\_create. A compatibility script
969that emulates the basic functionality of the previous fip\_create is provided.
970However, users are strongly encouraged to migrate to fiptool.
971
972- To create a new FIP file, replace "fip\_create" with "fiptool create".
973- To update a FIP file, replace "fip\_create" with "fiptool update".
974- To dump the contents of a FIP file, replace "fip\_create --dump"
975 with "fiptool info".
976
977Building FIP images with support for Trusted Board Boot
978~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
979
980Trusted Board Boot primarily consists of the following two features:
981
982- Image Authentication, described in `Trusted Board Boot`_, and
983- Firmware Update, described in `Firmware Update`_
984
985The following steps should be followed to build FIP and (optionally) FWU\_FIP
986images with support for these features:
987
988#. Fulfill the dependencies of the ``mbedtls`` cryptographic and image parser
989 modules by checking out a recent version of the `mbed TLS Repository`_. It
990 is important to use a version that is compatible with TF and fixes any
991 known security vulnerabilities. See `mbed TLS Security Center`_ for more
992 information. The latest version of TF is tested with tag ``mbedtls-2.4.2``.
993
994 The ``drivers/auth/mbedtls/mbedtls_*.mk`` files contain the list of mbed TLS
995 source files the modules depend upon.
996 ``include/drivers/auth/mbedtls/mbedtls_config.h`` contains the configuration
997 options required to build the mbed TLS sources.
998
999 Note that the mbed TLS library is licensed under the Apache version 2.0
1000 license. Using mbed TLS source code will affect the licensing of
1001 Trusted Firmware binaries that are built using this library.
1002
1003#. To build the FIP image, ensure the following command line variables are set
1004 while invoking ``make`` to build Trusted Firmware:
1005
1006 - ``MBEDTLS_DIR=<path of the directory containing mbed TLS sources>``
1007 - ``TRUSTED_BOARD_BOOT=1``
1008 - ``GENERATE_COT=1``
1009
1010 In the case of ARM platforms, the location of the ROTPK hash must also be
1011 specified at build time. Two locations are currently supported (see
1012 ``ARM_ROTPK_LOCATION`` build option):
1013
1014 - ``ARM_ROTPK_LOCATION=regs``: the ROTPK hash is obtained from the Trusted
1015 root-key storage registers present in the platform. On Juno, this
1016 registers are read-only. On FVP Base and Cortex models, the registers
1017 are read-only, but the value can be specified using the command line
1018 option ``bp.trusted_key_storage.public_key`` when launching the model.
1019 On both Juno and FVP models, the default value corresponds to an
1020 ECDSA-SECP256R1 public key hash, whose private part is not currently
1021 available.
1022
1023 - ``ARM_ROTPK_LOCATION=devel_rsa``: use the ROTPK hash that is hardcoded
1024 in the ARM platform port. The private/public RSA key pair may be
1025 found in ``plat/arm/board/common/rotpk``.
1026
Qixiang Xu9db9c652017-08-24 15:12:20 +08001027 - ``ARM_ROTPK_LOCATION=devel_ecdsa``: use the ROTPK hash that is hardcoded
1028 in the ARM platform port. The private/public ECDSA key pair may be
1029 found in ``plat/arm/board/common/rotpk``.
1030
Douglas Raillard6f625742017-06-28 15:23:03 +01001031 Example of command line using RSA development keys:
1032
1033 ::
1034
1035 MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
1036 make PLAT=<platform> TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
1037 ARM_ROTPK_LOCATION=devel_rsa \
1038 ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
1039 BL33=<path-to>/<bl33_image> \
1040 all fip
1041
1042 The result of this build will be the bl1.bin and the fip.bin binaries. This
1043 FIP will include the certificates corresponding to the Chain of Trust
1044 described in the TBBR-client document. These certificates can also be found
1045 in the output build directory.
1046
1047#. The optional FWU\_FIP contains any additional images to be loaded from
1048 Non-Volatile storage during the `Firmware Update`_ process. To build the
1049 FWU\_FIP, any FWU images required by the platform must be specified on the
1050 command line. On ARM development platforms like Juno, these are:
1051
1052 - NS\_BL2U. The AP non-secure Firmware Updater image.
1053 - SCP\_BL2U. The SCP Firmware Update Configuration image.
1054
1055 Example of Juno command line for generating both ``fwu`` and ``fwu_fip``
1056 targets using RSA development:
1057
1058 ::
1059
1060 MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
1061 make PLAT=juno TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
1062 ARM_ROTPK_LOCATION=devel_rsa \
1063 ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
1064 BL33=<path-to>/<bl33_image> \
1065 SCP_BL2=<path-to>/<scp_bl2_image> \
1066 SCP_BL2U=<path-to>/<scp_bl2u_image> \
1067 NS_BL2U=<path-to>/<ns_bl2u_image> \
1068 all fip fwu_fip
1069
1070 Note: The BL2U image will be built by default and added to the FWU\_FIP.
1071 The user may override this by adding ``BL2U=<path-to>/<bl2u_image>``
1072 to the command line above.
