blob: 9777ae90e1ab5669fc1246b4faed568713d5075e [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
18 * Copyright (C) 2018, ARM Limited, All Rights Reserved
19 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
32 *
33 * This file is part of mbed TLS (https://tls.mbed.org)
34 */
35
36#ifndef PSA_CRYPTO_VALUES_H
37#define PSA_CRYPTO_VALUES_H
38
39/** \defgroup error Error codes
40 * @{
41 */
42
David Saadab4ecc272019-02-14 13:48:10 +020043/* PSA error codes */
44
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045/** The action was completed successfully. */
46#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010047
48/** An error occurred that does not correspond to any defined
49 * failure cause.
50 *
51 * Implementations may use this error code if none of the other standard
52 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020053#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010054
55/** The requested operation or a parameter is not supported
56 * by this implementation.
57 *
58 * Implementations should return this error code when an enumeration
59 * parameter such as a key type, algorithm, etc. is not recognized.
60 * If a combination of parameters is recognized and identified as
61 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020062#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010063
64/** The requested action is denied by a policy.
65 *
66 * Implementations should return this error code when the parameters
67 * are recognized as valid and supported, and a policy explicitly
68 * denies the requested operation.
69 *
70 * If a subset of the parameters of a function call identify a
71 * forbidden operation, and another subset of the parameters are
72 * not valid or not supported, it is unspecified whether the function
73 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
74 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020075#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010076
77/** An output buffer is too small.
78 *
79 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
80 * description to determine a sufficient buffer size.
81 *
82 * Implementations should preferably return this error code only
83 * in cases when performing the operation with a larger output
84 * buffer would succeed. However implementations may return this
85 * error if a function has invalid or unsupported parameters in addition
86 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020087#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088
David Saadab4ecc272019-02-14 13:48:10 +020089/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010090 *
David Saadab4ecc272019-02-14 13:48:10 +020091 * Implementations should return this error, when attempting
92 * to write an item (like a key) that already exists. */
93#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094
David Saadab4ecc272019-02-14 13:48:10 +020095/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010096 *
David Saadab4ecc272019-02-14 13:48:10 +020097 * Implementations should return this error, if a requested item (like
98 * a key) does not exist. */
99#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100
101/** The requested action cannot be performed in the current state.
102 *
103 * Multipart operations return this error when one of the
104 * functions is called out of sequence. Refer to the function
105 * descriptions for permitted sequencing of functions.
106 *
107 * Implementations shall not return this error code to indicate
108 * that a key slot is occupied when it needs to be free or vice versa,
David Saadab4ecc272019-02-14 13:48:10 +0200109 * but shall return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100110 * as applicable. */
David Saadab4ecc272019-02-14 13:48:10 +0200111#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100112
113/** The parameters passed to the function are invalid.
114 *
115 * Implementations may return this error any time a parameter or
116 * combination of parameters are recognized as invalid.
117 *
118 * Implementations shall not return this error code to indicate
119 * that a key slot is occupied when it needs to be free or vice versa,
David Saadab4ecc272019-02-14 13:48:10 +0200120 * but shall return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100121 * as applicable.
122 *
123 * Implementation shall not return this error code to indicate that a
124 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
125 * instead.
126 */
David Saadab4ecc272019-02-14 13:48:10 +0200127#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100128
129/** There is not enough runtime memory.
130 *
131 * If the action is carried out across multiple security realms, this
132 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200133#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100134
135/** There is not enough persistent storage.
136 *
137 * Functions that modify the key storage return this error code if
138 * there is insufficient storage space on the host media. In addition,
139 * many functions that do not otherwise access storage may return this
140 * error code if the implementation requires a mandatory log entry for
141 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200142#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100143
144/** There was a communication failure inside the implementation.
145 *
146 * This can indicate a communication failure between the application
147 * and an external cryptoprocessor or between the cryptoprocessor and
148 * an external volatile or persistent memory. A communication failure
149 * may be transient or permanent depending on the cause.
150 *
151 * \warning If a function returns this error, it is undetermined
152 * whether the requested action has completed or not. Implementations
153 * should return #PSA_SUCCESS on successful completion whenver
154 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
155 * if the requested action was completed successfully in an external
156 * cryptoprocessor but there was a breakdown of communication before
157 * the cryptoprocessor could report the status to the application.
158 */
David Saadab4ecc272019-02-14 13:48:10 +0200159#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100160
161/** There was a storage failure that may have led to data loss.
162 *
163 * This error indicates that some persistent storage is corrupted.
164 * It should not be used for a corruption of volatile memory
165 * (use #PSA_ERROR_TAMPERING_DETECTED), for a communication error
166 * between the cryptoprocessor and its external storage (use
167 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
168 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
169 *
170 * Note that a storage failure does not indicate that any data that was
171 * previously read is invalid. However this previously read data may no
172 * longer be readable from storage.
173 *
174 * When a storage failure occurs, it is no longer possible to ensure
175 * the global integrity of the keystore. Depending on the global
176 * integrity guarantees offered by the implementation, access to other
177 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100178 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100179 *
180 * Implementations should only use this error code to report a
181 * permanent storage corruption. However application writers should
182 * keep in mind that transient errors while reading the storage may be
183 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200184#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100185
186/** A hardware failure was detected.
187 *
188 * A hardware failure may be transient or permanent depending on the
189 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200190#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100191
192/** A tampering attempt was detected.
193 *
194 * If an application receives this error code, there is no guarantee
195 * that previously accessed or computed data was correct and remains
196 * confidential. Applications should not perform any security function
197 * and should enter a safe failure state.
198 *
199 * Implementations may return this error code if they detect an invalid
200 * state that cannot happen during normal operation and that indicates
201 * that the implementation's security guarantees no longer hold. Depending
202 * on the implementation architecture and on its security and safety goals,
203 * the implementation may forcibly terminate the application.
