blob: 3e1c48c3208e108daaf4290328b68de1cd6ce18c [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Dave Rodgman0f2971a2023-11-03 12:04:52 +00005 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
Paul Bakker5121ce52009-01-03 21:22:43 +00006 */
Simon Butcher15b15d12015-11-26 19:35:03 +00007
Paul Bakker5121ce52009-01-03 21:22:43 +00008/*
Simon Butcher15b15d12015-11-26 19:35:03 +00009 * The following sources were referenced in the design of this Multi-precision
10 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000011 *
Simon Butcher15b15d12015-11-26 19:35:03 +000012 * [1] Handbook of Applied Cryptography - 1997
13 * Menezes, van Oorschot and Vanstone
14 *
15 * [2] Multi-Precision Math
16 * Tom St Denis
17 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
18 *
19 * [3] GNU Multi-Precision Arithmetic Library
20 * https://gmplib.org/manual/index.html
21 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000022 */
Paul Bakker5121ce52009-01-03 21:22:43 +000023
Gilles Peskinedb09ef62020-06-03 01:43:33 +020024#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000025
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020026#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000027
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000028#include "mbedtls/bignum.h"
29#include "mbedtls/bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050030#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000031#include "mbedtls/error.h"
Gabor Mezeic0ae1cf2021-10-20 12:09:35 +020032#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000033
Tom Cosgrove58efe612021-11-15 09:59:53 +000034#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000035#include <string.h>
36
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000037#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020038
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010039#define MPI_VALIDATE_RET(cond) \
40 MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
41#define MPI_VALIDATE(cond) \
42 MBEDTLS_INTERNAL_VALIDATE(cond)
Hanno Becker73d7d792018-12-11 10:35:51 +000043
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020044#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
Paul Bakker5121ce52009-01-03 21:22:43 +000045#define biL (ciL << 3) /* bits in limb */
46#define biH (ciL << 2) /* half limb size */
47
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010048#define MPI_SIZE_T_MAX ((size_t) -1) /* SIZE_T_MAX is not standard */
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +010049
Paul Bakker5121ce52009-01-03 21:22:43 +000050/*
51 * Convert between bits/chars and number of limbs
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +020052 * Divide first in order to avoid potential overflows
Paul Bakker5121ce52009-01-03 21:22:43 +000053 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010054#define BITS_TO_LIMBS(i) ((i) / biL + ((i) % biL != 0))
55#define CHARS_TO_LIMBS(i) ((i) / ciL + ((i) % ciL != 0))
Paul Bakker5121ce52009-01-03 21:22:43 +000056
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050057/* Implementation that should never be optimized out by the compiler */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010058static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n)
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050059{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010060 mbedtls_platform_zeroize(v, ciL * n);
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050061}
62
Paul Bakker5121ce52009-01-03 21:22:43 +000063/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000064 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000065 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010066void mbedtls_mpi_init(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000067{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010068 MPI_VALIDATE(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +000069
Paul Bakker6c591fa2011-05-05 11:49:20 +000070 X->s = 1;
71 X->n = 0;
72 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000073}
74
75/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000076 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000077 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010078void mbedtls_mpi_free(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000079{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010080 if (X == NULL) {
Paul Bakker6c591fa2011-05-05 11:49:20 +000081 return;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010082 }
Paul Bakker5121ce52009-01-03 21:22:43 +000083
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010084 if (X->p != NULL) {
85 mbedtls_mpi_zeroize(X->p, X->n);
86 mbedtls_free(X->p);
Paul Bakker5121ce52009-01-03 21:22:43 +000087 }
88
Paul Bakker6c591fa2011-05-05 11:49:20 +000089 X->s = 1;
90 X->n = 0;
91 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000092}
93
94/*
95 * Enlarge to the specified number of limbs
96 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +010097int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
Paul Bakker5121ce52009-01-03 21:22:43 +000098{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020099 mbedtls_mpi_uint *p;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100100 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000101
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100102 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
103 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
104 }
Paul Bakkerf9688572011-05-05 10:00:45 +0000105
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100106 if (X->n < nblimbs) {
107 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
108 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
109 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000110
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100111 if (X->p != NULL) {
112 memcpy(p, X->p, X->n * ciL);
113 mbedtls_mpi_zeroize(X->p, X->n);
114 mbedtls_free(X->p);
Paul Bakker5121ce52009-01-03 21:22:43 +0000115 }
116
117 X->n = nblimbs;
118 X->p = p;
119 }
120
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100121 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000122}
123
124/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100125 * Resize down as much as possible,
126 * while keeping at least the specified number of limbs
127 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100128int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100129{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200130 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100131 size_t i;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100132 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000133
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100134 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
135 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
136 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100137
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100138 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100139 if (X->n <= nblimbs) {
140 return mbedtls_mpi_grow(X, nblimbs);
141 }
Gilles Peskine322752b2020-01-21 13:59:51 +0100142 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100143
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100144 for (i = X->n - 1; i > 0; i--) {
145 if (X->p[i] != 0) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100146 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100147 }
148 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100149 i++;
150
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100151 if (i < nblimbs) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100152 i = nblimbs;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100153 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100154
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100155 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
156 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
157 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100158
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100159 if (X->p != NULL) {
160 memcpy(p, X->p, i * ciL);
161 mbedtls_mpi_zeroize(X->p, X->n);
162 mbedtls_free(X->p);
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100163 }
164
165 X->n = i;
166 X->p = p;
167
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100168 return 0;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100169}
170
Gilles Peskine3130ce22021-06-02 22:17:52 +0200171/* Resize X to have exactly n limbs and set it to 0. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100172static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
Gilles Peskine3130ce22021-06-02 22:17:52 +0200173{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100174 if (limbs == 0) {
175 mbedtls_mpi_free(X);
176 return 0;
177 } else if (X->n == limbs) {
178 memset(X->p, 0, limbs * ciL);
Gilles Peskine3130ce22021-06-02 22:17:52 +0200179 X->s = 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100180 return 0;
181 } else {
182 mbedtls_mpi_free(X);
183 return mbedtls_mpi_grow(X, limbs);
Gilles Peskine3130ce22021-06-02 22:17:52 +0200184 }
185}
186
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100187/*
Gilles Peskinef643e8e2021-06-08 23:17:42 +0200188 * Copy the contents of Y into X.
189 *
190 * This function is not constant-time. Leading zeros in Y may be removed.
191 *
192 * Ensure that X does not shrink. This is not guaranteed by the public API,
193 * but some code in the bignum module relies on this property, for example
194 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000195 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100196int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000197{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100198 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000199 size_t i;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100200 MPI_VALIDATE_RET(X != NULL);
201 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000202
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100203 if (X == Y) {
204 return 0;
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200205 }
206
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100207 if (Y->n == 0) {
208 if (X->n != 0) {
209 X->s = 1;
210 memset(X->p, 0, X->n * ciL);
211 }
212 return 0;
213 }
214
215 for (i = Y->n - 1; i > 0; i--) {
216 if (Y->p[i] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000217 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100218 }
219 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000220 i++;
221
222 X->s = Y->s;
223
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100224 if (X->n < i) {
225 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
226 } else {
227 memset(X->p + i, 0, (X->n - i) * ciL);
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100228 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000229
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100230 memcpy(X->p, Y->p, i * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000231
232cleanup:
233
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100234 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000235}
236
237/*
238 * Swap the contents of X and Y
239 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100240void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000241{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200242 mbedtls_mpi T;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100243 MPI_VALIDATE(X != NULL);
244 MPI_VALIDATE(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000245
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100246 memcpy(&T, X, sizeof(mbedtls_mpi));
247 memcpy(X, Y, sizeof(mbedtls_mpi));
248 memcpy(Y, &T, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +0000249}
250
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100251static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
Gilles Peskineae7cbd72022-11-15 23:25:27 +0100252{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100253 if (z >= 0) {
254 return z;
255 }
Gilles Peskineae7cbd72022-11-15 23:25:27 +0100256 /* Take care to handle the most negative value (-2^(biL-1)) correctly.
257 * A naive -z would have undefined behavior.
258 * Write this in a way that makes popular compilers happy (GCC, Clang,
259 * MSVC). */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100260 return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
Gilles Peskineae7cbd72022-11-15 23:25:27 +0100261}
262
Paul Bakker5121ce52009-01-03 21:22:43 +0000263/*
264 * Set value from integer
265 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100266int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +0000267{
Janos Follath24eed8d2019-11-22 13:21:35 +0000268 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100269 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000270
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100271 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
272 memset(X->p, 0, X->n * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000273
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100274 X->p[0] = mpi_sint_abs(z);
275 X->s = (z < 0) ? -1 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000276
277cleanup:
278
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100279 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000280}
281
282/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000283 * Get a specific bit
284 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100285int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000286{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100287 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000288
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100289 if (X->n * biL <= pos) {
290 return 0;
291 }
Paul Bakker2f5947e2011-05-18 15:47:11 +0000292
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100293 return (X->p[pos / biL] >> (pos % biL)) & 0x01;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000294}
295
Gilles Peskine11cdb052018-11-20 16:47:47 +0100296/* Get a specific byte, without range checks. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100297#define GET_BYTE(X, i) \
298 (((X)->p[(i) / ciL] >> (((i) % ciL) * 8)) & 0xff)
Gilles Peskine11cdb052018-11-20 16:47:47 +0100299
Paul Bakker2f5947e2011-05-18 15:47:11 +0000300/*
301 * Set a bit to a specific value of 0 or 1
302 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100303int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000304{
305 int ret = 0;
306 size_t off = pos / biL;
307 size_t idx = pos % biL;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100308 MPI_VALIDATE_RET(X != NULL);
Paul Bakker2f5947e2011-05-18 15:47:11 +0000309
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100310 if (val != 0 && val != 1) {
311 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000312 }
313
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100314 if (X->n * biL <= pos) {
315 if (val == 0) {
316 return 0;
317 }
318
319 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
320 }
321
322 X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200323 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000324
325cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200326
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100327 return ret;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000328}
329
330/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200331 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000332 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100333size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000334{
Paul Bakker23986e52011-04-24 08:57:21 +0000335 size_t i, j, count = 0;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100336 MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000337
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100338 for (i = 0; i < X->n; i++) {
339 for (j = 0; j < biL; j++, count++) {
340 if (((X->p[i] >> j) & 1) != 0) {
341 return count;
342 }
343 }
344 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000345
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100346 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000347}
348
349/*
Simon Butcher15b15d12015-11-26 19:35:03 +0000350 * Count leading zero bits in a given integer
351 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100352static size_t mbedtls_clz(const mbedtls_mpi_uint x)
Simon Butcher15b15d12015-11-26 19:35:03 +0000353{
354 size_t j;
Manuel Pégourié-Gonnarde3e8edf2015-12-01 09:31:52 +0100355 mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
Simon Butcher15b15d12015-11-26 19:35:03 +0000356
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100357 for (j = 0; j < biL; j++) {
358 if (x & mask) {
359 break;
360 }
Simon Butcher15b15d12015-11-26 19:35:03 +0000361
362 mask >>= 1;
363 }
364
365 return j;
366}
367
368/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200369 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000370 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100371size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000372{
Paul Bakker23986e52011-04-24 08:57:21 +0000373 size_t i, j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000374
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100375 if (X->n == 0) {
376 return 0;
377 }
Manuel Pégourié-Gonnard770b5e12015-04-29 17:02:01 +0200378
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100379 for (i = X->n - 1; i > 0; i--) {
380 if (X->p[i] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000381 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100382 }
383 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000384
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100385 j = biL - mbedtls_clz(X->p[i]);
Paul Bakker5121ce52009-01-03 21:22:43 +0000386
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100387 return (i * biL) + j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000388}
389
390/*
391 * Return the total size in bytes
392 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100393size_t mbedtls_mpi_size(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000394{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100395 return (mbedtls_mpi_bitlen(X) + 7) >> 3;
Paul Bakker5121ce52009-01-03 21:22:43 +0000396}
397
398/*
399 * Convert an ASCII character to digit value
400 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100401static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
Paul Bakker5121ce52009-01-03 21:22:43 +0000402{
403 *d = 255;
404
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100405 if (c >= 0x30 && c <= 0x39) {
406 *d = c - 0x30;
407 }
408 if (c >= 0x41 && c <= 0x46) {
409 *d = c - 0x37;
410 }
411 if (c >= 0x61 && c <= 0x66) {
412 *d = c - 0x57;
413 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000414
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100415 if (*d >= (mbedtls_mpi_uint) radix) {
416 return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
417 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000418
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100419 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000420}
421
422/*
423 * Import from an ASCII string
424 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100425int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
Paul Bakker5121ce52009-01-03 21:22:43 +0000426{
Janos Follath24eed8d2019-11-22 13:21:35 +0000427 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000428 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200429 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200430 mbedtls_mpi_uint d;
431 mbedtls_mpi T;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100432 MPI_VALIDATE_RET(X != NULL);
433 MPI_VALIDATE_RET(s != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000434
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100435 if (radix < 2 || radix > 16) {
436 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskined4876132021-06-08 18:32:34 +0200437 }
438
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100439 mbedtls_mpi_init(&T);
440
441 if (s[0] == 0) {
442 mbedtls_mpi_free(X);
443 return 0;
444 }
445
446 if (s[0] == '-') {
Gilles Peskine80f56732021-04-03 18:26:13 +0200447 ++s;
448 sign = -1;
449 }
450
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100451 slen = strlen(s);
Paul Bakkerff60ee62010-03-16 21:09:09 +0000452
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100453 if (radix == 16) {
454 if (slen > MPI_SIZE_T_MAX >> 2) {
455 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker5121ce52009-01-03 21:22:43 +0000456 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000457
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100458 n = BITS_TO_LIMBS(slen << 2);
459
460 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
461 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
462
463 for (i = slen, j = 0; i > 0; i--, j++) {
464 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
465 X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
466 }
467 } else {
468 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
469
470 for (i = 0; i < slen; i++) {
471 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
472 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
473 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
Paul Bakker5121ce52009-01-03 21:22:43 +0000474 }
475 }
476
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100477 if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
Gilles Peskine80f56732021-04-03 18:26:13 +0200478 X->s = -1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100479 }
Gilles Peskine80f56732021-04-03 18:26:13 +0200480
Paul Bakker5121ce52009-01-03 21:22:43 +0000481cleanup:
482
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100483 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000484
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100485 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000486}
487
488/*
Ron Eldora16fa292018-11-20 14:07:01 +0200489 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000490 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100491static int mpi_write_hlp(mbedtls_mpi *X, int radix,
492 char **p, const size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000493{
Janos Follath24eed8d2019-11-22 13:21:35 +0000494 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200495 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200496 size_t length = 0;
497 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000498
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100499 do {
500 if (length >= buflen) {
501 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Ron Eldora16fa292018-11-20 14:07:01 +0200502 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000503
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100504 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
505 MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
Ron Eldora16fa292018-11-20 14:07:01 +0200506 /*
507 * Write the residue in the current position, as an ASCII character.
