blob: bba69fe9ba06af2a104fac636efe8705b9708732 [file] [log] [blame]
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01001/*
2 * Elliptic curves over GF(p)
3 *
Paul Bakkercf4365f2013-01-16 17:00:43 +01004 * Copyright (C) 2006-2013, Brainspark B.V.
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01005 *
6 * This file is part of PolarSSL (http://www.polarssl.org)
7 * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
8 *
9 * All rights reserved.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 */
25
26/*
27 * References:
28 *
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +010029 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +010030 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +010031 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +010032 * RFC 4492 for the related TLS structures and constants
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +020033 *
34 * [1] OKEYA, Katsuyuki and TAKAGI, Tsuyoshi. The width-w NAF method provides
35 * small memory and fast elliptic scalar multiplications secure against
36 * side channel attacks. In : Topics in Cryptology—CT-RSA 2003. Springer
37 * Berlin Heidelberg, 2003. p. 328-343.
38 * <http://rd.springer.com/chapter/10.1007/3-540-36563-X_23>.
39 *
40 * [2] CORON, Jean-Sébastien. Resistance against differential power analysis
41 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
42 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
43 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +010044 *
45 * [3] HEDABOU, Mustapha, PINEL, Pierre, et BÉNÉTEAU, Lucien. A comb method to
46 * render ECC resistant against Side Channel Attacks. IACR Cryptology
47 * ePrint Archive, 2004, vol. 2004, p. 342.
48 * <http://eprint.iacr.org/2004/342.pdf>
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +010049 */
50
51#include "polarssl/config.h"
52
53#if defined(POLARSSL_ECP_C)
54
55#include "polarssl/ecp.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020056
57#if defined(POLARSSL_MEMORY_C)
58#include "polarssl/memory.h"
59#else
60#define polarssl_malloc malloc
61#define polarssl_free free
62#endif
63
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +010064#include <limits.h>
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +010065#include <stdlib.h>
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +010066
Paul Bakker6a6087e2013-10-28 18:53:08 +010067#if defined(_MSC_VER) && !defined(inline)
68#define inline _inline
69#else
70#if defined(__ARMCC_VERSION) && !defined(inline)
71#define inline __inline
72#endif /* __ARMCC_VERSION */
73#endif /*_MSC_VER */
74
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +010075#if defined(POLARSSL_SELF_TEST)
76/*
77 * Counts of point addition and doubling operations.
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +020078 * Used to test resistance of point multiplication to simple timing attacks.
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +010079 */
80unsigned long add_count, dbl_count;
81#endif
82
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +010083/*
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +020084 * List of supported curves:
85 * - internal ID
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +020086 * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +020087 * - size in bits
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +020088 * - readable name
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +020089 */
Manuel Pégourié-Gonnarda79d1232013-09-17 15:42:35 +020090const ecp_curve_info ecp_supported_curves[] =
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +020091{
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +020092#if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
93 { POLARSSL_ECP_DP_BP512R1, 28, 512, "brainpool512r1" },
94#endif
95#if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
96 { POLARSSL_ECP_DP_BP384R1, 27, 384, "brainpool384r1" },
97#endif
98#if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
99 { POLARSSL_ECP_DP_BP256R1, 26, 256, "brainpool256r1" },
100#endif
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200101#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200102 { POLARSSL_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200103#endif
104#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200105 { POLARSSL_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200106#endif
107#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200108 { POLARSSL_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200109#endif
110#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200111 { POLARSSL_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200112#endif
113#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200114 { POLARSSL_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200115#endif
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200116 { POLARSSL_ECP_DP_NONE, 0, 0, NULL },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200117};
118
119/*
Manuel Pégourié-Gonnardda179e42013-09-18 15:31:24 +0200120 * List of supported curves and associated info
121 */
122const ecp_curve_info *ecp_curve_list( void )
123{
124 return ecp_supported_curves;
125}
126
127/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200128 * Get the curve info for the internal identifer
129 */
130const ecp_curve_info *ecp_curve_info_from_grp_id( ecp_group_id grp_id )
131{
132 const ecp_curve_info *curve_info;
133
134 for( curve_info = ecp_curve_list();
135 curve_info->grp_id != POLARSSL_ECP_DP_NONE;
136 curve_info++ )
137 {
138 if( curve_info->grp_id == grp_id )
139 return( curve_info );
140 }
141
142 return( NULL );
143}
144
145/*
146 * Get the curve info from the TLS identifier
147 */
148const ecp_curve_info *ecp_curve_info_from_tls_id( uint16_t tls_id )
149{
150 const ecp_curve_info *curve_info;
151
152 for( curve_info = ecp_curve_list();
153 curve_info->grp_id != POLARSSL_ECP_DP_NONE;
154 curve_info++ )
155 {
156 if( curve_info->tls_id == tls_id )
157 return( curve_info );
158 }
159
160 return( NULL );
161}
162
163/*
Manuel Pégourié-Gonnardb505c272012-11-05 17:27:54 +0100164 * Initialize (the components of) a point
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100165 */
166void ecp_point_init( ecp_point *pt )
167{
168 if( pt == NULL )
169 return;
170
Manuel Pégourié-Gonnardb505c272012-11-05 17:27:54 +0100171 mpi_init( &pt->X );
172 mpi_init( &pt->Y );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100173 mpi_init( &pt->Z );
Manuel Pégourié-Gonnardb505c272012-11-05 17:27:54 +0100174}
175
176/*
177 * Initialize (the components of) a group
178 */
179void ecp_group_init( ecp_group *grp )
180{
181 if( grp == NULL )
182 return;
183
Manuel Pégourié-Gonnardc9727702013-09-16 18:56:28 +0200184 memset( grp, 0, sizeof( ecp_group ) );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100185}
186
187/*
Manuel Pégourié-Gonnardb8c6e0e2013-07-01 13:40:52 +0200188 * Initialize (the components of) a key pair
189 */
190void ecp_keypair_init( ecp_keypair *key )
191{
192 if ( key == NULL )
193 return;
194
195 ecp_group_init( &key->grp );
196 mpi_init( &key->d );
197 ecp_point_init( &key->Q );
Manuel Pégourié-Gonnardb8c6e0e2013-07-01 13:40:52 +0200198}
199
200/*
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +0100201 * Unallocate (the components of) a point
202 */
203void ecp_point_free( ecp_point *pt )
204{
205 if( pt == NULL )
206 return;
207
208 mpi_free( &( pt->X ) );
209 mpi_free( &( pt->Y ) );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100210 mpi_free( &( pt->Z ) );
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +0100211}
212
213/*
214 * Unallocate (the components of) a group
215 */
216void ecp_group_free( ecp_group *grp )
217{
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +0200218 size_t i;
219
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +0100220 if( grp == NULL )
221 return;
222
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +0100223 mpi_free( &grp->P );
Manuel Pégourié-Gonnarda070ada2013-10-08 12:04:56 +0200224 mpi_free( &grp->A );
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +0100225 mpi_free( &grp->B );
226 ecp_point_free( &grp->G );
227 mpi_free( &grp->N );
Manuel Pégourié-Gonnardc9727702013-09-16 18:56:28 +0200228
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +0200229 if( grp->T != NULL )
230 {
231 for( i = 0; i < grp->T_size; i++ )
232 ecp_point_free( &grp->T[i] );
233 polarssl_free( grp->T );
234 }
235
Manuel Pégourié-Gonnardc9727702013-09-16 18:56:28 +0200236 memset( grp, 0, sizeof( ecp_group ) );
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +0100237}
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +0100238
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +0100239/*
Manuel Pégourié-Gonnardb8c6e0e2013-07-01 13:40:52 +0200240 * Unallocate (the components of) a key pair
241 */
242void ecp_keypair_free( ecp_keypair *key )
243{
244 if ( key == NULL )
245 return;
246
247 ecp_group_free( &key->grp );
248 mpi_free( &key->d );
249 ecp_point_free( &key->Q );
Manuel Pégourié-Gonnardb8c6e0e2013-07-01 13:40:52 +0200250}
251
252/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200253 * Copy the contents of a point
254 */
255int ecp_copy( ecp_point *P, const ecp_point *Q )
256{
257 int ret;
258
259 MPI_CHK( mpi_copy( &P->X, &Q->X ) );
260 MPI_CHK( mpi_copy( &P->Y, &Q->Y ) );
261 MPI_CHK( mpi_copy( &P->Z, &Q->Z ) );
262
263cleanup:
264 return( ret );
265}
266
267/*
268 * Copy the contents of a group object
269 */
270int ecp_group_copy( ecp_group *dst, const ecp_group *src )
271{
272 return ecp_use_known_dp( dst, src->id );
273}
274
275/*
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100276 * Set point to zero
277 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100278int ecp_set_zero( ecp_point *pt )
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100279{
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100280 int ret;
281
282 MPI_CHK( mpi_lset( &pt->X , 1 ) );
283 MPI_CHK( mpi_lset( &pt->Y , 1 ) );
284 MPI_CHK( mpi_lset( &pt->Z , 0 ) );
285
286cleanup:
287 return( ret );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100288}
289
290/*
Manuel Pégourié-Gonnard6545ca72013-01-26 16:05:22 +0100291 * Tell if a point is zero
292 */
293int ecp_is_zero( ecp_point *pt )
294{
295 return( mpi_cmp_int( &pt->Z, 0 ) == 0 );
296}
297
298/*
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100299 * Import a non-zero point from ASCII strings
300 */
301int ecp_point_read_string( ecp_point *P, int radix,
302 const char *x, const char *y )
303{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100304 int ret;
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100305
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100306 MPI_CHK( mpi_read_string( &P->X, radix, x ) );
307 MPI_CHK( mpi_read_string( &P->Y, radix, y ) );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100308 MPI_CHK( mpi_lset( &P->Z, 1 ) );
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100309
310cleanup:
311 return( ret );
312}
313
314/*
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100315 * Export a point into unsigned binary data (SEC1 2.3.3)
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100316 */
Manuel Pégourié-Gonnard7e860252013-02-10 10:58:48 +0100317int ecp_point_write_binary( const ecp_group *grp, const ecp_point *P,
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100318 int format, size_t *olen,
Manuel Pégourié-Gonnard7e860252013-02-10 10:58:48 +0100319 unsigned char *buf, size_t buflen )
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100320{
Paul Bakkera280d0f2013-04-08 13:40:17 +0200321 int ret = 0;
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100322 size_t plen;
323
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100324 if( format != POLARSSL_ECP_PF_UNCOMPRESSED &&
325 format != POLARSSL_ECP_PF_COMPRESSED )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100326 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100327
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100328 /*
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100329 * Common case: P == 0
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100330 */
331 if( mpi_cmp_int( &P->Z, 0 ) == 0 )
332 {
333 if( buflen < 1 )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100334 return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100335
336 buf[0] = 0x00;
337 *olen = 1;
338
339 return( 0 );
340 }
341
342 plen = mpi_size( &grp->P );
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100343
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100344 if( format == POLARSSL_ECP_PF_UNCOMPRESSED )
345 {
346 *olen = 2 * plen + 1;
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100347
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100348 if( buflen < *olen )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100349 return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100350
351 buf[0] = 0x04;
352 MPI_CHK( mpi_write_binary( &P->X, buf + 1, plen ) );
353 MPI_CHK( mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
354 }
355 else if( format == POLARSSL_ECP_PF_COMPRESSED )
356 {
357 *olen = plen + 1;
358
359 if( buflen < *olen )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100360 return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100361
362 buf[0] = 0x02 + mpi_get_bit( &P->Y, 0 );
363 MPI_CHK( mpi_write_binary( &P->X, buf + 1, plen ) );
364 }
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100365
366cleanup:
367 return( ret );
368}
369
370/*
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100371 * Import a point from unsigned binary data (SEC1 2.3.4)
372 */
Manuel Pégourié-Gonnard7e860252013-02-10 10:58:48 +0100373int ecp_point_read_binary( const ecp_group *grp, ecp_point *pt,
374 const unsigned char *buf, size_t ilen ) {
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100375 int ret;
376 size_t plen;
377
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100378 if( ilen == 1 && buf[0] == 0x00 )
Manuel Pégourié-Gonnardd84895d2013-02-10 10:53:04 +0100379 return( ecp_set_zero( pt ) );
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100380
Manuel Pégourié-Gonnardd84895d2013-02-10 10:53:04 +0100381 plen = mpi_size( &grp->P );
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100382
383 if( ilen != 2 * plen + 1 || buf[0] != 0x04 )
Manuel Pégourié-Gonnardd84895d2013-02-10 10:53:04 +0100384 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100385
Manuel Pégourié-Gonnardd84895d2013-02-10 10:53:04 +0100386 MPI_CHK( mpi_read_binary( &pt->X, buf + 1, plen ) );
387 MPI_CHK( mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
388 MPI_CHK( mpi_lset( &pt->Z, 1 ) );
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100389
390cleanup:
391 return( ret );
392}
393
