blob: abbf9b8a4524a6900d4c0bc495af67a6893d949e [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
Janos Follath4614b9a2022-07-21 15:34:47 +010041#include "bignum_core.h"
Chris Jones4c5819c2021-03-03 17:45:34 +000042#include "bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050043#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000044#include "mbedtls/error.h"
Gabor Mezei22c9a6f2021-10-20 12:09:35 +020045#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000046
Dave Rodgman351c71b2021-12-06 17:50:53 +000047#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000048#include <string.h>
49
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000050#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020051
Gabor Mezei66669142022-08-03 12:52:26 +020052#define MPI_VALIDATE_RET( cond ) \
53 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
54#define MPI_VALIDATE( cond ) \
55 MBEDTLS_INTERNAL_VALIDATE( cond )
56
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +010057#define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
58
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050059/* Implementation that should never be optimized out by the compiler */
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050060static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
61{
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050062 mbedtls_platform_zeroize( v, ciL * n );
63}
64
Paul Bakker5121ce52009-01-03 21:22:43 +000065/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000066 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000067 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020068void mbedtls_mpi_init( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000069{
Hanno Becker73d7d792018-12-11 10:35:51 +000070 MPI_VALIDATE( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +000071
Paul Bakker6c591fa2011-05-05 11:49:20 +000072 X->s = 1;
73 X->n = 0;
74 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000075}
76
77/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000078 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000079 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020080void mbedtls_mpi_free( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000081{
Paul Bakker6c591fa2011-05-05 11:49:20 +000082 if( X == NULL )
83 return;
Paul Bakker5121ce52009-01-03 21:22:43 +000084
Paul Bakker6c591fa2011-05-05 11:49:20 +000085 if( X->p != NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +000086 {
Alexey Skalozube17a8da2016-01-13 17:19:33 +020087 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020088 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +000089 }
90
Paul Bakker6c591fa2011-05-05 11:49:20 +000091 X->s = 1;
92 X->n = 0;
93 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000094}
95
96/*
97 * Enlarge to the specified number of limbs
98 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020099int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
Paul Bakker5121ce52009-01-03 21:22:43 +0000100{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200101 mbedtls_mpi_uint *p;
Hanno Becker73d7d792018-12-11 10:35:51 +0000102 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000103
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200104 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200105 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakkerf9688572011-05-05 10:00:45 +0000106
Paul Bakker5121ce52009-01-03 21:22:43 +0000107 if( X->n < nblimbs )
108 {
Simon Butcher29176892016-05-20 00:19:09 +0100109 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200110 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakker5121ce52009-01-03 21:22:43 +0000111
Paul Bakker5121ce52009-01-03 21:22:43 +0000112 if( X->p != NULL )
113 {
114 memcpy( p, X->p, X->n * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200115 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200116 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +0000117 }
118
119 X->n = nblimbs;
120 X->p = p;
121 }
122
123 return( 0 );
124}
125
126/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100127 * Resize down as much as possible,
128 * while keeping at least the specified number of limbs
129 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200130int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100131{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200132 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100133 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000134 MPI_VALIDATE_RET( X != NULL );
135
136 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
137 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100138
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100139 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100140 if( X->n <= nblimbs )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200141 return( mbedtls_mpi_grow( X, nblimbs ) );
Gilles Peskine322752b2020-01-21 13:59:51 +0100142 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100143
144 for( i = X->n - 1; i > 0; i-- )
145 if( X->p[i] != 0 )
146 break;
147 i++;
148
149 if( i < nblimbs )
150 i = nblimbs;
151
Simon Butcher29176892016-05-20 00:19:09 +0100152 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200153 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100154
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100155 if( X->p != NULL )
156 {
157 memcpy( p, X->p, i * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200158 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200159 mbedtls_free( X->p );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100160 }
161
162 X->n = i;
163 X->p = p;
164
165 return( 0 );
166}
167
Gilles Peskineed32b572021-06-02 22:17:52 +0200168/* Resize X to have exactly n limbs and set it to 0. */
169static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs )
170{
171 if( limbs == 0 )
172 {
173 mbedtls_mpi_free( X );
174 return( 0 );
175 }
176 else if( X->n == limbs )
177 {
178 memset( X->p, 0, limbs * ciL );
179 X->s = 1;
180 return( 0 );
181 }
182 else
183 {
184 mbedtls_mpi_free( X );
185 return( mbedtls_mpi_grow( X, limbs ) );
186 }
187}
188
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100189/*
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200190 * Copy the contents of Y into X.
191 *
192 * This function is not constant-time. Leading zeros in Y may be removed.
193 *
194 * Ensure that X does not shrink. This is not guaranteed by the public API,
195 * but some code in the bignum module relies on this property, for example
196 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000197 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200198int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000199{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100200 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000201 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000202 MPI_VALIDATE_RET( X != NULL );
203 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000204
205 if( X == Y )
206 return( 0 );
207
Gilles Peskinedb420622020-01-20 21:12:50 +0100208 if( Y->n == 0 )
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200209 {
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200210 if( X->n != 0 )
211 {
212 X->s = 1;
213 memset( X->p, 0, X->n * ciL );
214 }
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200215 return( 0 );
216 }
217
Paul Bakker5121ce52009-01-03 21:22:43 +0000218 for( i = Y->n - 1; i > 0; i-- )
219 if( Y->p[i] != 0 )
220 break;
221 i++;
222
223 X->s = Y->s;
224
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100225 if( X->n < i )
226 {
227 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
228 }
229 else
230 {
231 memset( X->p + i, 0, ( X->n - i ) * ciL );
232 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000233
Paul Bakker5121ce52009-01-03 21:22:43 +0000234 memcpy( X->p, Y->p, i * ciL );
235
236cleanup:
237
238 return( ret );
239}
240
241/*
242 * Swap the contents of X and Y
243 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200244void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000245{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200246 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000247 MPI_VALIDATE( X != NULL );
248 MPI_VALIDATE( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000249
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200250 memcpy( &T, X, sizeof( mbedtls_mpi ) );
251 memcpy( X, Y, sizeof( mbedtls_mpi ) );
252 memcpy( Y, &T, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000253}
254
255/*
256 * Set value from integer
257 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200258int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000259{
Janos Follath24eed8d2019-11-22 13:21:35 +0000260 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +0000261 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000262
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200263 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000264 memset( X->p, 0, X->n * ciL );
265
266 X->p[0] = ( z < 0 ) ? -z : z;
267 X->s = ( z < 0 ) ? -1 : 1;
268
269cleanup:
270
271 return( ret );
272}
273
274/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000275 * Get a specific bit
276 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200277int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000278{
Hanno Becker73d7d792018-12-11 10:35:51 +0000279 MPI_VALIDATE_RET( X != NULL );
280
Paul Bakker2f5947e2011-05-18 15:47:11 +0000281 if( X->n * biL <= pos )
282 return( 0 );
283
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200284 return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000285}
286
287/*
288 * Set a bit to a specific value of 0 or 1
289 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200290int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000291{
292 int ret = 0;
293 size_t off = pos / biL;
294 size_t idx = pos % biL;
Hanno Becker73d7d792018-12-11 10:35:51 +0000295 MPI_VALIDATE_RET( X != NULL );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000296
297 if( val != 0 && val != 1 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200298 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker9af723c2014-05-01 13:03:14 +0200299
Paul Bakker2f5947e2011-05-18 15:47:11 +0000300 if( X->n * biL <= pos )
301 {
302 if( val == 0 )
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200303 return( 0 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000304
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200305 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000306 }
307
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200308 X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
309 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000310
311cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200312
Paul Bakker2f5947e2011-05-18 15:47:11 +0000313 return( ret );
314}
315
316/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200317 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000318 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200319size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000320{
Paul Bakker23986e52011-04-24 08:57:21 +0000321 size_t i, j, count = 0;
Hanno Beckerf25ee7f2018-12-19 16:51:02 +0000322 MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000323
324 for( i = 0; i < X->n; i++ )
Paul Bakkerf9688572011-05-05 10:00:45 +0000325 for( j = 0; j < biL; j++, count++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000326 if( ( ( X->p[i] >> j ) & 1 ) != 0 )
327 return( count );
328
329 return( 0 );
330}
331
332/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200333 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000334 */
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200335size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000336{
Gabor Mezei89e31462022-08-12 15:36:56 +0200337 return( mbedtls_mpi_core_bitlen( X->p, X->n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000338}
339
340/*
341 * Return the total size in bytes
342 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200343size_t mbedtls_mpi_size( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000344{
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200345 return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000346}
347
348/*
349 * Convert an ASCII character to digit value
350 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200351static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
Paul Bakker5121ce52009-01-03 21:22:43 +0000352{
353 *d = 255;
354
355 if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
356 if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
357 if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
358
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200359 if( *d >= (mbedtls_mpi_uint) radix )
360 return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
Paul Bakker5121ce52009-01-03 21:22:43 +0000361
362 return( 0 );
363}
364
365/*
366 * Import from an ASCII string
367 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200368int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000369{
Janos Follath24eed8d2019-11-22 13:21:35 +0000370 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000371 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200372 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200373 mbedtls_mpi_uint d;
374 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000375 MPI_VALIDATE_RET( X != NULL );
376 MPI_VALIDATE_RET( s != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000377
378 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000379 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000380
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200381 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000382
Gilles Peskine7cba8592021-06-08 18:32:34 +0200383 if( s[0] == 0 )
384 {
385 mbedtls_mpi_free( X );
386 return( 0 );
387 }
388
Gilles Peskine80f56732021-04-03 18:26:13 +0200389 if( s[0] == '-' )
390 {
391 ++s;
392 sign = -1;
393 }
394
Paul Bakkerff60ee62010-03-16 21:09:09 +0000395 slen = strlen( s );
396
Paul Bakker5121ce52009-01-03 21:22:43 +0000397 if( radix == 16 )
398 {
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +0100399 if( slen > MPI_SIZE_T_MAX >> 2 )
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +0200400 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
401
Paul Bakkerff60ee62010-03-16 21:09:09 +0000402 n = BITS_TO_LIMBS( slen << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000403
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200404 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
405 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000406
Paul Bakker23986e52011-04-24 08:57:21 +0000407 for( i = slen, j = 0; i > 0; i--, j++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000408 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200409 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
Paul Bakker66d5d072014-06-17 16:39:18 +0200410 X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000411 }
412 }
413 else
414 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200415 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000416
Paul Bakkerff60ee62010-03-16 21:09:09 +0000417 for( i = 0; i < slen; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000418 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200419 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
420 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
Gilles Peskine80f56732021-04-03 18:26:13 +0200421 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000422 }
423 }
424
Gilles Peskine80f56732021-04-03 18:26:13 +0200425 if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
426 X->s = -1;
427
Paul Bakker5121ce52009-01-03 21:22:43 +0000428cleanup:
429
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200430 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000431
432 return( ret );
433}
434
435/*
Ron Eldora16fa292018-11-20 14:07:01 +0200436 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000437 */
Ron Eldora16fa292018-11-20 14:07:01 +0200438static int mpi_write_hlp( mbedtls_mpi *X, int radix,
439 char **p, const size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000440{
Janos Follath24eed8d2019-11-22 13:21:35 +0000441 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200442 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200443 size_t length = 0;
444 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000445
Ron Eldora16fa292018-11-20 14:07:01 +0200446 do
447 {
448 if( length >= buflen )
449 {
450 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
451 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000452
Ron Eldora16fa292018-11-20 14:07:01 +0200453 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
454 MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
455 /*
456 * Write the residue in the current position, as an ASCII character.