508 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100509 if (r < 0xA) {
510 *(--p_end) = (char) ('0' + r);
511 } else {
512 *(--p_end) = (char) ('A' + (r - 0xA));
513 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000514
Ron Eldora16fa292018-11-20 14:07:01 +0200515 length++;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100516 } while (mbedtls_mpi_cmp_int(X, 0) != 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000517
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100518 memmove(*p, p_end, length);
Ron Eldora16fa292018-11-20 14:07:01 +0200519 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000520
521cleanup:
522
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100523 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000524}
525
526/*
527 * Export into an ASCII string
528 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100529int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
530 char *buf, size_t buflen, size_t *olen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000531{
Paul Bakker23986e52011-04-24 08:57:21 +0000532 int ret = 0;
533 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000534 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200535 mbedtls_mpi T;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100536 MPI_VALIDATE_RET(X != NULL);
537 MPI_VALIDATE_RET(olen != NULL);
538 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000539
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100540 if (radix < 2 || radix > 16) {
541 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
542 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000543
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100544 n = mbedtls_mpi_bitlen(X); /* Number of bits necessary to present `n`. */
545 if (radix >= 4) {
546 n >>= 1; /* Number of 4-adic digits necessary to present
Hanno Becker23cfea02019-02-04 09:45:07 +0000547 * `n`. If radix > 4, this might be a strict
548 * overapproximation of the number of
549 * radix-adic digits needed to present `n`. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100550 }
551 if (radix >= 16) {
552 n >>= 1; /* Number of hexadecimal digits necessary to
Hanno Becker23cfea02019-02-04 09:45:07 +0000553 * present `n`. */
554
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100555 }
Janos Follath80470622019-03-06 13:43:02 +0000556 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000557 n += 1; /* Compensate for the divisions above, which round down `n`
558 * in case it's not even. */
559 n += 1; /* Potential '-'-sign. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100560 n += (n & 1); /* Make n even to have enough space for hexadecimal writing,
Hanno Becker23cfea02019-02-04 09:45:07 +0000561 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000562
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100563 if (buflen < n) {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100564 *olen = n;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100565 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Paul Bakker5121ce52009-01-03 21:22:43 +0000566 }
567
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100568 p = buf;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100569 mbedtls_mpi_init(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000570
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100571 if (X->s == -1) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000572 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000573 buflen--;
574 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000575
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100576 if (radix == 16) {
Paul Bakker23986e52011-04-24 08:57:21 +0000577 int c;
578 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000579
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100580 for (i = X->n, k = 0; i > 0; i--) {
581 for (j = ciL; j > 0; j--) {
582 c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000583
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100584 if (c == 0 && k == 0 && (i + j) != 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000585 continue;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100586 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000587
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000588 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000589 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000590 k = 1;
591 }
592 }
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100593 } else {
594 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000595
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100596 if (T.s == -1) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000597 T.s = 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100598 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000599
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100600 MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
Paul Bakker5121ce52009-01-03 21:22:43 +0000601 }
602
603 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100604 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000605
606cleanup:
607
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100608 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000609
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100610 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000611}
612
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200613#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000614/*
615 * Read X from an opened file
616 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100617int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
Paul Bakker5121ce52009-01-03 21:22:43 +0000618{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200619 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000620 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000621 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000622 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000623 * Buffer should have space for (short) label and decimal formatted MPI,
624 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000625 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100626 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
Paul Bakker5121ce52009-01-03 21:22:43 +0000627
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100628 MPI_VALIDATE_RET(X != NULL);
629 MPI_VALIDATE_RET(fin != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000630
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100631 if (radix < 2 || radix > 16) {
632 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
633 }
Hanno Becker73d7d792018-12-11 10:35:51 +0000634
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100635 memset(s, 0, sizeof(s));
636 if (fgets(s, sizeof(s) - 1, fin) == NULL) {
637 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
638 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000639
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100640 slen = strlen(s);
641 if (slen == sizeof(s) - 2) {
642 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
643 }
Paul Bakkercb37aa52011-11-30 16:00:20 +0000644
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100645 if (slen > 0 && s[slen - 1] == '\n') {
646 slen--; s[slen] = '\0';
647 }
648 if (slen > 0 && s[slen - 1] == '\r') {
649 slen--; s[slen] = '\0';
650 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000651
652 p = s + slen;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100653 while (p-- > s) {
654 if (mpi_get_digit(&d, radix, *p) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000655 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100656 }
657 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000658
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100659 return mbedtls_mpi_read_string(X, radix, p + 1);
Paul Bakker5121ce52009-01-03 21:22:43 +0000660}
661
662/*
663 * Write X into an opened file (or stdout if fout == NULL)
664 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100665int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
Paul Bakker5121ce52009-01-03 21:22:43 +0000666{
Janos Follath24eed8d2019-11-22 13:21:35 +0000667 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000668 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000669 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000670 * Buffer should have space for (short) label and decimal formatted MPI,
671 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000672 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100673 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
674 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000675
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100676 if (radix < 2 || radix > 16) {
677 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
678 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000679
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100680 memset(s, 0, sizeof(s));
Paul Bakker5121ce52009-01-03 21:22:43 +0000681
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100682 MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
Paul Bakker5121ce52009-01-03 21:22:43 +0000683
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100684 if (p == NULL) {
685 p = "";
686 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000687
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100688 plen = strlen(p);
689 slen = strlen(s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000690 s[slen++] = '\r';
691 s[slen++] = '\n';
692
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100693 if (fout != NULL) {
694 if (fwrite(p, 1, plen, fout) != plen ||
695 fwrite(s, 1, slen, fout) != slen) {
696 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
697 }
698 } else {
699 mbedtls_printf("%s%s", p, s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000700 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000701
702cleanup:
703
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100704 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000705}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200706#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000707
Hanno Beckerda1655a2017-10-18 14:21:44 +0100708
709/* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
710 * into the storage form used by mbedtls_mpi. */
Hanno Beckerf8720072018-11-08 11:53:49 +0000711
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100712static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c(mbedtls_mpi_uint x)
Hanno Beckerf8720072018-11-08 11:53:49 +0000713{
714 uint8_t i;
Hanno Becker031d6332019-05-01 17:09:11 +0100715 unsigned char *x_ptr;
Hanno Beckerf8720072018-11-08 11:53:49 +0000716 mbedtls_mpi_uint tmp = 0;
Hanno Becker031d6332019-05-01 17:09:11 +0100717
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100718 for (i = 0, x_ptr = (unsigned char *) &x; i < ciL; i++, x_ptr++) {
Hanno Becker031d6332019-05-01 17:09:11 +0100719 tmp <<= CHAR_BIT;
720 tmp |= (mbedtls_mpi_uint) *x_ptr;
721 }
722
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100723 return tmp;
Hanno Beckerf8720072018-11-08 11:53:49 +0000724}
725
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100726static mbedtls_mpi_uint mpi_uint_bigendian_to_host(mbedtls_mpi_uint x)
Hanno Beckerf8720072018-11-08 11:53:49 +0000727{
728#if defined(__BYTE_ORDER__)
729
730/* Nothing to do on bigendian systems. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100731#if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
732 return x;
Hanno Beckerf8720072018-11-08 11:53:49 +0000733#endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */
734
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100735#if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
Hanno Beckerf8720072018-11-08 11:53:49 +0000736
737/* For GCC and Clang, have builtins for byte swapping. */
Hanno Becker9f6d16a2019-01-02 17:15:06 +0000738#if defined(__GNUC__) && defined(__GNUC_PREREQ)
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100739#if __GNUC_PREREQ(4, 3)
Hanno Beckerf8720072018-11-08 11:53:49 +0000740#define have_bswap
741#endif
Hanno Becker9f6d16a2019-01-02 17:15:06 +0000742#endif
743
744#if defined(__clang__) && defined(__has_builtin)
745#if __has_builtin(__builtin_bswap32) && \
746 __has_builtin(__builtin_bswap64)
747#define have_bswap
748#endif
749#endif
750
Hanno Beckerf8720072018-11-08 11:53:49 +0000751#if defined(have_bswap)
752 /* The compiler is hopefully able to statically evaluate this! */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100753 switch (sizeof(mbedtls_mpi_uint)) {
Hanno Beckerf8720072018-11-08 11:53:49 +0000754 case 4:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100755 return __builtin_bswap32(x);
Hanno Beckerf8720072018-11-08 11:53:49 +0000756 case 8:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100757 return __builtin_bswap64(x);
Hanno Beckerf8720072018-11-08 11:53:49 +0000758 }
759#endif
760#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
761#endif /* __BYTE_ORDER__ */
762
763 /* Fall back to C-based reordering if we don't know the byte order
764 * or we couldn't use a compiler-specific builtin. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100765 return mpi_uint_bigendian_to_host_c(x);
Hanno Beckerf8720072018-11-08 11:53:49 +0000766}
767
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100768static void mpi_bigendian_to_host(mbedtls_mpi_uint * const p, size_t limbs)
Hanno Beckerda1655a2017-10-18 14:21:44 +0100769{
Hanno Beckerda1655a2017-10-18 14:21:44 +0100770 mbedtls_mpi_uint *cur_limb_left;
771 mbedtls_mpi_uint *cur_limb_right;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100772 if (limbs == 0) {
Hanno Becker2be8a552018-10-25 12:40:09 +0100773 return;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100774 }
Hanno Beckerda1655a2017-10-18 14:21:44 +0100775
776 /*
777 * Traverse limbs and
778 * - adapt byte-order in each limb
779 * - swap the limbs themselves.
780 * For that, simultaneously traverse the limbs from left to right
781 * and from right to left, as long as the left index is not bigger
782 * than the right index (it's not a problem if limbs is odd and the
783 * indices coincide in the last iteration).
784 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100785 for (cur_limb_left = p, cur_limb_right = p + (limbs - 1);
Hanno Beckerda1655a2017-10-18 14:21:44 +0100786 cur_limb_left <= cur_limb_right;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100787 cur_limb_left++, cur_limb_right--) {
Hanno Beckerf8720072018-11-08 11:53:49 +0000788 mbedtls_mpi_uint tmp;
789 /* Note that if cur_limb_left == cur_limb_right,
790 * this code effectively swaps the bytes only once. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100791 tmp = mpi_uint_bigendian_to_host(*cur_limb_left);
792 *cur_limb_left = mpi_uint_bigendian_to_host(*cur_limb_right);
Hanno Beckerf8720072018-11-08 11:53:49 +0000793 *cur_limb_right = tmp;
Hanno Beckerda1655a2017-10-18 14:21:44 +0100794 }
Hanno Beckerda1655a2017-10-18 14:21:44 +0100795}
796
Paul Bakker5121ce52009-01-03 21:22:43 +0000797/*
Janos Follatha778a942019-02-13 10:28:28 +0000798 * Import X from unsigned binary data, little endian
799 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100800int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
801 const unsigned char *buf, size_t buflen)
Janos Follatha778a942019-02-13 10:28:28 +0000802{
Janos Follath24eed8d2019-11-22 13:21:35 +0000803 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follatha778a942019-02-13 10:28:28 +0000804 size_t i;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100805 size_t const limbs = CHARS_TO_LIMBS(buflen);
Janos Follatha778a942019-02-13 10:28:28 +0000806
807 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100808 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Janos Follatha778a942019-02-13 10:28:28 +0000809
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100810 for (i = 0; i < buflen; i++) {
Janos Follatha778a942019-02-13 10:28:28 +0000811 X->p[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3);
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100812 }
Janos Follatha778a942019-02-13 10:28:28 +0000813
814cleanup:
815
Janos Follath171a7ef2019-02-15 16:17:45 +0000816 /*
817 * This function is also used to import keys. However, wiping the buffers
818 * upon failure is not necessary because failure only can happen before any
819 * input is copied.