204 *
205 * This error code is intended as a last resort when a security breach
206 * is detected and it is unsure whether the keystore data is still
207 * protected. Implementations shall only return this error code
208 * to report an alarm from a tampering detector, to indicate that
209 * the confidentiality of stored data can no longer be guaranteed,
210 * or to indicate that the integrity of previously returned data is now
211 * considered compromised. Implementations shall not use this error code
212 * to indicate a hardware failure that merely makes it impossible to
213 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
214 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
215 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
216 * instead).
217 *
218 * This error indicates an attack against the application. Implementations
219 * shall not return this error code as a consequence of the behavior of
220 * the application itself. */
David Saadab4ecc272019-02-14 13:48:10 +0200221#define PSA_ERROR_TAMPERING_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100222
223/** There is not enough entropy to generate random data needed
224 * for the requested action.
225 *
226 * This error indicates a failure of a hardware random generator.
227 * Application writers should note that this error can be returned not
228 * only by functions whose purpose is to generate random data, such
229 * as key, IV or nonce generation, but also by functions that execute
230 * an algorithm with a randomized result, as well as functions that
231 * use randomization of intermediate computations as a countermeasure
232 * to certain attacks.
233 *
234 * Implementations should avoid returning this error after psa_crypto_init()
235 * has succeeded. Implementations should generate sufficient
236 * entropy during initialization and subsequently use a cryptographically
237 * secure pseudorandom generator (PRNG). However implementations may return
238 * this error at any time if a policy requires the PRNG to be reseeded
239 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200240#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100241
242/** The signature, MAC or hash is incorrect.
243 *
244 * Verification functions return this error if the verification
245 * calculations completed successfully, and the value to be verified
246 * was determined to be incorrect.
247 *
248 * If the value to verify has an invalid size, implementations may return
249 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200250#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100251
252/** The decrypted padding is incorrect.
253 *
254 * \warning In some protocols, when decrypting data, it is essential that
255 * the behavior of the application does not depend on whether the padding
256 * is correct, down to precise timing. Applications should prefer
257 * protocols that use authenticated encryption rather than plain
258 * encryption. If the application must perform a decryption of
259 * unauthenticated data, the application writer should take care not
260 * to reveal whether the padding is invalid.
261 *
262 * Implementations should strive to make valid and invalid padding
263 * as close as possible to indistinguishable to an external observer.
264 * In particular, the timing of a decryption operation should not
265 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200266#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100267
David Saadab4ecc272019-02-14 13:48:10 +0200268/** Return this error when there's insufficient data when attempting
269 * to read from a resource. */
270#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100271
272/** The key handle is not valid.
273 */
David Saadab4ecc272019-02-14 13:48:10 +0200274#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100275
276/**@}*/
277
278/** \defgroup crypto_types Key and algorithm types
279 * @{
280 */
281
282/** An invalid key type value.
283 *
284 * Zero is not the encoding of any key type.
285 */
286#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
287
288/** Vendor-defined flag
289 *
290 * Key types defined by this standard will never have the
291 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
292 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
293 * respect the bitwise structure used by standard encodings whenever practical.
294 */
295#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
296
297#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000)
298#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000)
299#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000)
300#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000)
301#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000)
302
303#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000)
304
305/** Whether a key type is vendor-defined. */
306#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
307 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
308
309/** Whether a key type is an unstructured array of bytes.
310 *
311 * This encompasses both symmetric keys and non-key data.
312 */
313#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
314 (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \
315 PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
316
317/** Whether a key type is asymmetric: either a key pair or a public key. */
318#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
319 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
320 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
321 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
322/** Whether a key type is the public part of a key pair. */
323#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
324 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
325/** Whether a key type is a key pair containing a private part and a public
326 * part. */
327#define PSA_KEY_TYPE_IS_KEYPAIR(type) \
328 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
329/** The key pair type corresponding to a public key type.
330 *
331 * You may also pass a key pair type as \p type, it will be left unchanged.
332 *
333 * \param type A public key type or key pair type.
334 *
335 * \return The corresponding key pair type.
336 * If \p type is not a public key or a key pair,
337 * the return value is undefined.
338 */
339#define PSA_KEY_TYPE_KEYPAIR_OF_PUBLIC_KEY(type) \
340 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
341/** The public key type corresponding to a key pair type.
342 *
343 * You may also pass a key pair type as \p type, it will be left unchanged.
344 *
345 * \param type A public key type or key pair type.
346 *
347 * \return The corresponding public key type.
348 * If \p type is not a public key or a key pair,
349 * the return value is undefined.
350 */
351#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) \
352 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
353
354/** Raw data.
355 *
356 * A "key" of this type cannot be used for any cryptographic operation.
357 * Applications may use this type to store arbitrary data in the keystore. */
358#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001)
359
360/** HMAC key.
361 *
362 * The key policy determines which underlying hash algorithm the key can be
363 * used for.
364 *
365 * HMAC keys should generally have the same size as the underlying hash.
366 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
367 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
368#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000)
369
370/** A secret for key derivation.
371 *
372 * The key policy determines which key derivation algorithm the key
373 * can be used for.
374 */
375#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000)
376
377/** Key for an cipher, AEAD or MAC algorithm based on the AES block cipher.
378 *
379 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
380 * 32 bytes (AES-256).
381 */
382#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001)
383
384/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
385 *
386 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
387 * 24 bytes (3-key 3DES).
388 *
389 * Note that single DES and 2-key 3DES are weak and strongly
390 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
391 * is weak and deprecated and should only be used in legacy protocols.
392 */
393#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002)
394
395/** Key for an cipher, AEAD or MAC algorithm based on the
396 * Camellia block cipher. */
397#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003)
398
399/** Key for the RC4 stream cipher.