394/*
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100395 * Import a point from a TLS ECPoint record (RFC 4492)
396 * struct {
397 * opaque point <1..2^8-1>;
398 * } ECPoint;
399 */
400int ecp_tls_read_point( const ecp_group *grp, ecp_point *pt,
Manuel Pégourié-Gonnard98f51812013-02-10 13:38:29 +0100401 const unsigned char **buf, size_t buf_len )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100402{
403 unsigned char data_len;
Manuel Pégourié-Gonnard98f51812013-02-10 13:38:29 +0100404 const unsigned char *buf_start;
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100405
406 /*
407 * We must have at least two bytes (1 for length, at least of for data)
408 */
409 if( buf_len < 2 )
410 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
411
Manuel Pégourié-Gonnard98f51812013-02-10 13:38:29 +0100412 data_len = *(*buf)++;
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100413 if( data_len < 1 || data_len > buf_len - 1 )
414 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
415
Manuel Pégourié-Gonnard98f51812013-02-10 13:38:29 +0100416 /*
417 * Save buffer start for read_binary and update buf
418 */
419 buf_start = *buf;
420 *buf += data_len;
421
422 return ecp_point_read_binary( grp, pt, buf_start, data_len );
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100423}
424
425/*
426 * Export a point as a TLS ECPoint record (RFC 4492)
427 * struct {
428 * opaque point <1..2^8-1>;
429 * } ECPoint;
430 */
431int ecp_tls_write_point( const ecp_group *grp, const ecp_point *pt,
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100432 int format, size_t *olen,
433 unsigned char *buf, size_t blen )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100434{
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100435 int ret;
436
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100437 /*
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100438 * buffer length must be at least one, for our length byte
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100439 */
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100440 if( blen < 1 )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100441 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
442
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100443 if( ( ret = ecp_point_write_binary( grp, pt, format,
444 olen, buf + 1, blen - 1) ) != 0 )
445 return( ret );
446
447 /*
448 * write length to the first byte and update total length
449 */
Paul Bakkerb9cfaa02013-10-11 18:58:55 +0200450 buf[0] = (unsigned char) *olen;
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100451 ++*olen;
452
453 return 0;
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100454}
455
456/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200457 * Import an ECP group from ASCII strings, general case (A used)
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100458 */
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200459static int ecp_group_read_string_gen( ecp_group *grp, int radix,
460 const char *p, const char *a, const char *b,
461 const char *gx, const char *gy, const char *n)
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100462{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100463 int ret;
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100464
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200465 MPI_CHK( mpi_read_string( &grp->P, radix, p ) );
466 MPI_CHK( mpi_read_string( &grp->A, radix, a ) );
467 MPI_CHK( mpi_read_string( &grp->B, radix, b ) );
468 MPI_CHK( ecp_point_read_string( &grp->G, radix, gx, gy ) );
469 MPI_CHK( mpi_read_string( &grp->N, radix, n ) );
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100470
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200471 grp->pbits = mpi_msb( &grp->P );
472 grp->nbits = mpi_msb( &grp->N );
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100473
474cleanup:
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200475 if( ret != 0 )
476 ecp_group_free( grp );
477
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100478 return( ret );
479}
480
Manuel Pégourié-Gonnard210b4582013-10-23 14:03:00 +0200481/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200482 * Import an ECP group from ASCII strings, case A == -3
Manuel Pégourié-Gonnard210b4582013-10-23 14:03:00 +0200483 */
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200484int ecp_group_read_string( ecp_group *grp, int radix,
485 const char *p, const char *b,
486 const char *gx, const char *gy, const char *n)
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +0100487{
488 int ret;
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +0100489
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200490 MPI_CHK( ecp_group_read_string_gen( grp, radix, p, "00", b, gx, gy, n ) );
491 MPI_CHK( mpi_add_int( &grp->A, &grp->P, -3 ) );
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +0100492
493cleanup:
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200494 if( ret != 0 )
495 ecp_group_free( grp );
Manuel Pégourié-Gonnarde783f062013-10-21 14:52:21 +0200496
497 return( ret );
498}
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200499
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100500/*
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100501 * Domain parameters for secp192r1
502 */
503#define SECP192R1_P \
504 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF"
505#define SECP192R1_B \
506 "64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1"
507#define SECP192R1_GX \
508 "188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012"
509#define SECP192R1_GY \
510 "07192B95FFC8DA78631011ED6B24CDD573F977A11E794811"
511#define SECP192R1_N \
512 "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831"
513
514/*
515 * Domain parameters for secp224r1
516 */
517#define SECP224R1_P \
518 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001"
519#define SECP224R1_B \
520 "B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4"
521#define SECP224R1_GX \
522 "B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21"
523#define SECP224R1_GY \
524 "BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34"
525#define SECP224R1_N \
526 "FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D"
527
528/*
529 * Domain parameters for secp256r1
530 */
531#define SECP256R1_P \
532 "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF"
533#define SECP256R1_B \
534 "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B"
535#define SECP256R1_GX \
536 "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296"
537#define SECP256R1_GY \
538 "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5"
539#define SECP256R1_N \
540 "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551"
541
542/*
543 * Domain parameters for secp384r1
544 */
545#define SECP384R1_P \
546 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
547 "FFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF"
548#define SECP384R1_B \
549 "B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE814112" \
550 "0314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF"
551#define SECP384R1_GX \
552 "AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B98" \
553 "59F741E082542A385502F25DBF55296C3A545E3872760AB7"
554#define SECP384R1_GY \
555 "3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147C" \
556 "E9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F"
557#define SECP384R1_N \
558 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
559 "C7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973"
560
561/*
562 * Domain parameters for secp521r1
563 */
564#define SECP521R1_P \
565 "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
566 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
567 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
568#define SECP521R1_B \
569 "00000051953EB9618E1C9A1F929A21A0B68540EEA2DA725B" \
570 "99B315F3B8B489918EF109E156193951EC7E937B1652C0BD" \
571 "3BB1BF073573DF883D2C34F1EF451FD46B503F00"
572#define SECP521R1_GX \
573 "000000C6858E06B70404E9CD9E3ECB662395B4429C648139" \
574 "053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127" \
575 "A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66"
576#define SECP521R1_GY \
577 "0000011839296A789A3BC0045C8A5FB42C7D1BD998F54449" \
578 "579B446817AFBD17273E662C97EE72995EF42640C550B901" \
579 "3FAD0761353C7086A272C24088BE94769FD16650"
580#define SECP521R1_N \
581 "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
582 "FFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148" \
583 "F709A5D03BB5C9B8899C47AEBB6FB71E91386409"
584
585/*
Manuel Pégourié-Gonnardcec4a532013-10-07 19:52:27 +0200586 * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
587 */
588#define BP256R1_P \
589 "A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377"
590#define BP256R1_A \
591 "7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9"
592#define BP256R1_B \
593 "26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6"
594#define BP256R1_GX \
595 "8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262"
596#define BP256R1_GY \
597 "547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997"
598#define BP256R1_N \
599 "A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7"
600
601/*
602 * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
603 */
604#define BP384R1_P \
605 "8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB711" \
606 "23ACD3A729901D1A71874700133107EC53"
607#define BP384R1_A \
608 "7BC382C63D8C150C3C72080ACE05AFA0C2BEA28E4FB22787139165EFBA91F9" \
609 "0F8AA5814A503AD4EB04A8C7DD22CE2826"
610#define BP384R1_B \
611 "04A8C7DD22CE28268B39B55416F0447C2FB77DE107DCD2A62E880EA53EEB62" \
612 "D57CB4390295DBC9943AB78696FA504C11"
613#define BP384R1_GX \
614 "1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10" \
615 "E8E826E03436D646AAEF87B2E247D4AF1E"
616#define BP384R1_GY \
617 "8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF99129" \
618 "280E4646217791811142820341263C5315"
619#define BP384R1_N \
620 "8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425" \
621 "A7CF3AB6AF6B7FC3103B883202E9046565"
622
623/*
624 * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
625 */
626#define BP512R1_P \
627 "AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308" \
628 "717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A48F3"
629#define BP512R1_A \
630 "7830A3318B603B89E2327145AC234CC594CBDD8D3DF91610A83441CAEA9863" \
631 "BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CA"
632#define BP512R1_B \
633 "3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117" \
634 "A72BF2C7B9E7C1AC4D77FC94CADC083E67984050B75EBAE5DD2809BD638016F723"
635#define BP512R1_GX \
636 "81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D009" \
637 "8EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822"
638#define BP512R1_GY \
639 "7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F81" \
640 "11B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892"
641#define BP512R1_N \
642 "AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308" \
643 "70553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069"
644
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200645#if defined(POLARSSL_ECP_NIST_OPTIM)
646/* Forward declarations */
647static int ecp_mod_p192( mpi * );
648static int ecp_mod_p224( mpi * );
649static int ecp_mod_p256( mpi * );
650static int ecp_mod_p384( mpi * );
651static int ecp_mod_p521( mpi * );
652#endif
653
Manuel Pégourié-Gonnardcec4a532013-10-07 19:52:27 +0200654/*
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100655 * Set a group using well-known domain parameters
656 */
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100657int ecp_use_known_dp( ecp_group *grp, ecp_group_id id )
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100658{
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100659 grp->id = id;
660
661 switch( id )
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100662 {
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200663#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100664 case POLARSSL_ECP_DP_SECP192R1:
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200665#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +0100666 grp->modp = ecp_mod_p192;
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200667#endif
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100668 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100669 SECP192R1_P, SECP192R1_B,
670 SECP192R1_GX, SECP192R1_GY, SECP192R1_N ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200671#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100672
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200673#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100674 case POLARSSL_ECP_DP_SECP224R1:
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200675#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnarde783f062013-10-21 14:52:21 +0200676 grp->modp = ecp_mod_p224;
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200677#endif
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100678 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100679 SECP224R1_P, SECP224R1_B,
680 SECP224R1_GX, SECP224R1_GY, SECP224R1_N ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200681#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100682
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200683#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100684 case POLARSSL_ECP_DP_SECP256R1:
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200685#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnardec655c92013-10-23 14:50:39 +0200686 grp->modp = ecp_mod_p256;
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200687#endif
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100688 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100689 SECP256R1_P, SECP256R1_B,
690 SECP256R1_GX, SECP256R1_GY, SECP256R1_N ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200691#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100692
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200693#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100694 case POLARSSL_ECP_DP_SECP384R1:
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200695#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnard0f9149c2013-10-23 15:06:37 +0200696 grp->modp = ecp_mod_p384;
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200697#endif
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100698 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100699 SECP384R1_P, SECP384R1_B,
700 SECP384R1_GX, SECP384R1_GY, SECP384R1_N ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200701#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100702