457 */
458 if( r < 0xA )
459 *(--p_end) = (char)( '0' + r );
460 else
461 *(--p_end) = (char)( 'A' + ( r - 0xA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000462
Ron Eldora16fa292018-11-20 14:07:01 +0200463 length++;
464 } while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000465
Ron Eldora16fa292018-11-20 14:07:01 +0200466 memmove( *p, p_end, length );
467 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000468
469cleanup:
470
471 return( ret );
472}
473
474/*
475 * Export into an ASCII string
476 */
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100477int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
478 char *buf, size_t buflen, size_t *olen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000479{
Paul Bakker23986e52011-04-24 08:57:21 +0000480 int ret = 0;
481 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000482 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200483 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000484 MPI_VALIDATE_RET( X != NULL );
485 MPI_VALIDATE_RET( olen != NULL );
486 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000487
488 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000489 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000490
Hanno Becker23cfea02019-02-04 09:45:07 +0000491 n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
492 if( radix >= 4 ) n >>= 1; /* Number of 4-adic digits necessary to present
493 * `n`. If radix > 4, this might be a strict
494 * overapproximation of the number of
495 * radix-adic digits needed to present `n`. */
496 if( radix >= 16 ) n >>= 1; /* Number of hexadecimal digits necessary to
497 * present `n`. */
498
Janos Follath80470622019-03-06 13:43:02 +0000499 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000500 n += 1; /* Compensate for the divisions above, which round down `n`
501 * in case it's not even. */
502 n += 1; /* Potential '-'-sign. */
503 n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
504 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000505
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100506 if( buflen < n )
Paul Bakker5121ce52009-01-03 21:22:43 +0000507 {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100508 *olen = n;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200509 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000510 }
511
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100512 p = buf;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200513 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000514
515 if( X->s == -1 )
Hanno Beckerc983c812019-02-01 16:41:30 +0000516 {
Paul Bakker5121ce52009-01-03 21:22:43 +0000517 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000518 buflen--;
519 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000520
521 if( radix == 16 )
522 {
Paul Bakker23986e52011-04-24 08:57:21 +0000523 int c;
524 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000525
Paul Bakker23986e52011-04-24 08:57:21 +0000526 for( i = X->n, k = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000527 {
Paul Bakker23986e52011-04-24 08:57:21 +0000528 for( j = ciL; j > 0; j-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000529 {
Paul Bakker23986e52011-04-24 08:57:21 +0000530 c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000531
Paul Bakker6c343d72014-07-10 14:36:19 +0200532 if( c == 0 && k == 0 && ( i + j ) != 2 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000533 continue;
534
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000535 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000536 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000537 k = 1;
538 }
539 }
540 }
541 else
542 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200543 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000544
545 if( T.s == -1 )
546 T.s = 1;
547
Ron Eldora16fa292018-11-20 14:07:01 +0200548 MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000549 }
550
551 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100552 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000553
554cleanup:
555
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200556 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000557
558 return( ret );
559}
560
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200561#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000562/*
563 * Read X from an opened file
564 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200565int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
Paul Bakker5121ce52009-01-03 21:22:43 +0000566{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200567 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000568 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000569 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000570 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000571 * Buffer should have space for (short) label and decimal formatted MPI,
572 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000573 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200574 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Paul Bakker5121ce52009-01-03 21:22:43 +0000575
Hanno Becker73d7d792018-12-11 10:35:51 +0000576 MPI_VALIDATE_RET( X != NULL );
577 MPI_VALIDATE_RET( fin != NULL );
578
579 if( radix < 2 || radix > 16 )
580 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
581
Paul Bakker5121ce52009-01-03 21:22:43 +0000582 memset( s, 0, sizeof( s ) );
583 if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200584 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000585
586 slen = strlen( s );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000587 if( slen == sizeof( s ) - 2 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200588 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000589
Hanno Beckerb2034b72017-04-26 11:46:46 +0100590 if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
591 if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
Paul Bakker5121ce52009-01-03 21:22:43 +0000592
593 p = s + slen;
Hanno Beckerb2034b72017-04-26 11:46:46 +0100594 while( p-- > s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000595 if( mpi_get_digit( &d, radix, *p ) != 0 )
596 break;
597
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200598 return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000599}
600
601/*
602 * Write X into an opened file (or stdout if fout == NULL)
603 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200604int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
Paul Bakker5121ce52009-01-03 21:22:43 +0000605{
Janos Follath24eed8d2019-11-22 13:21:35 +0000606 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000607 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000608 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000609 * Buffer should have space for (short) label and decimal formatted MPI,
610 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000611 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200612 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Hanno Becker73d7d792018-12-11 10:35:51 +0000613 MPI_VALIDATE_RET( X != NULL );
614
615 if( radix < 2 || radix > 16 )
616 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000617
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100618 memset( s, 0, sizeof( s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000619
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100620 MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000621
622 if( p == NULL ) p = "";
623
624 plen = strlen( p );
625 slen = strlen( s );
626 s[slen++] = '\r';
627 s[slen++] = '\n';
628
629 if( fout != NULL )
630 {
631 if( fwrite( p, 1, plen, fout ) != plen ||
632 fwrite( s, 1, slen, fout ) != slen )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200633 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000634 }
635 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200636 mbedtls_printf( "%s%s", p, s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000637
638cleanup:
639
640 return( ret );
641}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200642#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000643
644/*
Janos Follatha778a942019-02-13 10:28:28 +0000645 * Import X from unsigned binary data, little endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100646 *
647 * This function is guaranteed to return an MPI with exactly the necessary
648 * number of limbs (in particular, it does not skip 0s in the input).
Janos Follatha778a942019-02-13 10:28:28 +0000649 */
650int mbedtls_mpi_read_binary_le( mbedtls_mpi *X,
651 const unsigned char *buf, size_t buflen )
652{
Janos Follath24eed8d2019-11-22 13:21:35 +0000653 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +0100654 const size_t limbs = CHARS_TO_LIMBS( buflen );
Janos Follatha778a942019-02-13 10:28:28 +0000655
656 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +0200657 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Janos Follatha778a942019-02-13 10:28:28 +0000658
Janos Follath5f016652022-07-22 16:18:41 +0100659 MBEDTLS_MPI_CHK( mbedtls_mpi_core_read_le( X->p, X->n, buf, buflen ) );
Janos Follatha778a942019-02-13 10:28:28 +0000660
661cleanup:
662
Janos Follath171a7ef2019-02-15 16:17:45 +0000663 /*
664 * This function is also used to import keys. However, wiping the buffers
665 * upon failure is not necessary because failure only can happen before any
666 * input is copied.
667 */
Janos Follatha778a942019-02-13 10:28:28 +0000668 return( ret );
669}
670
671/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000672 * Import X from unsigned binary data, big endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100673 *
674 * This function is guaranteed to return an MPI with exactly the necessary
675 * number of limbs (in particular, it does not skip 0s in the input).
Paul Bakker5121ce52009-01-03 21:22:43 +0000676 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200677int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000678{
Janos Follath24eed8d2019-11-22 13:21:35 +0000679 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +0100680 const size_t limbs = CHARS_TO_LIMBS( buflen );
Paul Bakker5121ce52009-01-03 21:22:43 +0000681
Hanno Becker8ce11a32018-12-19 16:18:52 +0000682 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +0000683 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
684
Hanno Becker073c1992017-10-17 15:17:27 +0100685 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +0200686 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000687
Janos Follath5f016652022-07-22 16:18:41 +0100688 MBEDTLS_MPI_CHK( mbedtls_mpi_core_read_be( X->p, X->n, buf, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000689
690cleanup:
691
Janos Follath171a7ef2019-02-15 16:17:45 +0000692 /*
693 * This function is also used to import keys. However, wiping the buffers
694 * upon failure is not necessary because failure only can happen before any
695 * input is copied.