400 *
401 * Note that RC4 is weak and deprecated and should only be used in
402 * legacy protocols. */
403#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004)
404
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200405/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
406 *
407 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
408 *
409 * Implementations must support 12-byte nonces, may support 8-byte nonces,
410 * and should reject other sizes.
411 */
412#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x40000005)
413
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100414/** RSA public key. */
415#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000)
416/** RSA key pair (private and public key). */
417#define PSA_KEY_TYPE_RSA_KEYPAIR ((psa_key_type_t)0x70010000)
418/** Whether a key type is an RSA key (pair or public-only). */
419#define PSA_KEY_TYPE_IS_RSA(type) \
420 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
421
422/** DSA public key. */
423#define PSA_KEY_TYPE_DSA_PUBLIC_KEY ((psa_key_type_t)0x60020000)
424/** DSA key pair (private and public key). */
425#define PSA_KEY_TYPE_DSA_KEYPAIR ((psa_key_type_t)0x70020000)
426/** Whether a key type is an DSA key (pair or public-only). */
427#define PSA_KEY_TYPE_IS_DSA(type) \
428 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_DSA_PUBLIC_KEY)
429
430#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000)
431#define PSA_KEY_TYPE_ECC_KEYPAIR_BASE ((psa_key_type_t)0x70030000)
432#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff)
433/** Elliptic curve key pair. */
434#define PSA_KEY_TYPE_ECC_KEYPAIR(curve) \
435 (PSA_KEY_TYPE_ECC_KEYPAIR_BASE | (curve))
436/** Elliptic curve public key. */
437#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
438 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
439
440/** Whether a key type is an elliptic curve key (pair or public-only). */
441#define PSA_KEY_TYPE_IS_ECC(type) \
442 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) & \
443 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100444/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100445#define PSA_KEY_TYPE_IS_ECC_KEYPAIR(type) \
446 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
447 PSA_KEY_TYPE_ECC_KEYPAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100448/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100449#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
450 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
451 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
452
453/** Extract the curve from an elliptic curve key type. */
454#define PSA_KEY_TYPE_GET_CURVE(type) \
455 ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
456 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
457 0))
458
459/* The encoding of curve identifiers is currently aligned with the
460 * TLS Supported Groups Registry (formerly known as the
461 * TLS EC Named Curve Registry)
462 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
463 * The values are defined by RFC 8422 and RFC 7027. */
464#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001)
465#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002)
466#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003)
467#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004)
468#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005)
469#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006)
470#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007)
471#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008)
472#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009)
473#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a)
474#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b)
475#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c)
476#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d)
477#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e)
478#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f)
479#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010)
480#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011)
481#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012)
482#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013)
483#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014)
484#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015)
485#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016)
486#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017)
487#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018)
488#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019)
489#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a)
490#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b)
491#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c)
492#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d)
493#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e)
494
Jaeden Amero8851c402019-01-11 14:20:03 +0000495/** Diffie-Hellman key exchange public key. */
496#define PSA_KEY_TYPE_DH_PUBLIC_KEY ((psa_key_type_t)0x60040000)
497/** Diffie-Hellman key exchange key pair (private and public key). */
498#define PSA_KEY_TYPE_DH_KEYPAIR ((psa_key_type_t)0x70040000)
499/** Whether a key type is a Diffie-Hellman key exchange key (pair or
500 * public-only). */
501#define PSA_KEY_TYPE_IS_DH(type) \
502 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_DH_PUBLIC_KEY)
503
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100504/** The block size of a block cipher.
505 *
506 * \param type A cipher key type (value of type #psa_key_type_t).
507 *
508 * \return The block size for a block cipher, or 1 for a stream cipher.
509 * The return value is undefined if \p type is not a supported
510 * cipher key type.
511 *
512 * \note It is possible to build stream cipher algorithms on top of a block
513 * cipher, for example CTR mode (#PSA_ALG_CTR).
514 * This macro only takes the key type into account, so it cannot be
515 * used to determine the size of the data that #psa_cipher_update()
516 * might buffer for future processing in general.
517 *
518 * \note This macro returns a compile-time constant if its argument is one.
519 *
520 * \warning This macro may evaluate its argument multiple times.
521 */
522#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
523 ( \
524 (type) == PSA_KEY_TYPE_AES ? 16 : \
525 (type) == PSA_KEY_TYPE_DES ? 8 : \
526 (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \
527 (type) == PSA_KEY_TYPE_ARC4 ? 1 : \
528 0)
529
530#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
531#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
532#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
533#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
534#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
535#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
536#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
537#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100538#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
539#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100540
541#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
542 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
543
544/** Whether the specified algorithm is a hash algorithm.
545 *
546 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
547 *
548 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
549 * This macro may return either 0 or 1 if \p alg is not a supported
550 * algorithm identifier.
551 */
552#define PSA_ALG_IS_HASH(alg) \
553 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
554
555/** Whether the specified algorithm is a MAC algorithm.
556 *
557 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
558 *
559 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
560 * This macro may return either 0 or 1 if \p alg is not a supported
561 * algorithm identifier.
562 */
563#define PSA_ALG_IS_MAC(alg) \
564 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
565
566/** Whether the specified algorithm is a symmetric cipher algorithm.
567 *
568 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
569 *
570 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
571 * This macro may return either 0 or 1 if \p alg is not a supported
572 * algorithm identifier.
573 */
574#define PSA_ALG_IS_CIPHER(alg) \
575 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
576
577/** Whether the specified algorithm is an authenticated encryption
578 * with associated data (AEAD) algorithm.
579 *
580 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
581 *
582 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
583 * This macro may return either 0 or 1 if \p alg is not a supported
584 * algorithm identifier.