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200703#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100704 case POLARSSL_ECP_DP_SECP521R1:
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200705#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100706 grp->modp = ecp_mod_p521;
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200707#endif
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100708 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100709 SECP521R1_P, SECP521R1_B,
710 SECP521R1_GX, SECP521R1_GY, SECP521R1_N ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200711#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100712
Manuel Pégourié-Gonnarda070ada2013-10-08 12:04:56 +0200713#if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
714 case POLARSSL_ECP_DP_BP256R1:
715 return( ecp_group_read_string_gen( grp, 16,
716 BP256R1_P, BP256R1_A, BP256R1_B,
717 BP256R1_GX, BP256R1_GY, BP256R1_N ) );
718#endif /* POLARSSL_ECP_DP_BP256R1_ENABLED */
719
720#if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
721 case POLARSSL_ECP_DP_BP384R1:
722 return( ecp_group_read_string_gen( grp, 16,
723 BP384R1_P, BP384R1_A, BP384R1_B,
724 BP384R1_GX, BP384R1_GY, BP384R1_N ) );
725#endif /* POLARSSL_ECP_DP_BP384R1_ENABLED */
726
727#if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
728 case POLARSSL_ECP_DP_BP512R1:
729 return( ecp_group_read_string_gen( grp, 16,
730 BP512R1_P, BP512R1_A, BP512R1_B,
731 BP512R1_GX, BP512R1_GY, BP512R1_N ) );
732#endif /* POLARSSL_ECP_DP_BP512R1_ENABLED */
733
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200734 default:
Manuel Pégourié-Gonnarda070ada2013-10-08 12:04:56 +0200735 ecp_group_free( grp );
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200736 return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
737 }
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +0100738}
739
740/*
741 * Set a group from an ECParameters record (RFC 4492)
742 */
Manuel Pégourié-Gonnard7c145c62013-02-10 13:20:52 +0100743int ecp_tls_read_group( ecp_group *grp, const unsigned char **buf, size_t len )
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +0100744{
Manuel Pégourié-Gonnardf24b4a72013-09-23 18:14:50 +0200745 uint16_t tls_id;
746 const ecp_curve_info *curve_info;
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +0100747
748 /*
749 * We expect at least three bytes (see below)
750 */
751 if( len < 3 )
752 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
753
754 /*
755 * First byte is curve_type; only named_curve is handled
756 */
Manuel Pégourié-Gonnard7c145c62013-02-10 13:20:52 +0100757 if( *(*buf)++ != POLARSSL_ECP_TLS_NAMED_CURVE )
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +0100758 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
759
760 /*
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100761 * Next two bytes are the namedcurve value
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +0100762 */
Manuel Pégourié-Gonnardf24b4a72013-09-23 18:14:50 +0200763 tls_id = *(*buf)++;
764 tls_id <<= 8;
765 tls_id |= *(*buf)++;
766
767 if( ( curve_info = ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
768 return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
769
770 return ecp_use_known_dp( grp, curve_info->grp_id );
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100771}
772
773/*
774 * Write the ECParameters record corresponding to a group (RFC 4492)
775 */
776int ecp_tls_write_group( const ecp_group *grp, size_t *olen,
777 unsigned char *buf, size_t blen )
778{
Manuel Pégourié-Gonnardf24b4a72013-09-23 18:14:50 +0200779 const ecp_curve_info *curve_info;
780
781 if( ( curve_info = ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
782 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200783
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100784 /*
785 * We are going to write 3 bytes (see below)
786 */
787 *olen = 3;
788 if( blen < *olen )
789 return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
790
791 /*
792 * First byte is curve_type, always named_curve
793 */
794 *buf++ = POLARSSL_ECP_TLS_NAMED_CURVE;
795
796 /*
797 * Next two bytes are the namedcurve value
798 */
Manuel Pégourié-Gonnardf24b4a72013-09-23 18:14:50 +0200799 buf[0] = curve_info->tls_id >> 8;
800 buf[1] = curve_info->tls_id & 0xFF;
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100801
802 return 0;
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100803}
Manuel Pégourié-Gonnardab38b702012-11-05 17:34:55 +0100804
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200805/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200806 * Wrapper around fast quasi-modp functions, with fall-back to mpi_mod_mpi.
807 * See the documentation of struct ecp_group.
808 *
809 * This function is in the critial loop for ecp_mul, so pay attention to perf.
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200810 */
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200811static int ecp_modp( mpi *N, const ecp_group *grp )
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200812{
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200813 int ret;
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200814
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200815 if( grp->modp == NULL )
816 return( mpi_mod_mpi( N, N, &grp->P ) );
817
818 /* N->s < 0 is a much faster test, which fails only if N is 0 */
819 if( ( N->s < 0 && mpi_cmp_int( N, 0 ) != 0 ) ||
820 mpi_msb( N ) > 2 * grp->pbits )
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200821 {
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200822 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200823 }
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200824
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200825 MPI_CHK( grp->modp( N ) );
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200826
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200827 /* N->s < 0 is a much faster test, which fails only if N is 0 */
828 while( N->s < 0 && mpi_cmp_int( N, 0 ) != 0 )
829 MPI_CHK( mpi_add_mpi( N, N, &grp->P ) );
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200830
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200831 while( mpi_cmp_mpi( N, &grp->P ) >= 0 )
832 /* we known P, N and the result are positive */
833 MPI_CHK( mpi_sub_abs( N, N, &grp->P ) );
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200834
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200835cleanup:
836 return( ret );
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200837}
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200838
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100839/*
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100840 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100841 *
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100842 * In order to guarantee that, we need to ensure that operands of
843 * mpi_mul_mpi are in the 0..p range. So, after each operation we will
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100844 * bring the result back to this range.
845 *
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100846 * The following macros are shortcuts for doing that.
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100847 */
848
849/*
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100850 * Reduce a mpi mod p in-place, general case, to use after mpi_mul_mpi
851 */
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100852#define MOD_MUL( N ) MPI_CHK( ecp_modp( &N, grp ) )
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100853
854/*
855 * Reduce a mpi mod p in-place, to use after mpi_sub_mpi
Manuel Pégourié-Gonnardc9e387c2013-10-17 17:15:35 +0200856 * N->s < 0 is a very fast test, which fails only if N is 0
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100857 */
858#define MOD_SUB( N ) \
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200859 while( N.s < 0 && mpi_cmp_int( &N, 0 ) != 0 ) \
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100860 MPI_CHK( mpi_add_mpi( &N, &N, &grp->P ) )
861
862/*
Manuel Pégourié-Gonnardc9e387c2013-10-17 17:15:35 +0200863 * Reduce a mpi mod p in-place, to use after mpi_add_mpi and mpi_mul_int.
864 * We known P, N and the result are positive, so sub_abs is correct, and
865 * a bit faster.
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100866 */
867#define MOD_ADD( N ) \
868 while( mpi_cmp_mpi( &N, &grp->P ) >= 0 ) \
Manuel Pégourié-Gonnardc9e387c2013-10-17 17:15:35 +0200869 MPI_CHK( mpi_sub_abs( &N, &N, &grp->P ) )
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100870
871/*
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100872 * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100873 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100874static int ecp_normalize( const ecp_group *grp, ecp_point *pt )
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100875{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100876 int ret;
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100877 mpi Zi, ZZi;
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100878
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100879 if( mpi_cmp_int( &pt->Z, 0 ) == 0 )
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100880 return( 0 );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100881
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100882 mpi_init( &Zi ); mpi_init( &ZZi );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100883
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100884 /*
885 * X = X / Z^2 mod p
886 */
887 MPI_CHK( mpi_inv_mod( &Zi, &pt->Z, &grp->P ) );
888 MPI_CHK( mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
889 MPI_CHK( mpi_mul_mpi( &pt->X, &pt->X, &ZZi ) ); MOD_MUL( pt->X );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100890
891 /*
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100892 * Y = Y / Z^3 mod p
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100893 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100894 MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &ZZi ) ); MOD_MUL( pt->Y );
895 MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &Zi ) ); MOD_MUL( pt->Y );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100896
897 /*
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100898 * Z = 1
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100899 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100900 MPI_CHK( mpi_lset( &pt->Z, 1 ) );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100901
902cleanup:
903
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100904 mpi_free( &Zi ); mpi_free( &ZZi );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100905
906 return( ret );
907}
908
909/*
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +0100910 * Normalize jacobian coordinates of an array of (pointers to) points,
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +0100911 * using Montgomery's trick to perform only one inversion mod P.
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100912 * (See for example Cohen's "A Course in Computational Algebraic Number
913 * Theory", Algorithm 10.3.4.)
914 *
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +0200915 * Warning: fails (returning an error) if one of the points is zero!
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +0100916 * This should never happen, see choice of w in ecp_mul().
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100917 */
918static int ecp_normalize_many( const ecp_group *grp,
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +0100919 ecp_point *T[], size_t t_len )
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100920{
921 int ret;
922 size_t i;
923 mpi *c, u, Zi, ZZi;
924
925 if( t_len < 2 )
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +0100926 return( ecp_normalize( grp, *T ) );
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100927
Paul Bakker6e339b52013-07-03 13:37:05 +0200928 if( ( c = (mpi *) polarssl_malloc( t_len * sizeof( mpi ) ) ) == NULL )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +0200929 return( POLARSSL_ERR_ECP_MALLOC_FAILED );
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100930
931 mpi_init( &u ); mpi_init( &Zi ); mpi_init( &ZZi );
932 for( i = 0; i < t_len; i++ )
933 mpi_init( &c[i] );
934
935 /*
936 * c[i] = Z_0 * ... * Z_i
937 */
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +0100938 MPI_CHK( mpi_copy( &c[0], &T[0]->Z ) );
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100939 for( i = 1; i < t_len; i++ )
940 {
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +0100941 MPI_CHK( mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100942 MOD_MUL( c[i] );
943 }
944
945 /*
946 * u = 1 / (Z_0 * ... * Z_n) mod P
947 */
948 MPI_CHK( mpi_inv_mod( &u, &c[t_len-1], &grp->P ) );
949
950 for( i = t_len - 1; ; i-- )
951 {
952 /*
953 * Zi = 1 / Z_i mod p
954 * u = 1 / (Z_0 * ... * Z_i) mod P
955 */
956 if( i == 0 ) {
957 MPI_CHK( mpi_copy( &Zi, &u ) );
958 }
959 else
960 {
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +0100961 MPI_CHK( mpi_mul_mpi( &Zi, &u, &c[i-1] ) ); MOD_MUL( Zi );
962 MPI_CHK( mpi_mul_mpi( &u, &u, &T[i]->Z ) ); MOD_MUL( u );
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100963 }
964
965 /*
966 * proceed as in normalize()
967 */
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +0100968 MPI_CHK( mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
969 MPI_CHK( mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );
970 MPI_CHK( mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );
971 MPI_CHK( mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi ) ); MOD_MUL( T[i]->Y );
972 MPI_CHK( mpi_lset( &T[i]->Z, 1 ) );
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100973
974 if( i == 0 )
975 break;
976 }
977
978cleanup:
979
980 mpi_free( &u ); mpi_free( &Zi ); mpi_free( &ZZi );
981 for( i = 0; i < t_len; i++ )
982 mpi_free( &c[i] );
Paul Bakker6e339b52013-07-03 13:37:05 +0200983 polarssl_free( c );
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100984
985 return( ret );
986}
987
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100988/*
Manuel Pégourié-Gonnard0cd6f982013-10-10 15:55:39 +0200989 * Point doubling R = 2 P, Jacobian coordinates
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +0200990 *
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +0200991 * http://www.hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian/doubling/dbl-2007-bl.op3
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +0200992 * with heavy variable renaming, some reordering and one minor modification
993 * (a = 2 * b, c = d - 2a replaced with c = d, c = c - b, c = c - b)
994 * in order to use a lot less intermediate variables (6 vs 25).