1073
1074 Note: Building and installing the non-secure and SCP FWU images (NS\_BL1U,
1075 NS\_BL2U and SCP\_BL2U) is outside the scope of this document.
1076
1077 The result of this build will be bl1.bin, fip.bin and fwu\_fip.bin binaries.
1078 Both the FIP and FWU\_FIP will include the certificates corresponding to the
1079 Chain of Trust described in the TBBR-client document. These certificates
1080 can also be found in the output build directory.
1081
1082Building the Certificate Generation Tool
1083~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1084
1085The ``cert_create`` tool is built as part of the TF build process when the ``fip``
1086make target is specified and TBB is enabled (as described in the previous
1087section), but it can also be built separately with the following command:
1088
1089::
1090
1091 make PLAT=<platform> [DEBUG=1] [V=1] certtool
1092
1093For platforms that do not require their own IDs in certificate files,
1094the generic 'cert\_create' tool can be built with the following command:
1095
1096::
1097
1098 make USE_TBBR_DEFS=1 [DEBUG=1] [V=1] certtool
1099
1100``DEBUG=1`` builds the tool in debug mode. ``V=1`` makes the build process more
1101verbose. The following command should be used to obtain help about the tool:
1102
1103::
1104
1105 ./tools/cert_create/cert_create -h
1106
1107Building a FIP for Juno and FVP
1108-------------------------------
1109
1110This section provides Juno and FVP specific instructions to build Trusted
1111Firmware, obtain the additional required firmware, and pack it all together in
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001112a single FIP binary. It assumes that a `Linaro Release`_ has been installed.
Douglas Raillard6f625742017-06-28 15:23:03 +01001113
David Cunado31f2f792017-06-29 12:01:33 +01001114Note: Pre-built binaries for AArch32 are available from Linaro Release 16.12
1115onwards. Before that release, pre-built binaries are only available for AArch64.
Douglas Raillard6f625742017-06-28 15:23:03 +01001116
1117Note: follow the full instructions for one platform before switching to a
1118different one. Mixing instructions for different platforms may result in
1119corrupted binaries.
1120
1121#. Clean the working directory
1122
1123 ::
1124
1125 make realclean
1126
1127#. Obtain SCP\_BL2 (Juno) and BL33 (all platforms)
1128
1129 Use the fiptool to extract the SCP\_BL2 and BL33 images from the FIP
1130 package included in the Linaro release:
1131
1132 ::
1133
1134 # Build the fiptool
1135 make [DEBUG=1] [V=1] fiptool
1136
1137 # Unpack firmware images from Linaro FIP
1138 ./tools/fiptool/fiptool unpack \
1139 <path/to/linaro/release>/fip.bin
1140
1141 The unpack operation will result in a set of binary images extracted to the
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001142 current working directory. The SCP\_BL2 image corresponds to
1143 ``scp-fw.bin`` and BL33 corresponds to ``nt-fw.bin``.
Douglas Raillard6f625742017-06-28 15:23:03 +01001144
1145 Note: the fiptool will complain if the images to be unpacked already
1146 exist in the current directory. If that is the case, either delete those
1147 files or use the ``--force`` option to overwrite.
1148
1149 Note for AArch32, the instructions below assume that nt-fw.bin is a custom
1150 Normal world boot loader that supports AArch32.
1151
1152#. Build TF images and create a new FIP for FVP
1153
1154 ::
1155
1156 # AArch64
1157 make PLAT=fvp BL33=nt-fw.bin all fip
1158
1159 # AArch32
1160 make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=nt-fw.bin all fip
1161
1162#. Build TF images and create a new FIP for Juno
1163
1164 For AArch64:
1165
1166 Building for AArch64 on Juno simply requires the addition of ``SCP_BL2``
1167 as a build parameter.
1168
1169 ::
1170
1171 make PLAT=juno all fip \
1172 BL33=<path-to-juno-oe-uboot>/SOFTWARE/bl33-uboot.bin \
1173 SCP_BL2=<path-to-juno-busybox-uboot>/SOFTWARE/scp_bl2.bin
1174
1175 For AArch32:
1176
1177 Hardware restrictions on Juno prevent cold reset into AArch32 execution mode,
1178 therefore BL1 and BL2 must be compiled for AArch64, and BL32 is compiled
1179 separately for AArch32.
1180
1181 - Before building BL32, the environment variable ``CROSS_COMPILE`` must point
1182 to the AArch32 Linaro cross compiler.
1183
1184 ::
1185
1186 export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf-
1187
1188 - Build BL32 in AArch32.
1189
1190 ::
1191
1192 make ARCH=aarch32 PLAT=juno AARCH32_SP=sp_min \
1193 RESET_TO_SP_MIN=1 JUNO_AARCH32_EL3_RUNTIME=1 bl32
1194
1195 - Before building BL1 and BL2, the environment variable ``CROSS_COMPILE``
1196 must point to the AArch64 Linaro cross compiler.