585 */
586#define PSA_ALG_IS_AEAD(alg) \
587 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
588
589/** Whether the specified algorithm is a public-key signature algorithm.
590 *
591 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
592 *
593 * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise.
594 * This macro may return either 0 or 1 if \p alg is not a supported
595 * algorithm identifier.
596 */
597#define PSA_ALG_IS_SIGN(alg) \
598 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
599
600/** Whether the specified algorithm is a public-key encryption algorithm.
601 *
602 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
603 *
604 * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise.
605 * This macro may return either 0 or 1 if \p alg is not a supported
606 * algorithm identifier.
607 */
608#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
609 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
610
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100611/** Whether the specified algorithm is a key agreement algorithm.
612 *
613 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
614 *
615 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
616 * This macro may return either 0 or 1 if \p alg is not a supported
617 * algorithm identifier.
618 */
619#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100620 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100621
622/** Whether the specified algorithm is a key derivation algorithm.
623 *
624 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
625 *
626 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
627 * This macro may return either 0 or 1 if \p alg is not a supported
628 * algorithm identifier.
629 */
630#define PSA_ALG_IS_KEY_DERIVATION(alg) \
631 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
632
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100633#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100634
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100635#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
636#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
637#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
638#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
639#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
640/** SHA2-224 */
641#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
642/** SHA2-256 */
643#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
644/** SHA2-384 */
645#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
646/** SHA2-512 */
647#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
648/** SHA2-512/224 */
649#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
650/** SHA2-512/256 */
651#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
652/** SHA3-224 */
653#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
654/** SHA3-256 */
655#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
656/** SHA3-384 */
657#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
658/** SHA3-512 */
659#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
660
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100661/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100662 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100663 * This value may be used to form the algorithm usage field of a policy
664 * for a signature algorithm that is parametrized by a hash. The key
665 * may then be used to perform operations using the same signature
666 * algorithm parametrized with any supported hash.
667 *
668 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100669 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
670 * - #PSA_ALG_DSA, #PSA_ALG_DETERMINISTIC_DSA,
671 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100672 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100673 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
674 * ```
675 * psa_key_policy_set_usage(&policy,
676 * PSA_KEY_USAGE_SIGN, //or PSA_KEY_USAGE_VERIFY
677 * PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
678 * psa_set_key_policy(handle, &policy);
679 * ```
680 * - Import or generate key material.
681 * - Call psa_asymmetric_sign() or psa_asymmetric_verify(), passing
682 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
683 * call to sign or verify a message may use a different hash.
684 * ```
685 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
686 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
687 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
688 * ```
689 *
690 * This value may not be used to build other algorithms that are
691 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100692 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100693 *
694 * This value may not be used to build an algorithm specification to
695 * perform an operation. It is only valid to build policies.
696 */
697#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
698
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100699#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
700#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
701/** Macro to build an HMAC algorithm.
702 *
703 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
704 *
705 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
706 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
707 *
708 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100709 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100710 * hash algorithm.
711 */
712#define PSA_ALG_HMAC(hash_alg) \
713 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
714
715#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
716 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
717
718/** Whether the specified algorithm is an HMAC algorithm.
719 *
720 * HMAC is a family of MAC algorithms that are based on a hash function.
721 *
722 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
723 *
724 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
725 * This macro may return either 0 or 1 if \p alg is not a supported
726 * algorithm identifier.
727 */
728#define PSA_ALG_IS_HMAC(alg) \
729 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
730 PSA_ALG_HMAC_BASE)
731
732/* In the encoding of a MAC algorithm, the bits corresponding to
733 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
734 * truncated. As an exception, the value 0 means the untruncated algorithm,
735 * whatever its length is. The length is encoded in 6 bits, so it can
736 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
737 * to full length is correctly encoded as 0 and any non-trivial truncation
738 * is correctly encoded as a value between 1 and 63. */
739#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
740#define PSA_MAC_TRUNCATION_OFFSET 8
741
742/** Macro to build a truncated MAC algorithm.
743 *
744 * A truncated MAC algorithm is identical to the corresponding MAC
745 * algorithm except that the MAC value for the truncated algorithm
746 * consists of only the first \p mac_length bytes of the MAC value
747 * for the untruncated algorithm.
748 *
749 * \note This macro may allow constructing algorithm identifiers that
750 * are not valid, either because the specified length is larger
751 * than the untruncated MAC or because the specified length is
752 * smaller than permitted by the implementation.
753 *
754 * \note It is implementation-defined whether a truncated MAC that
755 * is truncated to the same length as the MAC of the untruncated
756 * algorithm is considered identical to the untruncated algorithm
757 * for policy comparison purposes.
758 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200759 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100760 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
761 * is true). This may be a truncated or untruncated
762 * MAC algorithm.
763 * \param mac_length Desired length of the truncated MAC in bytes.
764 * This must be at most the full length of the MAC
765 * and must be at least an implementation-specified
766 * minimum. The implementation-specified minimum
767 * shall not be zero.
768 *
769 * \return The corresponding MAC algorithm with the specified
770 * length.
771 * \return Unspecified if \p alg is not a supported
772 * MAC algorithm or if \p mac_length is too small or
773 * too large for the specified MAC algorithm.
774 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200775#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
776 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100777 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
778
779/** Macro to build the base MAC algorithm corresponding to a truncated
780 * MAC algorithm.
781 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200782 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100783 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
784 * is true). This may be a truncated or untruncated
785 * MAC algorithm.
786 *
787 * \return The corresponding base MAC algorithm.
788 * \return Unspecified if \p alg is not a supported
789 * MAC algorithm.
790 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200791#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
792 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100793
794/** Length to which a MAC algorithm is truncated.
795 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200796 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100797 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
798 * is true).
799 *
800 * \return Length of the truncated MAC in bytes.