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +0200995 */
Manuel Pégourié-Gonnard0cd6f982013-10-10 15:55:39 +0200996static int ecp_double_jac( const ecp_group *grp, ecp_point *R,
997 const ecp_point *P )
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +0200998{
999 int ret;
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +02001000 mpi T1, T2, T3, X3, Y3, Z3;
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +02001001
Manuel Pégourié-Gonnard0cd6f982013-10-10 15:55:39 +02001002#if defined(POLARSSL_SELF_TEST)
1003 dbl_count++;
1004#endif
1005
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +02001006 mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 );
1007 mpi_init( &X3 ); mpi_init( &Y3 ); mpi_init( &Z3 );
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +02001008
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +02001009 MPI_CHK( mpi_mul_mpi( &T3, &P->X, &P->X ) ); MOD_MUL( T3 );
1010 MPI_CHK( mpi_mul_mpi( &T2, &P->Y, &P->Y ) ); MOD_MUL( T2 );
1011 MPI_CHK( mpi_mul_mpi( &Y3, &T2, &T2 ) ); MOD_MUL( Y3 );
1012 MPI_CHK( mpi_add_mpi( &X3, &P->X, &T2 ) ); MOD_ADD( X3 );
1013 MPI_CHK( mpi_mul_mpi( &X3, &X3, &X3 ) ); MOD_MUL( X3 );
1014 MPI_CHK( mpi_sub_mpi( &X3, &X3, &Y3 ) ); MOD_SUB( X3 );
1015 MPI_CHK( mpi_sub_mpi( &X3, &X3, &T3 ) ); MOD_SUB( X3 );
1016 MPI_CHK( mpi_mul_int( &T1, &X3, 2 ) ); MOD_ADD( T1 );
1017 MPI_CHK( mpi_mul_mpi( &Z3, &P->Z, &P->Z ) ); MOD_MUL( Z3 );
1018 MPI_CHK( mpi_mul_mpi( &X3, &Z3, &Z3 ) ); MOD_MUL( X3 );
1019 MPI_CHK( mpi_mul_int( &T3, &T3, 3 ) ); MOD_ADD( T3 );
1020 MPI_CHK( mpi_mul_mpi( &X3, &X3, &grp->A ) ); MOD_MUL( X3 );
1021 MPI_CHK( mpi_add_mpi( &T3, &T3, &X3 ) ); MOD_ADD( T3 );
1022 MPI_CHK( mpi_mul_mpi( &X3, &T3, &T3 ) ); MOD_MUL( X3 );
1023 MPI_CHK( mpi_sub_mpi( &X3, &X3, &T1 ) ); MOD_SUB( X3 );
1024 MPI_CHK( mpi_sub_mpi( &X3, &X3, &T1 ) ); MOD_SUB( X3 );
1025 MPI_CHK( mpi_sub_mpi( &T1, &T1, &X3 ) ); MOD_SUB( T1 );
1026 MPI_CHK( mpi_mul_mpi( &T1, &T3, &T1 ) ); MOD_MUL( T1 );
1027 MPI_CHK( mpi_mul_int( &T3, &Y3, 8 ) ); MOD_ADD( T3 );
1028 MPI_CHK( mpi_sub_mpi( &Y3, &T1, &T3 ) ); MOD_SUB( Y3 );
1029 MPI_CHK( mpi_add_mpi( &T1, &P->Y, &P->Z ) ); MOD_ADD( T1 );
1030 MPI_CHK( mpi_mul_mpi( &T1, &T1, &T1 ) ); MOD_MUL( T1 );
1031 MPI_CHK( mpi_sub_mpi( &T1, &T1, &T2 ) ); MOD_SUB( T1 );
1032 MPI_CHK( mpi_sub_mpi( &Z3, &T1, &Z3 ) ); MOD_SUB( Z3 );
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +02001033
1034 MPI_CHK( mpi_copy( &R->X, &X3 ) );
1035 MPI_CHK( mpi_copy( &R->Y, &Y3 ) );
1036 MPI_CHK( mpi_copy( &R->Z, &Z3 ) );
1037
1038cleanup:
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +02001039 mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 );
1040 mpi_free( &X3 ); mpi_free( &Y3 ); mpi_free( &Z3 );
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +02001041
1042 return( ret );
1043}
1044
1045/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001046 * Addition or subtraction: R = P + Q or R = P - Q,
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001047 * mixed affine-Jacobian coordinates (GECC 3.22)
1048 *
1049 * The coordinates of Q must be normalized (= affine),
1050 * but those of P don't need to. R is not normalized.
1051 *
1052 * If sign >= 0, perform addition, otherwise perform subtraction,
1053 * taking advantage of the fact that, for Q != 0, we have
1054 * -Q = (Q.X, -Q.Y, Q.Z)
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001055 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001056static int ecp_add_mixed( const ecp_group *grp, ecp_point *R,
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001057 const ecp_point *P, const ecp_point *Q,
1058 signed char sign )
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001059{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001060 int ret;
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001061 mpi T1, T2, T3, T4, X, Y, Z;
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001062
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01001063#if defined(POLARSSL_SELF_TEST)
1064 add_count++;
1065#endif
1066
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001067 /*
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001068 * Trivial cases: P == 0 or Q == 0
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001069 * (Check Q first, so that we know Q != 0 when we compute -Q.)
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001070 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001071 if( mpi_cmp_int( &Q->Z, 0 ) == 0 )
1072 return( ecp_copy( R, P ) );
1073
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001074 if( mpi_cmp_int( &P->Z, 0 ) == 0 )
1075 {
1076 ret = ecp_copy( R, Q );
1077
1078 /*
1079 * -R.Y mod P = P - R.Y unless R.Y == 0
1080 */
1081 if( ret == 0 && sign < 0)
1082 if( mpi_cmp_int( &R->Y, 0 ) != 0 )
1083 ret = mpi_sub_mpi( &R->Y, &grp->P, &R->Y );
1084
1085 return( ret );
1086 }
1087
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001088 /*
1089 * Make sure Q coordinates are normalized
1090 */
1091 if( mpi_cmp_int( &Q->Z, 1 ) != 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001092 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001093
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001094 mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 ); mpi_init( &T4 );
1095 mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z );
Manuel Pégourié-Gonnardab38b702012-11-05 17:34:55 +01001096
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001097 MPI_CHK( mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 );
1098 MPI_CHK( mpi_mul_mpi( &T2, &T1, &P->Z ) ); MOD_MUL( T2 );
1099 MPI_CHK( mpi_mul_mpi( &T1, &T1, &Q->X ) ); MOD_MUL( T1 );
1100 MPI_CHK( mpi_mul_mpi( &T2, &T2, &Q->Y ) ); MOD_MUL( T2 );
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001101
1102 /*
1103 * For subtraction, -Q.Y should have been used instead of Q.Y,
1104 * so we replace T2 by -T2, which is P - T2 mod P
1105 */
1106 if( sign < 0 )
1107 {
1108 MPI_CHK( mpi_sub_mpi( &T2, &grp->P, &T2 ) );
1109 MOD_SUB( T2 );
1110 }
1111
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001112 MPI_CHK( mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 );
1113 MPI_CHK( mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001114
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001115 if( mpi_cmp_int( &T1, 0 ) == 0 )
1116 {
1117 if( mpi_cmp_int( &T2, 0 ) == 0 )
1118 {
1119 ret = ecp_double_jac( grp, R, P );
1120 goto cleanup;
1121 }
1122 else
1123 {
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001124 ret = ecp_set_zero( R );
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001125 goto cleanup;
1126 }
1127 }
1128
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001129 MPI_CHK( mpi_mul_mpi( &Z, &P->Z, &T1 ) ); MOD_MUL( Z );
1130 MPI_CHK( mpi_mul_mpi( &T3, &T1, &T1 ) ); MOD_MUL( T3 );
1131 MPI_CHK( mpi_mul_mpi( &T4, &T3, &T1 ) ); MOD_MUL( T4 );
1132 MPI_CHK( mpi_mul_mpi( &T3, &T3, &P->X ) ); MOD_MUL( T3 );
1133 MPI_CHK( mpi_mul_int( &T1, &T3, 2 ) ); MOD_ADD( T1 );
1134 MPI_CHK( mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X );
1135 MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X );
1136 MPI_CHK( mpi_sub_mpi( &X, &X, &T4 ) ); MOD_SUB( X );
1137 MPI_CHK( mpi_sub_mpi( &T3, &T3, &X ) ); MOD_SUB( T3 );
1138 MPI_CHK( mpi_mul_mpi( &T3, &T3, &T2 ) ); MOD_MUL( T3 );
1139 MPI_CHK( mpi_mul_mpi( &T4, &T4, &P->Y ) ); MOD_MUL( T4 );
1140 MPI_CHK( mpi_sub_mpi( &Y, &T3, &T4 ) ); MOD_SUB( Y );
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001141
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +01001142 MPI_CHK( mpi_copy( &R->X, &X ) );
1143 MPI_CHK( mpi_copy( &R->Y, &Y ) );
1144 MPI_CHK( mpi_copy( &R->Z, &Z ) );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001145
1146cleanup:
1147
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001148 mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 ); mpi_free( &T4 );
1149 mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001150
1151 return( ret );
1152}
1153
1154/*
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001155 * Addition: R = P + Q, result's coordinates normalized
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001156 */
1157int ecp_add( const ecp_group *grp, ecp_point *R,
1158 const ecp_point *P, const ecp_point *Q )
1159{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001160 int ret;
Manuel Pégourié-Gonnard989c32b2012-11-08 22:02:42 +01001161
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001162 MPI_CHK( ecp_add_mixed( grp, R, P, Q , 1 ) );
1163 MPI_CHK( ecp_normalize( grp, R ) );
1164
1165cleanup:
1166 return( ret );
1167}
1168
1169/*
1170 * Subtraction: R = P - Q, result's coordinates normalized
1171 */
1172int ecp_sub( const ecp_group *grp, ecp_point *R,
1173 const ecp_point *P, const ecp_point *Q )
1174{
1175 int ret;
1176
1177 MPI_CHK( ecp_add_mixed( grp, R, P, Q, -1 ) );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001178 MPI_CHK( ecp_normalize( grp, R ) );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001179
Manuel Pégourié-Gonnard989c32b2012-11-08 22:02:42 +01001180cleanup:
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001181 return( ret );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001182}
1183
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001184/*
Manuel Pégourié-Gonnard85556072012-11-17 19:54:20 +01001185 * Compute a modified width-w non-adjacent form (NAF) of a number,
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +02001186 * with a fixed pattern for resistance to simple timing attacks (even SPA),
1187 * see [1]. (The resulting multiplication algorithm can also been seen as a
1188 * modification of 2^w-ary multiplication, with signed coefficients, all of
1189 * them odd.)
Manuel Pégourié-Gonnard85556072012-11-17 19:54:20 +01001190 *
1191 * Input:
1192 * m must be an odd positive mpi less than w * k bits long
1193 * x must be an array of k elements
1194 * w must be less than a certain maximum (currently 8)
1195 *
1196 * The result is a sequence x[0], ..., x[k-1] with x[i] in the range
1197 * - 2^(width - 1) .. 2^(width - 1) - 1 such that
1198 * m = (2 * x[0] + 1) + 2^width * (2 * x[1] + 1) + ...