1197
1198 ::
1199
1200 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
1201
1202 - The following parameters should be used to build BL1 and BL2 in AArch64
1203 and point to the BL32 file.
1204
1205 ::
1206
1207 make ARCH=aarch64 PLAT=juno LOAD_IMAGE_V2=1 JUNO_AARCH32_EL3_RUNTIME=1 \
1208 BL33=<path-to-juno32-oe-uboot>/SOFTWARE/bl33-uboot.bin \
1209 SCP_BL2=<path-to-juno32-oe-uboot>/SOFTWARE/scp_bl2.bin SPD=tspd \
1210 BL32=<path-to-bl32>/bl32.bin all fip
1211
1212The resulting BL1 and FIP images may be found in:
1213
1214::
1215
1216 # Juno
1217 ./build/juno/release/bl1.bin
1218 ./build/juno/release/fip.bin
1219
1220 # FVP
1221 ./build/fvp/release/bl1.bin
1222 ./build/fvp/release/fip.bin
1223
Roberto Vargase29ee462017-10-17 10:19:00 +01001224
1225Booting Firmware Update images
1226-------------------------------------
1227
1228When Firmware Update (FWU) is enabled there are at least 2 new images
1229that have to be loaded, the Non-Secure FWU ROM (NS-BL1U), and the
1230FWU FIP.
1231
1232Juno
1233~~~~
1234
1235The new images must be programmed in flash memory by adding
1236an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
1237on the Juno SD card (where ``x`` depends on the revision of the Juno board).
1238Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
1239programming" for more information. User should ensure these do not
1240overlap with any other entries in the file.
1241
1242::
1243
1244 NOR10UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
1245 NOR10ADDRESS: 0x00400000 ;Image Flash Address [ns_bl2u_base_address]
1246 NOR10FILE: \SOFTWARE\fwu_fip.bin ;Image File Name
1247 NOR10LOAD: 00000000 ;Image Load Address
1248 NOR10ENTRY: 00000000 ;Image Entry Point
1249
1250 NOR11UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
1251 NOR11ADDRESS: 0x03EB8000 ;Image Flash Address [ns_bl1u_base_address]
1252 NOR11FILE: \SOFTWARE\ns_bl1u.bin ;Image File Name
1253 NOR11LOAD: 00000000 ;Image Load Address
1254
1255The address ns_bl1u_base_address is the value of NS_BL1U_BASE - 0x8000000.
1256In the same way, the address ns_bl2u_base_address is the value of
1257NS_BL2U_BASE - 0x8000000.
1258
1259FVP
1260~~~
1261
1262The additional fip images must be loaded with:
1263
1264::
1265
1266 --data cluster0.cpu0="<path_to>/ns_bl1u.bin"@0x0beb8000 [ns_bl1u_base_address]
1267 --data cluster0.cpu0="<path_to>/fwu_fip.bin"@0x08400000 [ns_bl2u_base_address]
1268
1269The address ns_bl1u_base_address is the value of NS_BL1U_BASE.
1270In the same way, the address ns_bl2u_base_address is the value of
1271NS_BL2U_BASE.
1272
1273
Douglas Raillard6f625742017-06-28 15:23:03 +01001274EL3 payloads alternative boot flow
1275----------------------------------
1276
1277On a pre-production system, the ability to execute arbitrary, bare-metal code at
1278the highest exception level is required. It allows full, direct access to the
1279hardware, for example to run silicon soak tests.
1280
1281Although it is possible to implement some baremetal secure firmware from
1282scratch, this is a complex task on some platforms, depending on the level of
1283configuration required to put the system in the expected state.
1284
1285Rather than booting a baremetal application, a possible compromise is to boot
1286``EL3 payloads`` through the Trusted Firmware instead. This is implemented as an
1287alternative boot flow, where a modified BL2 boots an EL3 payload, instead of
1288loading the other BL images and passing control to BL31. It reduces the
1289complexity of developing EL3 baremetal code by:
1290
1291- putting the system into a known architectural state;
1292- taking care of platform secure world initialization;
1293- loading the SCP\_BL2 image if required by the platform.
1294
1295When booting an EL3 payload on ARM standard platforms, the configuration of the
1296TrustZone controller is simplified such that only region 0 is enabled and is
1297configured to permit secure access only. This gives full access to the whole
1298DRAM to the EL3 payload.
1299
1300The system is left in the same state as when entering BL31 in the default boot
1301flow. In particular:
1302
1303- Running in EL3;
1304- Current state is AArch64;
1305- Little-endian data access;
1306- All exceptions disabled;
1307- MMU disabled;
1308- Caches disabled.
1309
1310Booting an EL3 payload
1311~~~~~~~~~~~~~~~~~~~~~~
1312
1313The EL3 payload image is a standalone image and is not part of the FIP. It is
1314not loaded by the Trusted Firmware. Therefore, there are 2 possible scenarios:
1315
1316- The EL3 payload may reside in non-volatile memory (NVM) and execute in
1317 place. In this case, booting it is just a matter of specifying the right
1318 address in NVM through ``EL3_PAYLOAD_BASE`` when building the TF.