696 */
Paul Bakker5121ce52009-01-03 21:22:43 +0000697 return( ret );
698}
699
700/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000701 * Export X into unsigned binary data, little endian
702 */
703int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X,
704 unsigned char *buf, size_t buflen )
705{
Janos Follathca5688e2022-08-19 12:05:28 +0100706 return( mbedtls_mpi_core_write_le( X->p, X->n, buf, buflen ) );
Janos Follathe344d0f2019-02-19 16:17:40 +0000707}
708
709/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000710 * Export X into unsigned binary data, big endian
711 */
Gilles Peskine11cdb052018-11-20 16:47:47 +0100712int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
713 unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000714{
Janos Follath5f016652022-07-22 16:18:41 +0100715 return( mbedtls_mpi_core_write_be( X->p, X->n, buf, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000716}
717
718/*
719 * Left-shift: X <<= count
720 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200721int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000722{
Janos Follath24eed8d2019-11-22 13:21:35 +0000723 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000724 size_t i, v0, t1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200725 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000726 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000727
728 v0 = count / (biL );
729 t1 = count & (biL - 1);
730
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200731 i = mbedtls_mpi_bitlen( X ) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000732
Paul Bakkerf9688572011-05-05 10:00:45 +0000733 if( X->n * biL < i )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200734 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000735
736 ret = 0;
737
738 /*
739 * shift by count / limb_size
740 */
741 if( v0 > 0 )
742 {
Paul Bakker23986e52011-04-24 08:57:21 +0000743 for( i = X->n; i > v0; i-- )
744 X->p[i - 1] = X->p[i - v0 - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +0000745
Paul Bakker23986e52011-04-24 08:57:21 +0000746 for( ; i > 0; i-- )
747 X->p[i - 1] = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000748 }
749
750 /*
751 * shift by count % limb_size
752 */
753 if( t1 > 0 )
754 {
755 for( i = v0; i < X->n; i++ )
756 {
757 r1 = X->p[i] >> (biL - t1);
758 X->p[i] <<= t1;
759 X->p[i] |= r0;
760 r0 = r1;
761 }
762 }
763
764cleanup:
765
766 return( ret );
767}
768
769/*
770 * Right-shift: X >>= count
771 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200772int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000773{
Gilles Peskine66414202022-09-21 15:36:16 +0200774 MPI_VALIDATE_RET( X != NULL );
775 if( X->n != 0 )
776 mbedtls_mpi_core_shift_r( X->p, X->n, count );
777 return( 0 );
778}
779
Paul Bakker5121ce52009-01-03 21:22:43 +0000780/*
781 * Compare unsigned values
782 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200783int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000784{
Paul Bakker23986e52011-04-24 08:57:21 +0000785 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000786 MPI_VALIDATE_RET( X != NULL );
787 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000788
Paul Bakker23986e52011-04-24 08:57:21 +0000789 for( i = X->n; i > 0; i-- )
790 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000791 break;
792
Paul Bakker23986e52011-04-24 08:57:21 +0000793 for( j = Y->n; j > 0; j-- )
794 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000795 break;
796
Paul Bakker23986e52011-04-24 08:57:21 +0000797 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000798 return( 0 );
799
800 if( i > j ) return( 1 );
801 if( j > i ) return( -1 );
802
Paul Bakker23986e52011-04-24 08:57:21 +0000803 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000804 {
Paul Bakker23986e52011-04-24 08:57:21 +0000805 if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
806 if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000807 }
808
809 return( 0 );
810}
811
812/*
813 * Compare signed values
814 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200815int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000816{
Paul Bakker23986e52011-04-24 08:57:21 +0000817 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000818 MPI_VALIDATE_RET( X != NULL );
819 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000820
Paul Bakker23986e52011-04-24 08:57:21 +0000821 for( i = X->n; i > 0; i-- )
822 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000823 break;
824
Paul Bakker23986e52011-04-24 08:57:21 +0000825 for( j = Y->n; j > 0; j-- )
826 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000827 break;
828
Paul Bakker23986e52011-04-24 08:57:21 +0000829 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000830 return( 0 );
831
832 if( i > j ) return( X->s );
Paul Bakker0c8f73b2012-03-22 14:08:57 +0000833 if( j > i ) return( -Y->s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000834
835 if( X->s > 0 && Y->s < 0 ) return( 1 );
836 if( Y->s > 0 && X->s < 0 ) return( -1 );
837
Paul Bakker23986e52011-04-24 08:57:21 +0000838 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000839 {
Paul Bakker23986e52011-04-24 08:57:21 +0000840 if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
841 if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000842 }
843
844 return( 0 );
845}
846
Janos Follathee6abce2019-09-05 14:47:19 +0100847/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000848 * Compare signed values
849 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200850int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000851{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200852 mbedtls_mpi Y;
853 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +0000854 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000855
856 *p = ( z < 0 ) ? -z : z;
857 Y.s = ( z < 0 ) ? -1 : 1;
858 Y.n = 1;
859 Y.p = p;
860
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200861 return( mbedtls_mpi_cmp_mpi( X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000862}
863
864/*
865 * Unsigned addition: X = |A| + |B| (HAC 14.7)
866 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200867int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000868{
Janos Follath24eed8d2019-11-22 13:21:35 +0000869 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100870 size_t j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000871 MPI_VALIDATE_RET( X != NULL );
872 MPI_VALIDATE_RET( A != NULL );
873 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000874
875 if( X == B )
876 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200877 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +0000878 }
879
880 if( X != A )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200881 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Paul Bakker9af723c2014-05-01 13:03:14 +0200882
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000883 /*
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100884 * X must always be positive as a result of unsigned additions.
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000885 */
886 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000887
Paul Bakker23986e52011-04-24 08:57:21 +0000888 for( j = B->n; j > 0; j-- )
889 if( B->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000890 break;
891
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200892 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000893
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100894 /* j is the number of non-zero limbs of B. Add those to X. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000895
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100896 mbedtls_mpi_uint *p = X->p;
897
Tom Cosgrove6469fdf2022-10-25 12:46:13 +0100898 mbedtls_mpi_uint c = mbedtls_mpi_core_add( p, p, B->p, j );
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100899
900 p += j;
901
902 /* Now propagate any carry */
Paul Bakker5121ce52009-01-03 21:22:43 +0000903
904 while( c != 0 )
905 {
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100906 if( j >= X->n )
Paul Bakker5121ce52009-01-03 21:22:43 +0000907 {
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100908 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j + 1 ) );
909 p = X->p + j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000910 }
911
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100912 *p += c; c = ( *p < c ); j++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +0000913 }
914
915cleanup:
916
917 return( ret );
918}
919
Paul Bakker5121ce52009-01-03 21:22:43 +0000920/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200921 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +0000922 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200923int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000924{
Janos Follath24eed8d2019-11-22 13:21:35 +0000925 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000926 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200927 mbedtls_mpi_uint carry;
Hanno Becker73d7d792018-12-11 10:35:51 +0000928 MPI_VALIDATE_RET( X != NULL );
929 MPI_VALIDATE_RET( A != NULL );
930 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000931
Paul Bakker23986e52011-04-24 08:57:21 +0000932 for( n = B->n; n > 0; n-- )
933 if( B->p[n - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000934 break;
Gilles Peskinec8a91772021-01-27 22:30:43 +0100935 if( n > A->n )
936 {
937 /* B >= (2^ciL)^n > A */
938 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
939 goto cleanup;
940 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000941
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200942 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
943
944 /* Set the high limbs of X to match A. Don't touch the lower limbs
945 * because X might be aliased to B, and we must not overwrite the
946 * significant digits of B. */
947 if( A->n > n )
948 memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
949 if( X->n > A->n )
950 memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
951
Tom Cosgrove7e655f72022-07-20 14:02:11 +0100952 carry = mbedtls_mpi_core_sub( X->p, A->p, B->p, n );
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200953 if( carry != 0 )
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200954 {
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200955 /* Propagate the carry to the first nonzero limb of X. */
956 for( ; n < X->n && X->p[n] == 0; n++ )
957 --X->p[n];
958 /* If we ran out of space for the carry, it means that the result
959 * is negative. */
960 if( n == X->n )
Gilles Peskine89b41302020-07-23 01:16:46 +0200961 {
962 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
963 goto cleanup;
964 }
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200965 --X->p[n];
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200966 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000967
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200968 /* X should always be positive as a result of unsigned subtractions. */
969 X->s = 1;
970
Paul Bakker5121ce52009-01-03 21:22:43 +0000971cleanup:
Paul Bakker5121ce52009-01-03 21:22:43 +0000972 return( ret );
973}
974
Gilles Peskine72ee1e32022-11-09 21:34:09 +0100975/* Common function for signed addition and subtraction.
976 * Calculate A + B * flip_B where flip_B is 1 or -1.