1199 * + 2^((k-1) * width) * (2 * x[k-1] + 1)
1200 *
1201 * Compared to "Algorithm SPA-resistant Width-w NAF with Odd Scalar"
1202 * p. 335 of the cited reference, here we return only u, not d_w since
1203 * it is known that the other d_w[j] will be 0. Moreover, the returned
1204 * string doesn't actually store u_i but x_i = u_i / 2 since it is known
1205 * that u_i is odd. Also, since we always select a positive value for d
1206 * mod 2^w, we don't need to check the sign of u[i-1] when the reference
1207 * does. Finally, there is an off-by-one error in the reference: the
1208 * last index should be k-1, not k.
1209 */
Manuel Pégourié-Gonnard7652a592012-11-21 10:00:45 +01001210static int ecp_w_naf_fixed( signed char x[], size_t k,
1211 unsigned char w, const mpi *m )
Manuel Pégourié-Gonnard85556072012-11-17 19:54:20 +01001212{
1213 int ret;
1214 unsigned int i, u, mask, carry;
1215 mpi M;
1216
1217 mpi_init( &M );
1218
1219 MPI_CHK( mpi_copy( &M, m ) );
1220 mask = ( 1 << w ) - 1;
1221 carry = 1 << ( w - 1 );
1222
1223 for( i = 0; i < k; i++ )
1224 {
1225 u = M.p[0] & mask;
1226
1227 if( ( u & 1 ) == 0 && i > 0 )
1228 x[i - 1] -= carry;
1229
1230 x[i] = u >> 1;
1231 mpi_shift_r( &M, w );
1232 }
1233
1234 /*
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001235 * We should have consumed all bits, unless the input value was too big
Manuel Pégourié-Gonnard85556072012-11-17 19:54:20 +01001236 */
1237 if( mpi_cmp_int( &M, 0 ) != 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001238 ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA;
Manuel Pégourié-Gonnard85556072012-11-17 19:54:20 +01001239
1240cleanup:
1241
1242 mpi_free( &M );
1243
1244 return( ret );
1245}
1246
1247/*
Manuel Pégourié-Gonnard7652a592012-11-21 10:00:45 +01001248 * Precompute odd multiples of P up to (2 * t_len - 1) P.
1249 * The table is filled with T[i] = (2 * i + 1) P.
1250 */
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001251static int ecp_precompute( const ecp_group *grp,
1252 ecp_point T[], size_t t_len,
1253 const ecp_point *P )
Manuel Pégourié-Gonnard7652a592012-11-21 10:00:45 +01001254{
1255 int ret;
1256 size_t i;
1257 ecp_point PP;
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001258 ecp_point *TT[ 1 << ( POLARSSL_ECP_WINDOW_SIZE - 1 ) ];
Manuel Pégourié-Gonnard7652a592012-11-21 10:00:45 +01001259
1260 ecp_point_init( &PP );
1261
1262 MPI_CHK( ecp_add( grp, &PP, P, P ) );
1263
1264 MPI_CHK( ecp_copy( &T[0], P ) );
1265
Manuel Pégourié-Gonnard7652a592012-11-21 10:00:45 +01001266 for( i = 1; i < t_len; i++ )
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +01001267 MPI_CHK( ecp_add_mixed( grp, &T[i], &T[i-1], &PP, +1 ) );
1268
1269 /*
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001270 * T[0] = P already has normalized coordinates, normalize others
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +01001271 */
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001272 for( i = 1; i < t_len; i++ )
1273 TT[i-1] = &T[i];
1274 MPI_CHK( ecp_normalize_many( grp, TT, t_len - 1 ) );
Manuel Pégourié-Gonnard7652a592012-11-21 10:00:45 +01001275
1276cleanup:
1277
1278 ecp_point_free( &PP );
1279
1280 return( ret );
1281}
1282
1283/*
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +02001284 * Randomize jacobian coordinates:
1285 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1286 * This is sort of the reverse operation of ecp_normalize().
1287 */
1288static int ecp_randomize_coordinates( const ecp_group *grp, ecp_point *pt,
1289 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1290{
1291 int ret;
1292 mpi l, ll;
1293 size_t p_size = (grp->pbits + 7) / 8;
1294 int count = 0;
1295
1296 mpi_init( &l ); mpi_init( &ll );
1297
1298 /* Generate l such that 1 < l < p */
1299 do
1300 {
1301 mpi_fill_random( &l, p_size, f_rng, p_rng );
1302
1303 while( mpi_cmp_mpi( &l, &grp->P ) >= 0 )
1304 mpi_shift_r( &l, 1 );
1305
1306 if( count++ > 10 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001307 return( POLARSSL_ERR_ECP_RANDOM_FAILED );
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +02001308 }
1309 while( mpi_cmp_int( &l, 1 ) <= 0 );
1310
1311 /* Z = l * Z */
1312 MPI_CHK( mpi_mul_mpi( &pt->Z, &pt->Z, &l ) ); MOD_MUL( pt->Z );
1313
1314 /* X = l^2 * X */
1315 MPI_CHK( mpi_mul_mpi( &ll, &l, &l ) ); MOD_MUL( ll );
1316 MPI_CHK( mpi_mul_mpi( &pt->X, &pt->X, &ll ) ); MOD_MUL( pt->X );
1317
1318 /* Y = l^3 * Y */
1319 MPI_CHK( mpi_mul_mpi( &ll, &ll, &l ) ); MOD_MUL( ll );
1320 MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &ll ) ); MOD_MUL( pt->Y );
1321
1322cleanup:
1323 mpi_free( &l ); mpi_free( &ll );
1324
1325 return( ret );
1326}
1327
1328/*
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001329 * Maximum length of the precomputed table
1330 */
1331#define MAX_PRE_LEN ( 1 << (POLARSSL_ECP_WINDOW_SIZE - 1) )
1332
1333/*
1334 * Maximum length of the NAF: ceil( grp->nbits + 1 ) / w
1335 * (that is: grp->nbits / w + 1)
1336 * Allow p_bits + 1 bits in case M = grp->N + 1 is one bit longer than N.
1337 */
Manuel Pégourié-Gonnardb694b482013-08-08 13:30:57 +02001338#define MAX_NAF_LEN ( POLARSSL_ECP_MAX_BITS / 2 + 1 )
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001339
1340/*
1341 * Integer multiplication: R = m * P
1342 *
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +02001343 * Based on fixed-pattern width-w NAF, see comments of ecp_w_naf_fixed().
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001344 *
1345 * This function executes a fixed number of operations for
1346 * random m in the range 0 .. 2^nbits - 1.
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +02001347 *
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001348 * As an additional countermeasure against potential timing attacks,
1349 * we randomize coordinates before each addition. This was suggested as a
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +02001350 * countermeasure against DPA in 5.3 of [2] (with the obvious adaptation that
1351 * we use jacobian coordinates, not standard projective coordinates).
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001352 */
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001353int ecp_mul_wnaf( ecp_group *grp, ecp_point *R,
1354 const mpi *m, const ecp_point *P,
1355 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001356{
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001357 int ret;
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001358 unsigned char w, m_is_odd, p_eq_g;
Paul Bakkerb9cfaa02013-10-11 18:58:55 +02001359 size_t pre_len = 1, naf_len, i, j;
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001360 signed char naf[ MAX_NAF_LEN ];
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001361 ecp_point Q, *T = NULL, S[2];
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001362 mpi M;
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001363
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001364 if( mpi_cmp_int( m, 0 ) < 0 || mpi_msb( m ) > grp->nbits )
Manuel Pégourié-Gonnarde09d2f82013-09-02 14:29:09 +02001365 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnard4bdd47d2012-11-11 14:33:59 +01001366
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001367 mpi_init( &M );
1368 ecp_point_init( &Q );
1369 ecp_point_init( &S[0] );
1370 ecp_point_init( &S[1] );
1371
1372 /*
1373 * Check if P == G
1374 */
1375 p_eq_g = ( mpi_cmp_int( &P->Z, 1 ) == 0 &&
1376 mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
1377 mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
1378
1379 /*
1380 * If P == G, pre-compute a lot of points: this will be re-used later,
1381 * otherwise, choose window size depending on curve size
1382 */
1383 if( p_eq_g )
1384 w = POLARSSL_ECP_WINDOW_SIZE;
1385 else
1386 w = grp->nbits >= 512 ? 6 :
1387 grp->nbits >= 224 ? 5 :
1388 4;
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001389
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +01001390 /*
1391 * Make sure w is within the limits.
1392 * The last test ensures that none of the precomputed points is zero,
1393 * which wouldn't be handled correctly by ecp_normalize_many().
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001394 * It is only useful for very small curves as used in the test suite.
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +01001395 */
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001396 if( w > POLARSSL_ECP_WINDOW_SIZE )
1397 w = POLARSSL_ECP_WINDOW_SIZE;
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +01001398 if( w < 2 || w >= grp->nbits )
1399 w = 2;
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001400
Paul Bakkerb9cfaa02013-10-11 18:58:55 +02001401 pre_len <<= ( w - 1 );
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001402 naf_len = grp->nbits / w + 1;
1403
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001404 /*
1405 * Prepare precomputed points: if P == G we want to
1406 * use grp->T if already initialized, or initiliaze it.
1407 */
1408 if( ! p_eq_g || grp->T == NULL )
1409 {
Paul Bakkerb9cfaa02013-10-11 18:58:55 +02001410 T = (ecp_point *) polarssl_malloc( pre_len * sizeof( ecp_point ) );
1411 if( T == NULL )
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001412 {
1413 ret = POLARSSL_ERR_ECP_MALLOC_FAILED;
1414 goto cleanup;
1415 }
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001416
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001417 for( i = 0; i < pre_len; i++ )
1418 ecp_point_init( &T[i] );
1419
1420 MPI_CHK( ecp_precompute( grp, T, pre_len, P ) );
1421
1422 if( p_eq_g )
1423 {
1424 grp->T = T;
1425 grp->T_size = pre_len;
1426 }
1427 }
1428 else
1429 {
1430 T = grp->T;
1431
1432 /* Should never happen, but we want to be extra sure */
1433 if( pre_len != grp->T_size )
1434 {
1435 ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA;
1436 goto cleanup;
1437 }
1438 }
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001439
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001440 /*
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001441 * Make sure M is odd (M = m + 1 or M = m + 2)
1442 * later we'll get m * P by subtracting P or 2 * P to M * P.
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001443 */
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001444 m_is_odd = ( mpi_get_bit( m, 0 ) == 1 );
1445
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001446 MPI_CHK( mpi_copy( &M, m ) );
1447 MPI_CHK( mpi_add_int( &M, &M, 1 + m_is_odd ) );
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001448
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001449 /*
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001450 * Compute the fixed-pattern NAF of M
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001451 */
1452 MPI_CHK( ecp_w_naf_fixed( naf, naf_len, w, &M ) );
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001453
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001454 /*
1455 * Compute M * P, using a variant of left-to-right 2^w-ary multiplication:
1456 * at each step we add (2 * naf[i] + 1) P, then multiply by 2^w.