801 * \return 0 if \p alg is a non-truncated MAC algorithm.
802 * \return Unspecified if \p alg is not a supported
803 * MAC algorithm.
804 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200805#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
806 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100807
808#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
809#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
810#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
811#define PSA_ALG_GMAC ((psa_algorithm_t)0x02c00003)
812
813/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
814 *
815 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
816 *
817 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
818 * This macro may return either 0 or 1 if \p alg is not a supported
819 * algorithm identifier.
820 */
821#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
822 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
823 PSA_ALG_CIPHER_MAC_BASE)
824
825#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
826#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
827
828/** Whether the specified algorithm is a stream cipher.
829 *
830 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
831 * by applying a bitwise-xor with a stream of bytes that is generated
832 * from a key.
833 *
834 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
835 *
836 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
837 * This macro may return either 0 or 1 if \p alg is not a supported
838 * algorithm identifier or if it is not a symmetric cipher algorithm.
839 */
840#define PSA_ALG_IS_STREAM_CIPHER(alg) \
841 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
842 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
843
844/** The ARC4 stream cipher algorithm.
845 */
846#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
847
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200848/** The ChaCha20 stream cipher.
849 *
850 * ChaCha20 is defined in RFC 7539.
851 *
852 * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv()
853 * must be 12.
854 *
855 * The initial block counter is always 0.
856 *
857 */
858#define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005)
859
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100860/** The CTR stream cipher mode.
861 *
862 * CTR is a stream cipher which is built from a block cipher.
863 * The underlying block cipher is determined by the key type.
864 * For example, to use AES-128-CTR, use this algorithm with
865 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
866 */
867#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
868
869#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
870
871#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
872
873/** The XTS cipher mode.
874 *
875 * XTS is a cipher mode which is built from a block cipher. It requires at
876 * least one full block of input, but beyond this minimum the input
877 * does not need to be a whole number of blocks.
878 */
879#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
880
881/** The CBC block cipher chaining mode, with no padding.
882 *
883 * The underlying block cipher is determined by the key type.
884 *
885 * This symmetric cipher mode can only be used with messages whose lengths
886 * are whole number of blocks for the chosen block cipher.
887 */
888#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
889
890/** The CBC block cipher chaining mode with PKCS#7 padding.
891 *
892 * The underlying block cipher is determined by the key type.
893 *
894 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
895 */
896#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
897
Gilles Peskine679693e2019-05-06 15:10:16 +0200898#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
899
900/** Whether the specified algorithm is an AEAD mode on a block cipher.
901 *
902 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
903 *
904 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
905 * a block cipher, 0 otherwise.
906 * This macro may return either 0 or 1 if \p alg is not a supported
907 * algorithm identifier.
908 */
909#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
910 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
911 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
912
Gilles Peskine9153ec02019-02-15 13:02:02 +0100913/** The CCM authenticated encryption algorithm.
914 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200915#define PSA_ALG_CCM ((psa_algorithm_t)0x06401001)
Gilles Peskine9153ec02019-02-15 13:02:02 +0100916
917/** The GCM authenticated encryption algorithm.
918 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200919#define PSA_ALG_GCM ((psa_algorithm_t)0x06401002)
920
921/** The Chacha20-Poly1305 AEAD algorithm.
922 *
923 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200924 *
925 * Implementations must support 12-byte nonces, may support 8-byte nonces,
926 * and should reject other sizes.
927 *
928 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +0200929 */
930#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100931
932/* In the encoding of a AEAD algorithm, the bits corresponding to
933 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
934 * The constants for default lengths follow this encoding.
935 */
936#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
937#define PSA_AEAD_TAG_LENGTH_OFFSET 8
938
939/** Macro to build a shortened AEAD algorithm.
940 *
941 * A shortened AEAD algorithm is similar to the corresponding AEAD
942 * algorithm, but has an authentication tag that consists of fewer bytes.
943 * Depending on the algorithm, the tag length may affect the calculation
944 * of the ciphertext.
945 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200946 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100947 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
948 * is true).
949 * \param tag_length Desired length of the authentication tag in bytes.
950 *
951 * \return The corresponding AEAD algorithm with the specified
952 * length.
953 * \return Unspecified if \p alg is not a supported
954 * AEAD algorithm or if \p tag_length is not valid
955 * for the specified AEAD algorithm.
956 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200957#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
958 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100959 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
960 PSA_ALG_AEAD_TAG_LENGTH_MASK))
961
962/** Calculate the corresponding AEAD algorithm with the default tag length.
963 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200964 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
965 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100966 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200967 * \return The corresponding AEAD algorithm with the default
968 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100969 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200970#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100971 ( \
Gilles Peskine434899f2018-10-19 11:30:26 +0200972 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_CCM) \
973 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_GCM) \
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200974 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100975 0)
Gilles Peskine434899f2018-10-19 11:30:26 +0200976#define PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, ref) \
977 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100978 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
979 ref :
980
981#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
982/** RSA PKCS#1 v1.5 signature with hashing.
983 *
984 * This is the signature scheme defined by RFC 8017
985 * (PKCS#1: RSA Cryptography Specifications) under the name
986 * RSASSA-PKCS1-v1_5.
987 *
988 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
989 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100990 * This includes #PSA_ALG_ANY_HASH
991 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100992 *
993 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100994 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100995 * hash algorithm.
996 */
997#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
998 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
999/** Raw PKCS#1 v1.5 signature.
1000 *
1001 * The input to this algorithm is the DigestInfo structure used by
1002 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1003 * steps 3&ndash;6.
1004 */
1005#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1006#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1007 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1008
1009#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
1010/** RSA PSS signature with hashing.