Paul Bakker5121ce52009-01-03 21:22:43 +0000977 */
Gilles Peskine72ee1e32022-11-09 21:34:09 +0100978static int add_sub_mpi( mbedtls_mpi *X,
979 const mbedtls_mpi *A, const mbedtls_mpi *B,
980 int flip_B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000981{
Hanno Becker73d7d792018-12-11 10:35:51 +0000982 int ret, s;
983 MPI_VALIDATE_RET( X != NULL );
984 MPI_VALIDATE_RET( A != NULL );
985 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000986
Hanno Becker73d7d792018-12-11 10:35:51 +0000987 s = A->s;
Gilles Peskine72ee1e32022-11-09 21:34:09 +0100988 if( A->s * B->s * flip_B < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000989 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200990 if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000991 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200992 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000993 X->s = s;
994 }
995 else
996 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200997 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000998 X->s = -s;
999 }
1000 }
1001 else
1002 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001003 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001004 X->s = s;
1005 }
1006
1007cleanup:
1008
1009 return( ret );
1010}
1011
1012/*
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001013 * Signed addition: X = A + B
1014 */
1015int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
1016{
1017 return( add_sub_mpi( X, A, B, 1 ) );
1018}
1019
1020/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001021 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001022 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001023int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001024{
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001025 return( add_sub_mpi( X, A, B, -1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001026}
1027
1028/*
1029 * Signed addition: X = A + b
1030 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001031int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001032{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001033 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001034 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001035 MPI_VALIDATE_RET( X != NULL );
1036 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001037
1038 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001039 B.s = ( b < 0 ) ? -1 : 1;
1040 B.n = 1;
1041 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001042
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001043 return( mbedtls_mpi_add_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001044}
1045
1046/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001047 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001048 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001049int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001050{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001051 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001052 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001053 MPI_VALIDATE_RET( X != NULL );
1054 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001055
1056 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001057 B.s = ( b < 0 ) ? -1 : 1;
1058 B.n = 1;
1059 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001060
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001061 return( mbedtls_mpi_sub_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001062}
1063
Paul Bakker5121ce52009-01-03 21:22:43 +00001064/*
1065 * Baseline multiplication: X = A * B (HAC 14.12)
1066 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001067int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001068{
Janos Follath24eed8d2019-11-22 13:21:35 +00001069 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker1772e052022-04-13 06:51:40 +01001070 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001071 mbedtls_mpi TA, TB;
Hanno Beckerda763de2022-04-13 06:50:02 +01001072 int result_is_zero = 0;
Hanno Becker73d7d792018-12-11 10:35:51 +00001073 MPI_VALIDATE_RET( X != NULL );
1074 MPI_VALIDATE_RET( A != NULL );
1075 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001076
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001077 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001078
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001079 if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
1080 if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
Paul Bakker5121ce52009-01-03 21:22:43 +00001081
Hanno Beckerda763de2022-04-13 06:50:02 +01001082 for( i = A->n; i > 0; i-- )
1083 if( A->p[i - 1] != 0 )
1084 break;
1085 if( i == 0 )
1086 result_is_zero = 1;
1087
1088 for( j = B->n; j > 0; j-- )
1089 if( B->p[j - 1] != 0 )
1090 break;
1091 if( j == 0 )
1092 result_is_zero = 1;
1093
1094 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001095 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001096
Hanno Becker1772e052022-04-13 06:51:40 +01001097 for( size_t k = 0; k < j; k++ )
Hanno Beckerfee261a2022-04-06 06:20:22 +01001098 {
1099 /* We know that there cannot be any carry-out since we're
1100 * iterating from bottom to top. */
Hanno Beckerda763de2022-04-13 06:50:02 +01001101 (void) mbedtls_mpi_core_mla( X->p + k, i + 1,
1102 A->p, i,
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001103 B->p[k] );
Hanno Beckerfee261a2022-04-06 06:20:22 +01001104 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001105
Hanno Beckerda763de2022-04-13 06:50:02 +01001106 /* If the result is 0, we don't shortcut the operation, which reduces
1107 * but does not eliminate side channels leaking the zero-ness. We do
1108 * need to take care to set the sign bit properly since the library does
1109 * not fully support an MPI object with a value of 0 and s == -1. */
1110 if( result_is_zero )
1111 X->s = 1;
1112 else
1113 X->s = A->s * B->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001114
1115cleanup:
1116
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001117 mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001118
1119 return( ret );
1120}
1121
1122/*
1123 * Baseline multiplication: X = A * b
1124 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001125int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001126{
Hanno Becker73d7d792018-12-11 10:35:51 +00001127 MPI_VALIDATE_RET( X != NULL );
1128 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001129
Hanno Becker35771312022-04-14 11:52:11 +01001130 size_t n = A->n;
1131 while( n > 0 && A->p[n - 1] == 0 )
1132 --n;
1133
Hanno Becker74a11a32022-04-06 06:27:00 +01001134 /* The general method below doesn't work if b==0. */
Hanno Becker35771312022-04-14 11:52:11 +01001135 if( b == 0 || n == 0 )
Paul Elliott986b55a2021-04-20 21:46:29 +01001136 return( mbedtls_mpi_lset( X, 0 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001137
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001138 /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001139 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001140 /* In general, A * b requires 1 limb more than b. If
1141 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1142 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001143 * copy() will take care of the growth if needed. However, experimentally,
1144 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001145 * calls to calloc() in ECP code, presumably because it reuses the
1146 * same mpi for a while and this way the mpi is more likely to directly
Hanno Becker9137b9c2022-04-12 10:51:54 +01001147 * grow to its final size.
1148 *
1149 * Note that calculating A*b as 0 + A*b doesn't work as-is because
1150 * A,X can be the same. */
Hanno Becker35771312022-04-14 11:52:11 +01001151 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001152 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Hanno Becker35771312022-04-14 11:52:11 +01001153 mbedtls_mpi_core_mla( X->p, X->n, A->p, n, b - 1 );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001154
1155cleanup:
1156 return( ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00001157}
1158
1159/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001160 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1161 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001162 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001163static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
1164 mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
Simon Butcher15b15d12015-11-26 19:35:03 +00001165{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001166#if defined(MBEDTLS_HAVE_UDBL)
1167 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001168#else
Simon Butcher9803d072016-01-03 00:24:34 +00001169 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1170 const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001171 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1172 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001173 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001174#endif
1175
Simon Butcher15b15d12015-11-26 19:35:03 +00001176 /*
1177 * Check for overflow
1178 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001179 if( 0 == d || u1 >= d )
Simon Butcher15b15d12015-11-26 19:35:03 +00001180 {
Simon Butcherf5ba0452015-12-27 23:01:55 +00001181 if (r != NULL) *r = ~0;
Simon Butcher15b15d12015-11-26 19:35:03 +00001182
Simon Butcherf5ba0452015-12-27 23:01:55 +00001183 return ( ~0 );
Simon Butcher15b15d12015-11-26 19:35:03 +00001184 }
1185
1186#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001187 dividend = (mbedtls_t_udbl) u1 << biL;
1188 dividend |= (mbedtls_t_udbl) u0;
1189 quotient = dividend / d;
1190 if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
1191 quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
1192
1193 if( r != NULL )
Simon Butcher9803d072016-01-03 00:24:34 +00001194 *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001195
1196 return (mbedtls_mpi_uint) quotient;
1197#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001198
1199 /*
1200 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1201 * Vol. 2 - Seminumerical Algorithms, Knuth
1202 */
1203
1204 /*
1205 * Normalize the divisor, d, and dividend, u0, u1
1206 */
Janos Follath4670f882022-07-21 18:25:42 +01001207 s = mbedtls_mpi_core_clz( d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001208 d = d << s;
1209
1210 u1 = u1 << s;
Simon Butcher9803d072016-01-03 00:24:34 +00001211 u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001212 u0 = u0 << s;
1213
1214 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001215 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001216
1217 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001218 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001219
1220 /*
1221 * Find the first quotient and remainder
1222 */
1223 q1 = u1 / d1;
1224 r0 = u1 - d1 * q1;
1225
1226 while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
1227 {
1228 q1 -= 1;
1229 r0 += d1;
1230
1231 if ( r0 >= radix ) break;
1232 }
1233
Simon Butcherf5ba0452015-12-27 23:01:55 +00001234 rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001235 q0 = rAX / d1;
1236 r0 = rAX - q0 * d1;
1237
1238 while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
1239 {
1240 q0 -= 1;
1241 r0 += d1;
1242
1243 if ( r0 >= radix ) break;
1244 }
1245
1246 if (r != NULL)
Simon Butcherf5ba0452015-12-27 23:01:55 +00001247 *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
Simon Butcher15b15d12015-11-26 19:35:03 +00001248
1249 quotient = q1 * radix + q0;
1250
1251 return quotient;
1252#endif
1253}
1254
1255/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001256 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001257 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001258int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1259 const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001260{
Janos Follath24eed8d2019-11-22 13:21:35 +00001261 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001262 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001263 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001264 mbedtls_mpi_uint TP2[3];
Hanno Becker73d7d792018-12-11 10:35:51 +00001265 MPI_VALIDATE_RET( A != NULL );
1266 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001267
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001268 if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
1269 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001270
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001271 mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001272 mbedtls_mpi_init( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001273 /*
1274 * Avoid dynamic memory allocations for constant-size T2.
1275 *
1276 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1277 * so nobody increase the size of the MPI and we're safe to use an on-stack
1278 * buffer.