820 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100821 return ret;
Janos Follatha778a942019-02-13 10:28:28 +0000822}
823
824/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000825 * Import X from unsigned binary data, big endian
826 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100827int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000828{
Janos Follath24eed8d2019-11-22 13:21:35 +0000829 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100830 size_t const limbs = CHARS_TO_LIMBS(buflen);
831 size_t const overhead = (limbs * ciL) - buflen;
Hanno Beckerda1655a2017-10-18 14:21:44 +0100832 unsigned char *Xp;
Paul Bakker5121ce52009-01-03 21:22:43 +0000833
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100834 MPI_VALIDATE_RET(X != NULL);
835 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000836
Hanno Becker073c1992017-10-17 15:17:27 +0100837 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100838 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Paul Bakker5121ce52009-01-03 21:22:43 +0000839
Gilles Peskine3130ce22021-06-02 22:17:52 +0200840 /* Avoid calling `memcpy` with NULL source or destination argument,
Hanno Becker0e810b92019-01-03 17:13:11 +0000841 * even if buflen is 0. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100842 if (buflen != 0) {
843 Xp = (unsigned char *) X->p;
844 memcpy(Xp + overhead, buf, buflen);
Hanno Beckerda1655a2017-10-18 14:21:44 +0100845
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100846 mpi_bigendian_to_host(X->p, limbs);
Hanno Becker0e810b92019-01-03 17:13:11 +0000847 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000848
849cleanup:
850
Janos Follath171a7ef2019-02-15 16:17:45 +0000851 /*
852 * This function is also used to import keys. However, wiping the buffers
853 * upon failure is not necessary because failure only can happen before any
854 * input is copied.
855 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100856 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000857}
858
859/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000860 * Export X into unsigned binary data, little endian
861 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100862int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
863 unsigned char *buf, size_t buflen)
Janos Follathe344d0f2019-02-19 16:17:40 +0000864{
865 size_t stored_bytes = X->n * ciL;
866 size_t bytes_to_copy;
867 size_t i;
868
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100869 if (stored_bytes < buflen) {
Janos Follathe344d0f2019-02-19 16:17:40 +0000870 bytes_to_copy = stored_bytes;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100871 } else {
Janos Follathe344d0f2019-02-19 16:17:40 +0000872 bytes_to_copy = buflen;
873
874 /* The output buffer is smaller than the allocated size of X.
875 * However X may fit if its leading bytes are zero. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100876 for (i = bytes_to_copy; i < stored_bytes; i++) {
877 if (GET_BYTE(X, i) != 0) {
878 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
879 }
Janos Follathe344d0f2019-02-19 16:17:40 +0000880 }
881 }
882
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100883 for (i = 0; i < bytes_to_copy; i++) {
884 buf[i] = GET_BYTE(X, i);
Janos Follathe344d0f2019-02-19 16:17:40 +0000885 }
886
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100887 if (stored_bytes < buflen) {
888 /* Write trailing 0 bytes */
889 memset(buf + stored_bytes, 0, buflen - stored_bytes);
890 }
891
892 return 0;
Janos Follathe344d0f2019-02-19 16:17:40 +0000893}
894
895/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000896 * Export X into unsigned binary data, big endian
897 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100898int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
899 unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000900{
Hanno Becker73d7d792018-12-11 10:35:51 +0000901 size_t stored_bytes;
Gilles Peskine11cdb052018-11-20 16:47:47 +0100902 size_t bytes_to_copy;
903 unsigned char *p;
904 size_t i;
Paul Bakker5121ce52009-01-03 21:22:43 +0000905
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100906 MPI_VALIDATE_RET(X != NULL);
907 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000908
909 stored_bytes = X->n * ciL;
910
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100911 if (stored_bytes < buflen) {
Gilles Peskine11cdb052018-11-20 16:47:47 +0100912 /* There is enough space in the output buffer. Write initial
913 * null bytes and record the position at which to start
914 * writing the significant bytes. In this case, the execution
915 * trace of this function does not depend on the value of the
916 * number. */
917 bytes_to_copy = stored_bytes;
918 p = buf + buflen - stored_bytes;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100919 memset(buf, 0, buflen - stored_bytes);
920 } else {
Gilles Peskine11cdb052018-11-20 16:47:47 +0100921 /* The output buffer is smaller than the allocated size of X.
922 * However X may fit if its leading bytes are zero. */
923 bytes_to_copy = buflen;
924 p = buf;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100925 for (i = bytes_to_copy; i < stored_bytes; i++) {
926 if (GET_BYTE(X, i) != 0) {
927 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
928 }
Gilles Peskine11cdb052018-11-20 16:47:47 +0100929 }
930 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000931
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100932 for (i = 0; i < bytes_to_copy; i++) {
933 p[bytes_to_copy - i - 1] = GET_BYTE(X, i);
934 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000935
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100936 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000937}
938
939/*
940 * Left-shift: X <<= count
941 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100942int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000943{
Janos Follath24eed8d2019-11-22 13:21:35 +0000944 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000945 size_t i, v0, t1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200946 mbedtls_mpi_uint r0 = 0, r1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100947 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000948
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100949 v0 = count / (biL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000950 t1 = count & (biL - 1);
951
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100952 i = mbedtls_mpi_bitlen(X) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000953
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100954 if (X->n * biL < i) {
955 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
956 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000957
958 ret = 0;
959
960 /*
961 * shift by count / limb_size
962 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100963 if (v0 > 0) {
964 for (i = X->n; i > v0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +0000965 X->p[i - 1] = X->p[i - v0 - 1];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100966 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000967
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100968 for (; i > 0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +0000969 X->p[i - 1] = 0;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100970 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000971 }
972
973 /*
974 * shift by count % limb_size
975 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100976 if (t1 > 0) {
977 for (i = v0; i < X->n; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000978 r1 = X->p[i] >> (biL - t1);
979 X->p[i] <<= t1;
980 X->p[i] |= r0;
981 r0 = r1;
982 }
983 }
984
985cleanup:
986
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100987 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000988}
989
990/*
991 * Right-shift: X >>= count
992 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100993int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000994{
Paul Bakker23986e52011-04-24 08:57:21 +0000995 size_t i, v0, v1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200996 mbedtls_mpi_uint r0 = 0, r1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100997 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000998
999 v0 = count / biL;
1000 v1 = count & (biL - 1);
1001
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001002 if (v0 > X->n || (v0 == X->n && v1 > 0)) {
1003 return mbedtls_mpi_lset(X, 0);
1004 }
Manuel Pégourié-Gonnarde44ec102012-11-17 12:42:51 +01001005
Paul Bakker5121ce52009-01-03 21:22:43 +00001006 /*
1007 * shift by count / limb_size
1008 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001009 if (v0 > 0) {
1010 for (i = 0; i < X->n - v0; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001011 X->p[i] = X->p[i + v0];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001012 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001013
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001014 for (; i < X->n; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001015 X->p[i] = 0;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001016 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001017 }
1018
1019 /*
1020 * shift by count % limb_size
1021 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001022 if (v1 > 0) {
1023 for (i = X->n; i > 0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +00001024 r1 = X->p[i - 1] << (biL - v1);
1025 X->p[i - 1] >>= v1;
1026 X->p[i - 1] |= r0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001027 r0 = r1;
1028 }
1029 }
1030
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001031 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001032}
1033
1034/*
1035 * Compare unsigned values
1036 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001037int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +00001038{
Paul Bakker23986e52011-04-24 08:57:21 +00001039 size_t i, j;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001040 MPI_VALIDATE_RET(X != NULL);
1041 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001042
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001043 for (i = X->n; i > 0; i--) {
1044 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001045 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001046 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001047 }
1048
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001049 for (j = Y->n; j > 0; j--) {
1050 if (Y->p[j - 1] != 0) {
1051 break;
1052 }
1053 }
1054
1055 if (i == 0 && j == 0) {
1056 return 0;
1057 }
1058
1059 if (i > j) {
1060 return 1;
1061 }
1062 if (j > i) {
1063 return -1;
1064 }
1065
1066 for (; i > 0; i--) {
1067 if (X->p[i - 1] > Y->p[i - 1]) {
1068 return 1;
1069 }
1070 if (X->p[i - 1] < Y->p[i - 1]) {
1071 return -1;
1072 }
1073 }
1074
1075 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001076}
1077
1078/*
1079 * Compare signed values
1080 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001081int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +00001082{
Paul Bakker23986e52011-04-24 08:57:21 +00001083 size_t i, j;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001084 MPI_VALIDATE_RET(X != NULL);
1085 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001086
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001087 for (i = X->n; i > 0; i--) {
1088 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001089 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001090 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001091 }
1092
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001093 for (j = Y->n; j > 0; j--) {
1094 if (Y->p[j - 1] != 0) {
1095 break;
1096 }
1097 }
1098
1099 if (i == 0 && j == 0) {
1100 return 0;
1101 }
1102
1103 if (i > j) {
1104 return X->s;
1105 }
1106 if (j > i) {
1107 return -Y->s;
1108 }
1109
1110 if (X->s > 0 && Y->s < 0) {
1111 return 1;
1112 }
1113 if (Y->s > 0 && X->s < 0) {
1114 return -1;
1115 }
1116
1117 for (; i > 0; i--) {
1118 if (X->p[i - 1] > Y->p[i - 1]) {
1119 return X->s;
1120 }
1121 if (X->p[i - 1] < Y->p[i - 1]) {
1122 return -X->s;
1123 }
1124 }
1125
1126 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001127}
1128
Janos Follathee6abce2019-09-05 14:47:19 +01001129/*
Paul Bakker5121ce52009-01-03 21:22:43 +00001130 * Compare signed values
1131 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001132int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +00001133{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001134 mbedtls_mpi Y;
1135 mbedtls_mpi_uint p[1];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001136 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001137
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001138 *p = mpi_sint_abs(z);
1139 Y.s = (z < 0) ? -1 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001140 Y.n = 1;
1141 Y.p = p;
1142
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001143 return mbedtls_mpi_cmp_mpi(X, &Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00001144}
1145
1146/*
1147 * Unsigned addition: X = |A| + |B| (HAC 14.7)
1148 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001149int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001150{
Janos Follath24eed8d2019-11-22 13:21:35 +00001151 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001152 size_t i, j;
Janos Follath6c922682015-10-30 17:43:11 +01001153 mbedtls_mpi_uint *o, *p, c, tmp;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001154 MPI_VALIDATE_RET(X != NULL);
1155 MPI_VALIDATE_RET(A != NULL);
1156 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001157
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001158 if (X == B) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001159 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +00001160 }
1161
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001162 if (X != A) {
1163 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1164 }
Paul Bakker9af723c2014-05-01 13:03:14 +02001165
Paul Bakkerf7ca7b92009-06-20 10:31:06 +00001166 /*
1167 * X should always be positive as a result of unsigned additions.
1168 */
1169 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001170
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001171 for (j = B->n; j > 0; j--) {
1172 if (B->p[j - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001173 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001174 }
1175 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001176
Gilles Peskine103cf592022-11-15 22:59:00 +01001177 /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
1178 * and B is 0 (of any size). */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001179 if (j == 0) {
1180 return 0;
1181 }
Gilles Peskine103cf592022-11-15 22:59:00 +01001182
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001183 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
Paul Bakker5121ce52009-01-03 21:22:43 +00001184
1185 o = B->p; p = X->p; c = 0;
1186
Janos Follath6c922682015-10-30 17:43:11 +01001187 /*
1188 * tmp is used because it might happen that p == o
1189 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001190 for (i = 0; i < j; i++, o++, p++) {
1191 tmp = *o;
1192 *p += c; c = (*p < c);
1193 *p += tmp; c += (*p < tmp);
Paul Bakker5121ce52009-01-03 21:22:43 +00001194 }
1195
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001196 while (c != 0) {
1197 if (i >= X->n) {
1198 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001199 p = X->p + i;
1200 }
1201
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001202 *p += c; c = (*p < c); i++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +00001203 }
1204
1205cleanup:
1206
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001207 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001208}
1209
Gilles Peskine09ec10a2020-06-09 10:39:38 +02001210/**
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001211 * Helper for mbedtls_mpi subtraction.
1212 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001213 * Calculate l - r where l and r have the same size.
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001214 * This function operates modulo (2^ciL)^n and returns the carry
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001215 * (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise).
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001216 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001217 * d may be aliased to l or r.
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001218 *
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001219 * \param n Number of limbs of \p d, \p l and \p r.
1220 * \param[out] d The result of the subtraction.
1221 * \param[in] l The left operand.
1222 * \param[in] r The right operand.
1223 *
1224 * \return 1 if `l < r`.
1225 * 0 if `l >= r`.