1011 *
1012 * This is the signature scheme defined by RFC 8017
1013 * (PKCS#1: RSA Cryptography Specifications) under the name
1014 * RSASSA-PSS, with the message generation function MGF1, and with
1015 * a salt length equal to the length of the hash. The specified
1016 * hash algorithm is used to hash the input message, to create the
1017 * salted hash, and for the mask generation.
1018 *
1019 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1020 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001021 * This includes #PSA_ALG_ANY_HASH
1022 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001023 *
1024 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001025 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001026 * hash algorithm.
1027 */
1028#define PSA_ALG_RSA_PSS(hash_alg) \
1029 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1030#define PSA_ALG_IS_RSA_PSS(alg) \
1031 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1032
1033#define PSA_ALG_DSA_BASE ((psa_algorithm_t)0x10040000)
1034/** DSA signature with hashing.
1035 *
1036 * This is the signature scheme defined by FIPS 186-4,
1037 * with a random per-message secret number (*k*).
1038 *
1039 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1040 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001041 * This includes #PSA_ALG_ANY_HASH
1042 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001043 *
1044 * \return The corresponding DSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001045 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001046 * hash algorithm.
1047 */
1048#define PSA_ALG_DSA(hash_alg) \
1049 (PSA_ALG_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1050#define PSA_ALG_DETERMINISTIC_DSA_BASE ((psa_algorithm_t)0x10050000)
1051#define PSA_ALG_DSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00010000)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001052/** Deterministic DSA signature with hashing.
1053 *
1054 * This is the deterministic variant defined by RFC 6979 of
1055 * the signature scheme defined by FIPS 186-4.
1056 *
1057 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1058 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1059 * This includes #PSA_ALG_ANY_HASH
1060 * when specifying the algorithm in a usage policy.
1061 *
1062 * \return The corresponding DSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001063 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskine9153ec02019-02-15 13:02:02 +01001064 * hash algorithm.
1065 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001066#define PSA_ALG_DETERMINISTIC_DSA(hash_alg) \
1067 (PSA_ALG_DETERMINISTIC_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1068#define PSA_ALG_IS_DSA(alg) \
1069 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
1070 PSA_ALG_DSA_BASE)
1071#define PSA_ALG_DSA_IS_DETERMINISTIC(alg) \
1072 (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
1073#define PSA_ALG_IS_DETERMINISTIC_DSA(alg) \
1074 (PSA_ALG_IS_DSA(alg) && PSA_ALG_DSA_IS_DETERMINISTIC(alg))
1075#define PSA_ALG_IS_RANDOMIZED_DSA(alg) \
1076 (PSA_ALG_IS_DSA(alg) && !PSA_ALG_DSA_IS_DETERMINISTIC(alg))
1077
1078#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1079/** ECDSA signature with hashing.
1080 *
1081 * This is the ECDSA signature scheme defined by ANSI X9.62,
1082 * with a random per-message secret number (*k*).
1083 *
1084 * The representation of the signature as a byte string consists of
1085 * the concatentation of the signature values *r* and *s*. Each of
1086 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1087 * of the base point of the curve in octets. Each value is represented
1088 * in big-endian order (most significant octet first).
1089 *
1090 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1091 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001092 * This includes #PSA_ALG_ANY_HASH
1093 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001094 *
1095 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001096 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001097 * hash algorithm.
1098 */
1099#define PSA_ALG_ECDSA(hash_alg) \
1100 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1101/** ECDSA signature without hashing.
1102 *
1103 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1104 * without specifying a hash algorithm. This algorithm may only be
1105 * used to sign or verify a sequence of bytes that should be an
1106 * already-calculated hash. Note that the input is padded with
1107 * zeros on the left or truncated on the left as required to fit
1108 * the curve size.
1109 */
1110#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1111#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1112/** Deterministic ECDSA signature with hashing.
1113 *
1114 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1115 *
1116 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1117 *
1118 * Note that when this algorithm is used for verification, signatures
1119 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1120 * same private key are accepted. In other words,
1121 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1122 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1123 *
1124 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1125 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001126 * This includes #PSA_ALG_ANY_HASH
1127 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001128 *
1129 * \return The corresponding deterministic ECDSA signature
1130 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001131 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001132 * hash algorithm.
1133 */
1134#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1135 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1136#define PSA_ALG_IS_ECDSA(alg) \
1137 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
1138 PSA_ALG_ECDSA_BASE)
1139#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
1140 (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
1141#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1142 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1143#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1144 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1145
Gilles Peskined35b4892019-01-14 16:02:15 +01001146/** Whether the specified algorithm is a hash-and-sign algorithm.
1147 *
1148 * Hash-and-sign algorithms are public-key signature algorithms structured
1149 * in two parts: first the calculation of a hash in a way that does not
1150 * depend on the key, then the calculation of a signature from the
1151 * hash value and the key.
1152 *
1153 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1154 *
1155 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1156 * This macro may return either 0 or 1 if \p alg is not a supported
1157 * algorithm identifier.
1158 */
1159#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1160 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1161 PSA_ALG_IS_DSA(alg) || PSA_ALG_IS_ECDSA(alg))
1162
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001163/** Get the hash used by a hash-and-sign signature algorithm.
1164 *
1165 * A hash-and-sign algorithm is a signature algorithm which is
1166 * composed of two phases: first a hashing phase which does not use
1167 * the key and produces a hash of the input message, then a signing
1168 * phase which only uses the hash and the key and not the message
1169 * itself.
1170 *
1171 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1172 * #PSA_ALG_IS_SIGN(\p alg) is true).
1173 *
1174 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1175 * algorithm.
1176 * \return 0 if \p alg is a signature algorithm that does not
1177 * follow the hash-and-sign structure.
1178 * \return Unspecified if \p alg is not a signature algorithm or
1179 * if it is not supported by the implementation.