1319
1320- The EL3 payload needs to be loaded in volatile memory (e.g. DRAM) at
1321 run-time.
1322
1323To help in the latter scenario, the ``SPIN_ON_BL1_EXIT=1`` build option can be
1324used. The infinite loop that it introduces in BL1 stops execution at the right
1325moment for a debugger to take control of the target and load the payload (for
1326example, over JTAG).
1327
1328It is expected that this loading method will work in most cases, as a debugger
1329connection is usually available in a pre-production system. The user is free to
1330use any other platform-specific mechanism to load the EL3 payload, though.
1331
1332Booting an EL3 payload on FVP
1333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1334
1335The EL3 payloads boot flow requires the CPU's mailbox to be cleared at reset for
1336the secondary CPUs holding pen to work properly. Unfortunately, its reset value
1337is undefined on the FVP platform and the FVP platform code doesn't clear it.
1338Therefore, one must modify the way the model is normally invoked in order to
1339clear the mailbox at start-up.
1340
1341One way to do that is to create an 8-byte file containing all zero bytes using
1342the following command:
1343
1344::
1345
1346 dd if=/dev/zero of=mailbox.dat bs=1 count=8
1347
1348and pre-load it into the FVP memory at the mailbox address (i.e. ``0x04000000``)
1349using the following model parameters:
1350
1351::
1352
1353 --data cluster0.cpu0=mailbox.dat@0x04000000 [Base FVPs]
1354 --data=mailbox.dat@0x04000000 [Foundation FVP]
1355
1356To provide the model with the EL3 payload image, the following methods may be
1357used:
1358
1359#. If the EL3 payload is able to execute in place, it may be programmed into
1360 flash memory. On Base Cortex and AEM FVPs, the following model parameter
1361 loads it at the base address of the NOR FLASH1 (the NOR FLASH0 is already
1362 used for the FIP):
1363
1364 ::
1365
1366 -C bp.flashloader1.fname="/path/to/el3-payload"
1367
1368 On Foundation FVP, there is no flash loader component and the EL3 payload
1369 may be programmed anywhere in flash using method 3 below.
1370
1371#. When using the ``SPIN_ON_BL1_EXIT=1`` loading method, the following DS-5
1372 command may be used to load the EL3 payload ELF image over JTAG:
1373
1374 ::
1375
1376 load /path/to/el3-payload.elf
1377
1378#. The EL3 payload may be pre-loaded in volatile memory using the following
1379 model parameters:
1380
1381 ::
1382
1383 --data cluster0.cpu0="/path/to/el3-payload"@address [Base FVPs]
1384 --data="/path/to/el3-payload"@address [Foundation FVP]
1385
1386 The address provided to the FVP must match the ``EL3_PAYLOAD_BASE`` address
1387 used when building the Trusted Firmware.
1388
1389Booting an EL3 payload on Juno
1390^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1391
1392If the EL3 payload is able to execute in place, it may be programmed in flash
1393memory by adding an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
1394on the Juno SD card (where ``x`` depends on the revision of the Juno board).
1395Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
1396programming" for more information.
1397
1398Alternatively, the same DS-5 command mentioned in the FVP section above can
1399be used to load the EL3 payload's ELF file over JTAG on Juno.
1400
1401Preloaded BL33 alternative boot flow
1402------------------------------------
1403
1404Some platforms have the ability to preload BL33 into memory instead of relying
1405on Trusted Firmware to load it. This may simplify packaging of the normal world
1406code and improve performance in a development environment. When secure world
1407cold boot is complete, Trusted Firmware simply jumps to a BL33 base address
1408provided at build time.
1409
1410For this option to be used, the ``PRELOADED_BL33_BASE`` build option has to be
1411used when compiling the Trusted Firmware. For example, the following command
1412will create a FIP without a BL33 and prepare to jump to a BL33 image loaded at
1413address 0x80000000:
1414
1415::
1416
1417 make PRELOADED_BL33_BASE=0x80000000 PLAT=fvp all fip
1418
1419Boot of a preloaded bootwrapped kernel image on Base FVP
1420~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1421
1422The following example uses the AArch64 boot wrapper. This simplifies normal
1423world booting while also making use of TF features. It can be obtained from its
1424repository with:
1425
1426::
1427
1428 git clone git://git.kernel.org/pub/scm/linux/kernel/git/mark/boot-wrapper-aarch64.git
1429
1430After compiling it, an ELF file is generated. It can be loaded with the
1431following command:
1432
1433::
1434
1435 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1436 -C bp.secureflashloader.fname=bl1.bin \
1437 -C bp.flashloader0.fname=fip.bin \
1438 -a cluster0.cpu0=<bootwrapped-kernel.elf> \
1439 --start cluster0.cpu0=0x0
1440
1441The ``-a cluster0.cpu0=<bootwrapped-kernel.elf>`` option loads the ELF file. It
1442also sets the PC register to the ELF entry point address, which is not the
1443desired behaviour, so the ``--start cluster0.cpu0=0x0`` option forces the PC back
1444to 0x0 (the BL1 entry point address) on CPU #0. The ``PRELOADED_BL33_BASE`` define
1445used when compiling the FIP must match the ELF entry point.