Paul Bakker5121ce52009-01-03 21:22:43 +00001226 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001227static mbedtls_mpi_uint mpi_sub_hlp(size_t n,
1228 mbedtls_mpi_uint *d,
1229 const mbedtls_mpi_uint *l,
1230 const mbedtls_mpi_uint *r)
Paul Bakker5121ce52009-01-03 21:22:43 +00001231{
Paul Bakker23986e52011-04-24 08:57:21 +00001232 size_t i;
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001233 mbedtls_mpi_uint c = 0, t, z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001234
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001235 for (i = 0; i < n; i++) {
1236 z = (l[i] < c); t = l[i] - c;
1237 c = (t < r[i]) + z; d[i] = t - r[i];
Paul Bakker5121ce52009-01-03 21:22:43 +00001238 }
1239
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001240 return c;
Paul Bakker5121ce52009-01-03 21:22:43 +00001241}
1242
1243/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001244 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +00001245 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001246int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001247{
Janos Follath24eed8d2019-11-22 13:21:35 +00001248 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001249 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001250 mbedtls_mpi_uint carry;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001251 MPI_VALIDATE_RET(X != NULL);
1252 MPI_VALIDATE_RET(A != NULL);
1253 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001254
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001255 for (n = B->n; n > 0; n--) {
1256 if (B->p[n - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001257 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001258 }
1259 }
1260 if (n > A->n) {
Gilles Peskinec8a91772021-01-27 22:30:43 +01001261 /* B >= (2^ciL)^n > A */
1262 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1263 goto cleanup;
1264 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001265
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001266 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001267
1268 /* Set the high limbs of X to match A. Don't touch the lower limbs
1269 * because X might be aliased to B, and we must not overwrite the
1270 * significant digits of B. */
Aaron M. Ucko78b823a2023-01-31 15:45:44 -05001271 if (A->n > n && A != X) {
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001272 memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
1273 }
1274 if (X->n > A->n) {
1275 memset(X->p + A->n, 0, (X->n - A->n) * ciL);
1276 }
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001277
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001278 carry = mpi_sub_hlp(n, X->p, A->p, B->p);
1279 if (carry != 0) {
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001280 /* Propagate the carry to the first nonzero limb of X. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001281 for (; n < X->n && X->p[n] == 0; n++) {
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001282 --X->p[n];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001283 }
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001284 /* If we ran out of space for the carry, it means that the result
1285 * is negative. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001286 if (n == X->n) {
Gilles Peskine89b41302020-07-23 01:16:46 +02001287 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1288 goto cleanup;
1289 }
Gilles Peskine0e5faf62020-06-08 22:50:35 +02001290 --X->p[n];
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001291 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001292
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001293 /* X should always be positive as a result of unsigned subtractions. */
1294 X->s = 1;
1295
Paul Bakker5121ce52009-01-03 21:22:43 +00001296cleanup:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001297 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001298}
1299
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001300/* Common function for signed addition and subtraction.
1301 * Calculate A + B * flip_B where flip_B is 1 or -1.
Paul Bakker5121ce52009-01-03 21:22:43 +00001302 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001303static int add_sub_mpi(mbedtls_mpi *X,
1304 const mbedtls_mpi *A, const mbedtls_mpi *B,
1305 int flip_B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001306{
Hanno Becker73d7d792018-12-11 10:35:51 +00001307 int ret, s;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001308 MPI_VALIDATE_RET(X != NULL);
1309 MPI_VALIDATE_RET(A != NULL);
1310 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001311
Hanno Becker73d7d792018-12-11 10:35:51 +00001312 s = A->s;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001313 if (A->s * B->s * flip_B < 0) {
1314 int cmp = mbedtls_mpi_cmp_abs(A, B);
1315 if (cmp >= 0) {
1316 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
Gilles Peskine581c4602022-11-09 22:02:16 +01001317 /* If |A| = |B|, the result is 0 and we must set the sign bit
1318 * to +1 regardless of which of A or B was negative. Otherwise,
1319 * since |A| > |B|, the sign is the sign of A. */
1320 X->s = cmp == 0 ? 1 : s;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001321 } else {
1322 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
Gilles Peskine581c4602022-11-09 22:02:16 +01001323 /* Since |A| < |B|, the sign is the opposite of A. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001324 X->s = -s;
1325 }
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001326 } else {
1327 MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001328 X->s = s;
1329 }
1330
1331cleanup:
1332
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001333 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001334}
1335
1336/*
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001337 * Signed addition: X = A + B
1338 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001339int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001340{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001341 return add_sub_mpi(X, A, B, 1);
Gilles Peskine4e47bdc2022-11-09 21:34:09 +01001342}
1343
1344/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001345 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001346 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001347int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001348{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001349 return add_sub_mpi(X, A, B, -1);
Paul Bakker5121ce52009-01-03 21:22:43 +00001350}
1351
1352/*
1353 * Signed addition: X = A + b
1354 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001355int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001356{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001357 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001358 mbedtls_mpi_uint p[1];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001359 MPI_VALIDATE_RET(X != NULL);
1360 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001361
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001362 p[0] = mpi_sint_abs(b);
1363 B.s = (b < 0) ? -1 : 1;
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001364 B.n = 1;
1365 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001366
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001367 return mbedtls_mpi_add_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001368}
1369
1370/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001371 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001372 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001373int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001374{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001375 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001376 mbedtls_mpi_uint p[1];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001377 MPI_VALIDATE_RET(X != NULL);
1378 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001379
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001380 p[0] = mpi_sint_abs(b);
1381 B.s = (b < 0) ? -1 : 1;
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001382 B.n = 1;
1383 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001384
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001385 return mbedtls_mpi_sub_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001386}
1387
Gilles Peskinea5d8d892020-07-23 21:27:15 +02001388/** Helper for mbedtls_mpi multiplication.
1389 *
1390 * Add \p b * \p s to \p d.
1391 *
1392 * \param i The number of limbs of \p s.
1393 * \param[in] s A bignum to multiply, of size \p i.
1394 * It may overlap with \p d, but only if
1395 * \p d <= \p s.
1396 * Its leading limb must not be \c 0.
1397 * \param[in,out] d The bignum to add to.
1398 * It must be sufficiently large to store the
1399 * result of the multiplication. This means
1400 * \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b
1401 * is not known a priori.
1402 * \param b A scalar to multiply.
Paul Bakkerfc4f46f2013-06-24 19:23:56 +02001403 */
1404static
1405#if defined(__APPLE__) && defined(__arm__)
1406/*
1407 * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
1408 * appears to need this to prevent bad ARM code generation at -O3.
1409 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001410__attribute__((noinline))
Paul Bakkerfc4f46f2013-06-24 19:23:56 +02001411#endif
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001412void mpi_mul_hlp(size_t i,
1413 const mbedtls_mpi_uint *s,
1414 mbedtls_mpi_uint *d,
1415 mbedtls_mpi_uint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001416{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001417 mbedtls_mpi_uint c = 0, t = 0;
Gilles Peskined7848332023-02-24 12:08:01 +01001418 (void) t; /* Unused in some architectures */
Paul Bakker5121ce52009-01-03 21:22:43 +00001419
1420#if defined(MULADDC_HUIT)
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001421 for (; i >= 8; i -= 8) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001422 MULADDC_INIT
1423 MULADDC_HUIT
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001424 MULADDC_STOP
Paul Bakker5121ce52009-01-03 21:22:43 +00001425 }
1426
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001427 for (; i > 0; i--) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001428 MULADDC_INIT
1429 MULADDC_CORE
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001430 MULADDC_STOP
Paul Bakker5121ce52009-01-03 21:22:43 +00001431 }
Paul Bakker9af723c2014-05-01 13:03:14 +02001432#else /* MULADDC_HUIT */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001433 for (; i >= 16; i -= 16) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001434 MULADDC_INIT
1435 MULADDC_CORE MULADDC_CORE
1436 MULADDC_CORE MULADDC_CORE
1437 MULADDC_CORE MULADDC_CORE
1438 MULADDC_CORE MULADDC_CORE
1439
1440 MULADDC_CORE MULADDC_CORE
1441 MULADDC_CORE MULADDC_CORE
1442 MULADDC_CORE MULADDC_CORE
1443 MULADDC_CORE MULADDC_CORE
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001444 MULADDC_STOP
Paul Bakker5121ce52009-01-03 21:22:43 +00001445 }
1446
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001447 for (; i >= 8; i -= 8) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001448 MULADDC_INIT
1449 MULADDC_CORE MULADDC_CORE
1450 MULADDC_CORE MULADDC_CORE
1451
1452 MULADDC_CORE MULADDC_CORE
1453 MULADDC_CORE MULADDC_CORE
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001454 MULADDC_STOP
Paul Bakker5121ce52009-01-03 21:22:43 +00001455 }
1456
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001457 for (; i > 0; i--) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001458 MULADDC_INIT
1459 MULADDC_CORE
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001460 MULADDC_STOP
Paul Bakker5121ce52009-01-03 21:22:43 +00001461 }
Paul Bakker9af723c2014-05-01 13:03:14 +02001462#endif /* MULADDC_HUIT */
Paul Bakker5121ce52009-01-03 21:22:43 +00001463
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001464 while (c != 0) {
1465 *d += c; c = (*d < c); d++;
Paul Bakker5121ce52009-01-03 21:22:43 +00001466 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001467}
1468
1469/*
1470 * Baseline multiplication: X = A * B (HAC 14.12)
1471 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001472int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001473{
Janos Follath24eed8d2019-11-22 13:21:35 +00001474 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001475 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001476 mbedtls_mpi TA, TB;
Gilles Peskined65b5002021-06-15 21:44:32 +02001477 int result_is_zero = 0;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001478 MPI_VALIDATE_RET(X != NULL);
1479 MPI_VALIDATE_RET(A != NULL);
1480 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001481
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001482 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00001483
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001484 if (X == A) {
1485 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
1486 }
1487 if (X == B) {
1488 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
1489 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001490
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001491 for (i = A->n; i > 0; i--) {
1492 if (A->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001493 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001494 }
1495 }
1496 if (i == 0) {
Gilles Peskined65b5002021-06-15 21:44:32 +02001497 result_is_zero = 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001498 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001499
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001500 for (j = B->n; j > 0; j--) {
1501 if (B->p[j - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001502 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001503 }
1504 }
1505 if (j == 0) {
Gilles Peskined65b5002021-06-15 21:44:32 +02001506 result_is_zero = 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001507 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001508
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001509 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
1510 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
Paul Bakker5121ce52009-01-03 21:22:43 +00001511
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001512 for (; j > 0; j--) {
1513 mpi_mul_hlp(i, A->p, X->p + j - 1, B->p[j - 1]);
1514 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001515
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001516 /* If the result is 0, we don't shortcut the operation, which reduces
1517 * but does not eliminate side channels leaking the zero-ness. We do
1518 * need to take care to set the sign bit properly since the library does
1519 * not fully support an MPI object with a value of 0 and s == -1. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001520 if (result_is_zero) {
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001521 X->s = 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001522 } else {
Gilles Peskine70a7dcd2021-06-10 15:51:54 +02001523 X->s = A->s * B->s;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001524 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001525
1526cleanup:
1527
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001528 mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
Paul Bakker5121ce52009-01-03 21:22:43 +00001529
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001530 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001531}
1532
1533/*
1534 * Baseline multiplication: X = A * b
1535 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001536int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001537{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001538 MPI_VALIDATE_RET(X != NULL);
1539 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001540
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001541 /* mpi_mul_hlp can't deal with a leading 0. */
1542 size_t n = A->n;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001543 while (n > 0 && A->p[n - 1] == 0) {
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001544 --n;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001545 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001546
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001547 /* The general method below doesn't work if n==0 or b==0. By chance
1548 * calculating the result is trivial in those cases. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001549 if (b == 0 || n == 0) {
1550 return mbedtls_mpi_lset(X, 0);
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001551 }
1552
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001553 /* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001554 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001555 /* In general, A * b requires 1 limb more than b. If
1556 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1557 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001558 * copy() will take care of the growth if needed. However, experimentally,
1559 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001560 * calls to calloc() in ECP code, presumably because it reuses the
1561 * same mpi for a while and this way the mpi is more likely to directly
1562 * grow to its final size. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001563 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
1564 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1565 mpi_mul_hlp(n, A->p, X->p, b - 1);
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001566
1567cleanup:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001568 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001569}
1570
1571/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001572 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1573 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001574 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001575static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
1576 mbedtls_mpi_uint u0,
1577 mbedtls_mpi_uint d,
1578 mbedtls_mpi_uint *r)
Simon Butcher15b15d12015-11-26 19:35:03 +00001579{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001580#if defined(MBEDTLS_HAVE_UDBL)
1581 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001582#else
Simon Butcher9803d072016-01-03 00:24:34 +00001583 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001584 const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001585 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1586 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001587 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001588#endif
1589
Simon Butcher15b15d12015-11-26 19:35:03 +00001590 /*
1591 * Check for overflow
1592 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001593 if (0 == d || u1 >= d) {
1594 if (r != NULL) {
1595 *r = ~(mbedtls_mpi_uint) 0u;
1596 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001597
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001598 return ~(mbedtls_mpi_uint) 0u;
Simon Butcher15b15d12015-11-26 19:35:03 +00001599 }
1600
1601#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001602 dividend = (mbedtls_t_udbl) u1 << biL;
1603 dividend |= (mbedtls_t_udbl) u0;
1604 quotient = dividend / d;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001605 if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
1606 quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
1607 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001608
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001609 if (r != NULL) {
1610 *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
1611 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001612
1613 return (mbedtls_mpi_uint) quotient;
1614#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001615
1616 /*
1617 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1618 * Vol. 2 - Seminumerical Algorithms, Knuth
1619 */
1620
1621 /*
1622 * Normalize the divisor, d, and dividend, u0, u1
1623 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001624 s = mbedtls_clz(d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001625 d = d << s;
1626
1627 u1 = u1 << s;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001628 u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
Simon Butcher15b15d12015-11-26 19:35:03 +00001629 u0 = u0 << s;
1630
1631 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001632 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001633
1634 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001635 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001636
1637 /*
1638 * Find the first quotient and remainder
1639 */
1640 q1 = u1 / d1;
1641 r0 = u1 - d1 * q1;
1642
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001643 while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001644 q1 -= 1;
1645 r0 += d1;
1646
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001647 if (r0 >= radix) {
1648 break;
1649 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001650 }
1651
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001652 rAX = (u1 * radix) + (u0_msw - q1 * d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001653 q0 = rAX / d1;
1654 r0 = rAX - q0 * d1;
1655
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001656 while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001657 q0 -= 1;
1658 r0 += d1;
1659
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001660 if (r0 >= radix) {
1661 break;
1662 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001663 }
1664
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001665 if (r != NULL) {
1666 *r = (rAX * radix + u0_lsw - q0 * d) >> s;
1667 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001668
1669 quotient = q1 * radix + q0;
1670
1671 return quotient;
1672#endif
1673}
1674
1675/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001676 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001677 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001678int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1679 const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001680{
Janos Follath24eed8d2019-11-22 13:21:35 +00001681 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001682 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001683 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001684 mbedtls_mpi_uint TP2[3];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001685 MPI_VALIDATE_RET(A != NULL);
1686 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001687
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001688 if (mbedtls_mpi_cmp_int(B, 0) == 0) {
1689 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1690 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001691
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001692 mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
1693 mbedtls_mpi_init(&T1);
Alexander Kd19a1932019-11-01 18:20:42 +03001694 /*
1695 * Avoid dynamic memory allocations for constant-size T2.
