blob: 766e396d4c9e689c28f8f49f917ca57affafcf67 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
18 * Copyright (C) 2018, ARM Limited, All Rights Reserved
19 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
32 *
33 * This file is part of mbed TLS (https://tls.mbed.org)
34 */
35
36#ifndef PSA_CRYPTO_VALUES_H
37#define PSA_CRYPTO_VALUES_H
38
39/** \defgroup error Error codes
40 * @{
41 */
42
David Saadab4ecc272019-02-14 13:48:10 +020043/* PSA error codes */
44
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045/** The action was completed successfully. */
46#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010047
48/** An error occurred that does not correspond to any defined
49 * failure cause.
50 *
51 * Implementations may use this error code if none of the other standard
52 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020053#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010054
55/** The requested operation or a parameter is not supported
56 * by this implementation.
57 *
58 * Implementations should return this error code when an enumeration
59 * parameter such as a key type, algorithm, etc. is not recognized.
60 * If a combination of parameters is recognized and identified as
61 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020062#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010063
64/** The requested action is denied by a policy.
65 *
66 * Implementations should return this error code when the parameters
67 * are recognized as valid and supported, and a policy explicitly
68 * denies the requested operation.
69 *
70 * If a subset of the parameters of a function call identify a
71 * forbidden operation, and another subset of the parameters are
72 * not valid or not supported, it is unspecified whether the function
73 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
74 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020075#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010076
77/** An output buffer is too small.
78 *
79 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
80 * description to determine a sufficient buffer size.
81 *
82 * Implementations should preferably return this error code only
83 * in cases when performing the operation with a larger output
84 * buffer would succeed. However implementations may return this
85 * error if a function has invalid or unsupported parameters in addition
86 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020087#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088
David Saadab4ecc272019-02-14 13:48:10 +020089/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010090 *
David Saadab4ecc272019-02-14 13:48:10 +020091 * Implementations should return this error, when attempting
92 * to write an item (like a key) that already exists. */
93#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094
David Saadab4ecc272019-02-14 13:48:10 +020095/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010096 *
David Saadab4ecc272019-02-14 13:48:10 +020097 * Implementations should return this error, if a requested item (like
98 * a key) does not exist. */
99#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100
101/** The requested action cannot be performed in the current state.
102 *
103 * Multipart operations return this error when one of the
104 * functions is called out of sequence. Refer to the function
105 * descriptions for permitted sequencing of functions.
106 *
107 * Implementations shall not return this error code to indicate
108 * that a key slot is occupied when it needs to be free or vice versa,
David Saadab4ecc272019-02-14 13:48:10 +0200109 * but shall return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100110 * as applicable. */
David Saadab4ecc272019-02-14 13:48:10 +0200111#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100112
113/** The parameters passed to the function are invalid.
114 *
115 * Implementations may return this error any time a parameter or
116 * combination of parameters are recognized as invalid.
117 *
118 * Implementations shall not return this error code to indicate
119 * that a key slot is occupied when it needs to be free or vice versa,
David Saadab4ecc272019-02-14 13:48:10 +0200120 * but shall return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100121 * as applicable.
122 *
123 * Implementation shall not return this error code to indicate that a
124 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
125 * instead.
126 */
David Saadab4ecc272019-02-14 13:48:10 +0200127#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100128
129/** There is not enough runtime memory.
130 *
131 * If the action is carried out across multiple security realms, this
132 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200133#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100134
135/** There is not enough persistent storage.
136 *
137 * Functions that modify the key storage return this error code if
138 * there is insufficient storage space on the host media. In addition,
139 * many functions that do not otherwise access storage may return this
140 * error code if the implementation requires a mandatory log entry for
141 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200142#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100143
144/** There was a communication failure inside the implementation.
145 *
146 * This can indicate a communication failure between the application
147 * and an external cryptoprocessor or between the cryptoprocessor and
148 * an external volatile or persistent memory. A communication failure
149 * may be transient or permanent depending on the cause.
150 *
151 * \warning If a function returns this error, it is undetermined
152 * whether the requested action has completed or not. Implementations
153 * should return #PSA_SUCCESS on successful completion whenver
154 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
155 * if the requested action was completed successfully in an external
156 * cryptoprocessor but there was a breakdown of communication before
157 * the cryptoprocessor could report the status to the application.
158 */
David Saadab4ecc272019-02-14 13:48:10 +0200159#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100160
161/** There was a storage failure that may have led to data loss.
162 *
163 * This error indicates that some persistent storage is corrupted.
164 * It should not be used for a corruption of volatile memory
165 * (use #PSA_ERROR_TAMPERING_DETECTED), for a communication error
166 * between the cryptoprocessor and its external storage (use
167 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
168 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
169 *
170 * Note that a storage failure does not indicate that any data that was
171 * previously read is invalid. However this previously read data may no
172 * longer be readable from storage.
173 *
174 * When a storage failure occurs, it is no longer possible to ensure
175 * the global integrity of the keystore. Depending on the global
176 * integrity guarantees offered by the implementation, access to other
177 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100178 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100179 *
180 * Implementations should only use this error code to report a
181 * permanent storage corruption. However application writers should
182 * keep in mind that transient errors while reading the storage may be
183 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200184#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100185
186/** A hardware failure was detected.
187 *
188 * A hardware failure may be transient or permanent depending on the
189 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200190#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100191
192/** A tampering attempt was detected.
193 *
194 * If an application receives this error code, there is no guarantee
195 * that previously accessed or computed data was correct and remains
196 * confidential. Applications should not perform any security function
197 * and should enter a safe failure state.
198 *
199 * Implementations may return this error code if they detect an invalid
200 * state that cannot happen during normal operation and that indicates
201 * that the implementation's security guarantees no longer hold. Depending
202 * on the implementation architecture and on its security and safety goals,
203 * the implementation may forcibly terminate the application.
204 *
205 * This error code is intended as a last resort when a security breach
206 * is detected and it is unsure whether the keystore data is still
207 * protected. Implementations shall only return this error code
208 * to report an alarm from a tampering detector, to indicate that
209 * the confidentiality of stored data can no longer be guaranteed,
210 * or to indicate that the integrity of previously returned data is now
211 * considered compromised. Implementations shall not use this error code
212 * to indicate a hardware failure that merely makes it impossible to
213 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
214 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
215 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
216 * instead).
217 *
218 * This error indicates an attack against the application. Implementations
219 * shall not return this error code as a consequence of the behavior of
220 * the application itself. */
David Saadab4ecc272019-02-14 13:48:10 +0200221#define PSA_ERROR_TAMPERING_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100222
223/** There is not enough entropy to generate random data needed
224 * for the requested action.
225 *
226 * This error indicates a failure of a hardware random generator.
227 * Application writers should note that this error can be returned not
228 * only by functions whose purpose is to generate random data, such
229 * as key, IV or nonce generation, but also by functions that execute
230 * an algorithm with a randomized result, as well as functions that
231 * use randomization of intermediate computations as a countermeasure
232 * to certain attacks.
233 *
234 * Implementations should avoid returning this error after psa_crypto_init()
235 * has succeeded. Implementations should generate sufficient
236 * entropy during initialization and subsequently use a cryptographically
237 * secure pseudorandom generator (PRNG). However implementations may return
238 * this error at any time if a policy requires the PRNG to be reseeded
239 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200240#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100241
242/** The signature, MAC or hash is incorrect.
243 *
244 * Verification functions return this error if the verification
245 * calculations completed successfully, and the value to be verified
246 * was determined to be incorrect.
247 *
248 * If the value to verify has an invalid size, implementations may return
249 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200250#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100251
252/** The decrypted padding is incorrect.
253 *
254 * \warning In some protocols, when decrypting data, it is essential that
255 * the behavior of the application does not depend on whether the padding
256 * is correct, down to precise timing. Applications should prefer
257 * protocols that use authenticated encryption rather than plain
258 * encryption. If the application must perform a decryption of
259 * unauthenticated data, the application writer should take care not
260 * to reveal whether the padding is invalid.
261 *
262 * Implementations should strive to make valid and invalid padding
263 * as close as possible to indistinguishable to an external observer.
264 * In particular, the timing of a decryption operation should not
265 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200266#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100267
David Saadab4ecc272019-02-14 13:48:10 +0200268/** Return this error when there's insufficient data when attempting
269 * to read from a resource. */
270#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100271
272/** The key handle is not valid.
273 */
David Saadab4ecc272019-02-14 13:48:10 +0200274#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100275
276/**@}*/
277
278/** \defgroup crypto_types Key and algorithm types
279 * @{
280 */
281
282/** An invalid key type value.
283 *
284 * Zero is not the encoding of any key type.
285 */
286#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
287
288/** Vendor-defined flag
289 *
290 * Key types defined by this standard will never have the
291 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
292 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
293 * respect the bitwise structure used by standard encodings whenever practical.
294 */
295#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
296
297#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000)
298#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000)
299#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000)
300#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000)
301#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000)
302
303#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000)
304
305/** Whether a key type is vendor-defined. */
306#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
307 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
308
309/** Whether a key type is an unstructured array of bytes.
310 *
311 * This encompasses both symmetric keys and non-key data.
312 */
313#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
314 (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \
315 PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
316
317/** Whether a key type is asymmetric: either a key pair or a public key. */
318#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
319 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
320 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
321 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
322/** Whether a key type is the public part of a key pair. */
323#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
324 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
325/** Whether a key type is a key pair containing a private part and a public
326 * part. */
327#define PSA_KEY_TYPE_IS_KEYPAIR(type) \
328 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
329/** The key pair type corresponding to a public key type.
330 *
331 * You may also pass a key pair type as \p type, it will be left unchanged.
332 *
333 * \param type A public key type or key pair type.
334 *
335 * \return The corresponding key pair type.
336 * If \p type is not a public key or a key pair,
337 * the return value is undefined.
338 */
339#define PSA_KEY_TYPE_KEYPAIR_OF_PUBLIC_KEY(type) \
340 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
341/** The public key type corresponding to a key pair type.
342 *
343 * You may also pass a key pair type as \p type, it will be left unchanged.
344 *
345 * \param type A public key type or key pair type.
346 *
347 * \return The corresponding public key type.
348 * If \p type is not a public key or a key pair,
349 * the return value is undefined.
350 */
351#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) \
352 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
353
354/** Raw data.
355 *
356 * A "key" of this type cannot be used for any cryptographic operation.
357 * Applications may use this type to store arbitrary data in the keystore. */
358#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001)
359
360/** HMAC key.
361 *
362 * The key policy determines which underlying hash algorithm the key can be
363 * used for.
364 *
365 * HMAC keys should generally have the same size as the underlying hash.
366 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
367 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
368#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000)
369
370/** A secret for key derivation.
371 *
372 * The key policy determines which key derivation algorithm the key
373 * can be used for.
374 */
375#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000)
376
377/** Key for an cipher, AEAD or MAC algorithm based on the AES block cipher.
378 *
379 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
380 * 32 bytes (AES-256).
381 */
382#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001)
383
384/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
385 *
386 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
387 * 24 bytes (3-key 3DES).
388 *
389 * Note that single DES and 2-key 3DES are weak and strongly
390 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
391 * is weak and deprecated and should only be used in legacy protocols.
392 */
393#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002)
394
395/** Key for an cipher, AEAD or MAC algorithm based on the
396 * Camellia block cipher. */
397#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003)
398
399/** Key for the RC4 stream cipher.
400 *
401 * Note that RC4 is weak and deprecated and should only be used in
402 * legacy protocols. */
403#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004)
404
405/** RSA public key. */
406#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000)
407/** RSA key pair (private and public key). */
408#define PSA_KEY_TYPE_RSA_KEYPAIR ((psa_key_type_t)0x70010000)
409/** Whether a key type is an RSA key (pair or public-only). */
410#define PSA_KEY_TYPE_IS_RSA(type) \
411 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
412
413/** DSA public key. */
414#define PSA_KEY_TYPE_DSA_PUBLIC_KEY ((psa_key_type_t)0x60020000)
415/** DSA key pair (private and public key). */
416#define PSA_KEY_TYPE_DSA_KEYPAIR ((psa_key_type_t)0x70020000)
417/** Whether a key type is an DSA key (pair or public-only). */
418#define PSA_KEY_TYPE_IS_DSA(type) \
419 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_DSA_PUBLIC_KEY)
420
421#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000)
422#define PSA_KEY_TYPE_ECC_KEYPAIR_BASE ((psa_key_type_t)0x70030000)
423#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff)
424/** Elliptic curve key pair. */
425#define PSA_KEY_TYPE_ECC_KEYPAIR(curve) \
426 (PSA_KEY_TYPE_ECC_KEYPAIR_BASE | (curve))
427/** Elliptic curve public key. */
428#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
429 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
430
431/** Whether a key type is an elliptic curve key (pair or public-only). */
432#define PSA_KEY_TYPE_IS_ECC(type) \
433 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) & \
434 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100435/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100436#define PSA_KEY_TYPE_IS_ECC_KEYPAIR(type) \
437 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
438 PSA_KEY_TYPE_ECC_KEYPAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100439/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100440#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
441 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
442 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
443
444/** Extract the curve from an elliptic curve key type. */
445#define PSA_KEY_TYPE_GET_CURVE(type) \
446 ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
447 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
448 0))
449
450/* The encoding of curve identifiers is currently aligned with the
451 * TLS Supported Groups Registry (formerly known as the
452 * TLS EC Named Curve Registry)
453 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
454 * The values are defined by RFC 8422 and RFC 7027. */
455#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001)
456#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002)
457#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003)
458#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004)
459#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005)
460#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006)
461#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007)
462#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008)
463#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009)
464#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a)
465#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b)
466#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c)
467#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d)
468#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e)
469#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f)
470#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010)
471#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011)
472#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012)
473#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013)
474#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014)
475#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015)
476#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016)
477#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017)
478#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018)
479#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019)
480#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a)
481#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b)
482#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c)
483#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d)
484#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e)
485
Jaeden Amero8851c402019-01-11 14:20:03 +0000486/** Diffie-Hellman key exchange public key. */
487#define PSA_KEY_TYPE_DH_PUBLIC_KEY ((psa_key_type_t)0x60040000)
488/** Diffie-Hellman key exchange key pair (private and public key). */
489#define PSA_KEY_TYPE_DH_KEYPAIR ((psa_key_type_t)0x70040000)
490/** Whether a key type is a Diffie-Hellman key exchange key (pair or
491 * public-only). */
492#define PSA_KEY_TYPE_IS_DH(type) \
493 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_DH_PUBLIC_KEY)
494
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100495/** The block size of a block cipher.
496 *
497 * \param type A cipher key type (value of type #psa_key_type_t).
498 *
499 * \return The block size for a block cipher, or 1 for a stream cipher.
500 * The return value is undefined if \p type is not a supported
501 * cipher key type.
502 *
503 * \note It is possible to build stream cipher algorithms on top of a block
504 * cipher, for example CTR mode (#PSA_ALG_CTR).
505 * This macro only takes the key type into account, so it cannot be
506 * used to determine the size of the data that #psa_cipher_update()
507 * might buffer for future processing in general.
508 *
509 * \note This macro returns a compile-time constant if its argument is one.
510 *
511 * \warning This macro may evaluate its argument multiple times.
512 */
513#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
514 ( \
515 (type) == PSA_KEY_TYPE_AES ? 16 : \
516 (type) == PSA_KEY_TYPE_DES ? 8 : \
517 (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \
518 (type) == PSA_KEY_TYPE_ARC4 ? 1 : \
519 0)
520
521#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
522#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
523#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
524#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
525#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
526#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
527#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
528#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100529#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
530#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100531
532#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
533 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
534
535/** Whether the specified algorithm is a hash algorithm.
536 *
537 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
538 *
539 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
540 * This macro may return either 0 or 1 if \p alg is not a supported
541 * algorithm identifier.
542 */
543#define PSA_ALG_IS_HASH(alg) \
544 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
545
546/** Whether the specified algorithm is a MAC algorithm.
547 *
548 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
549 *
550 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
551 * This macro may return either 0 or 1 if \p alg is not a supported
552 * algorithm identifier.
553 */
554#define PSA_ALG_IS_MAC(alg) \
555 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
556
557/** Whether the specified algorithm is a symmetric cipher algorithm.
558 *
559 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
560 *
561 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
562 * This macro may return either 0 or 1 if \p alg is not a supported
563 * algorithm identifier.
564 */
565#define PSA_ALG_IS_CIPHER(alg) \
566 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
567
568/** Whether the specified algorithm is an authenticated encryption
569 * with associated data (AEAD) algorithm.
570 *
571 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
572 *
573 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
574 * This macro may return either 0 or 1 if \p alg is not a supported
575 * algorithm identifier.
576 */
577#define PSA_ALG_IS_AEAD(alg) \
578 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
579
580/** Whether the specified algorithm is a public-key signature algorithm.
581 *
582 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
583 *
584 * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise.
585 * This macro may return either 0 or 1 if \p alg is not a supported
586 * algorithm identifier.
587 */
588#define PSA_ALG_IS_SIGN(alg) \
589 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
590
591/** Whether the specified algorithm is a public-key encryption algorithm.
592 *
593 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
594 *
595 * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise.
596 * This macro may return either 0 or 1 if \p alg is not a supported
597 * algorithm identifier.
598 */
599#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
600 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
601
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100602/** Whether the specified algorithm is a key agreement algorithm.
603 *
604 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
605 *
606 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
607 * This macro may return either 0 or 1 if \p alg is not a supported
608 * algorithm identifier.
609 */
610#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100611 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100612
613/** Whether the specified algorithm is a key derivation algorithm.
614 *
615 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
616 *
617 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
618 * This macro may return either 0 or 1 if \p alg is not a supported
619 * algorithm identifier.
620 */
621#define PSA_ALG_IS_KEY_DERIVATION(alg) \
622 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
623
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100624#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100625
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100626#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
627#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
628#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
629#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
630#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
631/** SHA2-224 */
632#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
633/** SHA2-256 */
634#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
635/** SHA2-384 */
636#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
637/** SHA2-512 */
638#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
639/** SHA2-512/224 */
640#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
641/** SHA2-512/256 */
642#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
643/** SHA3-224 */
644#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
645/** SHA3-256 */
646#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
647/** SHA3-384 */
648#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
649/** SHA3-512 */
650#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
651
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100652/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100653 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100654 * This value may be used to form the algorithm usage field of a policy
655 * for a signature algorithm that is parametrized by a hash. The key
656 * may then be used to perform operations using the same signature
657 * algorithm parametrized with any supported hash.
658 *
659 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100660 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
661 * - #PSA_ALG_DSA, #PSA_ALG_DETERMINISTIC_DSA,
662 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100663 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100664 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
665 * ```
666 * psa_key_policy_set_usage(&policy,
667 * PSA_KEY_USAGE_SIGN, //or PSA_KEY_USAGE_VERIFY
668 * PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
669 * psa_set_key_policy(handle, &policy);
670 * ```
671 * - Import or generate key material.
672 * - Call psa_asymmetric_sign() or psa_asymmetric_verify(), passing
673 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
674 * call to sign or verify a message may use a different hash.
675 * ```
676 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
677 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
678 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
679 * ```
680 *
681 * This value may not be used to build other algorithms that are
682 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100683 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100684 *
685 * This value may not be used to build an algorithm specification to
686 * perform an operation. It is only valid to build policies.
687 */
688#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
689
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100690#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
691#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
692/** Macro to build an HMAC algorithm.
693 *
694 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
695 *
696 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
697 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
698 *
699 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100700 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100701 * hash algorithm.
702 */
703#define PSA_ALG_HMAC(hash_alg) \
704 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
705
706#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
707 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
708
709/** Whether the specified algorithm is an HMAC algorithm.
710 *
711 * HMAC is a family of MAC algorithms that are based on a hash function.
712 *
713 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
714 *
715 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
716 * This macro may return either 0 or 1 if \p alg is not a supported
717 * algorithm identifier.
718 */
719#define PSA_ALG_IS_HMAC(alg) \
720 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
721 PSA_ALG_HMAC_BASE)
722
723/* In the encoding of a MAC algorithm, the bits corresponding to
724 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
725 * truncated. As an exception, the value 0 means the untruncated algorithm,
726 * whatever its length is. The length is encoded in 6 bits, so it can
727 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
728 * to full length is correctly encoded as 0 and any non-trivial truncation
729 * is correctly encoded as a value between 1 and 63. */
730#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
731#define PSA_MAC_TRUNCATION_OFFSET 8
732
733/** Macro to build a truncated MAC algorithm.
734 *
735 * A truncated MAC algorithm is identical to the corresponding MAC
736 * algorithm except that the MAC value for the truncated algorithm
737 * consists of only the first \p mac_length bytes of the MAC value
738 * for the untruncated algorithm.
739 *
740 * \note This macro may allow constructing algorithm identifiers that
741 * are not valid, either because the specified length is larger
742 * than the untruncated MAC or because the specified length is
743 * smaller than permitted by the implementation.
744 *
745 * \note It is implementation-defined whether a truncated MAC that
746 * is truncated to the same length as the MAC of the untruncated
747 * algorithm is considered identical to the untruncated algorithm
748 * for policy comparison purposes.
749 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200750 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100751 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
752 * is true). This may be a truncated or untruncated
753 * MAC algorithm.
754 * \param mac_length Desired length of the truncated MAC in bytes.
755 * This must be at most the full length of the MAC
756 * and must be at least an implementation-specified
757 * minimum. The implementation-specified minimum
758 * shall not be zero.
759 *
760 * \return The corresponding MAC algorithm with the specified
761 * length.
762 * \return Unspecified if \p alg is not a supported
763 * MAC algorithm or if \p mac_length is too small or
764 * too large for the specified MAC algorithm.
765 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200766#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
767 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100768 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
769
770/** Macro to build the base MAC algorithm corresponding to a truncated
771 * MAC algorithm.
772 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200773 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100774 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
775 * is true). This may be a truncated or untruncated
776 * MAC algorithm.
777 *
778 * \return The corresponding base MAC algorithm.
779 * \return Unspecified if \p alg is not a supported
780 * MAC algorithm.
781 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200782#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
783 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100784
785/** Length to which a MAC algorithm is truncated.
786 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200787 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100788 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
789 * is true).
790 *
791 * \return Length of the truncated MAC in bytes.
792 * \return 0 if \p alg is a non-truncated MAC algorithm.
793 * \return Unspecified if \p alg is not a supported
794 * MAC algorithm.
795 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200796#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
797 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100798
799#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
800#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
801#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
802#define PSA_ALG_GMAC ((psa_algorithm_t)0x02c00003)
803
804/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
805 *
806 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
807 *
808 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
809 * This macro may return either 0 or 1 if \p alg is not a supported
810 * algorithm identifier.
811 */
812#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
813 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
814 PSA_ALG_CIPHER_MAC_BASE)
815
816#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
817#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
818
819/** Whether the specified algorithm is a stream cipher.
820 *
821 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
822 * by applying a bitwise-xor with a stream of bytes that is generated
823 * from a key.
824 *
825 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
826 *
827 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
828 * This macro may return either 0 or 1 if \p alg is not a supported
829 * algorithm identifier or if it is not a symmetric cipher algorithm.
830 */
831#define PSA_ALG_IS_STREAM_CIPHER(alg) \
832 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
833 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
834
835/** The ARC4 stream cipher algorithm.
836 */
837#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
838
839/** The CTR stream cipher mode.
840 *
841 * CTR is a stream cipher which is built from a block cipher.
842 * The underlying block cipher is determined by the key type.
843 * For example, to use AES-128-CTR, use this algorithm with
844 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
845 */
846#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
847
848#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
849
850#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
851
852/** The XTS cipher mode.
853 *
854 * XTS is a cipher mode which is built from a block cipher. It requires at
855 * least one full block of input, but beyond this minimum the input
856 * does not need to be a whole number of blocks.
857 */
858#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
859
860/** The CBC block cipher chaining mode, with no padding.
861 *
862 * The underlying block cipher is determined by the key type.
863 *
864 * This symmetric cipher mode can only be used with messages whose lengths
865 * are whole number of blocks for the chosen block cipher.
866 */
867#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
868
869/** The CBC block cipher chaining mode with PKCS#7 padding.
870 *
871 * The underlying block cipher is determined by the key type.
872 *
873 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
874 */
875#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
876
Gilles Peskine9153ec02019-02-15 13:02:02 +0100877/** The CCM authenticated encryption algorithm.
878 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100879#define PSA_ALG_CCM ((psa_algorithm_t)0x06001001)
Gilles Peskine9153ec02019-02-15 13:02:02 +0100880
881/** The GCM authenticated encryption algorithm.
882 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100883#define PSA_ALG_GCM ((psa_algorithm_t)0x06001002)
884
885/* In the encoding of a AEAD algorithm, the bits corresponding to
886 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
887 * The constants for default lengths follow this encoding.
888 */
889#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
890#define PSA_AEAD_TAG_LENGTH_OFFSET 8
891
892/** Macro to build a shortened AEAD algorithm.
893 *
894 * A shortened AEAD algorithm is similar to the corresponding AEAD
895 * algorithm, but has an authentication tag that consists of fewer bytes.
896 * Depending on the algorithm, the tag length may affect the calculation
897 * of the ciphertext.
898 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200899 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100900 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
901 * is true).
902 * \param tag_length Desired length of the authentication tag in bytes.
903 *
904 * \return The corresponding AEAD algorithm with the specified
905 * length.
906 * \return Unspecified if \p alg is not a supported
907 * AEAD algorithm or if \p tag_length is not valid
908 * for the specified AEAD algorithm.
909 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200910#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
911 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100912 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
913 PSA_ALG_AEAD_TAG_LENGTH_MASK))
914
915/** Calculate the corresponding AEAD algorithm with the default tag length.
916 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200917 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
918 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100919 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200920 * \return The corresponding AEAD algorithm with the default
921 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100922 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200923#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100924 ( \
Gilles Peskine434899f2018-10-19 11:30:26 +0200925 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_CCM) \
926 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_GCM) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100927 0)
Gilles Peskine434899f2018-10-19 11:30:26 +0200928#define PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, ref) \
929 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100930 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
931 ref :
932
933#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
934/** RSA PKCS#1 v1.5 signature with hashing.
935 *
936 * This is the signature scheme defined by RFC 8017
937 * (PKCS#1: RSA Cryptography Specifications) under the name
938 * RSASSA-PKCS1-v1_5.
939 *
940 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
941 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100942 * This includes #PSA_ALG_ANY_HASH
943 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100944 *
945 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100946 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100947 * hash algorithm.
948 */
949#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
950 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
951/** Raw PKCS#1 v1.5 signature.
952 *
953 * The input to this algorithm is the DigestInfo structure used by
954 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
955 * steps 3&ndash;6.
956 */
957#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
958#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
959 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
960
961#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
962/** RSA PSS signature with hashing.
963 *
964 * This is the signature scheme defined by RFC 8017
965 * (PKCS#1: RSA Cryptography Specifications) under the name
966 * RSASSA-PSS, with the message generation function MGF1, and with
967 * a salt length equal to the length of the hash. The specified
968 * hash algorithm is used to hash the input message, to create the
969 * salted hash, and for the mask generation.
970 *
971 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
972 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100973 * This includes #PSA_ALG_ANY_HASH
974 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100975 *
976 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100977 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100978 * hash algorithm.
979 */
980#define PSA_ALG_RSA_PSS(hash_alg) \
981 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
982#define PSA_ALG_IS_RSA_PSS(alg) \
983 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
984
985#define PSA_ALG_DSA_BASE ((psa_algorithm_t)0x10040000)
986/** DSA signature with hashing.
987 *
988 * This is the signature scheme defined by FIPS 186-4,
989 * with a random per-message secret number (*k*).
990 *
991 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
992 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100993 * This includes #PSA_ALG_ANY_HASH
994 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100995 *
996 * \return The corresponding DSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100997 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100998 * hash algorithm.
999 */
1000#define PSA_ALG_DSA(hash_alg) \
1001 (PSA_ALG_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1002#define PSA_ALG_DETERMINISTIC_DSA_BASE ((psa_algorithm_t)0x10050000)
1003#define PSA_ALG_DSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00010000)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001004/** Deterministic DSA signature with hashing.
1005 *
1006 * This is the deterministic variant defined by RFC 6979 of
1007 * the signature scheme defined by FIPS 186-4.
1008 *
1009 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1010 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1011 * This includes #PSA_ALG_ANY_HASH
1012 * when specifying the algorithm in a usage policy.
1013 *
1014 * \return The corresponding DSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001015 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskine9153ec02019-02-15 13:02:02 +01001016 * hash algorithm.
1017 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001018#define PSA_ALG_DETERMINISTIC_DSA(hash_alg) \
1019 (PSA_ALG_DETERMINISTIC_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1020#define PSA_ALG_IS_DSA(alg) \
1021 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
1022 PSA_ALG_DSA_BASE)
1023#define PSA_ALG_DSA_IS_DETERMINISTIC(alg) \
1024 (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
1025#define PSA_ALG_IS_DETERMINISTIC_DSA(alg) \
1026 (PSA_ALG_IS_DSA(alg) && PSA_ALG_DSA_IS_DETERMINISTIC(alg))
1027#define PSA_ALG_IS_RANDOMIZED_DSA(alg) \
1028 (PSA_ALG_IS_DSA(alg) && !PSA_ALG_DSA_IS_DETERMINISTIC(alg))
1029
1030#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1031/** ECDSA signature with hashing.
1032 *
1033 * This is the ECDSA signature scheme defined by ANSI X9.62,
1034 * with a random per-message secret number (*k*).
1035 *
1036 * The representation of the signature as a byte string consists of
1037 * the concatentation of the signature values *r* and *s*. Each of
1038 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1039 * of the base point of the curve in octets. Each value is represented
1040 * in big-endian order (most significant octet first).
1041 *
1042 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1043 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001044 * This includes #PSA_ALG_ANY_HASH
1045 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001046 *
1047 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001048 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001049 * hash algorithm.
1050 */
1051#define PSA_ALG_ECDSA(hash_alg) \
1052 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1053/** ECDSA signature without hashing.
1054 *
1055 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1056 * without specifying a hash algorithm. This algorithm may only be
1057 * used to sign or verify a sequence of bytes that should be an
1058 * already-calculated hash. Note that the input is padded with
1059 * zeros on the left or truncated on the left as required to fit
1060 * the curve size.
1061 */
1062#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1063#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1064/** Deterministic ECDSA signature with hashing.
1065 *
1066 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1067 *
1068 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1069 *
1070 * Note that when this algorithm is used for verification, signatures
1071 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1072 * same private key are accepted. In other words,
1073 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1074 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1075 *
1076 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1077 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001078 * This includes #PSA_ALG_ANY_HASH
1079 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001080 *
1081 * \return The corresponding deterministic ECDSA signature
1082 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001083 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001084 * hash algorithm.
1085 */
1086#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1087 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1088#define PSA_ALG_IS_ECDSA(alg) \
1089 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
1090 PSA_ALG_ECDSA_BASE)
1091#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
1092 (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
1093#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1094 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1095#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1096 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1097
Gilles Peskined35b4892019-01-14 16:02:15 +01001098/** Whether the specified algorithm is a hash-and-sign algorithm.
1099 *
1100 * Hash-and-sign algorithms are public-key signature algorithms structured
1101 * in two parts: first the calculation of a hash in a way that does not
1102 * depend on the key, then the calculation of a signature from the
1103 * hash value and the key.
1104 *
1105 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1106 *
1107 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1108 * This macro may return either 0 or 1 if \p alg is not a supported
1109 * algorithm identifier.
1110 */
1111#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1112 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1113 PSA_ALG_IS_DSA(alg) || PSA_ALG_IS_ECDSA(alg))
1114
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001115/** Get the hash used by a hash-and-sign signature algorithm.
1116 *
1117 * A hash-and-sign algorithm is a signature algorithm which is
1118 * composed of two phases: first a hashing phase which does not use
1119 * the key and produces a hash of the input message, then a signing
1120 * phase which only uses the hash and the key and not the message
1121 * itself.
1122 *
1123 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1124 * #PSA_ALG_IS_SIGN(\p alg) is true).
1125 *
1126 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1127 * algorithm.
1128 * \return 0 if \p alg is a signature algorithm that does not
1129 * follow the hash-and-sign structure.
1130 * \return Unspecified if \p alg is not a signature algorithm or
1131 * if it is not supported by the implementation.
1132 */
1133#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001134 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001135 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1136 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1137 0)
1138
1139/** RSA PKCS#1 v1.5 encryption.
1140 */
1141#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1142
1143#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1144/** RSA OAEP encryption.
1145 *
1146 * This is the encryption scheme defined by RFC 8017
1147 * (PKCS#1: RSA Cryptography Specifications) under the name
1148 * RSAES-OAEP, with the message generation function MGF1.
1149 *
1150 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1151 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1152 * for MGF1.
1153 *
1154 * \return The corresponding RSA OAEP signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001155 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001156 * hash algorithm.
1157 */
1158#define PSA_ALG_RSA_OAEP(hash_alg) \
1159 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1160#define PSA_ALG_IS_RSA_OAEP(alg) \
1161 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1162#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1163 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1164 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1165 0)
1166
Gilles Peskine6843c292019-01-18 16:44:49 +01001167#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001168/** Macro to build an HKDF algorithm.
1169 *
1170 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1171 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001172 * This key derivation algorithm uses the following inputs:
1173 * - #PSA_KDF_STEP_SALT is the salt used in the "extract" step.
1174 * It is optional; if omitted, the derivation uses an empty salt.
1175 * - #PSA_KDF_STEP_SECRET is the secret key used in the "extract" step.
1176 * - #PSA_KDF_STEP_INFO is the info string used in the "expand" step.
1177 * You must pass #PSA_KDF_STEP_SALT before #PSA_KDF_STEP_SECRET.
1178 * You may pass #PSA_KDF_STEP_INFO at any time after steup and before
1179 * starting to generate output.
1180 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001181 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1182 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1183 *
1184 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001185 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001186 * hash algorithm.
1187 */
1188#define PSA_ALG_HKDF(hash_alg) \
1189 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1190/** Whether the specified algorithm is an HKDF algorithm.
1191 *
1192 * HKDF is a family of key derivation algorithms that are based on a hash
1193 * function and the HMAC construction.
1194 *
1195 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1196 *
1197 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1198 * This macro may return either 0 or 1 if \c alg is not a supported
1199 * key derivation algorithm identifier.
1200 */
1201#define PSA_ALG_IS_HKDF(alg) \
1202 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1203#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1204 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1205
Gilles Peskine6843c292019-01-18 16:44:49 +01001206#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001207/** Macro to build a TLS-1.2 PRF algorithm.
1208 *
1209 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1210 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1211 * used with either SHA-256 or SHA-384.
1212 *
1213 * For the application to TLS-1.2, the salt and label arguments passed
1214 * to psa_key_derivation() are what's called 'seed' and 'label' in RFC 5246,
1215 * respectively. For example, for TLS key expansion, the salt is the
1216 * concatenation of ServerHello.Random + ClientHello.Random,
1217 * while the label is "key expansion".
1218 *
1219 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1220 * TLS 1.2 PRF using HMAC-SHA-256.
1221 *
1222 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1223 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1224 *
1225 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001226 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001227 * hash algorithm.
1228 */
1229#define PSA_ALG_TLS12_PRF(hash_alg) \
1230 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1231
1232/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1233 *
1234 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1235 *
1236 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1237 * This macro may return either 0 or 1 if \c alg is not a supported
1238 * key derivation algorithm identifier.
1239 */
1240#define PSA_ALG_IS_TLS12_PRF(alg) \
1241 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1242#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1243 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1244
Gilles Peskine6843c292019-01-18 16:44:49 +01001245#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001246/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1247 *
1248 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1249 * from the PreSharedKey (PSK) through the application of padding
1250 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1251 * The latter is based on HMAC and can be used with either SHA-256
1252 * or SHA-384.
1253 *
1254 * For the application to TLS-1.2, the salt passed to psa_key_derivation()
1255 * (and forwarded to the TLS-1.2 PRF) is the concatenation of the
1256 * ClientHello.Random + ServerHello.Random, while the label is "master secret"
1257 * or "extended master secret".
1258 *
1259 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1260 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1261 *
1262 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1263 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1264 *
1265 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001266 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001267 * hash algorithm.
1268 */
1269#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1270 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1271
1272/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1273 *
1274 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1275 *
1276 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1277 * This macro may return either 0 or 1 if \c alg is not a supported
1278 * key derivation algorithm identifier.
1279 */
1280#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1281 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1282#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1283 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1284
Gilles Peskinea52460c2019-04-12 00:11:21 +02001285#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff)
1286#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001287
Gilles Peskine6843c292019-01-18 16:44:49 +01001288/** Macro to build a combined algorithm that chains a key agreement with
1289 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001290 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001291 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1292 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1293 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1294 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001295 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001296 * \return The corresponding key agreement and derivation
1297 * algorithm.
1298 * \return Unspecified if \p ka_alg is not a supported
1299 * key agreement algorithm or \p kdf_alg is not a
1300 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001301 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001302#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1303 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001304
1305#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1306 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1307
Gilles Peskine6843c292019-01-18 16:44:49 +01001308#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1309 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001310
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001311/** Whether the specified algorithm is a raw key agreement algorithm.
1312 *
1313 * A raw key agreement algorithm is one that does not specify
1314 * a key derivation function.
1315 * Usually, raw key agreement algorithms are constructed directly with
1316 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
1317 * constructed with PSA_ALG_KEY_AGREEMENT().
1318 *
1319 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1320 *
1321 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1322 * This macro may return either 0 or 1 if \p alg is not a supported
1323 * algorithm identifier.
1324 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001325#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001326 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1327 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001328
1329#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1330 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1331
1332/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001333 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001334 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001335 * `g^{ab}` in big-endian format.
1336 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1337 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001338 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001339#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1340
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001341/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1342 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001343 * This includes the raw finite field Diffie-Hellman algorithm as well as
1344 * finite-field Diffie-Hellman followed by any supporter key derivation
1345 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001346 *
1347 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1348 *
1349 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1350 * This macro may return either 0 or 1 if \c alg is not a supported
1351 * key agreement algorithm identifier.
1352 */
1353#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001354 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001355
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001356/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1357 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001358 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001359 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1360 * `m` is the bit size associated with the curve, i.e. the bit size of the
1361 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1362 * the byte containing the most significant bit of the shared secret
1363 * is padded with zero bits. The byte order is either little-endian
1364 * or big-endian depending on the curve type.
1365 *
1366 * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`),
1367 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1368 * in little-endian byte order.
1369 * The bit size is 448 for Curve448 and 255 for Curve25519.
1370 * - For Weierstrass curves over prime fields (curve types
1371 * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`),
1372 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1373 * in big-endian byte order.
1374 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1375 * - For Weierstrass curves over binary fields (curve types
1376 * `PSA_ECC_CURVE_SECTXXX`),
1377 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1378 * in big-endian byte order.
1379 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001380 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001381#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1382
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001383/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1384 * algorithm.
1385 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001386 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1387 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1388 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001389 *
1390 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1391 *
1392 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1393 * 0 otherwise.
1394 * This macro may return either 0 or 1 if \c alg is not a supported
1395 * key agreement algorithm identifier.
1396 */
1397#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001398 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001399
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001400/** Whether the specified algorithm encoding is a wildcard.
1401 *
1402 * Wildcard values may only be used to set the usage algorithm field in
1403 * a policy, not to perform an operation.
1404 *
1405 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1406 *
1407 * \return 1 if \c alg is a wildcard algorithm encoding.
1408 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1409 * an operation).
1410 * \return This macro may return either 0 or 1 if \c alg is not a supported
1411 * algorithm identifier.
1412 */
1413#define PSA_ALG_IS_WILDCARD(alg) \
1414 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1415 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1416 (alg) == PSA_ALG_ANY_HASH)
1417
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001418/**@}*/
1419
1420/** \defgroup key_lifetimes Key lifetimes
1421 * @{
1422 */
1423
1424/** A volatile key only exists as long as the handle to it is not closed.
1425 * The key material is guaranteed to be erased on a power reset.
1426 */
1427#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1428
1429/** The default storage area for persistent keys.
1430 *
1431 * A persistent key remains in storage until it is explicitly destroyed or
1432 * until the corresponding storage area is wiped. This specification does
1433 * not define any mechanism to wipe a storage area, but implementations may
1434 * provide their own mechanism (for example to perform a factory reset,
1435 * to prepare for device refurbishment, or to uninstall an application).
1436 *
1437 * This lifetime value is the default storage area for the calling
1438 * application. Implementations may offer other storage areas designated
1439 * by other lifetime values as implementation-specific extensions.
1440 */
1441#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1442
1443/**@}*/
1444
1445/** \defgroup policy Key policies
1446 * @{
1447 */
1448
1449/** Whether the key may be exported.
1450 *
1451 * A public key or the public part of a key pair may always be exported
1452 * regardless of the value of this permission flag.
1453 *
1454 * If a key does not have export permission, implementations shall not
1455 * allow the key to be exported in plain form from the cryptoprocessor,
1456 * whether through psa_export_key() or through a proprietary interface.
1457 * The key may however be exportable in a wrapped form, i.e. in a form
1458 * where it is encrypted by another key.
1459 */
1460#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1461
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001462/** Whether the key may be copied.
1463 *
1464 * This flag allows the use of psa_crypto_copy() to make a copy of the key
1465 * with the same policy or a more restrictive policy.
1466 *
1467 * For some lifetimes, copying a key also requires the usage flag
1468 * #PSA_KEY_USAGE_EXPORT, because otherwise the source key
1469 * is locked inside a secure processing environment and cannot be
1470 * extracted. For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
1471 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1472 * is sufficient to permit the copy.
1473 */
1474#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1475
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001476/** Whether the key may be used to encrypt a message.
1477 *
1478 * This flag allows the key to be used for a symmetric encryption operation,
1479 * for an AEAD encryption-and-authentication operation,
1480 * or for an asymmetric encryption operation,
1481 * if otherwise permitted by the key's type and policy.
1482 *
1483 * For a key pair, this concerns the public key.
1484 */
1485#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1486
1487/** Whether the key may be used to decrypt a message.
1488 *
1489 * This flag allows the key to be used for a symmetric decryption operation,
1490 * for an AEAD decryption-and-verification operation,
1491 * or for an asymmetric decryption operation,
1492 * if otherwise permitted by the key's type and policy.
1493 *
1494 * For a key pair, this concerns the private key.
1495 */
1496#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1497
1498/** Whether the key may be used to sign a message.
1499 *
1500 * This flag allows the key to be used for a MAC calculation operation
1501 * or for an asymmetric signature operation,
1502 * if otherwise permitted by the key's type and policy.
1503 *
1504 * For a key pair, this concerns the private key.
1505 */
1506#define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400)
1507
1508/** Whether the key may be used to verify a message signature.
1509 *
1510 * This flag allows the key to be used for a MAC verification operation
1511 * or for an asymmetric signature verification operation,
1512 * if otherwise permitted by by the key's type and policy.
1513 *
1514 * For a key pair, this concerns the public key.
1515 */
1516#define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800)
1517
1518/** Whether the key may be used to derive other keys.
1519 */
1520#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1521
1522/**@}*/
1523
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001524/** \defgroup derivation Key derivation
1525 * @{
1526 */
1527
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001528/** A secret input for key derivation.
1529 *
1530 * This must be a key of type #PSA_KEY_TYPE_DERIVE.
1531 */
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001532#define PSA_KDF_STEP_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001533
1534/** A label for key derivation.
1535 *
1536 * This must be a direct input.
1537 */
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001538#define PSA_KDF_STEP_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001539
1540/** A salt for key derivation.
1541 *
1542 * This must be a direct input.
1543 */
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001544#define PSA_KDF_STEP_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001545
1546/** An information string for key derivation.
1547 *
1548 * This must be a direct input.
1549 */
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001550#define PSA_KDF_STEP_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001551
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001552/**@}*/
1553
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001554#endif /* PSA_CRYPTO_VALUES_H */