1446
1447Boot of a preloaded bootwrapped kernel image on Juno
1448~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1449
1450The procedure to obtain and compile the boot wrapper is very similar to the case
1451of the FVP. The execution must be stopped at the end of bl2\_main(), and the
1452loading method explained above in the EL3 payload boot flow section may be used
1453to load the ELF file over JTAG on Juno.
1454
1455Running the software on FVP
1456---------------------------
1457
1458The latest version of the AArch64 build of ARM Trusted Firmware has been tested
1459on the following ARM FVPs (64-bit host machine only).
1460
Eleanor Bonnici99f38f52017-10-04 15:03:33 +01001461NOTE: Unless otherwise stated, the model version is Version 11.1 Build 11.1.22.
David Cunado64d50c72017-06-27 17:31:12 +01001462
1463- ``Foundation_Platform``
Eleanor Bonnici99f38f52017-10-04 15:03:33 +01001464- ``FVP_Base_AEMv8A-AEMv8A`` (Version 8.7, Build 0.8.8702)
David Cunado64d50c72017-06-27 17:31:12 +01001465- ``FVP_Base_Cortex-A35x4``
1466- ``FVP_Base_Cortex-A53x4``
1467- ``FVP_Base_Cortex-A57x4-A53x4``
1468- ``FVP_Base_Cortex-A57x4``
1469- ``FVP_Base_Cortex-A72x4-A53x4``
1470- ``FVP_Base_Cortex-A72x4``
1471- ``FVP_Base_Cortex-A73x4-A53x4``
1472- ``FVP_Base_Cortex-A73x4``
Douglas Raillard6f625742017-06-28 15:23:03 +01001473
1474The latest version of the AArch32 build of ARM Trusted Firmware has been tested
1475on the following ARM FVPs (64-bit host machine only).
1476
Eleanor Bonnici99f38f52017-10-04 15:03:33 +01001477- ``FVP_Base_AEMv8A-AEMv8A`` (Version 8.7, Build 0.8.8702)
David Cunado64d50c72017-06-27 17:31:12 +01001478- ``FVP_Base_Cortex-A32x4``
Douglas Raillard6f625742017-06-28 15:23:03 +01001479
1480NOTE: The build numbers quoted above are those reported by launching the FVP
1481with the ``--version`` parameter.
1482
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001483NOTE: Linaro provides a ramdisk image in prebuilt FVP configurations and full
1484file systems that can be downloaded separately. To run an FVP with a virtio
1485file system image an additional FVP configuration option
1486``-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>`` can be
1487used.
1488
Douglas Raillard6f625742017-06-28 15:23:03 +01001489NOTE: The software will not work on Version 1.0 of the Foundation FVP.
1490The commands below would report an ``unhandled argument`` error in this case.
1491
1492NOTE: FVPs can be launched with ``--cadi-server`` option such that a
1493CADI-compliant debugger (for example, ARM DS-5) can connect to and control its
1494execution.
1495
Eleanor Bonnici99f38f52017-10-04 15:03:33 +01001496NOTE: Since FVP model Version 11.0 Build 11.0.34 and Version 8.5 Build 0.8.5202
David Cunado279fedc2017-07-31 12:24:51 +01001497the internal synchronisation timings changed compared to older versions of the
1498models. The models can be launched with ``-Q 100`` option if they are required
1499to match the run time characteristics of the older versions.
1500
Douglas Raillard6f625742017-06-28 15:23:03 +01001501The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
1502downloaded for free from `ARM's website`_.
1503
David Cunado64d50c72017-06-27 17:31:12 +01001504The Cortex-A models listed above are also available to download from
1505`ARM's website`_.
1506
Douglas Raillard6f625742017-06-28 15:23:03 +01001507Please refer to the FVP documentation for a detailed description of the model
1508parameter options. A brief description of the important ones that affect the ARM
1509Trusted Firmware and normal world software behavior is provided below.
1510
Douglas Raillard6f625742017-06-28 15:23:03 +01001511Obtaining the Flattened Device Trees
1512~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1513
1514Depending on the FVP configuration and Linux configuration used, different
1515FDT files are required. FDTs for the Foundation and Base FVPs can be found in
1516the Trusted Firmware source directory under ``fdts/``. The Foundation FVP has a
1517subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
1518and MMC support, and has only one CPU cluster.
1519
1520Note: It is not recommended to use the FDTs built along the kernel because not
1521all FDTs are available from there.
1522
1523- ``fvp-base-gicv2-psci.dtb``
1524
1525 For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
1526 Base memory map configuration.
1527
1528- ``fvp-base-gicv2-psci-aarch32.dtb``
1529
1530 For use with AEMv8 and Cortex-A32 Base FVPs running Linux in AArch32 state
1531 with Base memory map configuration.
1532
1533- ``fvp-base-gicv3-psci.dtb``
1534
1535 (Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base
1536 memory map configuration and Linux GICv3 support.