1696 *
1697 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1698 * so nobody increase the size of the MPI and we're safe to use an on-stack
1699 * buffer.
1700 */
Alexander K35d6d462019-10-31 14:46:45 +03001701 T2.s = 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001702 T2.n = sizeof(TP2) / sizeof(*TP2);
Alexander Kd19a1932019-11-01 18:20:42 +03001703 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001704
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001705 if (mbedtls_mpi_cmp_abs(A, B) < 0) {
1706 if (Q != NULL) {
1707 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
1708 }
1709 if (R != NULL) {
1710 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
1711 }
1712 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001713 }
1714
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001715 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
1716 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001717 X.s = Y.s = 1;
1718
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001719 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
1720 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z, 0));
1721 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001722
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001723 k = mbedtls_mpi_bitlen(&Y) % biL;
1724 if (k < biL - 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001725 k = biL - 1 - k;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001726 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
1727 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
1728 } else {
1729 k = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001730 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001731
1732 n = X.n - 1;
1733 t = Y.n - 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001734 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001735
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001736 while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001737 Z.p[n - t]++;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001738 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
Paul Bakker5121ce52009-01-03 21:22:43 +00001739 }
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001740 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001741
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001742 for (i = n; i > t; i--) {
1743 if (X.p[i] >= Y.p[t]) {
1744 Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
1745 } else {
1746 Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
1747 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001748 }
1749
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001750 T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
1751 T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
Alexander K35d6d462019-10-31 14:46:45 +03001752 T2.p[2] = X.p[i];
1753
Paul Bakker5121ce52009-01-03 21:22:43 +00001754 Z.p[i - t - 1]++;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001755 do {
Paul Bakker5121ce52009-01-03 21:22:43 +00001756 Z.p[i - t - 1]--;
1757
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001758 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
1759 T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001760 T1.p[1] = Y.p[t];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001761 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
1762 } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00001763
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001764 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
1765 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1766 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001767
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001768 if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
1769 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
1770 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1771 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001772 Z.p[i - t - 1]--;
1773 }
1774 }
1775
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001776 if (Q != NULL) {
1777 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
Paul Bakker5121ce52009-01-03 21:22:43 +00001778 Q->s = A->s * B->s;
1779 }
1780
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001781 if (R != NULL) {
1782 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
Paul Bakkerf02c5642012-11-13 10:25:21 +00001783 X.s = A->s;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001784 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
Paul Bakker5121ce52009-01-03 21:22:43 +00001785
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001786 if (mbedtls_mpi_cmp_int(R, 0) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001787 R->s = 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001788 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001789 }
1790
1791cleanup:
1792
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001793 mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
1794 mbedtls_mpi_free(&T1);
1795 mbedtls_platform_zeroize(TP2, sizeof(TP2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001796
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001797 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001798}
1799
1800/*
1801 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001802 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001803int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
1804 const mbedtls_mpi *A,
1805 mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001806{
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001807 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001808 mbedtls_mpi_uint p[1];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001809 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001810
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001811 p[0] = mpi_sint_abs(b);
1812 B.s = (b < 0) ? -1 : 1;
Yuto Takanobc6eaf72021-07-05 09:10:52 +01001813 B.n = 1;
1814 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001815
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001816 return mbedtls_mpi_div_mpi(Q, R, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001817}
1818
1819/*
1820 * Modulo: R = A mod B
1821 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001822int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001823{
Janos Follath24eed8d2019-11-22 13:21:35 +00001824 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001825 MPI_VALIDATE_RET(R != NULL);
1826 MPI_VALIDATE_RET(A != NULL);
1827 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001828
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001829 if (mbedtls_mpi_cmp_int(B, 0) < 0) {
1830 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1831 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001832
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001833 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001834
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001835 while (mbedtls_mpi_cmp_int(R, 0) < 0) {
1836 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
1837 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001838
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001839 while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
1840 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
1841 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001842
1843cleanup:
1844
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001845 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001846}
1847
1848/*
1849 * Modulo: r = A mod b
1850 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001851int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001852{
Paul Bakker23986e52011-04-24 08:57:21 +00001853 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001854 mbedtls_mpi_uint x, y, z;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001855 MPI_VALIDATE_RET(r != NULL);
1856 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001857
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001858 if (b == 0) {
1859 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1860 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001861
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001862 if (b < 0) {
1863 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1864 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001865
1866 /*
1867 * handle trivial cases
1868 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001869 if (b == 1 || A->n == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001870 *r = 0;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001871 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001872 }
1873
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001874 if (b == 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001875 *r = A->p[0] & 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001876 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001877 }
1878
1879 /*
1880 * general case
1881 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001882 for (i = A->n, y = 0; i > 0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +00001883 x = A->p[i - 1];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001884 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001885 z = y / b;
1886 y -= z * b;
1887
1888 x <<= biH;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001889 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001890 z = y / b;
1891 y -= z * b;
1892 }
1893
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001894 /*
1895 * If A is negative, then the current y represents a negative value.
1896 * Flipping it to the positive side.
1897 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001898 if (A->s < 0 && y != 0) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001899 y = b - y;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001900 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001901
Paul Bakker5121ce52009-01-03 21:22:43 +00001902 *r = y;
1903
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001904 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001905}
1906
1907/*
1908 * Fast Montgomery initialization (thanks to Tom St Denis)
1909 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001910static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00001911{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001912 mbedtls_mpi_uint x, m0 = N->p[0];
Manuel Pégourié-Gonnardfdf3f0e2014-03-11 13:47:05 +01001913 unsigned int i;
Paul Bakker5121ce52009-01-03 21:22:43 +00001914
1915 x = m0;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001916 x += ((m0 + 2) & 4) << 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001917
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001918 for (i = biL; i >= 8; i /= 2) {
1919 x *= (2 - (m0 * x));
1920 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001921
1922 *mm = ~x + 1;
1923}
1924
Gilles Peskine2a82f722020-06-04 15:00:49 +02001925/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1926 *
1927 * \param[in,out] A One of the numbers to multiply.
Gilles Peskine221626f2020-06-08 22:37:50 +02001928 * It must have at least as many limbs as N
1929 * (A->n >= N->n), and any limbs beyond n are ignored.
Gilles Peskine2a82f722020-06-04 15:00:49 +02001930 * On successful completion, A contains the result of
1931 * the multiplication A * B * R^-1 mod N where
1932 * R = (2^ciL)^n.
1933 * \param[in] B One of the numbers to multiply.
1934 * It must be nonzero and must not have more limbs than N
1935 * (B->n <= N->n).
1936 * \param[in] N The modulo. N must be odd.
1937 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1938 * This is -N^-1 mod 2^ciL.
1939 * \param[in,out] T A bignum for temporary storage.
1940 * It must be at least twice the limb size of N plus 2
1941 * (T->n >= 2 * (N->n + 1)).
1942 * Its initial content is unused and
1943 * its final content is indeterminate.
1944 * Note that unlike the usual convention in the library
1945 * for `const mbedtls_mpi*`, the content of T can change.
Paul Bakker5121ce52009-01-03 21:22:43 +00001946 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001947static void mpi_montmul(mbedtls_mpi *A,
1948 const mbedtls_mpi *B,
1949 const mbedtls_mpi *N,
1950 mbedtls_mpi_uint mm,
1951 const mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00001952{
Paul Bakker23986e52011-04-24 08:57:21 +00001953 size_t i, n, m;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001954 mbedtls_mpi_uint u0, u1, *d;
Paul Bakker5121ce52009-01-03 21:22:43 +00001955
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001956 memset(T->p, 0, T->n * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001957
1958 d = T->p;
1959 n = N->n;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001960 m = (B->n < n) ? B->n : n;
Paul Bakker5121ce52009-01-03 21:22:43 +00001961
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001962 for (i = 0; i < n; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001963 /*
1964 * T = (T + u0*B + u1*N) / 2^biL
1965 */
1966 u0 = A->p[i];
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001967 u1 = (d[0] + u0 * B->p[0]) * mm;
Paul Bakker5121ce52009-01-03 21:22:43 +00001968
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001969 mpi_mul_hlp(m, B->p, d, u0);
1970 mpi_mul_hlp(n, N->p, d, u1);
Paul Bakker5121ce52009-01-03 21:22:43 +00001971
1972 *d++ = u0; d[n + 1] = 0;
1973 }
1974
Gilles Peskine221626f2020-06-08 22:37:50 +02001975 /* At this point, d is either the desired result or the desired result
1976 * plus N. We now potentially subtract N, avoiding leaking whether the
1977 * subtraction is performed through side channels. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001978
Gilles Peskine221626f2020-06-08 22:37:50 +02001979 /* Copy the n least significant limbs of d to A, so that
1980 * A = d if d < N (recall that N has n limbs). */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001981 memcpy(A->p, d, n * ciL);
Gilles Peskine09ec10a2020-06-09 10:39:38 +02001982 /* If d >= N then we want to set A to d - N. To prevent timing attacks,
Gilles Peskine221626f2020-06-08 22:37:50 +02001983 * do the calculation without using conditional tests. */
1984 /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
Gilles Peskine132c0972020-06-04 21:05:24 +02001985 d[n] += 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001986 d[n] -= mpi_sub_hlp(n, d, d, N->p);
Gilles Peskine221626f2020-06-08 22:37:50 +02001987 /* If d0 < N then d < (2^biL)^n
1988 * so d[n] == 0 and we want to keep A as it is.
1989 * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
1990 * so d[n] == 1 and we want to set A to the result of the subtraction
1991 * which is d - (2^biL)^n, i.e. the n least significant limbs of d.
1992 * This exactly corresponds to a conditional assignment. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001993 mbedtls_ct_mpi_uint_cond_assign(n, A->p, d, (unsigned char) d[n]);
Paul Bakker5121ce52009-01-03 21:22:43 +00001994}
1995
1996/*
1997 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001998 *
1999 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00002000 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002001static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N,
2002 mbedtls_mpi_uint mm, const mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00002003{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002004 mbedtls_mpi_uint z = 1;
2005 mbedtls_mpi U;
Paul Bakker5121ce52009-01-03 21:22:43 +00002006
Paul Bakker8ddb6452013-02-27 14:56:33 +01002007 U.n = U.s = (int) z;
Paul Bakker5121ce52009-01-03 21:22:43 +00002008 U.p = &z;
2009
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002010 mpi_montmul(A, &U, N, mm, T);
Paul Bakker5121ce52009-01-03 21:22:43 +00002011}
2012
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002013/**
2014 * Select an MPI from a table without leaking the index.
2015 *
2016 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
2017 * reads the entire table in order to avoid leaking the value of idx to an
2018 * attacker able to observe memory access patterns.
2019 *
2020 * \param[out] R Where to write the selected MPI.
2021 * \param[in] T The table to read from.
2022 * \param[in] T_size The number of elements in the table.
2023 * \param[in] idx The index of the element to select;
2024 * this must satisfy 0 <= idx < T_size.
2025 *
2026 * \return \c 0 on success, or a negative error code.