1180 */
1181#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001182 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001183 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1184 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1185 0)
1186
1187/** RSA PKCS#1 v1.5 encryption.
1188 */
1189#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1190
1191#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1192/** RSA OAEP encryption.
1193 *
1194 * This is the encryption scheme defined by RFC 8017
1195 * (PKCS#1: RSA Cryptography Specifications) under the name
1196 * RSAES-OAEP, with the message generation function MGF1.
1197 *
1198 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1199 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1200 * for MGF1.
1201 *
1202 * \return The corresponding RSA OAEP signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001203 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001204 * hash algorithm.
1205 */
1206#define PSA_ALG_RSA_OAEP(hash_alg) \
1207 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1208#define PSA_ALG_IS_RSA_OAEP(alg) \
1209 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1210#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1211 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1212 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1213 0)
1214
Gilles Peskine6843c292019-01-18 16:44:49 +01001215#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001216/** Macro to build an HKDF algorithm.
1217 *
1218 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1219 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001220 * This key derivation algorithm uses the following inputs:
1221 * - #PSA_KDF_STEP_SALT is the salt used in the "extract" step.
1222 * It is optional; if omitted, the derivation uses an empty salt.
1223 * - #PSA_KDF_STEP_SECRET is the secret key used in the "extract" step.
1224 * - #PSA_KDF_STEP_INFO is the info string used in the "expand" step.
1225 * You must pass #PSA_KDF_STEP_SALT before #PSA_KDF_STEP_SECRET.
1226 * You may pass #PSA_KDF_STEP_INFO at any time after steup and before
1227 * starting to generate output.
1228 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001229 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1230 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1231 *
1232 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001233 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001234 * hash algorithm.
1235 */
1236#define PSA_ALG_HKDF(hash_alg) \
1237 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1238/** Whether the specified algorithm is an HKDF algorithm.
1239 *
1240 * HKDF is a family of key derivation algorithms that are based on a hash
1241 * function and the HMAC construction.
1242 *
1243 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1244 *
1245 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1246 * This macro may return either 0 or 1 if \c alg is not a supported
1247 * key derivation algorithm identifier.
1248 */
1249#define PSA_ALG_IS_HKDF(alg) \
1250 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1251#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1252 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1253
Gilles Peskine6843c292019-01-18 16:44:49 +01001254#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001255/** Macro to build a TLS-1.2 PRF algorithm.
1256 *
1257 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1258 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1259 * used with either SHA-256 or SHA-384.
1260 *
1261 * For the application to TLS-1.2, the salt and label arguments passed
1262 * to psa_key_derivation() are what's called 'seed' and 'label' in RFC 5246,
1263 * respectively. For example, for TLS key expansion, the salt is the
1264 * concatenation of ServerHello.Random + ClientHello.Random,
1265 * while the label is "key expansion".
1266 *
1267 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1268 * TLS 1.2 PRF using HMAC-SHA-256.
1269 *
1270 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1271 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1272 *
1273 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001274 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001275 * hash algorithm.
1276 */
1277#define PSA_ALG_TLS12_PRF(hash_alg) \
1278 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1279
1280/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1281 *
1282 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1283 *
1284 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1285 * This macro may return either 0 or 1 if \c alg is not a supported
1286 * key derivation algorithm identifier.
1287 */
1288#define PSA_ALG_IS_TLS12_PRF(alg) \
1289 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1290#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1291 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1292
Gilles Peskine6843c292019-01-18 16:44:49 +01001293#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001294/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1295 *
1296 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1297 * from the PreSharedKey (PSK) through the application of padding
1298 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1299 * The latter is based on HMAC and can be used with either SHA-256
1300 * or SHA-384.
1301 *
1302 * For the application to TLS-1.2, the salt passed to psa_key_derivation()
1303 * (and forwarded to the TLS-1.2 PRF) is the concatenation of the
1304 * ClientHello.Random + ServerHello.Random, while the label is "master secret"
1305 * or "extended master secret".
1306 *
1307 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1308 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1309 *
1310 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1311 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1312 *
1313 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001314 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001315 * hash algorithm.
1316 */
1317#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1318 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1319
1320/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1321 *
1322 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1323 *
1324 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1325 * This macro may return either 0 or 1 if \c alg is not a supported
1326 * key derivation algorithm identifier.
1327 */
1328#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1329 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1330#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1331 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1332
Gilles Peskinea52460c2019-04-12 00:11:21 +02001333#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff)
1334#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001335
Gilles Peskine6843c292019-01-18 16:44:49 +01001336/** Macro to build a combined algorithm that chains a key agreement with
1337 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001338 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001339 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1340 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1341 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1342 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001343 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001344 * \return The corresponding key agreement and derivation
1345 * algorithm.
1346 * \return Unspecified if \p ka_alg is not a supported
1347 * key agreement algorithm or \p kdf_alg is not a
1348 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001349 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001350#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1351 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001352
1353#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1354 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1355
Gilles Peskine6843c292019-01-18 16:44:49 +01001356#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1357 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001358
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001359/** Whether the specified algorithm is a raw key agreement algorithm.
1360 *
1361 * A raw key agreement algorithm is one that does not specify
1362 * a key derivation function.
1363 * Usually, raw key agreement algorithms are constructed directly with
1364 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
1365 * constructed with PSA_ALG_KEY_AGREEMENT().
1366 *
1367 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1368 *
1369 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1370 * This macro may return either 0 or 1 if \p alg is not a supported
1371 * algorithm identifier.
1372 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001373#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001374 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1375 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001376
1377#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1378 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1379
1380/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001381 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001382 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001383 * `g^{ab}` in big-endian format.