1537
1538- ``fvp-base-gicv3-psci-aarch32.dtb``
1539
1540 For use with AEMv8 and Cortex-A32 Base FVPs running Linux in AArch32 state
1541 with Base memory map configuration and Linux GICv3 support.
1542
1543- ``fvp-foundation-gicv2-psci.dtb``
1544
1545 For use with Foundation FVP with Base memory map configuration.
1546
1547- ``fvp-foundation-gicv3-psci.dtb``
1548
1549 (Default) For use with Foundation FVP with Base memory map configuration
1550 and Linux GICv3 support.
1551
1552Running on the Foundation FVP with reset to BL1 entrypoint
1553~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1554
1555The following ``Foundation_Platform`` parameters should be used to boot Linux with
15564 CPUs using the AArch64 build of ARM Trusted Firmware.
1557
1558::
1559
1560 <path-to>/Foundation_Platform \
1561 --cores=4 \
1562 --secure-memory \
1563 --visualization \
1564 --gicv3 \
1565 --data="<path-to>/<bl1-binary>"@0x0 \
1566 --data="<path-to>/<FIP-binary>"@0x08000000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001567 --data="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001568 --data="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001569 --data="<path-to>/<ramdisk-binary>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001570
1571Notes:
1572
1573- BL1 is loaded at the start of the Trusted ROM.
1574- The Firmware Image Package is loaded at the start of NOR FLASH0.
1575- The Linux kernel image and device tree are loaded in DRAM.
1576- The default use-case for the Foundation FVP is to use the ``--gicv3`` option
1577 and enable the GICv3 device in the model. Note that without this option,
1578 the Foundation FVP defaults to legacy (Versatile Express) memory map which
1579 is not supported by ARM Trusted Firmware.
1580
1581Running on the AEMv8 Base FVP with reset to BL1 entrypoint
1582~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1583
1584The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
1585with 8 CPUs using the AArch64 build of ARM Trusted Firmware.
1586
1587::
1588
1589 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1590 -C pctl.startup=0.0.0.0 \
1591 -C bp.secure_memory=1 \
1592 -C bp.tzc_400.diagnostics=1 \
1593 -C cluster0.NUM_CORES=4 \
1594 -C cluster1.NUM_CORES=4 \
1595 -C cache_state_modelled=1 \
1596 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1597 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001598 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001599 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001600 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001601
1602Running on the AEMv8 Base FVP (AArch32) with reset to BL1 entrypoint
1603~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1604
1605The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
1606with 8 CPUs using the AArch32 build of ARM Trusted Firmware.
1607
1608::
1609
1610 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1611 -C pctl.startup=0.0.0.0 \
1612 -C bp.secure_memory=1 \
1613 -C bp.tzc_400.diagnostics=1 \
1614 -C cluster0.NUM_CORES=4 \
1615 -C cluster1.NUM_CORES=4 \
1616 -C cache_state_modelled=1 \
1617 -C cluster0.cpu0.CONFIG64=0 \
1618 -C cluster0.cpu1.CONFIG64=0 \
1619 -C cluster0.cpu2.CONFIG64=0 \
1620 -C cluster0.cpu3.CONFIG64=0 \
1621 -C cluster1.cpu0.CONFIG64=0 \
1622 -C cluster1.cpu1.CONFIG64=0 \
1623 -C cluster1.cpu2.CONFIG64=0 \
1624 -C cluster1.cpu3.CONFIG64=0 \
1625 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1626 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001627 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001628 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001629 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001630
1631Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint
1632~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1633
1634The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
1635boot Linux with 8 CPUs using the AArch64 build of ARM Trusted Firmware.
1636
1637::
1638
1639 <path-to>/FVP_Base_Cortex-A57x4-A53x4 \
1640 -C pctl.startup=0.0.0.0 \
1641 -C bp.secure_memory=1 \
1642 -C bp.tzc_400.diagnostics=1 \
1643 -C cache_state_modelled=1 \
1644 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1645 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001646 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001647 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001648 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001649
1650Running on the Cortex-A32 Base FVP (AArch32) with reset to BL1 entrypoint
1651~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1652
1653The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
1654boot Linux with 4 CPUs using the AArch32 build of ARM Trusted Firmware.
1655
1656::
1657
1658 <path-to>/FVP_Base_Cortex-A32x4 \
1659 -C pctl.startup=0.0.0.0 \
1660 -C bp.secure_memory=1 \
1661 -C bp.tzc_400.diagnostics=1 \
1662 -C cache_state_modelled=1 \
1663 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1664 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001665 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001666 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001667 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001668
1669Running on the AEMv8 Base FVP with reset to BL31 entrypoint
1670~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1671
1672The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
1673with 8 CPUs using the AArch64 build of ARM Trusted Firmware.