2027 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002028static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx)
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002029{
2030 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2031
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002032 for (size_t i = 0; i < T_size; i++) {
2033 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i],
2034 (unsigned char) mbedtls_ct_size_bool_eq(i,
2035 idx)));
Manuel Pégourié-Gonnardeaafa492021-06-03 10:42:46 +02002036 }
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002037
2038cleanup:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002039 return ret;
Manuel Pégourié-Gonnarde10e8db2021-03-09 11:22:20 +01002040}
2041
Paul Bakker5121ce52009-01-03 21:22:43 +00002042/*
2043 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
2044 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002045int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
2046 const mbedtls_mpi *E, const mbedtls_mpi *N,
2047 mbedtls_mpi *prec_RR)
Paul Bakker5121ce52009-01-03 21:22:43 +00002048{
Janos Follath24eed8d2019-11-22 13:21:35 +00002049 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follathd88e2192022-11-21 15:54:20 +00002050 size_t window_bitsize;
Paul Bakker23986e52011-04-24 08:57:21 +00002051 size_t i, j, nblimbs;
2052 size_t bufsize, nbits;
Paul Elliottfc820d92023-01-13 16:29:30 +00002053 size_t exponent_bits_in_window = 0;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002054 mbedtls_mpi_uint ei, mm, state;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002055 mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00002056 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00002057
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002058 MPI_VALIDATE_RET(X != NULL);
2059 MPI_VALIDATE_RET(A != NULL);
2060 MPI_VALIDATE_RET(E != NULL);
2061 MPI_VALIDATE_RET(N != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002062
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002063 if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
2064 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2065 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002066
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002067 if (mbedtls_mpi_cmp_int(E, 0) < 0) {
2068 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2069 }
Paul Bakkerf6198c12012-05-16 08:02:29 +00002070
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002071 if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
2072 mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
2073 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2074 }
Chris Jones9246d042020-11-25 15:12:39 +00002075
Paul Bakkerf6198c12012-05-16 08:02:29 +00002076 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00002077 * Init temps and window size
2078 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002079 mpi_montg_init(&mm, N);
2080 mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T);
2081 mbedtls_mpi_init(&Apos);
2082 mbedtls_mpi_init(&WW);
2083 memset(W, 0, sizeof(W));
Paul Bakker5121ce52009-01-03 21:22:43 +00002084
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002085 i = mbedtls_mpi_bitlen(E);
Paul Bakker5121ce52009-01-03 21:22:43 +00002086
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002087 window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 :
2088 (i > 79) ? 4 : (i > 23) ? 3 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00002089
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002090#if (MBEDTLS_MPI_WINDOW_SIZE < 6)
2091 if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) {
Janos Follath66323832022-11-21 14:48:02 +00002092 window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002093 }
Peter Kolbuse6bcad32018-12-11 14:01:44 -06002094#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00002095
Janos Follath6c5b5ad2022-11-22 10:47:10 +00002096 const size_t w_table_used_size = (size_t) 1 << window_bitsize;
Janos Follath6fa7a762022-11-22 10:18:06 +00002097
Paul Bakker5121ce52009-01-03 21:22:43 +00002098 /*
Janos Follath6e2d8e32022-11-21 16:14:54 +00002099 * This function is not constant-trace: its memory accesses depend on the
2100 * exponent value. To defend against timing attacks, callers (such as RSA
2101 * and DHM) should use exponent blinding. However this is not enough if the
2102 * adversary can find the exponent in a single trace, so this function
2103 * takes extra precautions against adversaries who can observe memory
2104 * access patterns.
Janos Follath3a3c50c2022-11-11 15:56:38 +00002105 *
Janos Follath6e2d8e32022-11-21 16:14:54 +00002106 * This function performs a series of multiplications by table elements and
2107 * squarings, and we want the prevent the adversary from finding out which
2108 * table element was used, and from distinguishing between multiplications
2109 * and squarings. Firstly, when multiplying by an element of the window
2110 * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
2111 * squarings as having a different memory access patterns from other
Gilles Peskine20d54e32023-08-10 15:59:28 +02002112 * multiplications. So secondly, we put the accumulator in the table as
2113 * well, and also do a constant-trace table lookup to multiply by the
2114 * accumulator which is W[x_index].
Janos Follath6e2d8e32022-11-21 16:14:54 +00002115 *
2116 * This way, all multiplications take the form of a lookup-and-multiply.
2117 * The number of lookup-and-multiply operations inside each iteration of
2118 * the main loop still depends on the bits of the exponent, but since the
2119 * other operations in the loop don't have an easily recognizable memory
2120 * trace, an adversary is unlikely to be able to observe the exact
2121 * patterns.
2122 *
2123 * An adversary may still be able to recover the exponent if they can
2124 * observe both memory accesses and branches. However, branch prediction
2125 * exploitation typically requires many traces of execution over the same
2126 * data, which is defeated by randomized blinding.
Janos Follath91c02862022-10-04 13:27:40 +01002127 */
Janos Follath6c5b5ad2022-11-22 10:47:10 +00002128 const size_t x_index = 0;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002129 mbedtls_mpi_init(&W[x_index]);
Janos Follathf0ceb1c2022-11-21 14:31:22 +00002130
2131 j = N->n + 1;
Gilles Peskine20d54e32023-08-10 15:59:28 +02002132 /* All W[i] including the accumulator must have at least N->n limbs for
2133 * the mpi_montmul() and mpi_montred() calls later. Here we ensure that
2134 * W[1] and the accumulator W[x_index] are large enough. later we'll grow
2135 * other W[i] to the same length. They must not be shrunk midway through
2136 * this function!
Janos Follath3a3c50c2022-11-11 15:56:38 +00002137 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002138 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j));
2139 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], j));
2140 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));
Janos Follath91c02862022-10-04 13:27:40 +01002141
2142 /*
Paul Bakker50546922012-05-19 08:40:49 +00002143 * Compensate for negative A (and correct at the end)
2144 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002145 neg = (A->s == -1);
2146 if (neg) {
2147 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));
Paul Bakker50546922012-05-19 08:40:49 +00002148 Apos.s = 1;
2149 A = &Apos;
2150 }
2151
2152 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00002153 * If 1st call, pre-compute R^2 mod N
2154 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002155 if (prec_RR == NULL || prec_RR->p == NULL) {
2156 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1));
2157 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL));
2158 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002159
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002160 if (prec_RR != NULL) {
2161 memcpy(prec_RR, &RR, sizeof(mbedtls_mpi));
2162 }
2163 } else {
2164 memcpy(&RR, prec_RR, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +00002165 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002166
2167 /*
2168 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
2169 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002170 if (mbedtls_mpi_cmp_mpi(A, N) >= 0) {
2171 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002172 /* This should be a no-op because W[1] is already that large before
2173 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
2174 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002175 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1));
2176 } else {
2177 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002178 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002179
Gilles Peskinef643e8e2021-06-08 23:17:42 +02002180 /* Note that this is safe because W[1] always has at least N->n limbs
2181 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002182 mpi_montmul(&W[1], &RR, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00002183
2184 /*
Janos Follath91c02862022-10-04 13:27:40 +01002185 * W[x_index] = R^2 * R^-1 mod N = R mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00002186 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002187 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR));
2188 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00002189
Janos Follath6c5b5ad2022-11-22 10:47:10 +00002190
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002191 if (window_bitsize > 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002192 /*
Janos Follathd88e2192022-11-21 15:54:20 +00002193 * W[i] = W[1] ^ i
2194 *
2195 * The first bit of the sliding window is always 1 and therefore we
2196 * only need to store the second half of the table.
Janos Follath6c5b5ad2022-11-22 10:47:10 +00002197 *
2198 * (There are two special elements in the table: W[0] for the
2199 * accumulator/result and W[1] for A in Montgomery form. Both of these
2200 * are already set at this point.)
Paul Bakker5121ce52009-01-03 21:22:43 +00002201 */
Janos Follathd88e2192022-11-21 15:54:20 +00002202 j = w_table_used_size / 2;
Paul Bakker5121ce52009-01-03 21:22:43 +00002203
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002204 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));
2205 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00002206
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002207 for (i = 0; i < window_bitsize - 1; i++) {
2208 mpi_montmul(&W[j], &W[j], N, mm, &T);
2209 }
Paul Bakker0d7702c2013-10-29 16:18:35 +01002210
Paul Bakker5121ce52009-01-03 21:22:43 +00002211 /*
2212 * W[i] = W[i - 1] * W[1]
2213 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002214 for (i = j + 1; i < w_table_used_size; i++) {
2215 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));
2216 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00002217
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002218 mpi_montmul(&W[i], &W[1], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00002219 }
2220 }
2221
2222 nblimbs = E->n;
2223 bufsize = 0;
2224 nbits = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00002225 state = 0;
2226
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002227 while (1) {
2228 if (bufsize == 0) {
2229 if (nblimbs == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002230 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002231 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002232
Paul Bakker0d7702c2013-10-29 16:18:35 +01002233 nblimbs--;
2234
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002235 bufsize = sizeof(mbedtls_mpi_uint) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00002236 }
2237
2238 bufsize--;
2239
2240 ei = (E->p[nblimbs] >> bufsize) & 1;
2241
2242 /*
2243 * skip leading 0s
2244 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002245 if (ei == 0 && state == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002246 continue;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002247 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002248
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002249 if (ei == 0 && state == 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002250 /*
Janos Follath91c02862022-10-04 13:27:40 +01002251 * out of window, square W[x_index]
Paul Bakker5121ce52009-01-03 21:22:43 +00002252 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002253 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
2254 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00002255 continue;
2256 }
2257
2258 /*
2259 * add ei to current window
2260 */
2261 state = 2;
2262
2263 nbits++;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002264 exponent_bits_in_window |= (ei << (window_bitsize - nbits));
Paul Bakker5121ce52009-01-03 21:22:43 +00002265
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002266 if (nbits == window_bitsize) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002267 /*
Janos Follath66323832022-11-21 14:48:02 +00002268 * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00002269 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002270 for (i = 0; i < window_bitsize; i++) {
2271 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
2272 x_index));
2273 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follath95655a22022-10-04 14:00:09 +01002274 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002275
2276 /*
Janos Follath66323832022-11-21 14:48:02 +00002277 * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00002278 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002279 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
2280 exponent_bits_in_window));
2281 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00002282
2283 state--;
2284 nbits = 0;
Janos Follath66323832022-11-21 14:48:02 +00002285 exponent_bits_in_window = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00002286 }
2287 }
2288
2289 /*
2290 * process the remaining bits
2291 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002292 for (i = 0; i < nbits; i++) {
2293 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
2294 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00002295
Janos Follath66323832022-11-21 14:48:02 +00002296 exponent_bits_in_window <<= 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00002297
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002298 if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) {
2299 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1));
2300 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follath95655a22022-10-04 14:00:09 +01002301 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002302 }
2303
2304 /*
Janos Follath91c02862022-10-04 13:27:40 +01002305 * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00002306 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002307 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00002308
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002309 if (neg && E->n != 0 && (E->p[0] & 1) != 0) {
Janos Follath91c02862022-10-04 13:27:40 +01002310 W[x_index].s = -1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002311 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index]));
Paul Bakkerf6198c12012-05-16 08:02:29 +00002312 }
2313
Janos Follath91c02862022-10-04 13:27:40 +01002314 /*
2315 * Load the result in the output variable.
2316 */
Chien Wong0118a1d2023-08-01 21:38:46 +08002317 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &W[x_index]));
Janos Follath91c02862022-10-04 13:27:40 +01002318
Paul Bakker5121ce52009-01-03 21:22:43 +00002319cleanup:
2320
Janos Follatha92f9152022-11-21 15:05:31 +00002321 /* The first bit of the sliding window is always 1 and therefore the first
2322 * half of the table was unused. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002323 for (i = w_table_used_size/2; i < w_table_used_size; i++) {
2324 mbedtls_mpi_free(&W[i]);
2325 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002326
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002327 mbedtls_mpi_free(&W[x_index]);
2328 mbedtls_mpi_free(&W[1]);
2329 mbedtls_mpi_free(&T);
2330 mbedtls_mpi_free(&Apos);
2331 mbedtls_mpi_free(&WW);
Paul Bakker6c591fa2011-05-05 11:49:20 +00002332
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002333 if (prec_RR == NULL || prec_RR->p == NULL) {
2334 mbedtls_mpi_free(&RR);
2335 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002336
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002337 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002338}
2339
Paul Bakker5121ce52009-01-03 21:22:43 +00002340/*
2341 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
2342 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002343int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00002344{
Janos Follath24eed8d2019-11-22 13:21:35 +00002345 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00002346 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03002347 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00002348
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002349 MPI_VALIDATE_RET(G != NULL);
2350 MPI_VALIDATE_RET(A != NULL);
2351 MPI_VALIDATE_RET(B != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002352
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002353 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00002354
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002355 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
2356 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00002357
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002358 lz = mbedtls_mpi_lsb(&TA);
2359 lzt = mbedtls_mpi_lsb(&TB);
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002360
Gilles Peskineb5e56ec2021-06-09 13:26:43 +02002361 /* The loop below gives the correct result when A==0 but not when B==0.
2362 * So have a special case for B==0. Leverage the fact that we just
2363 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
2364 * slightly more efficient than cmp_int(). */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002365 if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
2366 ret = mbedtls_mpi_copy(G, A);
Gilles Peskineb5e56ec2021-06-09 13:26:43 +02002367 goto cleanup;
2368 }
2369
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002370 if (lzt < lz) {
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002371 lz = lzt;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002372 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002373
Paul Bakker5121ce52009-01-03 21:22:43 +00002374 TA.s = TB.s = 1;
2375
Gilles Peskineea9aa142021-06-16 13:42:04 +02002376 /* We mostly follow the procedure described in HAC 14.54, but with some
2377 * minor differences:
2378 * - Sequences of multiplications or divisions by 2 are grouped into a
2379 * single shift operation.
Gilles Peskine37d690c2021-06-21 18:58:39 +02002380 * - The procedure in HAC assumes that 0 < TB <= TA.
2381 * - The condition TB <= TA is not actually necessary for correctness.
2382 * TA and TB have symmetric roles except for the loop termination
2383 * condition, and the shifts at the beginning of the loop body
2384 * remove any significance from the ordering of TA vs TB before
2385 * the shifts.
2386 * - If TA = 0, the loop goes through 0 iterations and the result is
2387 * correctly TB.
2388 * - The case TB = 0 was short-circuited above.
Gilles Peskineea9aa142021-06-16 13:42:04 +02002389 *
2390 * For the correctness proof below, decompose the original values of
2391 * A and B as
2392 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
2393 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
2394 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
2395 * and gcd(A',B') is odd or 0.