1384 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1385 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001386 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001387#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1388
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001389/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1390 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001391 * This includes the raw finite field Diffie-Hellman algorithm as well as
1392 * finite-field Diffie-Hellman followed by any supporter key derivation
1393 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001394 *
1395 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1396 *
1397 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1398 * This macro may return either 0 or 1 if \c alg is not a supported
1399 * key agreement algorithm identifier.
1400 */
1401#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001402 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001403
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001404/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1405 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001406 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001407 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1408 * `m` is the bit size associated with the curve, i.e. the bit size of the
1409 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1410 * the byte containing the most significant bit of the shared secret
1411 * is padded with zero bits. The byte order is either little-endian
1412 * or big-endian depending on the curve type.
1413 *
1414 * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`),
1415 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1416 * in little-endian byte order.
1417 * The bit size is 448 for Curve448 and 255 for Curve25519.
1418 * - For Weierstrass curves over prime fields (curve types
1419 * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`),
1420 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1421 * in big-endian byte order.
1422 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1423 * - For Weierstrass curves over binary fields (curve types
1424 * `PSA_ECC_CURVE_SECTXXX`),
1425 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1426 * in big-endian byte order.
1427 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001428 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001429#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1430
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001431/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1432 * algorithm.
1433 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001434 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1435 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1436 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001437 *
1438 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1439 *
1440 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1441 * 0 otherwise.
1442 * This macro may return either 0 or 1 if \c alg is not a supported
1443 * key agreement algorithm identifier.
1444 */
1445#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001446 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001447
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001448/** Whether the specified algorithm encoding is a wildcard.
1449 *
1450 * Wildcard values may only be used to set the usage algorithm field in
1451 * a policy, not to perform an operation.
1452 *
1453 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1454 *
1455 * \return 1 if \c alg is a wildcard algorithm encoding.
1456 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1457 * an operation).
1458 * \return This macro may return either 0 or 1 if \c alg is not a supported
1459 * algorithm identifier.
1460 */
1461#define PSA_ALG_IS_WILDCARD(alg) \
1462 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1463 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1464 (alg) == PSA_ALG_ANY_HASH)
1465
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001466/**@}*/
1467
1468/** \defgroup key_lifetimes Key lifetimes
1469 * @{
1470 */
1471
1472/** A volatile key only exists as long as the handle to it is not closed.
1473 * The key material is guaranteed to be erased on a power reset.
1474 */
1475#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1476
1477/** The default storage area for persistent keys.
1478 *
1479 * A persistent key remains in storage until it is explicitly destroyed or
1480 * until the corresponding storage area is wiped. This specification does
1481 * not define any mechanism to wipe a storage area, but implementations may
1482 * provide their own mechanism (for example to perform a factory reset,
1483 * to prepare for device refurbishment, or to uninstall an application).
1484 *
1485 * This lifetime value is the default storage area for the calling
1486 * application. Implementations may offer other storage areas designated
1487 * by other lifetime values as implementation-specific extensions.
1488 */
1489#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1490
1491/**@}*/
1492
1493/** \defgroup policy Key policies
1494 * @{
1495 */
1496
1497/** Whether the key may be exported.
1498 *
1499 * A public key or the public part of a key pair may always be exported
1500 * regardless of the value of this permission flag.
1501 *
1502 * If a key does not have export permission, implementations shall not
1503 * allow the key to be exported in plain form from the cryptoprocessor,
1504 * whether through psa_export_key() or through a proprietary interface.
1505 * The key may however be exportable in a wrapped form, i.e. in a form
1506 * where it is encrypted by another key.
1507 */
1508#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1509
1510/** Whether the key may be used to encrypt a message.
1511 *
1512 * This flag allows the key to be used for a symmetric encryption operation,
1513 * for an AEAD encryption-and-authentication operation,
1514 * or for an asymmetric encryption operation,
1515 * if otherwise permitted by the key's type and policy.
1516 *
1517 * For a key pair, this concerns the public key.
1518 */
1519#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1520
1521/** Whether the key may be used to decrypt a message.
1522 *
1523 * This flag allows the key to be used for a symmetric decryption operation,
1524 * for an AEAD decryption-and-verification operation,
1525 * or for an asymmetric decryption operation,
1526 * if otherwise permitted by the key's type and policy.
1527 *
1528 * For a key pair, this concerns the private key.
1529 */
1530#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1531
1532/** Whether the key may be used to sign a message.
1533 *
1534 * This flag allows the key to be used for a MAC calculation operation
1535 * or for an asymmetric signature operation,
1536 * if otherwise permitted by the key's type and policy.
1537 *
1538 * For a key pair, this concerns the private key.
1539 */
1540#define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400)
1541
1542/** Whether the key may be used to verify a message signature.
1543 *
1544 * This flag allows the key to be used for a MAC verification operation
1545 * or for an asymmetric signature verification operation,
1546 * if otherwise permitted by by the key's type and policy.
1547 *
1548 * For a key pair, this concerns the public key.
1549 */
1550#define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800)
1551
1552/** Whether the key may be used to derive other keys.
1553 */
1554#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1555
1556/**@}*/
1557
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001558/** \defgroup derivation Key derivation
1559 * @{
1560 */
1561
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001562/** A secret input for key derivation.
1563 *
1564 * This must be a key of type #PSA_KEY_TYPE_DERIVE.
1565 */
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001566#define PSA_KDF_STEP_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001567
1568/** A label for key derivation.
1569 *
1570 * This must be a direct input.
1571 */
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001572#define PSA_KDF_STEP_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001573
1574/** A salt for key derivation.
1575 *
1576 * This must be a direct input.
1577 */
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001578#define PSA_KDF_STEP_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001579
1580/** An information string for key derivation.
1581 *
1582 * This must be a direct input.
1583 */
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001584#define PSA_KDF_STEP_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001585
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001586/**@}*/
1587
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001588#endif /* PSA_CRYPTO_VALUES_H */