1457 *
1458 * If naf[i] >= 0, we have (2 * naf[i] + 1) P == T[ naf[i] ]
1459 * Otherwise, (2 * naf[i] + 1) P == - ( 2 * ( - naf[i] - 1 ) + 1) P
1460 * == T[ - naf[i] - 1 ]
1461 */
1462 MPI_CHK( ecp_set_zero( &Q ) );
1463 i = naf_len - 1;
1464 while( 1 )
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001465 {
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001466 /* Countermeasure (see comments above) */
1467 if( f_rng != NULL )
1468 ecp_randomize_coordinates( grp, &Q, f_rng, p_rng );
1469
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001470 if( naf[i] < 0 )
1471 {
1472 MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ - naf[i] - 1 ], -1 ) );
1473 }
1474 else
1475 {
1476 MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ naf[i] ], +1 ) );
1477 }
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001478
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001479 if( i == 0 )
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001480 break;
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001481 i--;
1482
1483 for( j = 0; j < w; j++ )
1484 {
1485 MPI_CHK( ecp_double_jac( grp, &Q, &Q ) );
1486 }
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001487 }
1488
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001489 /*
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001490 * Now get m * P from M * P
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001491 */
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001492 MPI_CHK( ecp_copy( &S[0], P ) );
1493 MPI_CHK( ecp_add( grp, &S[1], P, P ) );
1494 MPI_CHK( ecp_sub( grp, R, &Q, &S[m_is_odd] ) );
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001495
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +01001496
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001497cleanup:
1498
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001499 if( T != NULL && ! p_eq_g )
1500 {
1501 for( i = 0; i < pre_len; i++ )
1502 ecp_point_free( &T[i] );
1503 polarssl_free( T );
1504 }
1505
1506 ecp_point_free( &S[1] );
1507 ecp_point_free( &S[0] );
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01001508 ecp_point_free( &Q );
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001509 mpi_free( &M );
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001510
1511 return( ret );
1512}
1513
Manuel Pégourié-Gonnard45a035a2013-01-26 14:42:45 +01001514/*
Manuel Pégourié-Gonnardc30200e2013-11-20 18:39:55 +01001515 * Check and define parameters used by the comb method (see below for details)
1516 */
1517#if POLARSSL_ECP_WINDOW_SIZE < 2 || POLARSSL_ECP_WINDOW_SIZE > 7
1518#error "POLARSSL_ECP_WINDOW_SIZE out of bounds"
1519#endif
1520
1521/* d = ceil( n / w ) */
1522#define COMB_MAX_D ( POLARSSL_ECP_MAX_BITS + 1 ) / 2
1523
1524/* number of precomputed points */
1525#define COMB_MAX_PRE ( 1 << ( POLARSSL_ECP_WINDOW_SIZE - 1 ) )
1526
1527/*
1528 * Compute the representation of m that will be used with our comb method.
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001529 *
1530 * The basic comb method is described in GECC 3.44 for example. We use a
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001531 * modified version that provides resistance to SPA by avoiding zero
1532 * digits in the representation as in [3]. We modify the method further by
1533 * requiring that all K_i be odd, which has the small cost that our
Manuel Pégourié-Gonnardc30200e2013-11-20 18:39:55 +01001534 * representation uses one more K_i, due to carries.
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001535 *
1536 * Also, for the sake of compactness, only the seven low-order bits of x[i]
1537 * are used to represent K_i, and the msb of x[i] encodes the the sign (s_i in
1538 * the paper): it is set if and only if if s_i == -1;
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001539 *
1540 * Calling conventions:
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001541 * - x is an array of size d + 1
Manuel Pégourié-Gonnardc30200e2013-11-20 18:39:55 +01001542 * - w is the size, ie number of teeth, of the comb, and must be between
1543 * 2 and 7 (in practice, between 2 and POLARSSL_ECP_WINDOW_SIZE)
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001544 * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1545 * (the result will be incorrect if these assumptions are not satisfied)
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001546 */
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001547static void ecp_comb_fixed( unsigned char x[], size_t d,
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001548 unsigned char w, const mpi *m )
1549{
1550 size_t i, j;
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001551 unsigned char c, cc, adjust;
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001552
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001553 memset( x, 0, d+1 );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001554
1555 /* For x[0] use the classical comb value without adjustement */
1556 for( j = 0; j < w; j++ )
1557 x[0] |= mpi_get_bit( m, d * j ) << j;
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001558 c = 0;
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001559
1560 for( i = 1; i < d; i++ )
1561 {
1562 /* Get the classical comb value */
1563 for( j = 0; j < w; j++ )
1564 x[i] |= mpi_get_bit( m, i + d * j ) << j;
1565
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001566 /* Add carry and update it */
1567 cc = x[i] & c;
1568 x[i] = x[i] ^ c;
1569 c = cc;
1570
1571 /* Make sure x[i] is odd, avoiding if-branches */
1572 adjust = 1 - ( x[i] & 0x01 );
1573 c |= x[i] & ( x[i-1] * adjust );
1574 x[i] = x[i] ^ ( x[i-1] * adjust );
1575 x[i-1] |= adjust << 7;
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001576 }
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001577
1578 /* Finish with the carry */
1579 x[i] = c;
1580 adjust = 1 - ( x[i] & 0x01 );
1581 c |= x[i] & ( x[i-1] * adjust );
1582 x[i] = x[i] ^ ( x[i-1] * adjust );
1583 x[i-1] |= adjust << 7;
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001584}
1585
1586/*
1587 * Precompute points for the comb method
1588 *
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001589 * If i = i_{w-1} ... i_1 is the binary representation of i, then
1590 * T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001591 *
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001592 * T must be able to hold at least 2^{w - 1} elements
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001593 */
1594static int ecp_precompute_comb( const ecp_group *grp,
1595 ecp_point T[], const ecp_point *P,
1596 unsigned char w, size_t d )
1597{
1598 int ret;
Manuel Pégourié-Gonnardc30200e2013-11-20 18:39:55 +01001599 unsigned char i, k;
1600 size_t j;
1601 ecp_point *cur, *TT[COMB_MAX_PRE - 1];
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001602
1603 /*
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001604 * Set T[0] = P and
1605 * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001606 */
1607 MPI_CHK( ecp_copy( &T[0], P ) );
1608
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001609 k = 0;
1610 for( i = 1; i < ( 1U << (w-1) ); i <<= 1 )
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001611 {
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001612 cur = T + i;
1613 MPI_CHK( ecp_copy( cur, T + ( i >> 1 ) ) );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001614 for( j = 0; j < d; j++ )
1615 MPI_CHK( ecp_double_jac( grp, cur, cur ) );
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001616
1617 TT[k++] = cur;
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001618 }
1619
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001620 ecp_normalize_many( grp, TT, k );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001621
1622 /*
1623 * Compute the remaining ones using the minimal number of additions
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001624 * Be careful to update T[2^l] only after using it!
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001625 */
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001626 k = 0;
1627 for( i = 1; i < ( 1U << (w-1) ); i <<= 1 )
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001628 {
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001629 j = i;
1630 while( j-- )
1631 {
1632 ecp_add_mixed( grp, &T[i + j], &T[j], &T[i], +1 );
1633 TT[k++] = &T[i + j];
1634 }
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001635 }
1636
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001637 ecp_normalize_many( grp, TT, k );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001638
1639cleanup:
1640 return( ret );
1641}
1642
1643/*
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001644 * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001645 */
1646static int ecp_select_comb( const ecp_group *grp, ecp_point *R,
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001647 const ecp_point T[], unsigned char i )
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001648{
1649 int ret;
1650
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001651 /* Ignore the "sign" bit */
1652 MPI_CHK( ecp_copy( R, &T[ ( i & 0x7Fu ) >> 1 ] ) );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001653
1654 /*
1655 * -R = (R.X, -R.Y, R.Z), and
1656 * -R.Y mod P = P - R.Y unless R.Y == 0
1657 */
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001658 if( ( i & 0x80 ) != 0 )
1659 if( mpi_cmp_int( &R->Y, 0 ) != 0 )
1660 MPI_CHK( mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001661
1662cleanup:
1663 return( ret );
1664}
1665
1666/*
1667 * Core multiplication algorithm for the (modified) comb method.
1668 * This part is actually common with the basic comb method (GECC 3.44)
1669 */
1670static int ecp_mul_comb_core( const ecp_group *grp, ecp_point *R,
Manuel Pégourié-Gonnard70c14372013-11-20 20:07:26 +01001671 const ecp_point T[],
1672 const unsigned char x[], size_t d,
1673 int (*f_rng)(void *, unsigned char *, size_t),
1674 void *p_rng )
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001675{
1676 int ret;
1677 ecp_point Txi;
1678 size_t i;
1679
1680 ecp_point_init( &Txi );
1681
Manuel Pégourié-Gonnard70c14372013-11-20 20:07:26 +01001682 /* Start with a non-zero point and randomize its coordinates */
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001683 i = d;
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001684 MPI_CHK( ecp_select_comb( grp, R, T, x[i] ) );
Manuel Pégourié-Gonnard70c14372013-11-20 20:07:26 +01001685 if( f_rng != 0 )
1686 MPI_CHK( ecp_randomize_coordinates( grp, R, f_rng, p_rng ) );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001687
1688 while( i-- != 0 )
1689 {
1690 MPI_CHK( ecp_double_jac( grp, R, R ) );
1691 MPI_CHK( ecp_select_comb( grp, &Txi, T, x[i] ) );
1692 MPI_CHK( ecp_add_mixed( grp, R, R, &Txi, +1 ) );
1693 }
1694
1695cleanup:
1696 ecp_point_free( &Txi );
1697
1698 return( ret );
1699}
1700
1701/*
1702 * Multiplication using the comb method, WIP
1703 */
1704int ecp_mul_comb( ecp_group *grp, ecp_point *R,
1705 const mpi *m, const ecp_point *P,
1706 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1707{
1708 int ret;
1709 unsigned char w, m_is_odd, p_eq_g;
1710 size_t pre_len, d, i;
Manuel Pégourié-Gonnardc30200e2013-11-20 18:39:55 +01001711 unsigned char k[COMB_MAX_D + 1];
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001712 ecp_point Q, *T = NULL, S[2];
1713 mpi M;
1714
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001715 if( mpi_cmp_int( m, 0 ) < 0 || mpi_msb( m ) > grp->nbits )
1716 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
1717
1718 mpi_init( &M );
1719 ecp_point_init( &Q );
1720 ecp_point_init( &S[0] );
1721 ecp_point_init( &S[1] );
1722
1723 /*
1724 * Check if P == G
1725 */
1726 p_eq_g = ( mpi_cmp_int( &P->Z, 1 ) == 0 &&
1727 mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
1728 mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
1729
1730 /* TODO: adjust exact value */
1731 w = grp->nbits >= 192 ? 5 : 2;
1732
Manuel Pégourié-Gonnardc30200e2013-11-20 18:39:55 +01001733 pre_len = 1U << ( w - 1 );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001734 d = ( grp->nbits + w - 1 ) / w;
1735
1736 /*
1737 * Prepare precomputed points: if P == G we want to
1738 * use grp->T if already initialized, or initiliaze it.
1739 */
1740 if( ! p_eq_g || grp->T == NULL )
1741 {
1742 T = (ecp_point *) polarssl_malloc( pre_len * sizeof( ecp_point ) );
1743 if( T == NULL )
1744 {
1745 ret = POLARSSL_ERR_ECP_MALLOC_FAILED;
1746 goto cleanup;
1747 }
1748
1749 for( i = 0; i < pre_len; i++ )
1750 ecp_point_init( &T[i] );
1751
1752 MPI_CHK( ecp_precompute_comb( grp, T, P, w, d ) );
1753
1754 if( p_eq_g )
1755 {
1756 grp->T = T;
1757 grp->T_size = pre_len;
1758 }
1759 }
1760 else
1761 {
1762 T = grp->T;
1763
1764 /* Should never happen, but we want to be extra sure */
1765 if( pre_len != grp->T_size )
1766 {
1767 ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA;
1768 goto cleanup;
1769 }
1770 }
1771
1772 /*
1773 * Make sure M is odd (M = m + 1 or M = m + 2)
1774 * later we'll get m * P by subtracting P or 2 * P to M * P.