1279 */
Alexander K35d6d462019-10-31 14:46:45 +03001280 T2.s = 1;
Alexander Kd19a1932019-11-01 18:20:42 +03001281 T2.n = sizeof( TP2 ) / sizeof( *TP2 );
1282 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001283
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001284 if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001285 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001286 if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
1287 if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001288 return( 0 );
1289 }
1290
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001291 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
1292 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001293 X.s = Y.s = 1;
1294
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001295 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
1296 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
Gilles Peskine2536aa72020-07-24 00:12:59 +02001297 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001298
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001299 k = mbedtls_mpi_bitlen( &Y ) % biL;
Paul Bakkerf9688572011-05-05 10:00:45 +00001300 if( k < biL - 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001301 {
1302 k = biL - 1 - k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001303 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
1304 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001305 }
1306 else k = 0;
1307
1308 n = X.n - 1;
1309 t = Y.n - 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001310 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001311
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001312 while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001313 {
1314 Z.p[n - t]++;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001315 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001316 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001317 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001318
1319 for( i = n; i > t ; i-- )
1320 {
1321 if( X.p[i] >= Y.p[t] )
1322 Z.p[i - t - 1] = ~0;
1323 else
1324 {
Simon Butcher15b15d12015-11-26 19:35:03 +00001325 Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
1326 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001327 }
1328
Alexander K35d6d462019-10-31 14:46:45 +03001329 T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
1330 T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
1331 T2.p[2] = X.p[i];
1332
Paul Bakker5121ce52009-01-03 21:22:43 +00001333 Z.p[i - t - 1]++;
1334 do
1335 {
1336 Z.p[i - t - 1]--;
1337
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001338 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
Paul Bakker66d5d072014-06-17 16:39:18 +02001339 T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001340 T1.p[1] = Y.p[t];
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001341 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001342 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001343 while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001344
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001345 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
1346 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1347 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001348
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001349 if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001350 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001351 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
1352 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1353 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001354 Z.p[i - t - 1]--;
1355 }
1356 }
1357
1358 if( Q != NULL )
1359 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001360 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001361 Q->s = A->s * B->s;
1362 }
1363
1364 if( R != NULL )
1365 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001366 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
Paul Bakkerf02c5642012-11-13 10:25:21 +00001367 X.s = A->s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001368 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001369
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001370 if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001371 R->s = 1;
1372 }
1373
1374cleanup:
1375
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001376 mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001377 mbedtls_mpi_free( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001378 mbedtls_platform_zeroize( TP2, sizeof( TP2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001379
1380 return( ret );
1381}
1382
1383/*
1384 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001385 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001386int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
1387 const mbedtls_mpi *A,
1388 mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001389{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001390 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001391 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001392 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001393
1394 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001395 B.s = ( b < 0 ) ? -1 : 1;
1396 B.n = 1;
1397 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001398
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001399 return( mbedtls_mpi_div_mpi( Q, R, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001400}
1401
1402/*
1403 * Modulo: R = A mod B
1404 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001405int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001406{
Janos Follath24eed8d2019-11-22 13:21:35 +00001407 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +00001408 MPI_VALIDATE_RET( R != NULL );
1409 MPI_VALIDATE_RET( A != NULL );
1410 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001411
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001412 if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
1413 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001414
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001415 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001416
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001417 while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
1418 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001419
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001420 while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
1421 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001422
1423cleanup:
1424
1425 return( ret );
1426}
1427
1428/*
1429 * Modulo: r = A mod b
1430 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001431int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001432{
Paul Bakker23986e52011-04-24 08:57:21 +00001433 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001434 mbedtls_mpi_uint x, y, z;
Hanno Becker73d7d792018-12-11 10:35:51 +00001435 MPI_VALIDATE_RET( r != NULL );
1436 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001437
1438 if( b == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001439 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001440
1441 if( b < 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001442 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakker5121ce52009-01-03 21:22:43 +00001443
1444 /*
1445 * handle trivial cases
1446 */
Gilles Peskineae25bb02022-06-09 19:32:46 +02001447 if( b == 1 || A->n == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001448 {
1449 *r = 0;
1450 return( 0 );
1451 }
1452
1453 if( b == 2 )
1454 {
1455 *r = A->p[0] & 1;
1456 return( 0 );
1457 }
1458
1459 /*
1460 * general case
1461 */
Paul Bakker23986e52011-04-24 08:57:21 +00001462 for( i = A->n, y = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001463 {
Paul Bakker23986e52011-04-24 08:57:21 +00001464 x = A->p[i - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001465 y = ( y << biH ) | ( x >> biH );
1466 z = y / b;
1467 y -= z * b;
1468
1469 x <<= biH;
1470 y = ( y << biH ) | ( x >> biH );
1471 z = y / b;
1472 y -= z * b;
1473 }
1474
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001475 /*
1476 * If A is negative, then the current y represents a negative value.
1477 * Flipping it to the positive side.
1478 */
1479 if( A->s < 0 && y != 0 )
1480 y = b - y;
1481
Paul Bakker5121ce52009-01-03 21:22:43 +00001482 *r = y;
1483
1484 return( 0 );
1485}
1486
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001487static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00001488{
Tom Cosgroveb7438d12022-09-15 15:05:59 +01001489 *mm = mbedtls_mpi_core_montmul_init( N->p );
Paul Bakker5121ce52009-01-03 21:22:43 +00001490}
1491
Tom Cosgrove93842842022-08-05 16:59:43 +01001492/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1493 *
1494 * \param[in,out] A One of the numbers to multiply.
1495 * It must have at least as many limbs as N
1496 * (A->n >= N->n), and any limbs beyond n are ignored.
1497 * On successful completion, A contains the result of
1498 * the multiplication A * B * R^-1 mod N where
1499 * R = (2^ciL)^n.
1500 * \param[in] B One of the numbers to multiply.
1501 * It must be nonzero and must not have more limbs than N
1502 * (B->n <= N->n).
Tom Cosgrove40d22942022-08-17 06:42:44 +01001503 * \param[in] N The modulus. \p N must be odd.
Tom Cosgrove93842842022-08-05 16:59:43 +01001504 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1505 * This is -N^-1 mod 2^ciL.
1506 * \param[in,out] T A bignum for temporary storage.
1507 * It must be at least twice the limb size of N plus 1
1508 * (T->n >= 2 * N->n + 1).
1509 * Its initial content is unused and
1510 * its final content is indeterminate.
Tom Cosgrove5dd97e62022-08-30 14:31:49 +01001511 * It does not get reallocated.
Tom Cosgrove93842842022-08-05 16:59:43 +01001512 */
1513static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B,
1514 const mbedtls_mpi *N, mbedtls_mpi_uint mm,
Tom Cosgrovef88b47e2022-08-17 08:42:58 +01001515 mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001516{
Tom Cosgrove93842842022-08-05 16:59:43 +01001517 mbedtls_mpi_core_montmul( A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p );
Paul Bakker5121ce52009-01-03 21:22:43 +00001518}
1519
1520/*
1521 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001522 *
Tom Cosgrove93842842022-08-05 16:59:43 +01001523 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001524 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001525static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
Tom Cosgrovef88b47e2022-08-17 08:42:58 +01001526 mbedtls_mpi_uint mm, mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001527{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001528 mbedtls_mpi_uint z = 1;
1529 mbedtls_mpi U;
Paul Bakker5121ce52009-01-03 21:22:43 +00001530
Paul Bakker8ddb6452013-02-27 14:56:33 +01001531 U.n = U.s = (int) z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001532 U.p = &z;
1533
Tom Cosgrove93842842022-08-05 16:59:43 +01001534 mpi_montmul( A, &U, N, mm, T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001535}
1536
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001537/**
1538 * Select an MPI from a table without leaking the index.
1539 *
1540 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1541 * reads the entire table in order to avoid leaking the value of idx to an
1542 * attacker able to observe memory access patterns.
1543 *
1544 * \param[out] R Where to write the selected MPI.
1545 * \param[in] T The table to read from.
1546 * \param[in] T_size The number of elements in the table.
1547 * \param[in] idx The index of the element to select;
1548 * this must satisfy 0 <= idx < T_size.
1549 *
1550 * \return \c 0 on success, or a negative error code.
1551 */
1552static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
1553{
1554 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1555
1556 for( size_t i = 0; i < T_size; i++ )
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001557 {
1558 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
Gabor Mezei90437e32021-10-20 11:59:27 +02001559 (unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) );
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001560 }
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001561
1562cleanup:
1563 return( ret );
1564}
1565
Paul Bakker5121ce52009-01-03 21:22:43 +00001566/*
1567 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1568 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001569int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
1570 const mbedtls_mpi *E, const mbedtls_mpi *N,
Yuto Takano538a0cb2021-07-14 10:20:09 +01001571 mbedtls_mpi *prec_RR )
Paul Bakker5121ce52009-01-03 21:22:43 +00001572{
Janos Follath24eed8d2019-11-22 13:21:35 +00001573 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001574 size_t wbits, wsize, one = 1;
1575 size_t i, j, nblimbs;
1576 size_t bufsize, nbits;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001577 mbedtls_mpi_uint ei, mm, state;
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001578 mbedtls_mpi RR, T, W[ 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00001579 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00001580
Hanno Becker73d7d792018-12-11 10:35:51 +00001581 MPI_VALIDATE_RET( X != NULL );
1582 MPI_VALIDATE_RET( A != NULL );
1583 MPI_VALIDATE_RET( E != NULL );
1584 MPI_VALIDATE_RET( N != NULL );
1585
Hanno Becker8d1dd1b2017-09-28 11:02:24 +01001586 if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001587 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001588
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001589 if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
1590 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakkerf6198c12012-05-16 08:02:29 +00001591
Chris Jones9246d042020-11-25 15:12:39 +00001592 if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
1593 mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
1594 return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
1595
Paul Bakkerf6198c12012-05-16 08:02:29 +00001596 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001597 * Init temps and window size
1598 */
1599 mpi_montg_init( &mm, N );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001600 mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
1601 mbedtls_mpi_init( &Apos );
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001602 mbedtls_mpi_init( &WW );
Paul Bakker5121ce52009-01-03 21:22:43 +00001603 memset( W, 0, sizeof( W ) );
1604
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001605 i = mbedtls_mpi_bitlen( E );
Paul Bakker5121ce52009-01-03 21:22:43 +00001606
1607 wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
1608 ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
1609
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001610#if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001611 if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
1612 wsize = MBEDTLS_MPI_WINDOW_SIZE;
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001613#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00001614
Paul Bakker5121ce52009-01-03 21:22:43 +00001615 j = N->n + 1;
Tom Cosgrove93842842022-08-05 16:59:43 +01001616 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001617 * and mpi_montred() calls later. Here we ensure that W[1] and X are
1618 * large enough, and later we'll grow other W[i] to the same length.
1619 * They must not be shrunk midway through this function!
1620 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001621 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
1622 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
1623 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001624
1625 /*
Paul Bakker50546922012-05-19 08:40:49 +00001626 * Compensate for negative A (and correct at the end)
1627 */
1628 neg = ( A->s == -1 );
Paul Bakker50546922012-05-19 08:40:49 +00001629 if( neg )
1630 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001631 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
Paul Bakker50546922012-05-19 08:40:49 +00001632 Apos.s = 1;
1633 A = &Apos;
1634 }
1635
1636 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001637 * If 1st call, pre-compute R^2 mod N
1638 */
Yuto Takano538a0cb2021-07-14 10:20:09 +01001639 if( prec_RR == NULL || prec_RR->p == NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +00001640 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001641 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
1642 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
1643 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001644
Yuto Takano538a0cb2021-07-14 10:20:09 +01001645 if( prec_RR != NULL )
1646 memcpy( prec_RR, &RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001647 }
1648 else
Yuto Takano538a0cb2021-07-14 10:20:09 +01001649 memcpy( &RR, prec_RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001650
1651 /*
1652 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1653 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001654 if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001655 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001656 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001657 /* This should be a no-op because W[1] is already that large before
1658 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
Tom Cosgrove93842842022-08-05 16:59:43 +01001659 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine2aa3f162021-06-15 21:22:48 +02001660 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001661 }
Paul Bakkerc2024f42014-01-23 20:38:35 +01001662 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001663 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001664
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001665 /* Note that this is safe because W[1] always has at least N->n limbs
1666 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Tom Cosgrove93842842022-08-05 16:59:43 +01001667 mpi_montmul( &W[1], &RR, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001668
1669 /*
1670 * X = R^2 * R^-1 mod N = R mod N
1671 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001672 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
Gilles Peskine4e91d472020-06-04 20:55:15 +02001673 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001674
1675 if( wsize > 1 )
1676 {
1677 /*
1678 * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
1679 */
Paul Bakker66d5d072014-06-17 16:39:18 +02001680 j = one << ( wsize - 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001681
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001682 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
1683 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001684
1685 for( i = 0; i < wsize - 1; i++ )
Tom Cosgrove93842842022-08-05 16:59:43 +01001686 mpi_montmul( &W[j], &W[j], N, mm, &T );
Paul Bakker0d7702c2013-10-29 16:18:35 +01001687
Paul Bakker5121ce52009-01-03 21:22:43 +00001688 /*
1689 * W[i] = W[i - 1] * W[1]
1690 */
Paul Bakker66d5d072014-06-17 16:39:18 +02001691 for( i = j + 1; i < ( one << wsize ); i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001692 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001693 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
1694 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001695
Tom Cosgrove93842842022-08-05 16:59:43 +01001696 mpi_montmul( &W[i], &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001697 }
1698 }
1699
1700 nblimbs = E->n;
1701 bufsize = 0;
1702 nbits = 0;
1703 wbits = 0;
1704 state = 0;
1705
1706 while( 1 )
1707 {
1708 if( bufsize == 0 )
1709 {
Paul Bakker0d7702c2013-10-29 16:18:35 +01001710 if( nblimbs == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001711 break;
1712
Paul Bakker0d7702c2013-10-29 16:18:35 +01001713 nblimbs--;
1714
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001715 bufsize = sizeof( mbedtls_mpi_uint ) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00001716 }
1717
1718 bufsize--;
1719
1720 ei = (E->p[nblimbs] >> bufsize) & 1;
1721
1722 /*
1723 * skip leading 0s
1724 */
1725 if( ei == 0 && state == 0 )
1726 continue;
1727
1728 if( ei == 0 && state == 1 )
1729 {
1730 /*
1731 * out of window, square X
1732 */
Tom Cosgrove93842842022-08-05 16:59:43 +01001733 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001734 continue;
1735 }
1736
1737 /*
1738 * add ei to current window
1739 */
1740 state = 2;
1741
1742 nbits++;
Paul Bakker66d5d072014-06-17 16:39:18 +02001743 wbits |= ( ei << ( wsize - nbits ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001744
1745 if( nbits == wsize )
1746 {
1747 /*
1748 * X = X^wsize R^-1 mod N
1749 */
1750 for( i = 0; i < wsize; i++ )
Tom Cosgrove93842842022-08-05 16:59:43 +01001751 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001752
1753 /*
1754 * X = X * W[wbits] R^-1 mod N
1755 */
Manuel Pégourié-Gonnarde22176e2021-06-10 09:34:00 +02001756 MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) );
Tom Cosgrove93842842022-08-05 16:59:43 +01001757 mpi_montmul( X, &WW, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001758
1759 state--;
1760 nbits = 0;
1761 wbits = 0;
1762 }
1763 }
1764
1765 /*
1766 * process the remaining bits
1767 */
1768 for( i = 0; i < nbits; i++ )
1769 {
Tom Cosgrove93842842022-08-05 16:59:43 +01001770 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001771
1772 wbits <<= 1;
1773
Paul Bakker66d5d072014-06-17 16:39:18 +02001774 if( ( wbits & ( one << wsize ) ) != 0 )
Tom Cosgrove93842842022-08-05 16:59:43 +01001775 mpi_montmul( X, &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001776 }
1777
1778 /*
1779 * X = A^E * R * R^-1 mod N = A^E mod N
1780 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001781 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001782
Hanno Beckera4af1c42017-04-18 09:07:45 +01001783 if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
Paul Bakkerf6198c12012-05-16 08:02:29 +00001784 {
1785 X->s = -1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001786 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
Paul Bakkerf6198c12012-05-16 08:02:29 +00001787 }
1788
Paul Bakker5121ce52009-01-03 21:22:43 +00001789cleanup:
1790
Paul Bakker66d5d072014-06-17 16:39:18 +02001791 for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001792 mbedtls_mpi_free( &W[i] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001793
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001794 mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001795 mbedtls_mpi_free( &WW );
Paul Bakker6c591fa2011-05-05 11:49:20 +00001796
Yuto Takano538a0cb2021-07-14 10:20:09 +01001797 if( prec_RR == NULL || prec_RR->p == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001798 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00001799
1800 return( ret );
1801}
1802
Paul Bakker5121ce52009-01-03 21:22:43 +00001803/*
1804 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
1805 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001806int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001807{
Janos Follath24eed8d2019-11-22 13:21:35 +00001808 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001809 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03001810 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00001811
Hanno Becker73d7d792018-12-11 10:35:51 +00001812 MPI_VALIDATE_RET( G != NULL );
1813 MPI_VALIDATE_RET( A != NULL );
1814 MPI_VALIDATE_RET( B != NULL );
1815
Alexander Ke8ad49f2019-08-16 16:16:07 +03001816 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001817
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001818 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
1819 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001820
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001821 lz = mbedtls_mpi_lsb( &TA );
1822 lzt = mbedtls_mpi_lsb( &TB );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001823
Gilles Peskine27253bc2021-06-09 13:26:43 +02001824 /* The loop below gives the correct result when A==0 but not when B==0.
1825 * So have a special case for B==0. Leverage the fact that we just
1826 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1827 * slightly more efficient than cmp_int(). */
1828 if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
1829 {
1830 ret = mbedtls_mpi_copy( G, A );
1831 goto cleanup;
1832 }
1833
Paul Bakker66d5d072014-06-17 16:39:18 +02001834 if( lzt < lz )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001835 lz = lzt;
1836
Paul Bakker5121ce52009-01-03 21:22:43 +00001837 TA.s = TB.s = 1;
1838
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001839 /* We mostly follow the procedure described in HAC 14.54, but with some
1840 * minor differences:
1841 * - Sequences of multiplications or divisions by 2 are grouped into a
1842 * single shift operation.
Gilles Peskineb09c7ee2021-06-21 18:58:39 +02001843 * - The procedure in HAC assumes that 0 < TB <= TA.
1844 * - The condition TB <= TA is not actually necessary for correctness.
1845 * TA and TB have symmetric roles except for the loop termination
1846 * condition, and the shifts at the beginning of the loop body
1847 * remove any significance from the ordering of TA vs TB before
1848 * the shifts.
1849 * - If TA = 0, the loop goes through 0 iterations and the result is
1850 * correctly TB.
1851 * - The case TB = 0 was short-circuited above.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001852 *
1853 * For the correctness proof below, decompose the original values of
1854 * A and B as
1855 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
1856 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
1857 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
1858 * and gcd(A',B') is odd or 0.
1859 *
1860 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
1861 * The code maintains the following invariant:
1862 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine4df3f1f2021-06-15 22:09:39 +02001863 */
1864
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001865 /* Proof that the loop terminates:
1866 * At each iteration, either the right-shift by 1 is made on a nonzero
1867 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
1868 * by at least 1, or the right-shift by 1 is made on zero and then
1869 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
1870 * since in that case TB is calculated from TB-TA with the condition TB>TA).
1871 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001872 while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001873 {
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001874 /* Divisions by 2 preserve the invariant (I). */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001875 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
1876 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001877
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001878 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
1879 * TA-TB is even so the division by 2 has an integer result.
1880 * Invariant (I) is preserved since any odd divisor of both TA and TB
1881 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001882 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001883 * divides TA.
1884 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001885 if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001886 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001887 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
1888 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001889 }
1890 else
1891 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001892 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
1893 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001894 }
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001895 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001896 }
1897
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001898 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
1899 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
1900 * - If there was at least one loop iteration, then one of TA or TB is odd,
1901 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
1902 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
1903 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskine4d3fd362021-06-21 11:40:38 +02001904 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001905 */
1906
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001907 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
1908 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001909
1910cleanup:
1911
Alexander Ke8ad49f2019-08-16 16:16:07 +03001912 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001913
1914 return( ret );
1915}
1916
Paul Bakker33dc46b2014-04-30 16:11:39 +02001917/*
1918 * Fill X with size bytes of random.
Gilles Peskine22cdd0c2022-10-27 20:15:13 +02001919 * The bytes returned from the RNG are used in a specific order which
1920 * is suitable for deterministic ECDSA (see the specification of
1921 * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
Paul Bakker33dc46b2014-04-30 16:11:39 +02001922 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001923int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
Paul Bakkera3d195c2011-11-27 21:07:34 +00001924 int (*f_rng)(void *, unsigned char *, size_t),
1925 void *p_rng )
Paul Bakker287781a2011-03-26 13:18:49 +00001926{
Janos Follath24eed8d2019-11-22 13:21:35 +00001927 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +01001928 const size_t limbs = CHARS_TO_LIMBS( size );
Hanno Beckerda1655a2017-10-18 14:21:44 +01001929
Hanno Becker8ce11a32018-12-19 16:18:52 +00001930 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00001931 MPI_VALIDATE_RET( f_rng != NULL );
Paul Bakker33dc46b2014-04-30 16:11:39 +02001932
Hanno Beckerda1655a2017-10-18 14:21:44 +01001933 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +02001934 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001935 if( size == 0 )
1936 return( 0 );
Paul Bakker287781a2011-03-26 13:18:49 +00001937
Gilles Peskine5980f2b2022-09-09 20:55:53 +02001938 ret = mbedtls_mpi_core_fill_random( X->p, X->n, size, f_rng, p_rng );
Paul Bakker287781a2011-03-26 13:18:49 +00001939
1940cleanup:
1941 return( ret );
1942}
1943
Gilles Peskine02ac93a2021-03-29 22:02:55 +02001944int mbedtls_mpi_random( mbedtls_mpi *X,
1945 mbedtls_mpi_sint min,
1946 const mbedtls_mpi *N,
1947 int (*f_rng)(void *, unsigned char *, size_t),
1948 void *p_rng )
1949{
Gilles Peskine02ac93a2021-03-29 22:02:55 +02001950 int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskinee5381682021-04-13 21:23:25 +02001951 int count;
Gilles Peskine5b0589e2021-04-13 21:09:10 +02001952 unsigned lt_lower = 1, lt_upper = 0;
Gilles Peskine02ac93a2021-03-29 22:02:55 +02001953 size_t n_bits = mbedtls_mpi_bitlen( N );
1954 size_t n_bytes = ( n_bits + 7 ) / 8;
Gilles Peskine5b0589e2021-04-13 21:09:10 +02001955 mbedtls_mpi lower_bound;
Gilles Peskine02ac93a2021-03-29 22:02:55 +02001956
Gilles Peskine1e918f42021-03-29 22:14:51 +02001957 if( min < 0 )
1958 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
1959 if( mbedtls_mpi_cmp_int( N, min ) <= 0 )
1960 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
1961
Gilles Peskinee5381682021-04-13 21:23:25 +02001962 /*
1963 * When min == 0, each try has at worst a probability 1/2 of failing
1964 * (the msb has a probability 1/2 of being 0, and then the result will
1965 * be < N), so after 30 tries failure probability is a most 2**(-30).
1966 *
1967 * When N is just below a power of 2, as is the case when generating
Gilles Peskinee842e582021-04-15 11:45:19 +02001968 * a random scalar on most elliptic curves, 1 try is enough with
Gilles Peskinee5381682021-04-13 21:23:25 +02001969 * overwhelming probability. When N is just above a power of 2,
Gilles Peskinee842e582021-04-15 11:45:19 +02001970 * as when generating a random scalar on secp224k1, each try has
Gilles Peskinee5381682021-04-13 21:23:25 +02001971 * a probability of failing that is almost 1/2.
1972 *
1973 * The probabilities are almost the same if min is nonzero but negligible
1974 * compared to N. This is always the case when N is crypto-sized, but
1975 * it's convenient to support small N for testing purposes. When N
1976 * is small, use a higher repeat count, otherwise the probability of
1977 * failure is macroscopic.
1978 */
Gilles Peskine87823d72021-06-02 21:18:59 +02001979 count = ( n_bytes > 4 ? 30 : 250 );
Gilles Peskinee5381682021-04-13 21:23:25 +02001980
Gilles Peskine5b0589e2021-04-13 21:09:10 +02001981 mbedtls_mpi_init( &lower_bound );
1982
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001983 /* Ensure that target MPI has exactly the same number of limbs
1984 * as the upper bound, even if the upper bound has leading zeros.
1985 * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
Gilles Peskineed32b572021-06-02 22:17:52 +02001986 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) );
Gilles Peskine5b0589e2021-04-13 21:09:10 +02001987 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) );
1988 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001989
Gilles Peskine02ac93a2021-03-29 22:02:55 +02001990 /*
1991 * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
1992 * when f_rng is a suitably parametrized instance of HMAC_DRBG:
1993 * - use the same byte ordering;
1994 * - keep the leftmost n_bits bits of the generated octet string;
1995 * - try until result is in the desired range.
1996 * This also avoids any bias, which is especially important for ECDSA.
1997 */
1998 do
1999 {
Gilles Peskine5980f2b2022-09-09 20:55:53 +02002000 MBEDTLS_MPI_CHK( mbedtls_mpi_core_fill_random( X->p, X->n,
2001 n_bytes,
2002 f_rng, p_rng ) );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002003 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
2004
Gilles Peskinee5381682021-04-13 21:23:25 +02002005 if( --count == 0 )
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002006 {
2007 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2008 goto cleanup;
2009 }
2010
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002011 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, &lt_lower ) );
2012 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, &lt_upper ) );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002013 }
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002014 while( lt_lower != 0 || lt_upper == 0 );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002015
2016cleanup:
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002017 mbedtls_mpi_free( &lower_bound );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002018 return( ret );
2019}
2020
Paul Bakker5121ce52009-01-03 21:22:43 +00002021/*
2022 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2023 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002024int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00002025{
Janos Follath24eed8d2019-11-22 13:21:35 +00002026 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002027 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Hanno Becker73d7d792018-12-11 10:35:51 +00002028 MPI_VALIDATE_RET( X != NULL );
2029 MPI_VALIDATE_RET( A != NULL );
2030 MPI_VALIDATE_RET( N != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00002031
Hanno Becker4bcb4912017-04-18 15:49:39 +01002032 if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002033 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002034
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002035 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
2036 mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
2037 mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002038
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002039 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002040
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002041 if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002042 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002043 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002044 goto cleanup;
2045 }
2046
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002047 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
2048 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
2049 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
2050 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002051
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002052 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
2053 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
2054 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
2055 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002056
2057 do
2058 {
2059 while( ( TU.p[0] & 1 ) == 0 )
2060 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002061 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002062
2063 if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
2064 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002065 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
2066 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002067 }
2068
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002069 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
2070 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002071 }
2072
2073 while( ( TV.p[0] & 1 ) == 0 )
2074 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002075 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002076
2077 if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
2078 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002079 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
2080 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002081 }
2082
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002083 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
2084 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002085 }
2086
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002087 if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002088 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002089 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
2090 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
2091 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002092 }
2093 else
2094 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002095 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
2096 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
2097 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002098 }
2099 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002100 while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002101
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002102 while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
2103 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002104
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002105 while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
2106 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002107
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002108 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002109
2110cleanup:
2111
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002112 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
2113 mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
2114 mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002115
2116 return( ret );
2117}
2118
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002119#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002120
Paul Bakker5121ce52009-01-03 21:22:43 +00002121static const int small_prime[] =
2122{
2123 3, 5, 7, 11, 13, 17, 19, 23,
2124 29, 31, 37, 41, 43, 47, 53, 59,
2125 61, 67, 71, 73, 79, 83, 89, 97,
2126 101, 103, 107, 109, 113, 127, 131, 137,
2127 139, 149, 151, 157, 163, 167, 173, 179,
2128 181, 191, 193, 197, 199, 211, 223, 227,
2129 229, 233, 239, 241, 251, 257, 263, 269,
2130 271, 277, 281, 283, 293, 307, 311, 313,
2131 317, 331, 337, 347, 349, 353, 359, 367,
2132 373, 379, 383, 389, 397, 401, 409, 419,
2133 421, 431, 433, 439, 443, 449, 457, 461,
2134 463, 467, 479, 487, 491, 499, 503, 509,
2135 521, 523, 541, 547, 557, 563, 569, 571,
2136 577, 587, 593, 599, 601, 607, 613, 617,
2137 619, 631, 641, 643, 647, 653, 659, 661,
2138 673, 677, 683, 691, 701, 709, 719, 727,
2139 733, 739, 743, 751, 757, 761, 769, 773,
2140 787, 797, 809, 811, 821, 823, 827, 829,
2141 839, 853, 857, 859, 863, 877, 881, 883,
2142 887, 907, 911, 919, 929, 937, 941, 947,
2143 953, 967, 971, 977, 983, 991, 997, -103
2144};
2145
2146/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002147 * Small divisors test (X must be positive)
2148 *
2149 * Return values:
2150 * 0: no small factor (possible prime, more tests needed)
2151 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002152 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002153 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002154 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002155static int mpi_check_small_factors( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +00002156{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002157 int ret = 0;
2158 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002159 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002160
Paul Bakker5121ce52009-01-03 21:22:43 +00002161 if( ( X->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002162 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002163
2164 for( i = 0; small_prime[i] > 0; i++ )
2165 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002166 if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002167 return( 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002168
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002169 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002170
2171 if( r == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002172 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002173 }
2174
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002175cleanup:
2176 return( ret );
2177}
2178
2179/*
2180 * Miller-Rabin pseudo-primality test (HAC 4.24)
2181 */
Janos Follathda31fa12018-09-03 14:45:23 +01002182static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002183 int (*f_rng)(void *, unsigned char *, size_t),
2184 void *p_rng )
2185{
Pascal Junodb99183d2015-03-11 16:49:45 +01002186 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002187 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002188 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002189
Hanno Becker8ce11a32018-12-19 16:18:52 +00002190 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002191 MPI_VALIDATE_RET( f_rng != NULL );
2192
2193 mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
2194 mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002195 mbedtls_mpi_init( &RR );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002196
Paul Bakker5121ce52009-01-03 21:22:43 +00002197 /*
2198 * W = |X| - 1
2199 * R = W >> lsb( W )
2200 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002201 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
2202 s = mbedtls_mpi_lsb( &W );
2203 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
2204 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002205
Janos Follathda31fa12018-09-03 14:45:23 +01002206 for( i = 0; i < rounds; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00002207 {
2208 /*
2209 * pick a random A, 1 < A < |X| - 1
2210 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002211 count = 0;
2212 do {
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002213 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
Pascal Junodb99183d2015-03-11 16:49:45 +01002214
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02002215 j = mbedtls_mpi_bitlen( &A );
2216 k = mbedtls_mpi_bitlen( &W );
Pascal Junodb99183d2015-03-11 16:49:45 +01002217 if (j > k) {
Darryl Greene3f95ed2018-10-02 13:21:35 +01002218 A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002219 }
2220
2221 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002222 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2223 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002224 }
2225
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002226 } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
2227 mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002228
2229 /*
2230 * A = A^R mod |X|
2231 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002232 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002233
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002234 if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
2235 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002236 continue;
2237
2238 j = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002239 while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002240 {
2241 /*
2242 * A = A * A mod |X|
2243 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002244 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
2245 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002246
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002247 if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002248 break;
2249
2250 j++;
2251 }
2252
2253 /*
2254 * not prime if A != |X| - 1 or A == 1
2255 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002256 if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
2257 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002258 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002259 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002260 break;
2261 }
2262 }
2263
2264cleanup:
Hanno Becker73d7d792018-12-11 10:35:51 +00002265 mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
2266 mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002267 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00002268
2269 return( ret );
2270}
2271
2272/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002273 * Pseudo-primality test: small factors, then Miller-Rabin
2274 */
Janos Follatha0b67c22018-09-18 14:48:23 +01002275int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
2276 int (*f_rng)(void *, unsigned char *, size_t),
2277 void *p_rng )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002278{
Janos Follath24eed8d2019-11-22 13:21:35 +00002279 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002280 mbedtls_mpi XX;
Hanno Becker8ce11a32018-12-19 16:18:52 +00002281 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002282 MPI_VALIDATE_RET( f_rng != NULL );
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002283
2284 XX.s = 1;
2285 XX.n = X->n;
2286 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002287
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002288 if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
2289 mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
2290 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002291
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002292 if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002293 return( 0 );
2294
2295 if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
2296 {
2297 if( ret == 1 )
2298 return( 0 );
2299
2300 return( ret );
2301 }
2302
Janos Follathda31fa12018-09-03 14:45:23 +01002303 return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
Janos Follathf301d232018-08-14 13:34:01 +01002304}
2305
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002306/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002307 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002308 *
Janos Follathf301d232018-08-14 13:34:01 +01002309 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2310 * be either 1024 bits or 1536 bits long, and flags must contain
2311 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002312 */
Janos Follath7c025a92018-08-14 11:08:41 +01002313int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002314 int (*f_rng)(void *, unsigned char *, size_t),
2315 void *p_rng )
Paul Bakker5121ce52009-01-03 21:22:43 +00002316{
Jethro Beekman66689272018-02-14 19:24:10 -08002317#ifdef MBEDTLS_HAVE_INT64
2318// ceil(2^63.5)
2319#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2320#else
2321// ceil(2^31.5)
2322#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2323#endif
2324 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002325 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002326 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002327 mbedtls_mpi_uint r;
2328 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002329
Hanno Becker8ce11a32018-12-19 16:18:52 +00002330 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002331 MPI_VALIDATE_RET( f_rng != NULL );
2332
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002333 if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
2334 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002335
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002336 mbedtls_mpi_init( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002337
2338 n = BITS_TO_LIMBS( nbits );
2339
Janos Follathda31fa12018-09-03 14:45:23 +01002340 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
2341 {
2342 /*
2343 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2344 */
2345 rounds = ( ( nbits >= 1300 ) ? 2 : ( nbits >= 850 ) ? 3 :
2346 ( nbits >= 650 ) ? 4 : ( nbits >= 350 ) ? 8 :
2347 ( nbits >= 250 ) ? 12 : ( nbits >= 150 ) ? 18 : 27 );
2348 }
2349 else
2350 {
2351 /*
2352 * 2^-100 error probability, number of rounds computed based on HAC,
2353 * fact 4.48
2354 */
2355 rounds = ( ( nbits >= 1450 ) ? 4 : ( nbits >= 1150 ) ? 5 :
2356 ( nbits >= 1000 ) ? 6 : ( nbits >= 850 ) ? 7 :
2357 ( nbits >= 750 ) ? 8 : ( nbits >= 500 ) ? 13 :
2358 ( nbits >= 250 ) ? 28 : ( nbits >= 150 ) ? 40 : 51 );
2359 }
2360
Jethro Beekman66689272018-02-14 19:24:10 -08002361 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002362 {
Jethro Beekman66689272018-02-14 19:24:10 -08002363 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
2364 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2365 if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
2366
2367 k = n * biL;
2368 if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
2369 X->p[0] |= 1;
2370
Janos Follath7c025a92018-08-14 11:08:41 +01002371 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002372 {
Janos Follatha0b67c22018-09-18 14:48:23 +01002373 ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
Jethro Beekman66689272018-02-14 19:24:10 -08002374
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002375 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
Paul Bakker5121ce52009-01-03 21:22:43 +00002376 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002377 }
Jethro Beekman66689272018-02-14 19:24:10 -08002378 else
Paul Bakker5121ce52009-01-03 21:22:43 +00002379 {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002380 /*
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01002381 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002382 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2383 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002384 */
Jethro Beekman66689272018-02-14 19:24:10 -08002385
2386 X->p[0] |= 2;
2387
2388 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
2389 if( r == 0 )
2390 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
2391 else if( r == 1 )
2392 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
2393
2394 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2395 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
2396 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
2397
2398 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002399 {
Jethro Beekman66689272018-02-14 19:24:10 -08002400 /*
2401 * First, check small factors for X and Y
2402 * before doing Miller-Rabin on any of them
2403 */
2404 if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
2405 ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002406 ( ret = mpi_miller_rabin( X, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002407 == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002408 ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002409 == 0 )
Jethro Beekman66689272018-02-14 19:24:10 -08002410 goto cleanup;
2411
2412 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2413 goto cleanup;
2414
2415 /*
2416 * Next candidates. We want to preserve Y = (X-1) / 2 and
2417 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2418 * so up Y by 6 and X by 12.
2419 */
2420 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
2421 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002422 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002423 }
2424 }
2425
2426cleanup:
2427
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002428 mbedtls_mpi_free( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002429
2430 return( ret );
2431}
2432
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002433#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002434
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002435#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002436
Paul Bakker23986e52011-04-24 08:57:21 +00002437#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002438
2439static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2440{
2441 { 693, 609, 21 },
2442 { 1764, 868, 28 },
2443 { 768454923, 542167814, 1 }
2444};
2445
Paul Bakker5121ce52009-01-03 21:22:43 +00002446/*
2447 * Checkup routine
2448 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002449int mbedtls_mpi_self_test( int verbose )
Paul Bakker5121ce52009-01-03 21:22:43 +00002450{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002451 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002452 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002453
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002454 mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
2455 mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002456
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002457 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002458 "EFE021C2645FD1DC586E69184AF4A31E" \
2459 "D5F53E93B5F123FA41680867BA110131" \
2460 "944FE7952E2517337780CB0DB80E61AA" \
2461 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
2462
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002463 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002464 "B2E7EFD37075B9F03FF989C7C5051C20" \
2465 "34D2A323810251127E7BF8625A4F49A5" \
2466 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2467 "5B5C25763222FEFCCFC38B832366C29E" ) );
2468
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002469 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002470 "0066A198186C18C10B2F5ED9B522752A" \
2471 "9830B69916E535C8F047518A889A43A5" \
2472 "94B6BED27A168D31D4A52F88925AA8F5" ) );
2473
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002474 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002475
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002476 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002477 "602AB7ECA597A3D6B56FF9829A5E8B85" \
2478 "9E857EA95A03512E2BAE7391688D264A" \
2479 "A5663B0341DB9CCFD2C4C5F421FEC814" \
2480 "8001B72E848A38CAE1C65F78E56ABDEF" \
2481 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2482 "ECF677152EF804370C1A305CAF3B5BF1" \
2483 "30879B56C61DE584A0F53A2447A51E" ) );
2484
2485 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002486 mbedtls_printf( " MPI test #1 (mul_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002487
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002488 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002489 {
2490 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002491 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002492
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002493 ret = 1;
2494 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002495 }
2496
2497 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002498 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002499
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002500 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002501
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002502 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002503 "256567336059E52CAE22925474705F39A94" ) );
2504
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002505 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002506 "6613F26162223DF488E9CD48CC132C7A" \
2507 "0AC93C701B001B092E4E5B9F73BCD27B" \
2508 "9EE50D0657C77F374E903CDFA4C642" ) );
2509
2510 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002511 mbedtls_printf( " MPI test #2 (div_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002512
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002513 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
2514 mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002515 {
2516 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002517 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002518
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002519 ret = 1;
2520 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002521 }
2522
2523 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002524 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002525
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002526 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002527
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002528 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002529 "36E139AEA55215609D2816998ED020BB" \
2530 "BD96C37890F65171D948E9BC7CBAA4D9" \
2531 "325D24D6A3C12710F10A09FA08AB87" ) );
2532
2533 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002534 mbedtls_printf( " MPI test #3 (exp_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002535
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002536 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002537 {
2538 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002539 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002540
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002541 ret = 1;
2542 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002543 }
2544
2545 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002546 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002547
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002548 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002549
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002550 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002551 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2552 "C3DBA76456363A10869622EAC2DD84EC" \
2553 "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
2554
2555 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002556 mbedtls_printf( " MPI test #4 (inv_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002557
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002558 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002559 {
2560 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002561 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002562
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002563 ret = 1;
2564 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002565 }
2566
2567 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002568 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002569
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002570 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002571 mbedtls_printf( " MPI test #5 (simple gcd): " );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002572
Paul Bakker66d5d072014-06-17 16:39:18 +02002573 for( i = 0; i < GCD_PAIR_COUNT; i++ )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002574 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002575 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
2576 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002577
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002578 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002579
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002580 if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002581 {
2582 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002583 mbedtls_printf( "failed at %d\n", i );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002584
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002585 ret = 1;
2586 goto cleanup;
2587 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002588 }
2589
2590 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002591 mbedtls_printf( "passed\n" );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002592
Paul Bakker5121ce52009-01-03 21:22:43 +00002593cleanup:
2594
2595 if( ret != 0 && verbose != 0 )
Kenneth Soerensen518d4352020-04-01 17:22:45 +02002596 mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00002597
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002598 mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
2599 mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002600
2601 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002602 mbedtls_printf( "\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002603
2604 return( ret );
2605}
2606
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002607#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00002608
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002609#endif /* MBEDTLS_BIGNUM_C */