2396 *
2397 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
2398 * The code maintains the following invariant:
2399 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine6537bdb2021-06-15 22:09:39 +02002400 */
2401
Gilles Peskineea9aa142021-06-16 13:42:04 +02002402 /* Proof that the loop terminates:
2403 * At each iteration, either the right-shift by 1 is made on a nonzero
2404 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
2405 * by at least 1, or the right-shift by 1 is made on zero and then
2406 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
2407 * since in that case TB is calculated from TB-TA with the condition TB>TA).
2408 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002409 while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
Gilles Peskineea9aa142021-06-16 13:42:04 +02002410 /* Divisions by 2 preserve the invariant (I). */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002411 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
2412 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
Paul Bakker5121ce52009-01-03 21:22:43 +00002413
Gilles Peskineea9aa142021-06-16 13:42:04 +02002414 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
2415 * TA-TB is even so the division by 2 has an integer result.
2416 * Invariant (I) is preserved since any odd divisor of both TA and TB
2417 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case0e7791f2021-12-20 21:14:10 -08002418 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskineea9aa142021-06-16 13:42:04 +02002419 * divides TA.
2420 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002421 if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
2422 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
2423 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
2424 } else {
2425 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
2426 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002427 }
Gilles Peskineea9aa142021-06-16 13:42:04 +02002428 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00002429 }
2430
Gilles Peskineea9aa142021-06-16 13:42:04 +02002431 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2432 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2433 * - If there was at least one loop iteration, then one of TA or TB is odd,
2434 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2435 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2436 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskineb798b352021-06-21 11:40:38 +02002437 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskineea9aa142021-06-16 13:42:04 +02002438 */
2439
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002440 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
2441 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
Paul Bakker5121ce52009-01-03 21:22:43 +00002442
2443cleanup:
2444
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002445 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00002446
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002447 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002448}
2449
Gilles Peskine8f454702021-04-01 15:57:18 +02002450/* Fill X with n_bytes random bytes.
2451 * X must already have room for those bytes.
Gilles Peskine23422e42021-06-03 11:51:09 +02002452 * The ordering of the bytes returned from the RNG is suitable for
2453 * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).
Gilles Peskinea16001e2021-04-13 21:55:35 +02002454 * The size and sign of X are unchanged.
Gilles Peskine8f454702021-04-01 15:57:18 +02002455 * n_bytes must not be 0.
2456 */
2457static int mpi_fill_random_internal(
2458 mbedtls_mpi *X, size_t n_bytes,
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002459 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
Gilles Peskine8f454702021-04-01 15:57:18 +02002460{
2461 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002462 const size_t limbs = CHARS_TO_LIMBS(n_bytes);
2463 const size_t overhead = (limbs * ciL) - n_bytes;
Gilles Peskine8f454702021-04-01 15:57:18 +02002464
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002465 if (X->n < limbs) {
2466 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2467 }
Gilles Peskine8f454702021-04-01 15:57:18 +02002468
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002469 memset(X->p, 0, overhead);
2470 memset((unsigned char *) X->p + limbs * ciL, 0, (X->n - limbs) * ciL);
2471 MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X->p + overhead, n_bytes));
2472 mpi_bigendian_to_host(X->p, limbs);
Gilles Peskine8f454702021-04-01 15:57:18 +02002473
2474cleanup:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002475 return ret;
Gilles Peskine8f454702021-04-01 15:57:18 +02002476}
2477
Paul Bakker33dc46b2014-04-30 16:11:39 +02002478/*
2479 * Fill X with size bytes of random.
2480 *
2481 * Use a temporary bytes representation to make sure the result is the same
Paul Bakkerc37b0ac2014-05-01 14:19:23 +02002482 * regardless of the platform endianness (useful when f_rng is actually
Paul Bakker33dc46b2014-04-30 16:11:39 +02002483 * deterministic, eg for tests).
2484 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002485int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
2486 int (*f_rng)(void *, unsigned char *, size_t),
2487 void *p_rng)
Paul Bakker287781a2011-03-26 13:18:49 +00002488{
Janos Follath24eed8d2019-11-22 13:21:35 +00002489 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002490 size_t const limbs = CHARS_TO_LIMBS(size);
Hanno Beckerda1655a2017-10-18 14:21:44 +01002491
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002492 MPI_VALIDATE_RET(X != NULL);
2493 MPI_VALIDATE_RET(f_rng != NULL);
Paul Bakker33dc46b2014-04-30 16:11:39 +02002494
Hanno Beckerda1655a2017-10-18 14:21:44 +01002495 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002496 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
2497 if (size == 0) {
2498 return 0;
2499 }
Paul Bakker287781a2011-03-26 13:18:49 +00002500
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002501 ret = mpi_fill_random_internal(X, size, f_rng, p_rng);
Paul Bakker287781a2011-03-26 13:18:49 +00002502
2503cleanup:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002504 return ret;
Paul Bakker287781a2011-03-26 13:18:49 +00002505}
2506
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002507int mbedtls_mpi_random(mbedtls_mpi *X,
2508 mbedtls_mpi_sint min,
2509 const mbedtls_mpi *N,
2510 int (*f_rng)(void *, unsigned char *, size_t),
2511 void *p_rng)
Gilles Peskine4699fa42021-03-29 22:02:55 +02002512{
Gilles Peskine4699fa42021-03-29 22:02:55 +02002513 int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002514 int count;
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002515 unsigned lt_lower = 1, lt_upper = 0;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002516 size_t n_bits = mbedtls_mpi_bitlen(N);
2517 size_t n_bytes = (n_bits + 7) / 8;
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002518 mbedtls_mpi lower_bound;
Gilles Peskine4699fa42021-03-29 22:02:55 +02002519
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002520 if (min < 0) {
2521 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2522 }
2523 if (mbedtls_mpi_cmp_int(N, min) <= 0) {
2524 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2525 }
Gilles Peskine9312ba52021-03-29 22:14:51 +02002526
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002527 /*
2528 * When min == 0, each try has at worst a probability 1/2 of failing
2529 * (the msb has a probability 1/2 of being 0, and then the result will
2530 * be < N), so after 30 tries failure probability is a most 2**(-30).
2531 *
2532 * When N is just below a power of 2, as is the case when generating
Gilles Peskine3f613632021-04-15 11:45:19 +02002533 * a random scalar on most elliptic curves, 1 try is enough with
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002534 * overwhelming probability. When N is just above a power of 2,
Gilles Peskine3f613632021-04-15 11:45:19 +02002535 * as when generating a random scalar on secp224k1, each try has
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002536 * a probability of failing that is almost 1/2.
2537 *
2538 * The probabilities are almost the same if min is nonzero but negligible
2539 * compared to N. This is always the case when N is crypto-sized, but
2540 * it's convenient to support small N for testing purposes. When N
2541 * is small, use a higher repeat count, otherwise the probability of
2542 * failure is macroscopic.
2543 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002544 count = (n_bytes > 4 ? 30 : 250);
Gilles Peskinee39ee8e2021-04-13 21:23:25 +02002545
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002546 mbedtls_mpi_init(&lower_bound);
Gilles Peskine74f66bb2021-04-13 21:09:10 +02002547
Gilles Peskine8f454702021-04-01 15:57:18 +02002548 /* Ensure that target MPI has exactly the same number of limbs
2549 * as the upper bound, even if the upper bound has leading zeros.
2550 * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002551 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, N->n));
2552 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&lower_bound, N->n));
2553 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&lower_bound, min));
Gilles Peskine8f454702021-04-01 15:57:18 +02002554
Gilles Peskine4699fa42021-03-29 22:02:55 +02002555 /*
2556 * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
2557 * when f_rng is a suitably parametrized instance of HMAC_DRBG:
2558 * - use the same byte ordering;
2559 * - keep the leftmost n_bits bits of the generated octet string;
2560 * - try until result is in the desired range.
2561 * This also avoids any bias, which is especially important for ECDSA.
2562 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002563 do {
2564 MBEDTLS_MPI_CHK(mpi_fill_random_internal(X, n_bytes, f_rng, p_rng));
2565 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, 8 * n_bytes - n_bits));
Gilles Peskine4699fa42021-03-29 22:02:55 +02002566
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002567 if (--count == 0) {
Gilles Peskine4699fa42021-03-29 22:02:55 +02002568 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2569 goto cleanup;
2570 }
2571
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002572 MBEDTLS_MPI_CHK(mbedtls_mpi_lt_mpi_ct(X, &lower_bound, &lt_lower));
2573 MBEDTLS_MPI_CHK(mbedtls_mpi_lt_mpi_ct(X, N, &lt_upper));
2574 } while (lt_lower != 0 || lt_upper == 0);
Gilles Peskine4699fa42021-03-29 22:02:55 +02002575
2576cleanup:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002577 mbedtls_mpi_free(&lower_bound);
2578 return ret;
Gilles Peskine4699fa42021-03-29 22:02:55 +02002579}
2580
Paul Bakker5121ce52009-01-03 21:22:43 +00002581/*
2582 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2583 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002584int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00002585{
Janos Follath24eed8d2019-11-22 13:21:35 +00002586 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002587 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002588 MPI_VALIDATE_RET(X != NULL);
2589 MPI_VALIDATE_RET(A != NULL);
2590 MPI_VALIDATE_RET(N != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00002591
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002592 if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
2593 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2594 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002595
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002596 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
2597 mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
2598 mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002599
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002600 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002601
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002602 if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002603 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002604 goto cleanup;
2605 }
2606
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002607 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
2608 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
2609 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
2610 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002611
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002612 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
2613 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
2614 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
2615 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002616
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002617 do {
2618 while ((TU.p[0] & 1) == 0) {
2619 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002620
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002621 if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
2622 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
2623 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002624 }
2625
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002626 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
2627 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002628 }
2629
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002630 while ((TV.p[0] & 1) == 0) {
2631 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002632
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002633 if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
2634 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
2635 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002636 }
2637
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002638 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
2639 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002640 }
2641
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002642 if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
2643 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
2644 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
2645 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
2646 } else {
2647 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
2648 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
2649 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
Paul Bakker5121ce52009-01-03 21:22:43 +00002650 }
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002651 } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
2652
2653 while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
2654 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002655 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002656
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002657 while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
2658 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
2659 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002660
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002661 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002662
2663cleanup:
2664
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002665 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
2666 mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
2667 mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002668
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002669 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002670}
2671
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002672#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002673
Paul Bakker5121ce52009-01-03 21:22:43 +00002674static const int small_prime[] =
2675{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002676 3, 5, 7, 11, 13, 17, 19, 23,
2677 29, 31, 37, 41, 43, 47, 53, 59,
2678 61, 67, 71, 73, 79, 83, 89, 97,
2679 101, 103, 107, 109, 113, 127, 131, 137,
2680 139, 149, 151, 157, 163, 167, 173, 179,
2681 181, 191, 193, 197, 199, 211, 223, 227,
2682 229, 233, 239, 241, 251, 257, 263, 269,
2683 271, 277, 281, 283, 293, 307, 311, 313,
2684 317, 331, 337, 347, 349, 353, 359, 367,
2685 373, 379, 383, 389, 397, 401, 409, 419,
2686 421, 431, 433, 439, 443, 449, 457, 461,
2687 463, 467, 479, 487, 491, 499, 503, 509,
2688 521, 523, 541, 547, 557, 563, 569, 571,
2689 577, 587, 593, 599, 601, 607, 613, 617,
2690 619, 631, 641, 643, 647, 653, 659, 661,
2691 673, 677, 683, 691, 701, 709, 719, 727,
2692 733, 739, 743, 751, 757, 761, 769, 773,
2693 787, 797, 809, 811, 821, 823, 827, 829,
2694 839, 853, 857, 859, 863, 877, 881, 883,
2695 887, 907, 911, 919, 929, 937, 941, 947,
2696 953, 967, 971, 977, 983, 991, 997, -103
Paul Bakker5121ce52009-01-03 21:22:43 +00002697};
2698
2699/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002700 * Small divisors test (X must be positive)
2701 *
2702 * Return values:
2703 * 0: no small factor (possible prime, more tests needed)
2704 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002705 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002706 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002707 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002708static int mpi_check_small_factors(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +00002709{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002710 int ret = 0;
2711 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002712 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002713
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002714 if ((X->p[0] & 1) == 0) {
2715 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2716 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002717
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002718 for (i = 0; small_prime[i] > 0; i++) {
2719 if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) {
2720 return 1;
2721 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002722
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002723 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i]));
Paul Bakker5121ce52009-01-03 21:22:43 +00002724
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002725 if (r == 0) {
2726 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2727 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002728 }
2729
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002730cleanup:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002731 return ret;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002732}
2733
2734/*
2735 * Miller-Rabin pseudo-primality test (HAC 4.24)
2736 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002737static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
2738 int (*f_rng)(void *, unsigned char *, size_t),
2739 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002740{
Pascal Junodb99183d2015-03-11 16:49:45 +01002741 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002742 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002743 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002744
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002745 MPI_VALIDATE_RET(X != NULL);
2746 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002747
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002748 mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
2749 mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
2750 mbedtls_mpi_init(&RR);
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002751
Paul Bakker5121ce52009-01-03 21:22:43 +00002752 /*
2753 * W = |X| - 1
2754 * R = W >> lsb( W )
2755 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002756 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
2757 s = mbedtls_mpi_lsb(&W);
2758 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
2759 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
Paul Bakker5121ce52009-01-03 21:22:43 +00002760
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002761 for (i = 0; i < rounds; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002762 /*
2763 * pick a random A, 1 < A < |X| - 1
2764 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002765 count = 0;
2766 do {
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002767 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
Pascal Junodb99183d2015-03-11 16:49:45 +01002768
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002769 j = mbedtls_mpi_bitlen(&A);
2770 k = mbedtls_mpi_bitlen(&W);
Pascal Junodb99183d2015-03-11 16:49:45 +01002771 if (j > k) {
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002772 A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002773 }
2774
2775 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002776 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2777 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002778 }
2779
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002780 } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
2781 mbedtls_mpi_cmp_int(&A, 1) <= 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00002782
2783 /*
2784 * A = A^R mod |X|
2785 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002786 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
Paul Bakker5121ce52009-01-03 21:22:43 +00002787
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002788 if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
2789 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002790 continue;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002791 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002792
2793 j = 1;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002794 while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002795 /*
2796 * A = A * A mod |X|
2797 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002798 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
2799 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
Paul Bakker5121ce52009-01-03 21:22:43 +00002800
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002801 if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002802 break;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002803 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002804
2805 j++;
2806 }
2807
2808 /*
2809 * not prime if A != |X| - 1 or A == 1
2810 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002811 if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
2812 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002813 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002814 break;
2815 }
2816 }
2817
2818cleanup:
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002819 mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
2820 mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
2821 mbedtls_mpi_free(&RR);
Paul Bakker5121ce52009-01-03 21:22:43 +00002822
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002823 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002824}
2825
2826/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002827 * Pseudo-primality test: small factors, then Miller-Rabin
2828 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002829int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
2830 int (*f_rng)(void *, unsigned char *, size_t),
2831 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002832{
Janos Follath24eed8d2019-11-22 13:21:35 +00002833 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002834 mbedtls_mpi XX;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002835 MPI_VALIDATE_RET(X != NULL);
2836 MPI_VALIDATE_RET(f_rng != NULL);
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002837
2838 XX.s = 1;
2839 XX.n = X->n;
2840 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002841
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002842 if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
2843 mbedtls_mpi_cmp_int(&XX, 1) == 0) {
2844 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002845 }
2846
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002847 if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
2848 return 0;
2849 }
2850
2851 if ((ret = mpi_check_small_factors(&XX)) != 0) {
2852 if (ret == 1) {
2853 return 0;
2854 }
2855
2856 return ret;
2857 }
2858
2859 return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
Janos Follathf301d232018-08-14 13:34:01 +01002860}
2861
Janos Follatha0b67c22018-09-18 14:48:23 +01002862#if !defined(MBEDTLS_DEPRECATED_REMOVED)
Janos Follathf301d232018-08-14 13:34:01 +01002863/*
2864 * Pseudo-primality test, error probability 2^-80
2865 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002866int mbedtls_mpi_is_prime(const mbedtls_mpi *X,
2867 int (*f_rng)(void *, unsigned char *, size_t),
2868 void *p_rng)
Janos Follathf301d232018-08-14 13:34:01 +01002869{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002870 MPI_VALIDATE_RET(X != NULL);
2871 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002872
Janos Follatha0b67c22018-09-18 14:48:23 +01002873 /*
2874 * In the past our key generation aimed for an error rate of at most
2875 * 2^-80. Since this function is deprecated, aim for the same certainty
2876 * here as well.