1775 */
1776 m_is_odd = ( mpi_get_bit( m, 0 ) == 1 );
1777
1778 MPI_CHK( mpi_copy( &M, m ) );
1779 MPI_CHK( mpi_add_int( &M, &M, 1 + m_is_odd ) );
1780
1781 /*
1782 * Go for comb multiplication, Q = M * P
1783 */
1784 ecp_comb_fixed( k, d, w, &M );
Manuel Pégourié-Gonnard70c14372013-11-20 20:07:26 +01001785 ecp_mul_comb_core( grp, &Q, T, k, d, f_rng, p_rng );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001786
1787 /*
1788 * Now get m * P from M * P
1789 */
1790 MPI_CHK( ecp_copy( &S[0], P ) );
1791 MPI_CHK( ecp_add( grp, &S[1], P, P ) );
1792 MPI_CHK( ecp_sub( grp, R, &Q, &S[m_is_odd] ) );
1793
1794cleanup:
1795
1796 if( T != NULL && ! p_eq_g )
1797 {
1798 for( i = 0; i < pre_len; i++ )
1799 ecp_point_free( &T[i] );
1800 polarssl_free( T );
1801 }
1802
1803 ecp_point_free( &S[1] );
1804 ecp_point_free( &S[0] );
1805 ecp_point_free( &Q );
1806 mpi_free( &M );
1807
1808 return( ret );
1809}
1810
1811/*
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001812 * Check that a point is valid as a public key (SEC1 3.2.3.1)
1813 */
1814int ecp_check_pubkey( const ecp_group *grp, const ecp_point *pt )
1815{
1816 int ret;
1817 mpi YY, RHS;
1818
1819 if( mpi_cmp_int( &pt->Z, 0 ) == 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001820 return( POLARSSL_ERR_ECP_INVALID_KEY );
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001821
1822 /*
1823 * pt coordinates must be normalized for our checks
1824 */
1825 if( mpi_cmp_int( &pt->Z, 1 ) != 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001826 return( POLARSSL_ERR_ECP_INVALID_KEY );
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001827
1828 if( mpi_cmp_int( &pt->X, 0 ) < 0 ||
1829 mpi_cmp_int( &pt->Y, 0 ) < 0 ||
1830 mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
1831 mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001832 return( POLARSSL_ERR_ECP_INVALID_KEY );
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001833
1834 mpi_init( &YY ); mpi_init( &RHS );
1835
1836 /*
1837 * YY = Y^2
Manuel Pégourié-Gonnardcd7458a2013-10-08 13:11:30 +02001838 * RHS = X (X^2 + A) + B = X^3 + A X + B
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001839 */
Manuel Pégourié-Gonnardcd7458a2013-10-08 13:11:30 +02001840 MPI_CHK( mpi_mul_mpi( &YY, &pt->Y, &pt->Y ) ); MOD_MUL( YY );
1841 MPI_CHK( mpi_mul_mpi( &RHS, &pt->X, &pt->X ) ); MOD_MUL( RHS );
Manuel Pégourié-Gonnard0cd6f982013-10-10 15:55:39 +02001842 MPI_CHK( mpi_add_mpi( &RHS, &RHS, &grp->A ) ); MOD_ADD( RHS );
Manuel Pégourié-Gonnardcd7458a2013-10-08 13:11:30 +02001843 MPI_CHK( mpi_mul_mpi( &RHS, &RHS, &pt->X ) ); MOD_MUL( RHS );
1844 MPI_CHK( mpi_add_mpi( &RHS, &RHS, &grp->B ) ); MOD_ADD( RHS );
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001845
1846 if( mpi_cmp_mpi( &YY, &RHS ) != 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001847 ret = POLARSSL_ERR_ECP_INVALID_KEY;
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001848
1849cleanup:
1850
1851 mpi_free( &YY ); mpi_free( &RHS );
1852
1853 return( ret );
1854}
1855
1856/*
1857 * Check that an mpi is valid as a private key (SEC1 3.2)
1858 */
Manuel Pégourié-Gonnardde44a4a2013-07-09 16:05:52 +02001859int ecp_check_privkey( const ecp_group *grp, const mpi *d )
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001860{
1861 /* We want 1 <= d <= N-1 */
1862 if ( mpi_cmp_int( d, 1 ) < 0 || mpi_cmp_mpi( d, &grp->N ) >= 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001863 return( POLARSSL_ERR_ECP_INVALID_KEY );
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001864
1865 return( 0 );
1866}
1867
1868/*
Manuel Pégourié-Gonnard45a035a2013-01-26 14:42:45 +01001869 * Generate a keypair (SEC1 3.2.1)
1870 */
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001871int ecp_gen_keypair( ecp_group *grp, mpi *d, ecp_point *Q,
Manuel Pégourié-Gonnard45a035a2013-01-26 14:42:45 +01001872 int (*f_rng)(void *, unsigned char *, size_t),
1873 void *p_rng )
1874{
1875 int count = 0;
1876 size_t n_size = (grp->nbits + 7) / 8;
1877
1878 /*
1879 * Generate d such that 1 <= n < N
1880 */
1881 do
1882 {
1883 mpi_fill_random( d, n_size, f_rng, p_rng );
1884
1885 while( mpi_cmp_mpi( d, &grp->N ) >= 0 )
1886 mpi_shift_r( d, 1 );
1887
1888 if( count++ > 10 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001889 return( POLARSSL_ERR_ECP_RANDOM_FAILED );
Manuel Pégourié-Gonnard45a035a2013-01-26 14:42:45 +01001890 }
1891 while( mpi_cmp_int( d, 1 ) < 0 );
1892
Manuel Pégourié-Gonnarde09d2f82013-09-02 14:29:09 +02001893 return( ecp_mul( grp, Q, d, &grp->G, f_rng, p_rng ) );
Manuel Pégourié-Gonnard45a035a2013-01-26 14:42:45 +01001894}
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001895
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001896#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnard9fcceac2013-10-23 20:56:12 +02001897/*
1898 * Fast reduction modulo the primes used by the NIST curves.
1899 *
1900 * These functions are: critical for speed, but not need for correct
1901 * operations. So, we make the choice to heavily rely on the internals of our
1902 * bignum library, which creates a tight coupling between these functions and
1903 * our MPI implementation. However, the coupling between the ECP module and
1904 * MPI remains loose, since these functions can be deactivated at will.
1905 */
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001906
1907#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
1908/*
1909 * Compared to the way things are presented in FIPS 186-3 D.2,
1910 * we proceed in columns, from right (least significant chunk) to left,
1911 * adding chunks to N in place, and keeping a carry for the next chunk.
1912 * This avoids moving things around in memory, and uselessly adding zeros,
1913 * compared to the more straightforward, line-oriented approach.
1914 *
1915 * For this prime we need to handle data in chunks of 64 bits.
1916 * Since this is always a multiple of our basic t_uint, we can
1917 * use a t_uint * to designate such a chunk, and small loops to handle it.
1918 */
1919
1920/* Add 64-bit chunks (dst += src) and update carry */
1921static inline void add64( t_uint *dst, t_uint *src, t_uint *carry )
1922{
1923 unsigned char i;
1924 t_uint c = 0;
1925 for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++, src++ )
1926 {
1927 *dst += c; c = ( *dst < c );
1928 *dst += *src; c += ( *dst < *src );
1929 }
1930 *carry += c;
1931}
1932
1933/* Add carry to a 64-bit chunk and update carry */
1934static inline void carry64( t_uint *dst, t_uint *carry )
1935{
1936 unsigned char i;
1937 for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++ )
1938 {
1939 *dst += *carry;
1940 *carry = ( *dst < *carry );
1941 }
1942}
1943
1944#define WIDTH 8 / sizeof( t_uint )
1945#define A( i ) N->p + i * WIDTH
1946#define ADD( i ) add64( p, A( i ), &c )
1947#define NEXT p += WIDTH; carry64( p, &c )
1948#define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0
1949
1950/*
1951 * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
1952 */
1953static int ecp_mod_p192( mpi *N )
1954{
1955 int ret;
1956 t_uint c = 0;
1957 t_uint *p, *end;
1958
1959 /* Make sure we have enough blocks so that A(5) is legal */
1960 MPI_CHK( mpi_grow( N, 6 * WIDTH ) );
1961
1962 p = N->p;
1963 end = p + N->n;
1964
1965 ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5
1966 ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5
1967 ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5
1968
1969cleanup:
1970 return( ret );
1971}
1972
1973#undef WIDTH
1974#undef A
1975#undef ADD
1976#undef NEXT
1977#undef LAST
1978#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
1979
1980#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) || \
1981 defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) || \
1982 defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
1983/*
1984 * The reader is advised to first understand ecp_mod_p192() since the same
1985 * general structure is used here, but with additional complications:
1986 * (1) chunks of 32 bits, and (2) subtractions.
1987 */
1988
1989/*
1990 * For these primes, we need to handle data in chunks of 32 bits.
1991 * This makes it more complicated if we use 64 bits limbs in MPI,
1992 * which prevents us from using a uniform access method as for p192.
1993 *
1994 * So, we define a mini abstraction layer to access 32 bit chunks,
1995 * load them in 'cur' for work, and store them back from 'cur' when done.
1996 *
1997 * While at it, also define the size of N in terms of 32-bit chunks.
1998 */
1999#define LOAD32 cur = A( i );
2000
2001#if defined(POLARSSL_HAVE_INT8) /* 8 bit */
2002
2003#define MAX32 N->n / 4
2004#define A( j ) (uint32_t)( N->p[4*j+0] ) | \
2005 ( N->p[4*j+1] << 8 ) | \
2006 ( N->p[4*j+2] << 16 ) | \
2007 ( N->p[4*j+3] << 24 )
2008#define STORE32 N->p[4*i+0] = (uint8_t)( cur ); \
2009 N->p[4*i+1] = (uint8_t)( cur >> 8 ); \
2010 N->p[4*i+2] = (uint8_t)( cur >> 16 ); \
2011 N->p[4*i+3] = (uint8_t)( cur >> 24 );
2012
2013#elif defined(POLARSSL_HAVE_INT16) /* 16 bit */
2014
2015#define MAX32 N->n / 2
2016#define A( j ) (uint32_t)( N->p[2*j] ) | ( N->p[2*j+1] << 16 )
2017#define STORE32 N->p[2*i+0] = (uint16_t)( cur ); \
2018 N->p[2*i+1] = (uint16_t)( cur >> 16 );
2019
2020#elif defined(POLARSSL_HAVE_INT32) /* 32 bit */
2021
2022#define MAX32 N->n
2023#define A( j ) N->p[j]
2024#define STORE32 N->p[i] = cur;
2025
2026#else /* 64-bit */
2027
2028#define MAX32 N->n * 2
2029#define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
2030#define STORE32 \
2031 if( i % 2 ) { \
2032 N->p[i/2] &= 0x00000000FFFFFFFF; \
2033 N->p[i/2] |= ((uint64_t) cur) << 32; \
2034 } else { \
2035 N->p[i/2] &= 0xFFFFFFFF00000000; \
2036 N->p[i/2] |= (uint64_t) cur; \
2037 }
2038
2039#endif /* sizeof( t_uint ) */
2040
2041/*
2042 * Helpers for addition and subtraction of chunks, with signed carry.