1674
1675::
1676
1677 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1678 -C pctl.startup=0.0.0.0 \
1679 -C bp.secure_memory=1 \
1680 -C bp.tzc_400.diagnostics=1 \
1681 -C cluster0.NUM_CORES=4 \
1682 -C cluster1.NUM_CORES=4 \
1683 -C cache_state_modelled=1 \
Qixiang Xufd5763e2017-08-31 11:45:32 +08001684 -C cluster0.cpu0.RVBAR=0x04020000 \
1685 -C cluster0.cpu1.RVBAR=0x04020000 \
1686 -C cluster0.cpu2.RVBAR=0x04020000 \
1687 -C cluster0.cpu3.RVBAR=0x04020000 \
1688 -C cluster1.cpu0.RVBAR=0x04020000 \
1689 -C cluster1.cpu1.RVBAR=0x04020000 \
1690 -C cluster1.cpu2.RVBAR=0x04020000 \
1691 -C cluster1.cpu3.RVBAR=0x04020000 \
1692 --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04020000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001693 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1694 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001695 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001696 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001697 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001698
1699Notes:
1700
1701- Since a FIP is not loaded when using BL31 as reset entrypoint, the
1702 ``--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>``
1703 parameter is needed to load the individual bootloader images in memory.
1704 BL32 image is only needed if BL31 has been built to expect a Secure-EL1
1705 Payload.
1706
1707- The ``-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>`` parameter, where
1708 X and Y are the cluster and CPU numbers respectively, is used to set the
1709 reset vector for each core.
1710
1711- Changing the default value of ``ARM_TSP_RAM_LOCATION`` will also require
1712 changing the value of
1713 ``--data="<path-to><bl32-binary>"@<base-address-of-bl32>`` to the new value of
1714 ``BL32_BASE``.
1715
1716Running on the AEMv8 Base FVP (AArch32) with reset to SP\_MIN entrypoint
1717~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1718
1719The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
1720with 8 CPUs using the AArch32 build of ARM Trusted Firmware.
1721
1722::
1723
1724 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1725 -C pctl.startup=0.0.0.0 \
1726 -C bp.secure_memory=1 \
1727 -C bp.tzc_400.diagnostics=1 \
1728 -C cluster0.NUM_CORES=4 \
1729 -C cluster1.NUM_CORES=4 \
1730 -C cache_state_modelled=1 \
1731 -C cluster0.cpu0.CONFIG64=0 \
1732 -C cluster0.cpu1.CONFIG64=0 \
1733 -C cluster0.cpu2.CONFIG64=0 \
1734 -C cluster0.cpu3.CONFIG64=0 \
1735 -C cluster1.cpu0.CONFIG64=0 \
1736 -C cluster1.cpu1.CONFIG64=0 \
1737 -C cluster1.cpu2.CONFIG64=0 \
1738 -C cluster1.cpu3.CONFIG64=0 \
1739 -C cluster0.cpu0.RVBAR=0x04001000 \
1740 -C cluster0.cpu1.RVBAR=0x04001000 \
1741 -C cluster0.cpu2.RVBAR=0x04001000 \
1742 -C cluster0.cpu3.RVBAR=0x04001000 \
1743 -C cluster1.cpu0.RVBAR=0x04001000 \
1744 -C cluster1.cpu1.RVBAR=0x04001000 \
1745 -C cluster1.cpu2.RVBAR=0x04001000 \
1746 -C cluster1.cpu3.RVBAR=0x04001000 \
1747 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1748 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001749 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001750 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001751 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001752
1753Note: The load address of ``<bl32-binary>`` depends on the value ``BL32_BASE``.
1754It should match the address programmed into the RVBAR register as well.
1755
1756Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint
1757~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1758
1759The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
1760boot Linux with 8 CPUs using the AArch64 build of ARM Trusted Firmware.
1761
1762::
1763
1764 <path-to>/FVP_Base_Cortex-A57x4-A53x4 \
1765 -C pctl.startup=0.0.0.0 \
1766 -C bp.secure_memory=1 \
1767 -C bp.tzc_400.diagnostics=1 \
1768 -C cache_state_modelled=1 \
Qixiang Xufd5763e2017-08-31 11:45:32 +08001769 -C cluster0.cpu0.RVBARADDR=0x04020000 \
1770 -C cluster0.cpu1.RVBARADDR=0x04020000 \
1771 -C cluster0.cpu2.RVBARADDR=0x04020000 \
1772 -C cluster0.cpu3.RVBARADDR=0x04020000 \
1773 -C cluster1.cpu0.RVBARADDR=0x04020000 \
1774 -C cluster1.cpu1.RVBARADDR=0x04020000 \
1775 -C cluster1.cpu2.RVBARADDR=0x04020000 \
1776 -C cluster1.cpu3.RVBARADDR=0x04020000 \
1777 --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04020000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001778 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1779 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001780 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001781 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001782 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001783
1784Running on the Cortex-A32 Base FVP (AArch32) with reset to SP\_MIN entrypoint
1785~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1786
1787The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
1788boot Linux with 4 CPUs using the AArch32 build of ARM Trusted Firmware.
