blob: 685a664ee049c27ae1ac3b58e9bedc7a1877d836 [file] [log] [blame]
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +01001/*
2 * Elliptic curves over GF(p): curve-specific data and functions
3 *
4 * Copyright (C) 2006-2013, Brainspark B.V.
5 *
6 * This file is part of PolarSSL (http://www.polarssl.org)
7 * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
8 *
9 * All rights reserved.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 */
25
26#include "polarssl/config.h"
27
28#if defined(POLARSSL_ECP_C)
29
30#include "polarssl/ecp.h"
31
Paul Bakker498fd352013-12-02 22:17:24 +010032#if defined(_MSC_VER) && !defined(inline)
33#define inline _inline
34#else
35#if defined(__ARMCC_VERSION) && !defined(inline)
36#define inline __inline
37#endif /* __ARMCC_VERSION */
38#endif /*_MSC_VER */
39
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +010040#if defined(POLARSSL_HAVE_INT8)
41
42#define BYTES_TO_T_UINT( a, b, c, d, e, f, g, h ) \
43 a, b, c, d, e, f, g, h
44
45#elif defined(POLARSSL_HAVE_INT16)
46
47#define TWO_BYTES_TO_T_UINT( a, b ) \
48 ( (t_uint) a << 0 ) | \
49 ( (t_uint) b << 8 )
50#define BYTES_TO_T_UINT( a, b, c, d, e, f, g, h ) \
51 TWO_BYTES_TO_T_UINT( a, b ), \
52 TWO_BYTES_TO_T_UINT( c, d ), \
53 TWO_BYTES_TO_T_UINT( e, f ), \
54 TWO_BYTES_TO_T_UINT( g, h )
55
56#elif defined(POLARSSL_HAVE_INT32)
57
58#define FOUR_BYTES_TO_T_UINT( a, b, c, d ) \
59 ( (t_uint) a << 0 ) | \
60 ( (t_uint) b << 8 ) | \
61 ( (t_uint) c << 16 ) | \
62 ( (t_uint) d << 24 )
63#define BYTES_TO_T_UINT( a, b, c, d, e, f, g, h ) \
64 FOUR_BYTES_TO_T_UINT( a, b, c, d ) \
65 FOUR_BYTES_TO_T_UINT( e, f, g, h )
66
67#else /* 64-bits */
68
69#define BYTES_TO_T_UINT( a, b, c, d, e, f, g, h ) \
70 ( (t_uint) a << 0 ) | \
71 ( (t_uint) b << 8 ) | \
72 ( (t_uint) c << 16 ) | \
73 ( (t_uint) d << 24 ) | \
74 ( (t_uint) e << 32 ) | \
75 ( (t_uint) f << 40 ) | \
76 ( (t_uint) g << 48 ) | \
77 ( (t_uint) h << 56 )
78
79#endif /* bits in t_uint */
80
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +010081/*
82 * Domain parameters for secp192r1
83 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +010084static t_uint secp192r1_p[] = {
85 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
86 BYTES_TO_T_UINT( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
87 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
88};
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +010089static t_uint secp192r1_b[] = {
90 BYTES_TO_T_UINT( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
91 BYTES_TO_T_UINT( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
92 BYTES_TO_T_UINT( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
93};
94static t_uint secp192r1_gx[] = {
95 BYTES_TO_T_UINT( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
96 BYTES_TO_T_UINT( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
97 BYTES_TO_T_UINT( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
98};
99static t_uint secp192r1_gy[] = {
100 BYTES_TO_T_UINT( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
101 BYTES_TO_T_UINT( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
102 BYTES_TO_T_UINT( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
103};
104static t_uint secp192r1_n[] = {
105 BYTES_TO_T_UINT( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
106 BYTES_TO_T_UINT( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
107 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
108};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100109
110/*
111 * Domain parameters for secp224r1
112 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100113static t_uint secp224r1_p[] = {
114 BYTES_TO_T_UINT( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
115 BYTES_TO_T_UINT( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
116 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
117 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
118};
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100119static t_uint secp224r1_b[] = {
120 BYTES_TO_T_UINT( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
121 BYTES_TO_T_UINT( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
122 BYTES_TO_T_UINT( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
123 BYTES_TO_T_UINT( 0x85, 0x0A, 0x05, 0xB4, 0x00, 0x00, 0x00, 0x00 ),
124};
125static t_uint secp224r1_gx[] = {
126 BYTES_TO_T_UINT( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
127 BYTES_TO_T_UINT( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
128 BYTES_TO_T_UINT( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
129 BYTES_TO_T_UINT( 0xBD, 0x0C, 0x0E, 0xB7, 0x00, 0x00, 0x00, 0x00 ),
130};
131static t_uint secp224r1_gy[] = {
132 BYTES_TO_T_UINT( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
133 BYTES_TO_T_UINT( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
134 BYTES_TO_T_UINT( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
135 BYTES_TO_T_UINT( 0x88, 0x63, 0x37, 0xBD, 0x00, 0x00, 0x00, 0x00 ),
136};
137static t_uint secp224r1_n[] = {
138 BYTES_TO_T_UINT( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
139 BYTES_TO_T_UINT( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
140 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
141 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
142};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100143
144/*
145 * Domain parameters for secp256r1
146 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100147static t_uint secp256r1_p[] = {
148 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
149 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
150 BYTES_TO_T_UINT( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
151 BYTES_TO_T_UINT( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
152};
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100153static t_uint secp256r1_b[] = {
154 BYTES_TO_T_UINT( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
155 BYTES_TO_T_UINT( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
156 BYTES_TO_T_UINT( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
157 BYTES_TO_T_UINT( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
158};
159static t_uint secp256r1_gx[] = {
160 BYTES_TO_T_UINT( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
161 BYTES_TO_T_UINT( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
162 BYTES_TO_T_UINT( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
163 BYTES_TO_T_UINT( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
164};
165static t_uint secp256r1_gy[] = {
166 BYTES_TO_T_UINT( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
167 BYTES_TO_T_UINT( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
168 BYTES_TO_T_UINT( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
169 BYTES_TO_T_UINT( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
170};
171static t_uint secp256r1_n[] = {
172 BYTES_TO_T_UINT( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
173 BYTES_TO_T_UINT( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
174 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
175 BYTES_TO_T_UINT( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
176};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100177
178/*
179 * Domain parameters for secp384r1
180 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100181static t_uint secp384r1_p[] = {
182 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
183 BYTES_TO_T_UINT( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
184 BYTES_TO_T_UINT( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
185 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
186 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
187 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
188};
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100189static t_uint secp384r1_b[] = {
190 BYTES_TO_T_UINT( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
191 BYTES_TO_T_UINT( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
192 BYTES_TO_T_UINT( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
193 BYTES_TO_T_UINT( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
194 BYTES_TO_T_UINT( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
195 BYTES_TO_T_UINT( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
196};
197static t_uint secp384r1_gx[] = {
198 BYTES_TO_T_UINT( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
199 BYTES_TO_T_UINT( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
200 BYTES_TO_T_UINT( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
201 BYTES_TO_T_UINT( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
202 BYTES_TO_T_UINT( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
203 BYTES_TO_T_UINT( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
204};
205static t_uint secp384r1_gy[] = {
206 BYTES_TO_T_UINT( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
207 BYTES_TO_T_UINT( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
208 BYTES_TO_T_UINT( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
209 BYTES_TO_T_UINT( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
210 BYTES_TO_T_UINT( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
211 BYTES_TO_T_UINT( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
212};
213static t_uint secp384r1_n[] = {
214 BYTES_TO_T_UINT( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
215 BYTES_TO_T_UINT( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
216 BYTES_TO_T_UINT( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
217 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
218 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
219 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
220};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100221
222/*
223 * Domain parameters for secp521r1
224 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100225static t_uint secp521r1_p[] = {
226 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
227 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
228 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
229 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
230 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
231 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
232 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
233 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
234 BYTES_TO_T_UINT( 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
235};
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100236static t_uint secp521r1_b[] = {
237 BYTES_TO_T_UINT( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
238 BYTES_TO_T_UINT( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
239 BYTES_TO_T_UINT( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
240 BYTES_TO_T_UINT( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
241 BYTES_TO_T_UINT( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
242 BYTES_TO_T_UINT( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
243 BYTES_TO_T_UINT( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
244 BYTES_TO_T_UINT( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
245 BYTES_TO_T_UINT( 0x51, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
246};
247static t_uint secp521r1_gx[] = {
248 BYTES_TO_T_UINT( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
249 BYTES_TO_T_UINT( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
250 BYTES_TO_T_UINT( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
251 BYTES_TO_T_UINT( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
252 BYTES_TO_T_UINT( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
253 BYTES_TO_T_UINT( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
254 BYTES_TO_T_UINT( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
255 BYTES_TO_T_UINT( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
256 BYTES_TO_T_UINT( 0xC6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
257};
258static t_uint secp521r1_gy[] = {
259 BYTES_TO_T_UINT( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
260 BYTES_TO_T_UINT( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
261 BYTES_TO_T_UINT( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
262 BYTES_TO_T_UINT( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
263 BYTES_TO_T_UINT( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
264 BYTES_TO_T_UINT( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
265 BYTES_TO_T_UINT( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
266 BYTES_TO_T_UINT( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
267 BYTES_TO_T_UINT( 0x18, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
268};
269static t_uint secp521r1_n[] = {
270 BYTES_TO_T_UINT( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
271 BYTES_TO_T_UINT( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
272 BYTES_TO_T_UINT( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
273 BYTES_TO_T_UINT( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
274 BYTES_TO_T_UINT( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
275 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
276 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
277 BYTES_TO_T_UINT( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
278 BYTES_TO_T_UINT( 0xFF, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
279};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100280
281/*
282 * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
283 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100284static t_uint brainpoolP256r1_p[] = {
285 BYTES_TO_T_UINT( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
286 BYTES_TO_T_UINT( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
287 BYTES_TO_T_UINT( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
288 BYTES_TO_T_UINT( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
289};
290static t_uint brainpoolP256r1_a[] = {
291 BYTES_TO_T_UINT( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
292 BYTES_TO_T_UINT( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
293 BYTES_TO_T_UINT( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
294 BYTES_TO_T_UINT( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
295};
296static t_uint brainpoolP256r1_b[] = {
297 BYTES_TO_T_UINT( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
298 BYTES_TO_T_UINT( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
299 BYTES_TO_T_UINT( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
300 BYTES_TO_T_UINT( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
301};
302static t_uint brainpoolP256r1_gx[] = {
303 BYTES_TO_T_UINT( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
304 BYTES_TO_T_UINT( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
305 BYTES_TO_T_UINT( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
306 BYTES_TO_T_UINT( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
307};
308static t_uint brainpoolP256r1_gy[] = {
309 BYTES_TO_T_UINT( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
310 BYTES_TO_T_UINT( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
311 BYTES_TO_T_UINT( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
312 BYTES_TO_T_UINT( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
313};
314static t_uint brainpoolP256r1_n[] = {
315 BYTES_TO_T_UINT( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
316 BYTES_TO_T_UINT( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
317 BYTES_TO_T_UINT( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
318 BYTES_TO_T_UINT( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
319};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100320
321/*
322 * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
323 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100324static t_uint brainpoolP384r1_p[] = {
325 BYTES_TO_T_UINT( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
326 BYTES_TO_T_UINT( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
327 BYTES_TO_T_UINT( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
328 BYTES_TO_T_UINT( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
329 BYTES_TO_T_UINT( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
330 BYTES_TO_T_UINT( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
331};
332static t_uint brainpoolP384r1_a[] = {
333 BYTES_TO_T_UINT( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
334 BYTES_TO_T_UINT( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
335 BYTES_TO_T_UINT( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
336 BYTES_TO_T_UINT( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
337 BYTES_TO_T_UINT( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
338 BYTES_TO_T_UINT( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
339};
340static t_uint brainpoolP384r1_b[] = {
341 BYTES_TO_T_UINT( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
342 BYTES_TO_T_UINT( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
343 BYTES_TO_T_UINT( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
344 BYTES_TO_T_UINT( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
345 BYTES_TO_T_UINT( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
346 BYTES_TO_T_UINT( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
347};
348static t_uint brainpoolP384r1_gx[] = {
349 BYTES_TO_T_UINT( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
350 BYTES_TO_T_UINT( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
351 BYTES_TO_T_UINT( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
352 BYTES_TO_T_UINT( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
353 BYTES_TO_T_UINT( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
354 BYTES_TO_T_UINT( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
355};
356static t_uint brainpoolP384r1_gy[] = {
357 BYTES_TO_T_UINT( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
358 BYTES_TO_T_UINT( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
359 BYTES_TO_T_UINT( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
360 BYTES_TO_T_UINT( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
361 BYTES_TO_T_UINT( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
362 BYTES_TO_T_UINT( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
363};
364static t_uint brainpoolP384r1_n[] = {
365 BYTES_TO_T_UINT( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
366 BYTES_TO_T_UINT( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
367 BYTES_TO_T_UINT( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
368 BYTES_TO_T_UINT( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
369 BYTES_TO_T_UINT( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
370 BYTES_TO_T_UINT( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
371};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100372
373/*
374 * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
375 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100376static t_uint brainpoolP512r1_p[] = {
377 BYTES_TO_T_UINT( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
378 BYTES_TO_T_UINT( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
379 BYTES_TO_T_UINT( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
380 BYTES_TO_T_UINT( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
381 BYTES_TO_T_UINT( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
382 BYTES_TO_T_UINT( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
383 BYTES_TO_T_UINT( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
384 BYTES_TO_T_UINT( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
385};
386static t_uint brainpoolP512r1_a[] = {
387 BYTES_TO_T_UINT( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
388 BYTES_TO_T_UINT( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
389 BYTES_TO_T_UINT( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
390 BYTES_TO_T_UINT( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
391 BYTES_TO_T_UINT( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
392 BYTES_TO_T_UINT( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
393 BYTES_TO_T_UINT( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
394 BYTES_TO_T_UINT( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
395};
396static t_uint brainpoolP512r1_b[] = {
397 BYTES_TO_T_UINT( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
398 BYTES_TO_T_UINT( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
399 BYTES_TO_T_UINT( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
400 BYTES_TO_T_UINT( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
401 BYTES_TO_T_UINT( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
402 BYTES_TO_T_UINT( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
403 BYTES_TO_T_UINT( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
404 BYTES_TO_T_UINT( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
405};
406static t_uint brainpoolP512r1_gx[] = {
407 BYTES_TO_T_UINT( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
408 BYTES_TO_T_UINT( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
409 BYTES_TO_T_UINT( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
410 BYTES_TO_T_UINT( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
411 BYTES_TO_T_UINT( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
412 BYTES_TO_T_UINT( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
413 BYTES_TO_T_UINT( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
414 BYTES_TO_T_UINT( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
415};
416static t_uint brainpoolP512r1_gy[] = {
417 BYTES_TO_T_UINT( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
418 BYTES_TO_T_UINT( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
419 BYTES_TO_T_UINT( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
420 BYTES_TO_T_UINT( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
421 BYTES_TO_T_UINT( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
422 BYTES_TO_T_UINT( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
423 BYTES_TO_T_UINT( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
424 BYTES_TO_T_UINT( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
425};
426static t_uint brainpoolP512r1_n[] = {
427 BYTES_TO_T_UINT( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
428 BYTES_TO_T_UINT( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
429 BYTES_TO_T_UINT( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
430 BYTES_TO_T_UINT( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
431 BYTES_TO_T_UINT( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
432 BYTES_TO_T_UINT( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
433 BYTES_TO_T_UINT( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
434 BYTES_TO_T_UINT( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
435};
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100436
437/*
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100438 * Create an MPI from embedded constants
439 * (assumes len is an exact multiple of sizeof t_uint)
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100440 */
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100441static inline void ecp_mpi_load( mpi *X, const t_uint *p, size_t len )
442{
443 X->s = 1;
444 X->n = len / sizeof( t_uint );
445 X->p = (t_uint *) p;
446}
447
448/*
Manuel Pégourié-Gonnard73cc01d2013-12-06 12:41:30 +0100449 * Set an MPI to static value 1
450 */
451static inline void ecp_mpi_set1( mpi *X )
452{
453 static t_uint one[] = { 1 };
454 X->s = 1;
455 X->n = 1;
456 X->p = one;
457}
458
459/*
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100460 * Make group available from embedded constants
461 */
462static int ecp_group_load( ecp_group *grp,
463 const t_uint *p, size_t plen,
464 const t_uint *a, size_t alen,
465 const t_uint *b, size_t blen,
466 const t_uint *gx, size_t gxlen,
467 const t_uint *gy, size_t gylen,
468 const t_uint *n, size_t nlen)
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100469{
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100470 ecp_mpi_load( &grp->P, p, plen );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100471 if( a != NULL )
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100472 ecp_mpi_load( &grp->A, a, alen );
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100473 ecp_mpi_load( &grp->B, b, blen );
474 ecp_mpi_load( &grp->N, n, nlen );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100475
Manuel Pégourié-Gonnard731d08b2013-12-06 12:16:10 +0100476 ecp_mpi_load( &grp->G.X, gx, gxlen );
477 ecp_mpi_load( &grp->G.Y, gy, gylen );
Manuel Pégourié-Gonnard73cc01d2013-12-06 12:41:30 +0100478 ecp_mpi_set1( &grp->G.Z );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100479
480 grp->pbits = mpi_msb( &grp->P );
481 grp->nbits = mpi_msb( &grp->N );
482
Manuel Pégourié-Gonnard1f82b042013-12-06 12:51:50 +0100483 grp->h = 1;
484
Manuel Pégourié-Gonnard73cc01d2013-12-06 12:41:30 +0100485 return( 0 );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100486}
487
488#if defined(POLARSSL_ECP_NIST_OPTIM)
489/* Forward declarations */
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100490#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100491static int ecp_mod_p192( mpi * );
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100492#endif
493#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100494static int ecp_mod_p224( mpi * );
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100495#endif
496#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100497static int ecp_mod_p256( mpi * );
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100498#endif
499#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100500static int ecp_mod_p384( mpi * );
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100501#endif
502#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100503static int ecp_mod_p521( mpi * );
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100504#endif
505#if defined(POLARSSL_ECP_DP_M255_ENABLED)
506static int ecp_mod_p255( mpi * );
507#endif
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100508
509#define NIST_MODP( P ) grp->modp = ecp_mod_ ## P;
510#else
511#define NIST_MODP( P )
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100512#endif /* POLARSSL_ECP_NIST_OPTIM */
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100513
Manuel Pégourié-Gonnard81e1b102013-12-06 13:28:05 +0100514#define LOAD_GROUP_A( G ) ecp_group_load( grp, \
515 G ## _p, sizeof( G ## _p ), \
516 G ## _a, sizeof( G ## _a ), \
517 G ## _b, sizeof( G ## _b ), \
518 G ## _gx, sizeof( G ## _gx ), \
519 G ## _gy, sizeof( G ## _gy ), \
520 G ## _n, sizeof( G ## _n ) )
521
522#define LOAD_GROUP( G ) ecp_group_load( grp, \
523 G ## _p, sizeof( G ## _p ), \
524 NULL, 0, \
525 G ## _b, sizeof( G ## _b ), \
526 G ## _gx, sizeof( G ## _gx ), \
527 G ## _gy, sizeof( G ## _gy ), \
528 G ## _n, sizeof( G ## _n ) )
529
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100530/*
Manuel Pégourié-Gonnard66153662013-12-03 14:12:26 +0100531 * Specialized function for creating the Curve25519 group
532 */
533static int ecp_use_curve25519( ecp_group *grp )
534{
535 int ret;
536
537 /* Actually ( A + 2 ) / 4 */
538 MPI_CHK( mpi_read_string( &grp->A, 16, "01DB42" ) );
539
540 /* P = 2^255 - 19 */
541 MPI_CHK( mpi_lset( &grp->P, 1 ) );
542 MPI_CHK( mpi_shift_l( &grp->P, 255 ) );
543 MPI_CHK( mpi_sub_int( &grp->P, &grp->P, 19 ) );
544 grp->pbits = mpi_msb( &grp->P );
545
Manuel Pégourié-Gonnard312d2e82013-12-04 11:08:01 +0100546 /* Y intentionaly not set, since we use x/z coordinates.
547 * This is used as a marker to identify Montgomery curves! */
548 MPI_CHK( mpi_lset( &grp->G.X, 9 ) );
549 MPI_CHK( mpi_lset( &grp->G.Z, 1 ) );
550 mpi_free( &grp->G.Y );
551
Manuel Pégourié-Gonnard66153662013-12-03 14:12:26 +0100552 /* Actually, the required msb for private keys */
553 grp->nbits = 254;
554
555cleanup:
556 if( ret != 0 )
557 ecp_group_free( grp );
558
559 return( ret );
560}
561
562/*
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100563 * Set a group using well-known domain parameters
564 */
565int ecp_use_known_dp( ecp_group *grp, ecp_group_id id )
566{
Manuel Pégourié-Gonnard66153662013-12-03 14:12:26 +0100567 ecp_group_free( grp );
568
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100569 grp->id = id;
570
571 switch( id )
572 {
573#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
574 case POLARSSL_ECP_DP_SECP192R1:
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100575 NIST_MODP( p192 );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100576 return( LOAD_GROUP( secp192r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100577#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
578
579#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
580 case POLARSSL_ECP_DP_SECP224R1:
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100581 NIST_MODP( p224 );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100582 return( LOAD_GROUP( secp224r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100583#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
584
585#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
586 case POLARSSL_ECP_DP_SECP256R1:
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100587 NIST_MODP( p256 );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100588 return( LOAD_GROUP( secp256r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100589#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
590
591#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
592 case POLARSSL_ECP_DP_SECP384R1:
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100593 NIST_MODP( p384 );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100594 return( LOAD_GROUP( secp384r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100595#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
596
597#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
598 case POLARSSL_ECP_DP_SECP521R1:
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100599 NIST_MODP( p521 );
Manuel Pégourié-Gonnard9854fe92013-12-02 16:30:43 +0100600 return( LOAD_GROUP( secp521r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100601#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
602
603#if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
604 case POLARSSL_ECP_DP_BP256R1:
Manuel Pégourié-Gonnard81e1b102013-12-06 13:28:05 +0100605 return( LOAD_GROUP_A( brainpoolP256r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100606#endif /* POLARSSL_ECP_DP_BP256R1_ENABLED */
607
608#if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
609 case POLARSSL_ECP_DP_BP384R1:
Manuel Pégourié-Gonnard81e1b102013-12-06 13:28:05 +0100610 return( LOAD_GROUP_A( brainpoolP384r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100611#endif /* POLARSSL_ECP_DP_BP384R1_ENABLED */
612
613#if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
614 case POLARSSL_ECP_DP_BP512R1:
Manuel Pégourié-Gonnard81e1b102013-12-06 13:28:05 +0100615 return( LOAD_GROUP_A( brainpoolP512r1 ) );
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100616#endif /* POLARSSL_ECP_DP_BP512R1_ENABLED */
617
Manuel Pégourié-Gonnard66153662013-12-03 14:12:26 +0100618#if defined(POLARSSL_ECP_DP_M255_ENABLED)
619 case POLARSSL_ECP_DP_M255:
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +0100620 grp->modp = ecp_mod_p255;
Manuel Pégourié-Gonnard66153662013-12-03 14:12:26 +0100621 return( ecp_use_curve25519( grp ) );
622#endif /* POLARSSL_ECP_DP_M255_ENABLED */
623
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100624 default:
625 ecp_group_free( grp );
626 return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
627 }
628}
629
630#if defined(POLARSSL_ECP_NIST_OPTIM)
631/*
632 * Fast reduction modulo the primes used by the NIST curves.
633 *
634 * These functions are critical for speed, but not needed for correct
635 * operations. So, we make the choice to heavily rely on the internals of our
636 * bignum library, which creates a tight coupling between these functions and
637 * our MPI implementation. However, the coupling between the ECP module and
638 * MPI remains loose, since these functions can be deactivated at will.
639 */
640
641#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
642/*
643 * Compared to the way things are presented in FIPS 186-3 D.2,
644 * we proceed in columns, from right (least significant chunk) to left,
645 * adding chunks to N in place, and keeping a carry for the next chunk.
646 * This avoids moving things around in memory, and uselessly adding zeros,
647 * compared to the more straightforward, line-oriented approach.
648 *
649 * For this prime we need to handle data in chunks of 64 bits.
650 * Since this is always a multiple of our basic t_uint, we can
651 * use a t_uint * to designate such a chunk, and small loops to handle it.
652 */
653
654/* Add 64-bit chunks (dst += src) and update carry */
655static inline void add64( t_uint *dst, t_uint *src, t_uint *carry )
656{
657 unsigned char i;
658 t_uint c = 0;
659 for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++, src++ )
660 {
661 *dst += c; c = ( *dst < c );
662 *dst += *src; c += ( *dst < *src );
663 }
664 *carry += c;
665}
666
667/* Add carry to a 64-bit chunk and update carry */
668static inline void carry64( t_uint *dst, t_uint *carry )
669{
670 unsigned char i;
671 for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++ )
672 {
673 *dst += *carry;
674 *carry = ( *dst < *carry );
675 }
676}
677
678#define WIDTH 8 / sizeof( t_uint )
679#define A( i ) N->p + i * WIDTH
680#define ADD( i ) add64( p, A( i ), &c )
681#define NEXT p += WIDTH; carry64( p, &c )
682#define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0
683
684/*
685 * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
686 */
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100687static int ecp_mod_p192( mpi *N )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100688{
689 int ret;
690 t_uint c = 0;
691 t_uint *p, *end;
692
693 /* Make sure we have enough blocks so that A(5) is legal */
694 MPI_CHK( mpi_grow( N, 6 * WIDTH ) );
695
696 p = N->p;
697 end = p + N->n;
698
699 ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5
700 ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5
701 ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5
702
703cleanup:
704 return( ret );
705}
706
707#undef WIDTH
708#undef A
709#undef ADD
710#undef NEXT
711#undef LAST
712#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
713
714#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) || \
715 defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) || \
716 defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
717/*
718 * The reader is advised to first understand ecp_mod_p192() since the same
719 * general structure is used here, but with additional complications:
720 * (1) chunks of 32 bits, and (2) subtractions.
721 */
722
723/*
724 * For these primes, we need to handle data in chunks of 32 bits.
725 * This makes it more complicated if we use 64 bits limbs in MPI,
726 * which prevents us from using a uniform access method as for p192.
727 *
728 * So, we define a mini abstraction layer to access 32 bit chunks,
729 * load them in 'cur' for work, and store them back from 'cur' when done.
730 *
731 * While at it, also define the size of N in terms of 32-bit chunks.
732 */
733#define LOAD32 cur = A( i );
734
735#if defined(POLARSSL_HAVE_INT8) /* 8 bit */
736
737#define MAX32 N->n / 4
738#define A( j ) (uint32_t)( N->p[4*j+0] ) | \
739 ( N->p[4*j+1] << 8 ) | \
740 ( N->p[4*j+2] << 16 ) | \
741 ( N->p[4*j+3] << 24 )
742#define STORE32 N->p[4*i+0] = (t_uint)( cur ); \
743 N->p[4*i+1] = (t_uint)( cur >> 8 ); \
744 N->p[4*i+2] = (t_uint)( cur >> 16 ); \
745 N->p[4*i+3] = (t_uint)( cur >> 24 );
746
747#elif defined(POLARSSL_HAVE_INT16) /* 16 bit */
748
749#define MAX32 N->n / 2
750#define A( j ) (uint32_t)( N->p[2*j] ) | ( N->p[2*j+1] << 16 )
751#define STORE32 N->p[2*i+0] = (t_uint)( cur ); \
752 N->p[2*i+1] = (t_uint)( cur >> 16 );
753
754#elif defined(POLARSSL_HAVE_INT32) /* 32 bit */
755
756#define MAX32 N->n
757#define A( j ) N->p[j]
758#define STORE32 N->p[i] = cur;
759
760#else /* 64-bit */
761
762#define MAX32 N->n * 2
763#define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
764#define STORE32 \
765 if( i % 2 ) { \
766 N->p[i/2] &= 0x00000000FFFFFFFF; \
767 N->p[i/2] |= ((t_uint) cur) << 32; \
768 } else { \
769 N->p[i/2] &= 0xFFFFFFFF00000000; \
770 N->p[i/2] |= (t_uint) cur; \
771 }
772
773#endif /* sizeof( t_uint ) */
774
775/*
776 * Helpers for addition and subtraction of chunks, with signed carry.
777 */
778static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
779{
780 *dst += src;
781 *carry += ( *dst < src );
782}
783
784static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
785{
786 *carry -= ( *dst < src );
787 *dst -= src;
788}
789
790#define ADD( j ) add32( &cur, A( j ), &c );
791#define SUB( j ) sub32( &cur, A( j ), &c );
792
793/*
794 * Helpers for the main 'loop'
795 * (see fix_negative for the motivation of C)
796 */
797#define INIT( b ) \
798 int ret; \
799 signed char c = 0, cc; \
800 uint32_t cur; \
801 size_t i = 0, bits = b; \
802 mpi C; \
803 t_uint Cp[ b / 8 / sizeof( t_uint) + 1 ]; \
804 \
805 C.s = 1; \
806 C.n = b / 8 / sizeof( t_uint) + 1; \
807 C.p = Cp; \
808 memset( Cp, 0, C.n * sizeof( t_uint ) ); \
809 \
810 MPI_CHK( mpi_grow( N, b * 2 / 8 / sizeof( t_uint ) ) ); \
811 LOAD32;
812
813#define NEXT \
814 STORE32; i++; LOAD32; \
815 cc = c; c = 0; \
816 if( cc < 0 ) \
817 sub32( &cur, -cc, &c ); \
818 else \
819 add32( &cur, cc, &c ); \
820
821#define LAST \
822 STORE32; i++; \
823 cur = c > 0 ? c : 0; STORE32; \
824 cur = 0; while( ++i < MAX32 ) { STORE32; } \
825 if( c < 0 ) fix_negative( N, c, &C, bits );
826
827/*
828 * If the result is negative, we get it in the form
829 * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
830 */
831static inline int fix_negative( mpi *N, signed char c, mpi *C, size_t bits )
832{
833 int ret;
834
835 /* C = - c * 2^(bits + 32) */
836#if !defined(POLARSSL_HAVE_INT64)
837 ((void) bits);
838#else
839 if( bits == 224 )
840 C->p[ C->n - 1 ] = ((t_uint) -c) << 32;
841 else
842#endif
843 C->p[ C->n - 1 ] = (t_uint) -c;
844
845 /* N = - ( C - N ) */
846 MPI_CHK( mpi_sub_abs( N, C, N ) );
847 N->s = -1;
848
849cleanup:
850
851 return( ret );
852}
853
854#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
855/*
856 * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
857 */
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100858static int ecp_mod_p224( mpi *N )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100859{
860 INIT( 224 );
861
862 SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11
863 SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12
864 SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13
865 SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11
866 SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12
867 SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13
868 SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10
869
870cleanup:
871 return( ret );
872}
873#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
874
875#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
876/*
877 * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
878 */
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100879static int ecp_mod_p256( mpi *N )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100880{
881 INIT( 256 );
882
883 ADD( 8 ); ADD( 9 );
884 SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0
885
886 ADD( 9 ); ADD( 10 );
887 SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1
888
889 ADD( 10 ); ADD( 11 );
890 SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2
891
892 ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
893 SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3
894
895 ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
896 SUB( 9 ); SUB( 10 ); NEXT; // A4
897
898 ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
899 SUB( 10 ); SUB( 11 ); NEXT; // A5
900
901 ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
902 SUB( 8 ); SUB( 9 ); NEXT; // A6
903
904 ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
905 SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7
906
907cleanup:
908 return( ret );
909}
910#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
911
912#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
913/*
914 * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
915 */
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100916static int ecp_mod_p384( mpi *N )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100917{
918 INIT( 384 );
919
920 ADD( 12 ); ADD( 21 ); ADD( 20 );
921 SUB( 23 ); NEXT; // A0
922
923 ADD( 13 ); ADD( 22 ); ADD( 23 );
924 SUB( 12 ); SUB( 20 ); NEXT; // A2
925
926 ADD( 14 ); ADD( 23 );
927 SUB( 13 ); SUB( 21 ); NEXT; // A2
928
929 ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
930 SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3
931
932 ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
933 SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4
934
935 ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
936 SUB( 16 ); NEXT; // A5
937
938 ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
939 SUB( 17 ); NEXT; // A6
940
941 ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
942 SUB( 18 ); NEXT; // A7
943
944 ADD( 20 ); ADD( 17 ); ADD( 16 );
945 SUB( 19 ); NEXT; // A8
946
947 ADD( 21 ); ADD( 18 ); ADD( 17 );
948 SUB( 20 ); NEXT; // A9
949
950 ADD( 22 ); ADD( 19 ); ADD( 18 );
951 SUB( 21 ); NEXT; // A10
952
953 ADD( 23 ); ADD( 20 ); ADD( 19 );
954 SUB( 22 ); LAST; // A11
955
956cleanup:
957 return( ret );
958}
959#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
960
961#undef A
962#undef LOAD32
963#undef STORE32
964#undef MAX32
965#undef INIT
966#undef NEXT
967#undef LAST
968
969#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED ||
970 POLARSSL_ECP_DP_SECP256R1_ENABLED ||
971 POLARSSL_ECP_DP_SECP384R1_ENABLED */
972
973#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
974/*
975 * Here we have an actual Mersenne prime, so things are more straightforward.
976 * However, chunks are aligned on a 'weird' boundary (521 bits).
977 */
978
979/* Size of p521 in terms of t_uint */
980#define P521_WIDTH ( 521 / 8 / sizeof( t_uint ) + 1 )
981
982/* Bits to keep in the most significant t_uint */
983#if defined(POLARSSL_HAVE_INT8)
984#define P521_MASK 0x01
985#else
986#define P521_MASK 0x01FF
987#endif
988
989/*
990 * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
991 * Write N as A1 + 2^521 A0, return A0 + A1
992 */
Manuel Pégourié-Gonnard3ee90002013-12-02 17:14:48 +0100993static int ecp_mod_p521( mpi *N )
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +0100994{
995 int ret;
996 size_t i;
997 mpi M;
998 t_uint Mp[P521_WIDTH + 1];
999 /* Worst case for the size of M is when t_uint is 16 bits:
1000 * we need to hold bits 513 to 1056, which is 34 limbs, that is
1001 * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
1002
1003 if( N->n < P521_WIDTH )
1004 return( 0 );
1005
1006 /* M = A1 */
1007 M.s = 1;
1008 M.n = N->n - ( P521_WIDTH - 1 );
1009 if( M.n > P521_WIDTH + 1 )
1010 M.n = P521_WIDTH + 1;
1011 M.p = Mp;
1012 memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( t_uint ) );
1013 MPI_CHK( mpi_shift_r( &M, 521 % ( 8 * sizeof( t_uint ) ) ) );
1014
1015 /* N = A0 */
1016 N->p[P521_WIDTH - 1] &= P521_MASK;
1017 for( i = P521_WIDTH; i < N->n; i++ )
1018 N->p[i] = 0;
1019
1020 /* N = A0 + A1 */
1021 MPI_CHK( mpi_add_abs( N, N, &M ) );
1022
1023cleanup:
1024 return( ret );
1025}
1026
1027#undef P521_WIDTH
1028#undef P521_MASK
1029#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
1030
1031#endif /* POLARSSL_ECP_NIST_OPTIM */
1032
Manuel Pégourié-Gonnard3d7053a2013-12-04 20:51:13 +01001033#if defined(POLARSSL_ECP_DP_M255_ENABLED)
1034
1035/* Size of p255 in terms of t_uint */
1036#define P255_WIDTH ( 255 / 8 / sizeof( t_uint ) + 1 )
1037
1038/*
1039 * Fast quasi-reduction modulo p255 = 2^255 - 19
1040 * Write N as A1 + 2^255 A1, return A0 + 19 * A1
1041 */
1042static int ecp_mod_p255( mpi *N )
1043{
1044 int ret;
1045 size_t i;
1046 mpi M;
1047 t_uint Mp[P255_WIDTH + 2];
1048
1049 if( N->n < P255_WIDTH )
1050 return( 0 );
1051
1052 /* M = A1 */
1053 M.s = 1;
1054 M.n = N->n - ( P255_WIDTH - 1 );
1055 if( M.n > P255_WIDTH + 1 )
1056 M.n = P255_WIDTH + 1;
1057 M.p = Mp;
1058 memset( Mp, 0, sizeof Mp );
1059 memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( t_uint ) );
1060 MPI_CHK( mpi_shift_r( &M, 255 % ( 8 * sizeof( t_uint ) ) ) );
1061 M.n++; /* Make room for multiplication by 19 */
1062
1063 /* N = A0 */
1064 mpi_set_bit( N, 255, 0 );
1065 for( i = P255_WIDTH; i < N->n; i++ )
1066 N->p[i] = 0;
1067
1068 /* N = A0 + 19 * A1 */
1069 MPI_CHK( mpi_mul_int( &M, &M, 19 ) );
1070 MPI_CHK( mpi_add_abs( N, N, &M ) );
1071
1072cleanup:
1073 return( ret );
1074}
1075#endif /* POLARSSL_ECP_DP_M255_ENABLED */
1076
Manuel Pégourié-Gonnard32b04c12013-12-02 15:49:09 +01001077#endif