2043 */
2044static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
2045{
2046 *dst += src;
2047 *carry += ( *dst < src );
2048}
2049
2050static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
2051{
2052 *carry -= ( *dst < src );
2053 *dst -= src;
2054}
2055
2056#define ADD( j ) add32( &cur, A( j ), &c );
2057#define SUB( j ) sub32( &cur, A( j ), &c );
2058
2059/*
2060 * Helpers for the main 'loop'
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02002061 * (see fix_negative for the motivation of C)
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02002062 */
2063#define INIT( b ) \
2064 int ret; \
2065 signed char c = 0, cc; \
2066 uint32_t cur; \
2067 size_t i = 0, bits = b; \
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02002068 mpi C; \
2069 t_uint Cp[ b / 8 / sizeof( t_uint) + 1 ]; \
2070 \
2071 C.s = 1; \
2072 C.n = b / 8 / sizeof( t_uint) + 1; \
2073 C.p = Cp; \
2074 memset( Cp, 0, C.n * sizeof( t_uint ) ); \
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02002075 \
2076 MPI_CHK( mpi_grow( N, b * 2 / 8 / sizeof( t_uint ) ) ); \
2077 LOAD32;
2078
2079#define NEXT \
2080 STORE32; i++; LOAD32; \
2081 cc = c; c = 0; \
2082 if( cc < 0 ) \
2083 sub32( &cur, -cc, &c ); \
2084 else \
2085 add32( &cur, cc, &c ); \
2086
2087#define LAST \
2088 STORE32; i++; \
2089 cur = c > 0 ? c : 0; STORE32; \
2090 cur = 0; while( ++i < MAX32 ) { STORE32; } \
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02002091 if( c < 0 ) fix_negative( N, c, &C, bits );
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02002092
2093/*
2094 * If the result is negative, we get it in the form
2095 * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
2096 */
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02002097static inline int fix_negative( mpi *N, signed char c, mpi *C, size_t bits )
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02002098{
2099 int ret;
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02002100
2101 /* C = - c * 2^(bits + 32) */
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02002102#if !defined(POLARSSL_HAVE_INT64)
2103 ((void) bits);
2104#else
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02002105 if( bits == 224 )
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02002106 C->p[ C->n - 1 ] = ((t_uint) -c) << 32;
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02002107 else
2108#endif
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02002109 C->p[ C->n - 1 ] = (t_uint) -c;
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02002110
2111 /* N = - ( C - N ) */
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02002112 MPI_CHK( mpi_sub_abs( N, C, N ) );
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02002113 N->s = -1;
2114
2115cleanup:
2116
2117 return( ret );
2118}
2119
2120#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
2121/*
2122 * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
2123 */
2124static int ecp_mod_p224( mpi *N )
2125{
2126 INIT( 224 );
2127
2128 SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11
2129 SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12
2130 SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13
2131 SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11
2132 SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12
2133 SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13
2134 SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10
2135
2136cleanup:
2137 return( ret );
2138}
2139#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
2140
2141#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
2142/*
2143 * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
2144 */
2145static int ecp_mod_p256( mpi *N )
2146{
2147 INIT( 256 );
2148
2149 ADD( 8 ); ADD( 9 );
2150 SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0
2151
2152 ADD( 9 ); ADD( 10 );
2153 SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1
2154
2155 ADD( 10 ); ADD( 11 );
2156 SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2
2157
2158 ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
2159 SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3
2160
2161 ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
2162 SUB( 9 ); SUB( 10 ); NEXT; // A4
2163
2164 ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
2165 SUB( 10 ); SUB( 11 ); NEXT; // A5
2166
2167 ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
2168 SUB( 8 ); SUB( 9 ); NEXT; // A6
2169
2170 ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
2171 SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7
2172
2173cleanup:
2174 return( ret );
2175}
2176#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
2177
2178#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
2179/*
2180 * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
2181 */
2182static int ecp_mod_p384( mpi *N )
2183{
2184 INIT( 384 );
2185
2186 ADD( 12 ); ADD( 21 ); ADD( 20 );
2187 SUB( 23 ); NEXT; // A0
2188
2189 ADD( 13 ); ADD( 22 ); ADD( 23 );
2190 SUB( 12 ); SUB( 20 ); NEXT; // A2
2191
2192 ADD( 14 ); ADD( 23 );
2193 SUB( 13 ); SUB( 21 ); NEXT; // A2
2194
2195 ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
2196 SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3
2197
2198 ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
2199 SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4
2200
2201 ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
2202 SUB( 16 ); NEXT; // A5
2203
2204 ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
2205 SUB( 17 ); NEXT; // A6
2206
2207 ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
2208 SUB( 18 ); NEXT; // A7
2209
2210 ADD( 20 ); ADD( 17 ); ADD( 16 );
2211 SUB( 19 ); NEXT; // A8
2212
2213 ADD( 21 ); ADD( 18 ); ADD( 17 );
2214 SUB( 20 ); NEXT; // A9
2215
2216 ADD( 22 ); ADD( 19 ); ADD( 18 );
2217 SUB( 21 ); NEXT; // A10
2218
2219 ADD( 23 ); ADD( 20 ); ADD( 19 );
2220 SUB( 22 ); LAST; // A11
2221
2222cleanup:
2223 return( ret );
2224}
2225#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
2226
2227#undef A
2228#undef LOAD32
2229#undef STORE32
2230#undef MAX32
2231#undef INIT
2232#undef NEXT
2233#undef LAST
2234
2235#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED ||
2236 POLARSSL_ECP_DP_SECP256R1_ENABLED ||
2237 POLARSSL_ECP_DP_SECP384R1_ENABLED */
2238
2239#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
2240/*
2241 * Here we have an actual Mersenne prime, so things are more straightforward.
2242 * However, chunks are aligned on a 'weird' boundary (521 bits).
2243 */
2244
2245/* Size of p521 in terms of t_uint */
2246#define P521_WIDTH ( 521 / 8 / sizeof( t_uint ) + 1 )
2247
2248/* Bits to keep in the most significant t_uint */
2249#if defined(POLARSSL_HAVE_INT8)
2250#define P521_MASK 0x01
2251#else
2252#define P521_MASK 0x01FF
2253#endif
2254
2255/*
2256 * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
2257 * Write N as A1 + 2^521 A0, return A0 + A1
2258 */
2259static int ecp_mod_p521( mpi *N )
2260{
2261 int ret;
2262 size_t i;
2263 mpi M;
2264 t_uint Mp[P521_WIDTH + 1];
2265 /* Worst case for the size of M is when t_uint is 16 bits:
2266 * we need to hold bits 513 to 1056, which is 34 limbs, that is
2267 * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
2268
2269 if( N->n < P521_WIDTH )
2270 return( 0 );
2271
2272 /* M = A1 */
2273 M.s = 1;
2274 M.n = N->n - ( P521_WIDTH - 1 );
2275 if( M.n > P521_WIDTH + 1 )
2276 M.n = P521_WIDTH + 1;
2277 M.p = Mp;
2278 memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( t_uint ) );
2279 MPI_CHK( mpi_shift_r( &M, 521 % ( 8 * sizeof( t_uint ) ) ) );
2280
2281 /* N = A0 */
2282 N->p[P521_WIDTH - 1] &= P521_MASK;
2283 for( i = P521_WIDTH; i < N->n; i++ )
2284 N->p[i] = 0;
2285
2286 /* N = A0 + A1 */
2287 MPI_CHK( mpi_add_abs( N, N, &M ) );
2288
2289cleanup:
2290 return( ret );
2291}
2292
2293#undef P521_WIDTH
2294#undef P521_MASK
2295#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
2296
2297#endif /* POLARSSL_ECP_NIST_OPTIM */
2298
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01002299#if defined(POLARSSL_SELF_TEST)
2300
Manuel Pégourié-Gonnardb505c272012-11-05 17:27:54 +01002301/*
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01002302 * Checkup routine
2303 */
2304int ecp_self_test( int verbose )
2305{
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002306 int ret;
2307 size_t i;
2308 ecp_group grp;
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02002309 ecp_point R, P;
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002310 mpi m;
2311 unsigned long add_c_prev, dbl_c_prev;
Manuel Pégourié-Gonnardb8012fc2013-10-10 15:40:49 +02002312 /* exponents especially adapted for secp192r1 */
Paul Bakkerb6c5d2e2013-06-25 16:25:17 +02002313 const char *exponents[] =
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002314 {
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01002315 "000000000000000000000000000000000000000000000000", /* zero */
2316 "000000000000000000000000000000000000000000000001", /* one */
2317 "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831", /* N */
2318 "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002319 "400000000000000000000000000000000000000000000000",
2320 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
2321 "555555555555555555555555555555555555555555555555",
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002322 };
2323
2324 ecp_group_init( &grp );
2325 ecp_point_init( &R );
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02002326 ecp_point_init( &P );
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002327 mpi_init( &m );
2328
Manuel Pégourié-Gonnardb8012fc2013-10-10 15:40:49 +02002329 /* Use secp192r1 if available, or any available curve */
Paul Bakker5dc6b5f2013-06-29 23:26:34 +02002330#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002331 MPI_CHK( ecp_use_known_dp( &grp, POLARSSL_ECP_DP_SECP192R1 ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +02002332#else
Manuel Pégourié-Gonnardb8012fc2013-10-10 15:40:49 +02002333 MPI_CHK( ecp_use_known_dp( &grp, ecp_curve_list()->grp_id ) );
2334#endif
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002335
2336 if( verbose != 0 )
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02002337 printf( " ECP test #1 (constant op_count, base point G): " );
2338
2339 /* Do a dummy multiplication first to trigger precomputation */
2340 MPI_CHK( mpi_lset( &m, 2 ) );
2341 MPI_CHK( ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002342
2343 add_count = 0;
2344 dbl_count = 0;
2345 MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
Manuel Pégourié-Gonnarde09d2f82013-09-02 14:29:09 +02002346 MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002347
2348 for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2349 {
2350 add_c_prev = add_count;
2351 dbl_c_prev = dbl_count;
2352 add_count = 0;
2353 dbl_count = 0;
2354
2355 MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
Manuel Pégourié-Gonnarde09d2f82013-09-02 14:29:09 +02002356 MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002357
2358 if( add_count != add_c_prev || dbl_count != dbl_c_prev )
2359 {
2360 if( verbose != 0 )
2361 printf( "failed (%zu)\n", i );
2362
2363 ret = 1;
2364 goto cleanup;
2365 }
2366 }
2367
2368 if( verbose != 0 )
2369 printf( "passed\n" );
2370
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02002371 if( verbose != 0 )
2372 printf( " ECP test #2 (constant op_count, other point): " );
2373 /* We computed P = 2G last time, use it */
2374
2375 add_count = 0;
2376 dbl_count = 0;
2377 MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
2378 MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2379
2380 for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2381 {
2382 add_c_prev = add_count;
2383 dbl_c_prev = dbl_count;
2384 add_count = 0;
2385 dbl_count = 0;
2386
2387 MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
2388 MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2389
2390 if( add_count != add_c_prev || dbl_count != dbl_c_prev )
2391 {
2392 if( verbose != 0 )
2393 printf( "failed (%zu)\n", i );
2394
2395 ret = 1;
2396 goto cleanup;
2397 }
2398 }
2399
2400 if( verbose != 0 )
2401 printf( "passed\n" );
2402
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002403cleanup:
2404
2405 if( ret < 0 && verbose != 0 )
2406 printf( "Unexpected error, return code = %08X\n", ret );
2407
2408 ecp_group_free( &grp );
2409 ecp_point_free( &R );
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02002410 ecp_point_free( &P );
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002411 mpi_free( &m );
2412
2413 if( verbose != 0 )
2414 printf( "\n" );
2415
2416 return( ret );
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01002417}
2418
2419#endif
2420
2421#endif