2877 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002878 return mbedtls_mpi_is_prime_ext(X, 40, f_rng, p_rng);
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002879}
Janos Follatha0b67c22018-09-18 14:48:23 +01002880#endif
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002881
2882/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002883 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002884 *
Janos Follathf301d232018-08-14 13:34:01 +01002885 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2886 * be either 1024 bits or 1536 bits long, and flags must contain
2887 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002888 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002889int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
2890 int (*f_rng)(void *, unsigned char *, size_t),
2891 void *p_rng)
Paul Bakker5121ce52009-01-03 21:22:43 +00002892{
Jethro Beekman66689272018-02-14 19:24:10 -08002893#ifdef MBEDTLS_HAVE_INT64
2894// ceil(2^63.5)
2895#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2896#else
2897// ceil(2^31.5)
2898#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2899#endif
2900 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002901 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002902 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002903 mbedtls_mpi_uint r;
2904 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002905
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002906 MPI_VALIDATE_RET(X != NULL);
2907 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002908
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002909 if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
2910 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2911 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002912
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002913 mbedtls_mpi_init(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00002914
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002915 n = BITS_TO_LIMBS(nbits);
Paul Bakker5121ce52009-01-03 21:22:43 +00002916
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002917 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
Janos Follathda31fa12018-09-03 14:45:23 +01002918 /*
2919 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2920 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002921 rounds = ((nbits >= 1300) ? 2 : (nbits >= 850) ? 3 :
2922 (nbits >= 650) ? 4 : (nbits >= 350) ? 8 :
2923 (nbits >= 250) ? 12 : (nbits >= 150) ? 18 : 27);
2924 } else {
Janos Follathda31fa12018-09-03 14:45:23 +01002925 /*
2926 * 2^-100 error probability, number of rounds computed based on HAC,
2927 * fact 4.48
2928 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002929 rounds = ((nbits >= 1450) ? 4 : (nbits >= 1150) ? 5 :
2930 (nbits >= 1000) ? 6 : (nbits >= 850) ? 7 :
2931 (nbits >= 750) ? 8 : (nbits >= 500) ? 13 :
2932 (nbits >= 250) ? 28 : (nbits >= 150) ? 40 : 51);
Janos Follathda31fa12018-09-03 14:45:23 +01002933 }
2934
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002935 while (1) {
2936 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
Jethro Beekman66689272018-02-14 19:24:10 -08002937 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002938 if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
2939 continue;
2940 }
Jethro Beekman66689272018-02-14 19:24:10 -08002941
2942 k = n * biL;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002943 if (k > nbits) {
2944 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
2945 }
Jethro Beekman66689272018-02-14 19:24:10 -08002946 X->p[0] |= 1;
2947
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002948 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
2949 ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
Jethro Beekman66689272018-02-14 19:24:10 -08002950
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002951 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002952 goto cleanup;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002953 }
2954 } else {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002955 /*
Tom Cosgrove5205c972022-07-28 06:12:08 +01002956 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002957 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2958 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002959 */
Jethro Beekman66689272018-02-14 19:24:10 -08002960
2961 X->p[0] |= 2;
2962
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002963 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
2964 if (r == 0) {
2965 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
2966 } else if (r == 1) {
2967 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
2968 }
Jethro Beekman66689272018-02-14 19:24:10 -08002969
2970 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002971 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
2972 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
Jethro Beekman66689272018-02-14 19:24:10 -08002973
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002974 while (1) {
Jethro Beekman66689272018-02-14 19:24:10 -08002975 /*
2976 * First, check small factors for X and Y
2977 * before doing Miller-Rabin on any of them
2978 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002979 if ((ret = mpi_check_small_factors(X)) == 0 &&
2980 (ret = mpi_check_small_factors(&Y)) == 0 &&
2981 (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
2982 == 0 &&
2983 (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
2984 == 0) {
Jethro Beekman66689272018-02-14 19:24:10 -08002985 goto cleanup;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002986 }
Jethro Beekman66689272018-02-14 19:24:10 -08002987
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002988 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Jethro Beekman66689272018-02-14 19:24:10 -08002989 goto cleanup;
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002990 }
Jethro Beekman66689272018-02-14 19:24:10 -08002991
2992 /*
2993 * Next candidates. We want to preserve Y = (X-1) / 2 and
2994 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2995 * so up Y by 6 and X by 12.
2996 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002997 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 12));
2998 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
Paul Bakker5121ce52009-01-03 21:22:43 +00002999 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003000 }
3001 }
3002
3003cleanup:
3004
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003005 mbedtls_mpi_free(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00003006
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003007 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00003008}
3009
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003010#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00003011
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003012#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00003013
Paul Bakker23986e52011-04-24 08:57:21 +00003014#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003015
3016static const int gcd_pairs[GCD_PAIR_COUNT][3] =
3017{
3018 { 693, 609, 21 },
3019 { 1764, 868, 28 },
3020 { 768454923, 542167814, 1 }
3021};
3022
Paul Bakker5121ce52009-01-03 21:22:43 +00003023/*
3024 * Checkup routine
3025 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003026int mbedtls_mpi_self_test(int verbose)
Paul Bakker5121ce52009-01-03 21:22:43 +00003027{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003028 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003029 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00003030
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003031 mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
3032 mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00003033
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003034 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
3035 "EFE021C2645FD1DC586E69184AF4A31E" \
3036 "D5F53E93B5F123FA41680867BA110131" \
3037 "944FE7952E2517337780CB0DB80E61AA" \
3038 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
Paul Bakker5121ce52009-01-03 21:22:43 +00003039
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003040 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
3041 "B2E7EFD37075B9F03FF989C7C5051C20" \
3042 "34D2A323810251127E7BF8625A4F49A5" \
3043 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
3044 "5B5C25763222FEFCCFC38B832366C29E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00003045
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003046 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
3047 "0066A198186C18C10B2F5ED9B522752A" \
3048 "9830B69916E535C8F047518A889A43A5" \
3049 "94B6BED27A168D31D4A52F88925AA8F5"));
Paul Bakker5121ce52009-01-03 21:22:43 +00003050
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003051 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00003052
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003053 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
3054 "602AB7ECA597A3D6B56FF9829A5E8B85" \
3055 "9E857EA95A03512E2BAE7391688D264A" \
3056 "A5663B0341DB9CCFD2C4C5F421FEC814" \
3057 "8001B72E848A38CAE1C65F78E56ABDEF" \
3058 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
3059 "ECF677152EF804370C1A305CAF3B5BF1" \
3060 "30879B56C61DE584A0F53A2447A51E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00003061
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003062 if (verbose != 0) {
3063 mbedtls_printf(" MPI test #1 (mul_mpi): ");
3064 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003065
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003066 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
3067 if (verbose != 0) {
3068 mbedtls_printf("failed\n");
3069 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003070
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003071 ret = 1;
3072 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003073 }
3074
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003075 if (verbose != 0) {
3076 mbedtls_printf("passed\n");
3077 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003078
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003079 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00003080
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003081 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
3082 "256567336059E52CAE22925474705F39A94"));
Paul Bakker5121ce52009-01-03 21:22:43 +00003083
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003084 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
3085 "6613F26162223DF488E9CD48CC132C7A" \
3086 "0AC93C701B001B092E4E5B9F73BCD27B" \
3087 "9EE50D0657C77F374E903CDFA4C642"));
Paul Bakker5121ce52009-01-03 21:22:43 +00003088
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003089 if (verbose != 0) {
3090 mbedtls_printf(" MPI test #2 (div_mpi): ");
3091 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003092
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003093 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
3094 mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
3095 if (verbose != 0) {
3096 mbedtls_printf("failed\n");
3097 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003098
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003099 ret = 1;
3100 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003101 }
3102
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003103 if (verbose != 0) {
3104 mbedtls_printf("passed\n");
3105 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003106
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003107 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
Paul Bakker5121ce52009-01-03 21:22:43 +00003108
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003109 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
3110 "36E139AEA55215609D2816998ED020BB" \
3111 "BD96C37890F65171D948E9BC7CBAA4D9" \
3112 "325D24D6A3C12710F10A09FA08AB87"));
Paul Bakker5121ce52009-01-03 21:22:43 +00003113
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003114 if (verbose != 0) {
3115 mbedtls_printf(" MPI test #3 (exp_mod): ");
3116 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003117
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003118 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
3119 if (verbose != 0) {
3120 mbedtls_printf("failed\n");
3121 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003122
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003123 ret = 1;
3124 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003125 }
3126
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003127 if (verbose != 0) {
3128 mbedtls_printf("passed\n");
3129 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003130
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003131 MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00003132
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003133 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
3134 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
3135 "C3DBA76456363A10869622EAC2DD84EC" \
3136 "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
Paul Bakker5121ce52009-01-03 21:22:43 +00003137
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003138 if (verbose != 0) {
3139 mbedtls_printf(" MPI test #4 (inv_mod): ");
3140 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003141
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003142 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
3143 if (verbose != 0) {
3144 mbedtls_printf("failed\n");
3145 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003146
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003147 ret = 1;
3148 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00003149 }
3150
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003151 if (verbose != 0) {
3152 mbedtls_printf("passed\n");
3153 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003154
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003155 if (verbose != 0) {
3156 mbedtls_printf(" MPI test #5 (simple gcd): ");
3157 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003158
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003159 for (i = 0; i < GCD_PAIR_COUNT; i++) {
3160 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
3161 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003162
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003163 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003164
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003165 if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
3166 if (verbose != 0) {
3167 mbedtls_printf("failed at %d\n", i);
3168 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003169
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01003170 ret = 1;
3171 goto cleanup;
3172 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003173 }
3174
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003175 if (verbose != 0) {
3176 mbedtls_printf("passed\n");
3177 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00003178
Paul Bakker5121ce52009-01-03 21:22:43 +00003179cleanup:
3180
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003181 if (ret != 0 && verbose != 0) {
3182 mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
3183 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003184
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003185 mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
3186 mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00003187
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003188 if (verbose != 0) {
3189 mbedtls_printf("\n");
3190 }
Paul Bakker5121ce52009-01-03 21:22:43 +00003191
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01003192 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00003193}
3194
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003195#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00003196
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02003197#endif /* MBEDTLS_BIGNUM_C */