1789
1790::
1791
1792 <path-to>/FVP_Base_Cortex-A32x4 \
1793 -C pctl.startup=0.0.0.0 \
1794 -C bp.secure_memory=1 \
1795 -C bp.tzc_400.diagnostics=1 \
1796 -C cache_state_modelled=1 \
1797 -C cluster0.cpu0.RVBARADDR=0x04001000 \
1798 -C cluster0.cpu1.RVBARADDR=0x04001000 \
1799 -C cluster0.cpu2.RVBARADDR=0x04001000 \
1800 -C cluster0.cpu3.RVBARADDR=0x04001000 \
1801 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1802 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001803 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillard6f625742017-06-28 15:23:03 +01001804 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001805 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillard6f625742017-06-28 15:23:03 +01001806
1807Running the software on Juno
1808----------------------------
1809
David Cunado31f2f792017-06-29 12:01:33 +01001810This version of the ARM Trusted Firmware has been tested on variants r0, r1 and
1811r2 of Juno.
Douglas Raillard6f625742017-06-28 15:23:03 +01001812
1813To execute the software stack on Juno, the version of the Juno board recovery
1814image indicated in the `Linaro Release Notes`_ must be installed. If you have an
1815earlier version installed or are unsure which version is installed, please
1816re-install the recovery image by following the
1817`Instructions for using Linaro's deliverables on Juno`_.
1818
1819Preparing Trusted Firmware images
1820~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1821
1822After building Trusted Firmware, the files ``bl1.bin`` and ``fip.bin`` need copying
1823to the ``SOFTWARE/`` directory of the Juno SD card.
1824
1825Other Juno software information
1826~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1827
1828Please visit the `ARM Platforms Portal`_ to get support and obtain any other Juno
1829software information. Please also refer to the `Juno Getting Started Guide`_ to
1830get more detailed information about the Juno ARM development platform and how to
1831configure it.
1832
1833Testing SYSTEM SUSPEND on Juno
1834~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1835
1836The SYSTEM SUSPEND is a PSCI API which can be used to implement system suspend
1837to RAM. For more details refer to section 5.16 of `PSCI`_. To test system suspend
1838on Juno, at the linux shell prompt, issue the following command:
1839
1840::
1841
1842 echo +10 > /sys/class/rtc/rtc0/wakealarm
1843 echo -n mem > /sys/power/state
1844
1845The Juno board should suspend to RAM and then wakeup after 10 seconds due to
1846wakeup interrupt from RTC.
1847
1848--------------
1849
1850*Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.*
1851
David Cunado31f2f792017-06-29 12:01:33 +01001852.. _Linaro: `Linaro Release Notes`_
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001853.. _Linaro Release: `Linaro Release Notes`_
Douglas Raillard6f625742017-06-28 15:23:03 +01001854.. _Linaro Release Notes: https://community.arm.com/tools/dev-platforms/b/documents/posts/linaro-release-notes-deprecated
David Cunado31f2f792017-06-29 12:01:33 +01001855.. _Linaro Release 17.04: https://community.arm.com/tools/dev-platforms/b/documents/posts/linaro-release-notes-deprecated#LinaroRelease17.04
Douglas Raillard6f625742017-06-28 15:23:03 +01001856.. _Linaro instructions: https://community.arm.com/dev-platforms/b/documents/posts/instructions-for-using-the-linaro-software-deliverables
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001857.. _Instructions for using Linaro's deliverables on Juno: https://community.arm.com/dev-platforms/b/documents/posts/using-linaros-deliverables-on-juno
1858.. _ARM Platforms Portal: https://community.arm.com/dev-platforms/
Douglas Raillard6f625742017-06-28 15:23:03 +01001859.. _Development Studio 5 (DS-5): http://www.arm.com/products/tools/software-tools/ds-5/index.php
Antonio Nino Diaz6feb9e82017-05-23 11:49:22 +01001860.. _Dia: https://wiki.gnome.org/Apps/Dia/Download
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001861.. _here: psci-lib-integration-guide.rst
Douglas Raillard6f625742017-06-28 15:23:03 +01001862.. _Trusted Board Boot: trusted-board-boot.rst
1863.. _Secure-EL1 Payloads and Dispatchers: firmware-design.rst#user-content-secure-el1-payloads-and-dispatchers
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001864.. _Firmware Update: firmware-update.rst
1865.. _Firmware Design: firmware-design.rst
Douglas Raillard6f625742017-06-28 15:23:03 +01001866.. _mbed TLS Repository: https://github.com/ARMmbed/mbedtls.git
1867.. _mbed TLS Security Center: https://tls.mbed.org/security
Eleanor Bonniciec4a2bb2017-07-07 14:33:24 +01001868.. _ARM's website: `FVP models`_
1869.. _FVP models: https://developer.arm.com/products/system-design/fixed-virtual-platforms
Douglas Raillard6f625742017-06-28 15:23:03 +01001870.. _Juno Getting Started Guide: http://infocenter.arm.com/help/topic/com.arm.doc.dui0928e/DUI0928E_juno_arm_development_platform_gsg.pdf
David Cunado31f2f792017-06-29 12:01:33 +01001871.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf