| // The MIT License (MIT) |
| // |
| // Copyright (c) 2015-2016 the fiat-crypto authors (see the AUTHORS file). |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to deal |
| // in the Software without restriction, including without limitation the rights |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| // copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in all |
| // copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| // SOFTWARE. |
| |
| // Some of this code is taken from the ref10 version of Ed25519 in SUPERCOP |
| // 20141124 (http://bench.cr.yp.to/supercop.html). That code is released as |
| // public domain but parts have been replaced with code generated by Fiat |
| // (https://github.com/mit-plv/fiat-crypto), which is MIT licensed. |
| // |
| // The field functions are shared by Ed25519 and X25519 where possible. |
| |
| #include <assert.h> |
| #include <string.h> |
| #include <stdint.h> |
| |
| #include <mcuboot_config/mcuboot_config.h> |
| |
| #if defined(MCUBOOT_USE_MBED_TLS) |
| #include <mbedtls/platform_util.h> |
| #include <mbedtls/sha512.h> |
| #else |
| #include <tinycrypt/constants.h> |
| #include <tinycrypt/utils.h> |
| #include <tinycrypt/sha512.h> |
| #endif |
| |
| #include "curve25519.h" |
| // Various pre-computed constants. |
| #include "curve25519_tables.h" |
| |
| #define SHA512_DIGEST_LENGTH 64 |
| |
| // Low-level intrinsic operations |
| |
| static uint64_t load_3(const uint8_t *in) { |
| uint64_t result; |
| result = (uint64_t)in[0]; |
| result |= ((uint64_t)in[1]) << 8; |
| result |= ((uint64_t)in[2]) << 16; |
| return result; |
| } |
| |
| static uint64_t load_4(const uint8_t *in) { |
| uint64_t result; |
| result = (uint64_t)in[0]; |
| result |= ((uint64_t)in[1]) << 8; |
| result |= ((uint64_t)in[2]) << 16; |
| result |= ((uint64_t)in[3]) << 24; |
| return result; |
| } |
| |
| |
| // Field operations. |
| |
| typedef uint32_t fe_limb_t; |
| #define FE_NUM_LIMBS 10 |
| |
| // assert_fe asserts that |f| satisfies bounds: |
| // |
| // [[0x0 ~> 0x4666666], [0x0 ~> 0x2333333], |
| // [0x0 ~> 0x4666666], [0x0 ~> 0x2333333], |
| // [0x0 ~> 0x4666666], [0x0 ~> 0x2333333], |
| // [0x0 ~> 0x4666666], [0x0 ~> 0x2333333], |
| // [0x0 ~> 0x4666666], [0x0 ~> 0x2333333]] |
| // |
| // See comments in curve25519_32.h for which functions use these bounds for |
| // inputs or outputs. |
| #define assert_fe(f) \ |
| do { \ |
| for (unsigned _assert_fe_i = 0; _assert_fe_i < 10; _assert_fe_i++) { \ |
| assert(f[_assert_fe_i] <= \ |
| ((_assert_fe_i & 1) ? 0x2333333u : 0x4666666u)); \ |
| } \ |
| } while (0) |
| |
| // assert_fe_loose asserts that |f| satisfies bounds: |
| // |
| // [[0x0 ~> 0xd333332], [0x0 ~> 0x6999999], |
| // [0x0 ~> 0xd333332], [0x0 ~> 0x6999999], |
| // [0x0 ~> 0xd333332], [0x0 ~> 0x6999999], |
| // [0x0 ~> 0xd333332], [0x0 ~> 0x6999999], |
| // [0x0 ~> 0xd333332], [0x0 ~> 0x6999999]] |
| // |
| // See comments in curve25519_32.h for which functions use these bounds for |
| // inputs or outputs. |
| #define assert_fe_loose(f) \ |
| do { \ |
| for (unsigned _assert_fe_i = 0; _assert_fe_i < 10; _assert_fe_i++) { \ |
| assert(f[_assert_fe_i] <= \ |
| ((_assert_fe_i & 1) ? 0x6999999u : 0xd333332u)); \ |
| } \ |
| } while (0) |
| |
| //FIXME: use Zephyr macro |
| _Static_assert(sizeof(fe) == sizeof(fe_limb_t) * FE_NUM_LIMBS, |
| "fe_limb_t[FE_NUM_LIMBS] is inconsistent with fe"); |
| |
| static void fe_frombytes_strict(fe *h, const uint8_t s[32]) { |
| // |fiat_25519_from_bytes| requires the top-most bit be clear. |
| assert((s[31] & 0x80) == 0); |
| fiat_25519_from_bytes(h->v, s); |
| assert_fe(h->v); |
| } |
| |
| static void fe_frombytes(fe *h, const uint8_t s[32]) { |
| uint8_t s_copy[32]; |
| memcpy(s_copy, s, 32); |
| s_copy[31] &= 0x7f; |
| fe_frombytes_strict(h, s_copy); |
| } |
| |
| static void fe_tobytes(uint8_t s[32], const fe *f) { |
| assert_fe(f->v); |
| fiat_25519_to_bytes(s, f->v); |
| } |
| |
| // h = 0 |
| static void fe_0(fe *h) { |
| #if defined(MCUBOOT_USE_MBED_TLS) |
| mbedtls_platform_zeroize(h, sizeof(fe)); |
| #else |
| _set(h, 0, sizeof(fe)); |
| #endif |
| } |
| |
| // h = 1 |
| static void fe_1(fe *h) { |
| #if defined(MCUBOOT_USE_MBED_TLS) |
| mbedtls_platform_zeroize(h, sizeof(fe)); |
| #else |
| _set(h, 0, sizeof(fe)); |
| #endif |
| h->v[0] = 1; |
| } |
| |
| // h = f + g |
| // Can overlap h with f or g. |
| static void fe_add(fe_loose *h, const fe *f, const fe *g) { |
| assert_fe(f->v); |
| assert_fe(g->v); |
| fiat_25519_add(h->v, f->v, g->v); |
| assert_fe_loose(h->v); |
| } |
| |
| // h = f - g |
| // Can overlap h with f or g. |
| static void fe_sub(fe_loose *h, const fe *f, const fe *g) { |
| assert_fe(f->v); |
| assert_fe(g->v); |
| fiat_25519_sub(h->v, f->v, g->v); |
| assert_fe_loose(h->v); |
| } |
| |
| static void fe_carry(fe *h, const fe_loose* f) { |
| assert_fe_loose(f->v); |
| fiat_25519_carry(h->v, f->v); |
| assert_fe(h->v); |
| } |
| |
| static void fe_mul_impl(fe_limb_t out[FE_NUM_LIMBS], |
| const fe_limb_t in1[FE_NUM_LIMBS], |
| const fe_limb_t in2[FE_NUM_LIMBS]) { |
| assert_fe_loose(in1); |
| assert_fe_loose(in2); |
| fiat_25519_carry_mul(out, in1, in2); |
| assert_fe(out); |
| } |
| |
| static void fe_mul_ltt(fe_loose *h, const fe *f, const fe *g) { |
| fe_mul_impl(h->v, f->v, g->v); |
| } |
| |
| static void fe_mul_ttt(fe *h, const fe *f, const fe *g) { |
| fe_mul_impl(h->v, f->v, g->v); |
| } |
| |
| static void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g) { |
| fe_mul_impl(h->v, f->v, g->v); |
| } |
| |
| static void fe_mul_ttl(fe *h, const fe *f, const fe_loose *g) { |
| fe_mul_impl(h->v, f->v, g->v); |
| } |
| |
| static void fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g) { |
| fe_mul_impl(h->v, f->v, g->v); |
| } |
| |
| static void fe_sq_tl(fe *h, const fe_loose *f) { |
| assert_fe_loose(f->v); |
| fiat_25519_carry_square(h->v, f->v); |
| assert_fe(h->v); |
| } |
| |
| static void fe_sq_tt(fe *h, const fe *f) { |
| assert_fe_loose(f->v); |
| fiat_25519_carry_square(h->v, f->v); |
| assert_fe(h->v); |
| } |
| |
| // h = -f |
| static void fe_neg(fe_loose *h, const fe *f) { |
| assert_fe(f->v); |
| fiat_25519_opp(h->v, f->v); |
| assert_fe_loose(h->v); |
| } |
| |
| // h = f |
| static void fe_copy(fe *h, const fe *f) { |
| memmove(h, f, sizeof(fe)); |
| } |
| |
| static void fe_copy_lt(fe_loose *h, const fe *f) { |
| //FIXME: use Zephyr macro |
| _Static_assert(sizeof(fe_loose) == sizeof(fe), "fe and fe_loose mismatch"); |
| memmove(h, f, sizeof(fe)); |
| } |
| |
| static void fe_loose_invert(fe *out, const fe_loose *z) { |
| fe t0; |
| fe t1; |
| fe t2; |
| fe t3; |
| int i; |
| |
| fe_sq_tl(&t0, z); |
| fe_sq_tt(&t1, &t0); |
| for (i = 1; i < 2; ++i) { |
| fe_sq_tt(&t1, &t1); |
| } |
| fe_mul_tlt(&t1, z, &t1); |
| fe_mul_ttt(&t0, &t0, &t1); |
| fe_sq_tt(&t2, &t0); |
| fe_mul_ttt(&t1, &t1, &t2); |
| fe_sq_tt(&t2, &t1); |
| for (i = 1; i < 5; ++i) { |
| fe_sq_tt(&t2, &t2); |
| } |
| fe_mul_ttt(&t1, &t2, &t1); |
| fe_sq_tt(&t2, &t1); |
| for (i = 1; i < 10; ++i) { |
| fe_sq_tt(&t2, &t2); |
| } |
| fe_mul_ttt(&t2, &t2, &t1); |
| fe_sq_tt(&t3, &t2); |
| for (i = 1; i < 20; ++i) { |
| fe_sq_tt(&t3, &t3); |
| } |
| fe_mul_ttt(&t2, &t3, &t2); |
| fe_sq_tt(&t2, &t2); |
| for (i = 1; i < 10; ++i) { |
| fe_sq_tt(&t2, &t2); |
| } |
| fe_mul_ttt(&t1, &t2, &t1); |
| fe_sq_tt(&t2, &t1); |
| for (i = 1; i < 50; ++i) { |
| fe_sq_tt(&t2, &t2); |
| } |
| fe_mul_ttt(&t2, &t2, &t1); |
| fe_sq_tt(&t3, &t2); |
| for (i = 1; i < 100; ++i) { |
| fe_sq_tt(&t3, &t3); |
| } |
| fe_mul_ttt(&t2, &t3, &t2); |
| fe_sq_tt(&t2, &t2); |
| for (i = 1; i < 50; ++i) { |
| fe_sq_tt(&t2, &t2); |
| } |
| fe_mul_ttt(&t1, &t2, &t1); |
| fe_sq_tt(&t1, &t1); |
| for (i = 1; i < 5; ++i) { |
| fe_sq_tt(&t1, &t1); |
| } |
| fe_mul_ttt(out, &t1, &t0); |
| } |
| |
| static void fe_invert(fe *out, const fe *z) { |
| fe_loose l; |
| fe_copy_lt(&l, z); |
| fe_loose_invert(out, &l); |
| } |
| |
| static int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) { |
| const uint8_t *a = in_a; |
| const uint8_t *b = in_b; |
| uint8_t x = 0; |
| |
| for (size_t i = 0; i < len; i++) { |
| x |= a[i] ^ b[i]; |
| } |
| |
| return x; |
| } |
| |
| // return 0 if f == 0 |
| // return 1 if f != 0 |
| static int fe_isnonzero(const fe_loose *f) { |
| fe tight; |
| fe_carry(&tight, f); |
| uint8_t s[32]; |
| fe_tobytes(s, &tight); |
| |
| static const uint8_t zero[32] = {0}; |
| return CRYPTO_memcmp(s, zero, sizeof(zero)) != 0; |
| } |
| |
| // return 1 if f is in {1,3,5,...,q-2} |
| // return 0 if f is in {0,2,4,...,q-1} |
| static int fe_isnegative(const fe *f) { |
| uint8_t s[32]; |
| fe_tobytes(s, f); |
| return s[0] & 1; |
| } |
| |
| static void fe_sq2_tt(fe *h, const fe *f) { |
| // h = f^2 |
| fe_sq_tt(h, f); |
| |
| // h = h + h |
| fe_loose tmp; |
| fe_add(&tmp, h, h); |
| fe_carry(h, &tmp); |
| } |
| |
| static void fe_pow22523(fe *out, const fe *z) { |
| fe t0; |
| fe t1; |
| fe t2; |
| int i; |
| |
| fe_sq_tt(&t0, z); |
| fe_sq_tt(&t1, &t0); |
| for (i = 1; i < 2; ++i) { |
| fe_sq_tt(&t1, &t1); |
| } |
| fe_mul_ttt(&t1, z, &t1); |
| fe_mul_ttt(&t0, &t0, &t1); |
| fe_sq_tt(&t0, &t0); |
| fe_mul_ttt(&t0, &t1, &t0); |
| fe_sq_tt(&t1, &t0); |
| for (i = 1; i < 5; ++i) { |
| fe_sq_tt(&t1, &t1); |
| } |
| fe_mul_ttt(&t0, &t1, &t0); |
| fe_sq_tt(&t1, &t0); |
| for (i = 1; i < 10; ++i) { |
| fe_sq_tt(&t1, &t1); |
| } |
| fe_mul_ttt(&t1, &t1, &t0); |
| fe_sq_tt(&t2, &t1); |
| for (i = 1; i < 20; ++i) { |
| fe_sq_tt(&t2, &t2); |
| } |
| fe_mul_ttt(&t1, &t2, &t1); |
| fe_sq_tt(&t1, &t1); |
| for (i = 1; i < 10; ++i) { |
| fe_sq_tt(&t1, &t1); |
| } |
| fe_mul_ttt(&t0, &t1, &t0); |
| fe_sq_tt(&t1, &t0); |
| for (i = 1; i < 50; ++i) { |
| fe_sq_tt(&t1, &t1); |
| } |
| fe_mul_ttt(&t1, &t1, &t0); |
| fe_sq_tt(&t2, &t1); |
| for (i = 1; i < 100; ++i) { |
| fe_sq_tt(&t2, &t2); |
| } |
| fe_mul_ttt(&t1, &t2, &t1); |
| fe_sq_tt(&t1, &t1); |
| for (i = 1; i < 50; ++i) { |
| fe_sq_tt(&t1, &t1); |
| } |
| fe_mul_ttt(&t0, &t1, &t0); |
| fe_sq_tt(&t0, &t0); |
| for (i = 1; i < 2; ++i) { |
| fe_sq_tt(&t0, &t0); |
| } |
| fe_mul_ttt(out, &t0, z); |
| } |
| |
| |
| // Group operations. |
| |
| void x25519_ge_tobytes(uint8_t s[32], const ge_p2 *h) { |
| fe recip; |
| fe x; |
| fe y; |
| |
| fe_invert(&recip, &h->Z); |
| fe_mul_ttt(&x, &h->X, &recip); |
| fe_mul_ttt(&y, &h->Y, &recip); |
| fe_tobytes(s, &y); |
| s[31] ^= fe_isnegative(&x) << 7; |
| } |
| |
| int x25519_ge_frombytes_vartime(ge_p3 *h, const uint8_t s[32]) { |
| fe u; |
| fe_loose v; |
| fe v3; |
| fe vxx; |
| fe_loose check; |
| |
| fe_frombytes(&h->Y, s); |
| fe_1(&h->Z); |
| fe_sq_tt(&v3, &h->Y); |
| fe_mul_ttt(&vxx, &v3, &d); |
| fe_sub(&v, &v3, &h->Z); // u = y^2-1 |
| fe_carry(&u, &v); |
| fe_add(&v, &vxx, &h->Z); // v = dy^2+1 |
| |
| fe_sq_tl(&v3, &v); |
| fe_mul_ttl(&v3, &v3, &v); // v3 = v^3 |
| fe_sq_tt(&h->X, &v3); |
| fe_mul_ttl(&h->X, &h->X, &v); |
| fe_mul_ttt(&h->X, &h->X, &u); // x = uv^7 |
| |
| fe_pow22523(&h->X, &h->X); // x = (uv^7)^((q-5)/8) |
| fe_mul_ttt(&h->X, &h->X, &v3); |
| fe_mul_ttt(&h->X, &h->X, &u); // x = uv^3(uv^7)^((q-5)/8) |
| |
| fe_sq_tt(&vxx, &h->X); |
| fe_mul_ttl(&vxx, &vxx, &v); |
| fe_sub(&check, &vxx, &u); |
| if (fe_isnonzero(&check)) { |
| fe_add(&check, &vxx, &u); |
| if (fe_isnonzero(&check)) { |
| return 0; |
| } |
| fe_mul_ttt(&h->X, &h->X, &sqrtm1); |
| } |
| |
| if (fe_isnegative(&h->X) != (s[31] >> 7)) { |
| fe_loose t; |
| fe_neg(&t, &h->X); |
| fe_carry(&h->X, &t); |
| } |
| |
| fe_mul_ttt(&h->T, &h->X, &h->Y); |
| return 1; |
| } |
| |
| static void ge_p2_0(ge_p2 *h) { |
| fe_0(&h->X); |
| fe_1(&h->Y); |
| fe_1(&h->Z); |
| } |
| |
| // r = p |
| static void ge_p3_to_p2(ge_p2 *r, const ge_p3 *p) { |
| fe_copy(&r->X, &p->X); |
| fe_copy(&r->Y, &p->Y); |
| fe_copy(&r->Z, &p->Z); |
| } |
| |
| // r = p |
| void x25519_ge_p3_to_cached(ge_cached *r, const ge_p3 *p) { |
| fe_add(&r->YplusX, &p->Y, &p->X); |
| fe_sub(&r->YminusX, &p->Y, &p->X); |
| fe_copy_lt(&r->Z, &p->Z); |
| fe_mul_ltt(&r->T2d, &p->T, &d2); |
| } |
| |
| // r = p |
| void x25519_ge_p1p1_to_p2(ge_p2 *r, const ge_p1p1 *p) { |
| fe_mul_tll(&r->X, &p->X, &p->T); |
| fe_mul_tll(&r->Y, &p->Y, &p->Z); |
| fe_mul_tll(&r->Z, &p->Z, &p->T); |
| } |
| |
| // r = p |
| void x25519_ge_p1p1_to_p3(ge_p3 *r, const ge_p1p1 *p) { |
| fe_mul_tll(&r->X, &p->X, &p->T); |
| fe_mul_tll(&r->Y, &p->Y, &p->Z); |
| fe_mul_tll(&r->Z, &p->Z, &p->T); |
| fe_mul_tll(&r->T, &p->X, &p->Y); |
| } |
| |
| // r = 2 * p |
| static void ge_p2_dbl(ge_p1p1 *r, const ge_p2 *p) { |
| fe trX, trZ, trT; |
| fe t0; |
| |
| fe_sq_tt(&trX, &p->X); |
| fe_sq_tt(&trZ, &p->Y); |
| fe_sq2_tt(&trT, &p->Z); |
| fe_add(&r->Y, &p->X, &p->Y); |
| fe_sq_tl(&t0, &r->Y); |
| |
| fe_add(&r->Y, &trZ, &trX); |
| fe_sub(&r->Z, &trZ, &trX); |
| fe_carry(&trZ, &r->Y); |
| fe_sub(&r->X, &t0, &trZ); |
| fe_carry(&trZ, &r->Z); |
| fe_sub(&r->T, &trT, &trZ); |
| } |
| |
| // r = 2 * p |
| static void ge_p3_dbl(ge_p1p1 *r, const ge_p3 *p) { |
| ge_p2 q; |
| ge_p3_to_p2(&q, p); |
| ge_p2_dbl(r, &q); |
| } |
| |
| // r = p + q |
| static void ge_madd(ge_p1p1 *r, const ge_p3 *p, const ge_precomp *q) { |
| fe trY, trZ, trT; |
| |
| fe_add(&r->X, &p->Y, &p->X); |
| fe_sub(&r->Y, &p->Y, &p->X); |
| fe_mul_tll(&trZ, &r->X, &q->yplusx); |
| fe_mul_tll(&trY, &r->Y, &q->yminusx); |
| fe_mul_tlt(&trT, &q->xy2d, &p->T); |
| fe_add(&r->T, &p->Z, &p->Z); |
| fe_sub(&r->X, &trZ, &trY); |
| fe_add(&r->Y, &trZ, &trY); |
| fe_carry(&trZ, &r->T); |
| fe_add(&r->Z, &trZ, &trT); |
| fe_sub(&r->T, &trZ, &trT); |
| } |
| |
| // r = p - q |
| static void ge_msub(ge_p1p1 *r, const ge_p3 *p, const ge_precomp *q) { |
| fe trY, trZ, trT; |
| |
| fe_add(&r->X, &p->Y, &p->X); |
| fe_sub(&r->Y, &p->Y, &p->X); |
| fe_mul_tll(&trZ, &r->X, &q->yminusx); |
| fe_mul_tll(&trY, &r->Y, &q->yplusx); |
| fe_mul_tlt(&trT, &q->xy2d, &p->T); |
| fe_add(&r->T, &p->Z, &p->Z); |
| fe_sub(&r->X, &trZ, &trY); |
| fe_add(&r->Y, &trZ, &trY); |
| fe_carry(&trZ, &r->T); |
| fe_sub(&r->Z, &trZ, &trT); |
| fe_add(&r->T, &trZ, &trT); |
| } |
| |
| // r = p + q |
| void x25519_ge_add(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q) { |
| fe trX, trY, trZ, trT; |
| |
| fe_add(&r->X, &p->Y, &p->X); |
| fe_sub(&r->Y, &p->Y, &p->X); |
| fe_mul_tll(&trZ, &r->X, &q->YplusX); |
| fe_mul_tll(&trY, &r->Y, &q->YminusX); |
| fe_mul_tlt(&trT, &q->T2d, &p->T); |
| fe_mul_ttl(&trX, &p->Z, &q->Z); |
| fe_add(&r->T, &trX, &trX); |
| fe_sub(&r->X, &trZ, &trY); |
| fe_add(&r->Y, &trZ, &trY); |
| fe_carry(&trZ, &r->T); |
| fe_add(&r->Z, &trZ, &trT); |
| fe_sub(&r->T, &trZ, &trT); |
| } |
| |
| // r = p - q |
| void x25519_ge_sub(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q) { |
| fe trX, trY, trZ, trT; |
| |
| fe_add(&r->X, &p->Y, &p->X); |
| fe_sub(&r->Y, &p->Y, &p->X); |
| fe_mul_tll(&trZ, &r->X, &q->YminusX); |
| fe_mul_tll(&trY, &r->Y, &q->YplusX); |
| fe_mul_tlt(&trT, &q->T2d, &p->T); |
| fe_mul_ttl(&trX, &p->Z, &q->Z); |
| fe_add(&r->T, &trX, &trX); |
| fe_sub(&r->X, &trZ, &trY); |
| fe_add(&r->Y, &trZ, &trY); |
| fe_carry(&trZ, &r->T); |
| fe_sub(&r->Z, &trZ, &trT); |
| fe_add(&r->T, &trZ, &trT); |
| } |
| |
| static void slide(signed char *r, const uint8_t *a) { |
| int i; |
| int b; |
| int k; |
| |
| for (i = 0; i < 256; ++i) { |
| r[i] = 1 & (a[i >> 3] >> (i & 7)); |
| } |
| |
| for (i = 0; i < 256; ++i) { |
| if (r[i]) { |
| for (b = 1; b <= 6 && i + b < 256; ++b) { |
| if (r[i + b]) { |
| if (r[i] + (r[i + b] << b) <= 15) { |
| r[i] += r[i + b] << b; |
| r[i + b] = 0; |
| } else if (r[i] - (r[i + b] << b) >= -15) { |
| r[i] -= r[i + b] << b; |
| for (k = i + b; k < 256; ++k) { |
| if (!r[k]) { |
| r[k] = 1; |
| break; |
| } |
| r[k] = 0; |
| } |
| } else { |
| break; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // r = a * A + b * B |
| // where a = a[0]+256*a[1]+...+256^31 a[31]. |
| // and b = b[0]+256*b[1]+...+256^31 b[31]. |
| // B is the Ed25519 base point (x,4/5) with x positive. |
| static void ge_double_scalarmult_vartime(ge_p2 *r, const uint8_t *a, |
| const ge_p3 *A, const uint8_t *b) { |
| signed char aslide[256]; |
| signed char bslide[256]; |
| ge_cached Ai[8]; // A,3A,5A,7A,9A,11A,13A,15A |
| ge_p1p1 t; |
| ge_p3 u; |
| ge_p3 A2; |
| int i; |
| |
| slide(aslide, a); |
| slide(bslide, b); |
| |
| x25519_ge_p3_to_cached(&Ai[0], A); |
| ge_p3_dbl(&t, A); |
| x25519_ge_p1p1_to_p3(&A2, &t); |
| x25519_ge_add(&t, &A2, &Ai[0]); |
| x25519_ge_p1p1_to_p3(&u, &t); |
| x25519_ge_p3_to_cached(&Ai[1], &u); |
| x25519_ge_add(&t, &A2, &Ai[1]); |
| x25519_ge_p1p1_to_p3(&u, &t); |
| x25519_ge_p3_to_cached(&Ai[2], &u); |
| x25519_ge_add(&t, &A2, &Ai[2]); |
| x25519_ge_p1p1_to_p3(&u, &t); |
| x25519_ge_p3_to_cached(&Ai[3], &u); |
| x25519_ge_add(&t, &A2, &Ai[3]); |
| x25519_ge_p1p1_to_p3(&u, &t); |
| x25519_ge_p3_to_cached(&Ai[4], &u); |
| x25519_ge_add(&t, &A2, &Ai[4]); |
| x25519_ge_p1p1_to_p3(&u, &t); |
| x25519_ge_p3_to_cached(&Ai[5], &u); |
| x25519_ge_add(&t, &A2, &Ai[5]); |
| x25519_ge_p1p1_to_p3(&u, &t); |
| x25519_ge_p3_to_cached(&Ai[6], &u); |
| x25519_ge_add(&t, &A2, &Ai[6]); |
| x25519_ge_p1p1_to_p3(&u, &t); |
| x25519_ge_p3_to_cached(&Ai[7], &u); |
| |
| ge_p2_0(r); |
| |
| for (i = 255; i >= 0; --i) { |
| if (aslide[i] || bslide[i]) { |
| break; |
| } |
| } |
| |
| for (; i >= 0; --i) { |
| ge_p2_dbl(&t, r); |
| |
| if (aslide[i] > 0) { |
| x25519_ge_p1p1_to_p3(&u, &t); |
| x25519_ge_add(&t, &u, &Ai[aslide[i] / 2]); |
| } else if (aslide[i] < 0) { |
| x25519_ge_p1p1_to_p3(&u, &t); |
| x25519_ge_sub(&t, &u, &Ai[(-aslide[i]) / 2]); |
| } |
| |
| if (bslide[i] > 0) { |
| x25519_ge_p1p1_to_p3(&u, &t); |
| ge_madd(&t, &u, &Bi[bslide[i] / 2]); |
| } else if (bslide[i] < 0) { |
| x25519_ge_p1p1_to_p3(&u, &t); |
| ge_msub(&t, &u, &Bi[(-bslide[i]) / 2]); |
| } |
| |
| x25519_ge_p1p1_to_p2(r, &t); |
| } |
| } |
| |
| // int64_lshift21 returns |a << 21| but is defined when shifting bits into the |
| // sign bit. This works around a language flaw in C. |
| static inline int64_t int64_lshift21(int64_t a) { |
| return (int64_t)((uint64_t)a << 21); |
| } |
| |
| // The set of scalars is \Z/l |
| // where l = 2^252 + 27742317777372353535851937790883648493. |
| |
| // Input: |
| // s[0]+256*s[1]+...+256^63*s[63] = s |
| // |
| // Output: |
| // s[0]+256*s[1]+...+256^31*s[31] = s mod l |
| // where l = 2^252 + 27742317777372353535851937790883648493. |
| // Overwrites s in place. |
| void x25519_sc_reduce(uint8_t s[64]) { |
| int64_t s0 = 2097151 & load_3(s); |
| int64_t s1 = 2097151 & (load_4(s + 2) >> 5); |
| int64_t s2 = 2097151 & (load_3(s + 5) >> 2); |
| int64_t s3 = 2097151 & (load_4(s + 7) >> 7); |
| int64_t s4 = 2097151 & (load_4(s + 10) >> 4); |
| int64_t s5 = 2097151 & (load_3(s + 13) >> 1); |
| int64_t s6 = 2097151 & (load_4(s + 15) >> 6); |
| int64_t s7 = 2097151 & (load_3(s + 18) >> 3); |
| int64_t s8 = 2097151 & load_3(s + 21); |
| int64_t s9 = 2097151 & (load_4(s + 23) >> 5); |
| int64_t s10 = 2097151 & (load_3(s + 26) >> 2); |
| int64_t s11 = 2097151 & (load_4(s + 28) >> 7); |
| int64_t s12 = 2097151 & (load_4(s + 31) >> 4); |
| int64_t s13 = 2097151 & (load_3(s + 34) >> 1); |
| int64_t s14 = 2097151 & (load_4(s + 36) >> 6); |
| int64_t s15 = 2097151 & (load_3(s + 39) >> 3); |
| int64_t s16 = 2097151 & load_3(s + 42); |
| int64_t s17 = 2097151 & (load_4(s + 44) >> 5); |
| int64_t s18 = 2097151 & (load_3(s + 47) >> 2); |
| int64_t s19 = 2097151 & (load_4(s + 49) >> 7); |
| int64_t s20 = 2097151 & (load_4(s + 52) >> 4); |
| int64_t s21 = 2097151 & (load_3(s + 55) >> 1); |
| int64_t s22 = 2097151 & (load_4(s + 57) >> 6); |
| int64_t s23 = (load_4(s + 60) >> 3); |
| int64_t carry0; |
| int64_t carry1; |
| int64_t carry2; |
| int64_t carry3; |
| int64_t carry4; |
| int64_t carry5; |
| int64_t carry6; |
| int64_t carry7; |
| int64_t carry8; |
| int64_t carry9; |
| int64_t carry10; |
| int64_t carry11; |
| int64_t carry12; |
| int64_t carry13; |
| int64_t carry14; |
| int64_t carry15; |
| int64_t carry16; |
| |
| s11 += s23 * 666643; |
| s12 += s23 * 470296; |
| s13 += s23 * 654183; |
| s14 -= s23 * 997805; |
| s15 += s23 * 136657; |
| s16 -= s23 * 683901; |
| s23 = 0; |
| |
| s10 += s22 * 666643; |
| s11 += s22 * 470296; |
| s12 += s22 * 654183; |
| s13 -= s22 * 997805; |
| s14 += s22 * 136657; |
| s15 -= s22 * 683901; |
| s22 = 0; |
| |
| s9 += s21 * 666643; |
| s10 += s21 * 470296; |
| s11 += s21 * 654183; |
| s12 -= s21 * 997805; |
| s13 += s21 * 136657; |
| s14 -= s21 * 683901; |
| s21 = 0; |
| |
| s8 += s20 * 666643; |
| s9 += s20 * 470296; |
| s10 += s20 * 654183; |
| s11 -= s20 * 997805; |
| s12 += s20 * 136657; |
| s13 -= s20 * 683901; |
| s20 = 0; |
| |
| s7 += s19 * 666643; |
| s8 += s19 * 470296; |
| s9 += s19 * 654183; |
| s10 -= s19 * 997805; |
| s11 += s19 * 136657; |
| s12 -= s19 * 683901; |
| s19 = 0; |
| |
| s6 += s18 * 666643; |
| s7 += s18 * 470296; |
| s8 += s18 * 654183; |
| s9 -= s18 * 997805; |
| s10 += s18 * 136657; |
| s11 -= s18 * 683901; |
| s18 = 0; |
| |
| carry6 = (s6 + (1 << 20)) >> 21; |
| s7 += carry6; |
| s6 -= int64_lshift21(carry6); |
| carry8 = (s8 + (1 << 20)) >> 21; |
| s9 += carry8; |
| s8 -= int64_lshift21(carry8); |
| carry10 = (s10 + (1 << 20)) >> 21; |
| s11 += carry10; |
| s10 -= int64_lshift21(carry10); |
| carry12 = (s12 + (1 << 20)) >> 21; |
| s13 += carry12; |
| s12 -= int64_lshift21(carry12); |
| carry14 = (s14 + (1 << 20)) >> 21; |
| s15 += carry14; |
| s14 -= int64_lshift21(carry14); |
| carry16 = (s16 + (1 << 20)) >> 21; |
| s17 += carry16; |
| s16 -= int64_lshift21(carry16); |
| |
| carry7 = (s7 + (1 << 20)) >> 21; |
| s8 += carry7; |
| s7 -= int64_lshift21(carry7); |
| carry9 = (s9 + (1 << 20)) >> 21; |
| s10 += carry9; |
| s9 -= int64_lshift21(carry9); |
| carry11 = (s11 + (1 << 20)) >> 21; |
| s12 += carry11; |
| s11 -= int64_lshift21(carry11); |
| carry13 = (s13 + (1 << 20)) >> 21; |
| s14 += carry13; |
| s13 -= int64_lshift21(carry13); |
| carry15 = (s15 + (1 << 20)) >> 21; |
| s16 += carry15; |
| s15 -= int64_lshift21(carry15); |
| |
| s5 += s17 * 666643; |
| s6 += s17 * 470296; |
| s7 += s17 * 654183; |
| s8 -= s17 * 997805; |
| s9 += s17 * 136657; |
| s10 -= s17 * 683901; |
| s17 = 0; |
| |
| s4 += s16 * 666643; |
| s5 += s16 * 470296; |
| s6 += s16 * 654183; |
| s7 -= s16 * 997805; |
| s8 += s16 * 136657; |
| s9 -= s16 * 683901; |
| s16 = 0; |
| |
| s3 += s15 * 666643; |
| s4 += s15 * 470296; |
| s5 += s15 * 654183; |
| s6 -= s15 * 997805; |
| s7 += s15 * 136657; |
| s8 -= s15 * 683901; |
| s15 = 0; |
| |
| s2 += s14 * 666643; |
| s3 += s14 * 470296; |
| s4 += s14 * 654183; |
| s5 -= s14 * 997805; |
| s6 += s14 * 136657; |
| s7 -= s14 * 683901; |
| s14 = 0; |
| |
| s1 += s13 * 666643; |
| s2 += s13 * 470296; |
| s3 += s13 * 654183; |
| s4 -= s13 * 997805; |
| s5 += s13 * 136657; |
| s6 -= s13 * 683901; |
| s13 = 0; |
| |
| s0 += s12 * 666643; |
| s1 += s12 * 470296; |
| s2 += s12 * 654183; |
| s3 -= s12 * 997805; |
| s4 += s12 * 136657; |
| s5 -= s12 * 683901; |
| s12 = 0; |
| |
| carry0 = (s0 + (1 << 20)) >> 21; |
| s1 += carry0; |
| s0 -= int64_lshift21(carry0); |
| carry2 = (s2 + (1 << 20)) >> 21; |
| s3 += carry2; |
| s2 -= int64_lshift21(carry2); |
| carry4 = (s4 + (1 << 20)) >> 21; |
| s5 += carry4; |
| s4 -= int64_lshift21(carry4); |
| carry6 = (s6 + (1 << 20)) >> 21; |
| s7 += carry6; |
| s6 -= int64_lshift21(carry6); |
| carry8 = (s8 + (1 << 20)) >> 21; |
| s9 += carry8; |
| s8 -= int64_lshift21(carry8); |
| carry10 = (s10 + (1 << 20)) >> 21; |
| s11 += carry10; |
| s10 -= int64_lshift21(carry10); |
| |
| carry1 = (s1 + (1 << 20)) >> 21; |
| s2 += carry1; |
| s1 -= int64_lshift21(carry1); |
| carry3 = (s3 + (1 << 20)) >> 21; |
| s4 += carry3; |
| s3 -= int64_lshift21(carry3); |
| carry5 = (s5 + (1 << 20)) >> 21; |
| s6 += carry5; |
| s5 -= int64_lshift21(carry5); |
| carry7 = (s7 + (1 << 20)) >> 21; |
| s8 += carry7; |
| s7 -= int64_lshift21(carry7); |
| carry9 = (s9 + (1 << 20)) >> 21; |
| s10 += carry9; |
| s9 -= int64_lshift21(carry9); |
| carry11 = (s11 + (1 << 20)) >> 21; |
| s12 += carry11; |
| s11 -= int64_lshift21(carry11); |
| |
| s0 += s12 * 666643; |
| s1 += s12 * 470296; |
| s2 += s12 * 654183; |
| s3 -= s12 * 997805; |
| s4 += s12 * 136657; |
| s5 -= s12 * 683901; |
| s12 = 0; |
| |
| carry0 = s0 >> 21; |
| s1 += carry0; |
| s0 -= int64_lshift21(carry0); |
| carry1 = s1 >> 21; |
| s2 += carry1; |
| s1 -= int64_lshift21(carry1); |
| carry2 = s2 >> 21; |
| s3 += carry2; |
| s2 -= int64_lshift21(carry2); |
| carry3 = s3 >> 21; |
| s4 += carry3; |
| s3 -= int64_lshift21(carry3); |
| carry4 = s4 >> 21; |
| s5 += carry4; |
| s4 -= int64_lshift21(carry4); |
| carry5 = s5 >> 21; |
| s6 += carry5; |
| s5 -= int64_lshift21(carry5); |
| carry6 = s6 >> 21; |
| s7 += carry6; |
| s6 -= int64_lshift21(carry6); |
| carry7 = s7 >> 21; |
| s8 += carry7; |
| s7 -= int64_lshift21(carry7); |
| carry8 = s8 >> 21; |
| s9 += carry8; |
| s8 -= int64_lshift21(carry8); |
| carry9 = s9 >> 21; |
| s10 += carry9; |
| s9 -= int64_lshift21(carry9); |
| carry10 = s10 >> 21; |
| s11 += carry10; |
| s10 -= int64_lshift21(carry10); |
| carry11 = s11 >> 21; |
| s12 += carry11; |
| s11 -= int64_lshift21(carry11); |
| |
| s0 += s12 * 666643; |
| s1 += s12 * 470296; |
| s2 += s12 * 654183; |
| s3 -= s12 * 997805; |
| s4 += s12 * 136657; |
| s5 -= s12 * 683901; |
| s12 = 0; |
| |
| carry0 = s0 >> 21; |
| s1 += carry0; |
| s0 -= int64_lshift21(carry0); |
| carry1 = s1 >> 21; |
| s2 += carry1; |
| s1 -= int64_lshift21(carry1); |
| carry2 = s2 >> 21; |
| s3 += carry2; |
| s2 -= int64_lshift21(carry2); |
| carry3 = s3 >> 21; |
| s4 += carry3; |
| s3 -= int64_lshift21(carry3); |
| carry4 = s4 >> 21; |
| s5 += carry4; |
| s4 -= int64_lshift21(carry4); |
| carry5 = s5 >> 21; |
| s6 += carry5; |
| s5 -= int64_lshift21(carry5); |
| carry6 = s6 >> 21; |
| s7 += carry6; |
| s6 -= int64_lshift21(carry6); |
| carry7 = s7 >> 21; |
| s8 += carry7; |
| s7 -= int64_lshift21(carry7); |
| carry8 = s8 >> 21; |
| s9 += carry8; |
| s8 -= int64_lshift21(carry8); |
| carry9 = s9 >> 21; |
| s10 += carry9; |
| s9 -= int64_lshift21(carry9); |
| carry10 = s10 >> 21; |
| s11 += carry10; |
| s10 -= int64_lshift21(carry10); |
| |
| s[0] = s0 >> 0; |
| s[1] = s0 >> 8; |
| s[2] = (s0 >> 16) | (s1 << 5); |
| s[3] = s1 >> 3; |
| s[4] = s1 >> 11; |
| s[5] = (s1 >> 19) | (s2 << 2); |
| s[6] = s2 >> 6; |
| s[7] = (s2 >> 14) | (s3 << 7); |
| s[8] = s3 >> 1; |
| s[9] = s3 >> 9; |
| s[10] = (s3 >> 17) | (s4 << 4); |
| s[11] = s4 >> 4; |
| s[12] = s4 >> 12; |
| s[13] = (s4 >> 20) | (s5 << 1); |
| s[14] = s5 >> 7; |
| s[15] = (s5 >> 15) | (s6 << 6); |
| s[16] = s6 >> 2; |
| s[17] = s6 >> 10; |
| s[18] = (s6 >> 18) | (s7 << 3); |
| s[19] = s7 >> 5; |
| s[20] = s7 >> 13; |
| s[21] = s8 >> 0; |
| s[22] = s8 >> 8; |
| s[23] = (s8 >> 16) | (s9 << 5); |
| s[24] = s9 >> 3; |
| s[25] = s9 >> 11; |
| s[26] = (s9 >> 19) | (s10 << 2); |
| s[27] = s10 >> 6; |
| s[28] = (s10 >> 14) | (s11 << 7); |
| s[29] = s11 >> 1; |
| s[30] = s11 >> 9; |
| s[31] = s11 >> 17; |
| } |
| |
| int ED25519_verify(const uint8_t *message, size_t message_len, |
| const uint8_t signature[64], const uint8_t public_key[32]) { |
| ge_p3 A; |
| if ((signature[63] & 224) != 0 || |
| !x25519_ge_frombytes_vartime(&A, public_key)) { |
| return 0; |
| } |
| |
| fe_loose t; |
| fe_neg(&t, &A.X); |
| fe_carry(&A.X, &t); |
| fe_neg(&t, &A.T); |
| fe_carry(&A.T, &t); |
| |
| uint8_t pkcopy[32]; |
| memcpy(pkcopy, public_key, 32); |
| uint8_t rcopy[32]; |
| memcpy(rcopy, signature, 32); |
| union { |
| uint64_t u64[4]; |
| uint8_t u8[32]; |
| } scopy; |
| memcpy(&scopy.u8[0], signature + 32, 32); |
| |
| // https://tools.ietf.org/html/rfc8032#section-5.1.7 requires that s be in |
| // the range [0, order) in order to prevent signature malleability. |
| |
| // kOrder is the order of Curve25519 in little-endian form. |
| static const uint64_t kOrder[4] = { |
| UINT64_C(0x5812631a5cf5d3ed), |
| UINT64_C(0x14def9dea2f79cd6), |
| 0, |
| UINT64_C(0x1000000000000000), |
| }; |
| for (size_t i = 3;; i--) { |
| if (scopy.u64[i] > kOrder[i]) { |
| return 0; |
| } else if (scopy.u64[i] < kOrder[i]) { |
| break; |
| } else if (i == 0) { |
| return 0; |
| } |
| } |
| |
| #if defined(MCUBOOT_USE_MBED_TLS) |
| |
| mbedtls_sha512_context ctx; |
| int ret; |
| |
| mbedtls_sha512_init(&ctx); |
| |
| ret = mbedtls_sha512_starts_ret(&ctx, 0); |
| assert(ret == 0); |
| |
| ret = mbedtls_sha512_update_ret(&ctx, signature, 32); |
| assert(ret == 0); |
| ret = mbedtls_sha512_update_ret(&ctx, public_key, 32); |
| assert(ret == 0); |
| ret = mbedtls_sha512_update_ret(&ctx, message, message_len); |
| assert(ret == 0); |
| |
| uint8_t h[SHA512_DIGEST_LENGTH]; |
| ret = mbedtls_sha512_finish_ret(&ctx, h); |
| assert(ret == 0); |
| mbedtls_sha512_free(&ctx); |
| |
| #else |
| |
| struct tc_sha512_state_struct s; |
| int rc; |
| |
| rc = tc_sha512_init(&s); |
| assert(rc == TC_CRYPTO_SUCCESS); |
| |
| rc = tc_sha512_update(&s, signature, 32); |
| assert(rc == TC_CRYPTO_SUCCESS); |
| rc = tc_sha512_update(&s, public_key, 32); |
| assert(rc == TC_CRYPTO_SUCCESS); |
| rc = tc_sha512_update(&s, message, message_len); |
| assert(rc == TC_CRYPTO_SUCCESS); |
| |
| uint8_t h[TC_SHA512_DIGEST_SIZE]; |
| rc = tc_sha512_final(h, &s); |
| assert(rc == TC_CRYPTO_SUCCESS); |
| |
| #endif |
| |
| x25519_sc_reduce(h); |
| |
| ge_p2 R; |
| ge_double_scalarmult_vartime(&R, h, &A, scopy.u8); |
| |
| uint8_t rcheck[32]; |
| x25519_ge_tobytes(rcheck, &R); |
| |
| return CRYPTO_memcmp(rcheck, rcopy, sizeof(rcheck)) == 0; |
| } |
| |
| static void fe_cswap(fe *f, fe *g, fe_limb_t b) { |
| b = 0-b; |
| for (unsigned i = 0; i < FE_NUM_LIMBS; i++) { |
| fe_limb_t x = f->v[i] ^ g->v[i]; |
| x &= b; |
| f->v[i] ^= x; |
| g->v[i] ^= x; |
| } |
| } |
| |
| static void fiat_25519_carry_scmul_121666(uint32_t out1[10], const uint32_t arg1[10]) { |
| uint64_t x1 = ((uint64_t)UINT32_C(0x1db42) * (arg1[9])); |
| uint64_t x2 = ((uint64_t)UINT32_C(0x1db42) * (arg1[8])); |
| uint64_t x3 = ((uint64_t)UINT32_C(0x1db42) * (arg1[7])); |
| uint64_t x4 = ((uint64_t)UINT32_C(0x1db42) * (arg1[6])); |
| uint64_t x5 = ((uint64_t)UINT32_C(0x1db42) * (arg1[5])); |
| uint64_t x6 = ((uint64_t)UINT32_C(0x1db42) * (arg1[4])); |
| uint64_t x7 = ((uint64_t)UINT32_C(0x1db42) * (arg1[3])); |
| uint64_t x8 = ((uint64_t)UINT32_C(0x1db42) * (arg1[2])); |
| uint64_t x9 = ((uint64_t)UINT32_C(0x1db42) * (arg1[1])); |
| uint64_t x10 = ((uint64_t)UINT32_C(0x1db42) * (arg1[0])); |
| uint32_t x11 = (uint32_t)(x10 >> 26); |
| uint32_t x12 = (uint32_t)(x10 & UINT32_C(0x3ffffff)); |
| uint64_t x13 = (x11 + x9); |
| uint32_t x14 = (uint32_t)(x13 >> 25); |
| uint32_t x15 = (uint32_t)(x13 & UINT32_C(0x1ffffff)); |
| uint64_t x16 = (x14 + x8); |
| uint32_t x17 = (uint32_t)(x16 >> 26); |
| uint32_t x18 = (uint32_t)(x16 & UINT32_C(0x3ffffff)); |
| uint64_t x19 = (x17 + x7); |
| uint32_t x20 = (uint32_t)(x19 >> 25); |
| uint32_t x21 = (uint32_t)(x19 & UINT32_C(0x1ffffff)); |
| uint64_t x22 = (x20 + x6); |
| uint32_t x23 = (uint32_t)(x22 >> 26); |
| uint32_t x24 = (uint32_t)(x22 & UINT32_C(0x3ffffff)); |
| uint64_t x25 = (x23 + x5); |
| uint32_t x26 = (uint32_t)(x25 >> 25); |
| uint32_t x27 = (uint32_t)(x25 & UINT32_C(0x1ffffff)); |
| uint64_t x28 = (x26 + x4); |
| uint32_t x29 = (uint32_t)(x28 >> 26); |
| uint32_t x30 = (uint32_t)(x28 & UINT32_C(0x3ffffff)); |
| uint64_t x31 = (x29 + x3); |
| uint32_t x32 = (uint32_t)(x31 >> 25); |
| uint32_t x33 = (uint32_t)(x31 & UINT32_C(0x1ffffff)); |
| uint64_t x34 = (x32 + x2); |
| uint32_t x35 = (uint32_t)(x34 >> 26); |
| uint32_t x36 = (uint32_t)(x34 & UINT32_C(0x3ffffff)); |
| uint64_t x37 = (x35 + x1); |
| uint32_t x38 = (uint32_t)(x37 >> 25); |
| uint32_t x39 = (uint32_t)(x37 & UINT32_C(0x1ffffff)); |
| uint32_t x40 = (x38 * (uint32_t)UINT8_C(0x13)); |
| uint32_t x41 = (x12 + x40); |
| uint32_t x42 = (x41 >> 26); |
| uint32_t x43 = (x41 & UINT32_C(0x3ffffff)); |
| uint32_t x44 = (x42 + x15); |
| uint32_t x45 = (x44 >> 25); |
| uint32_t x46 = (x44 & UINT32_C(0x1ffffff)); |
| uint32_t x47 = (x45 + x18); |
| out1[0] = x43; |
| out1[1] = x46; |
| out1[2] = x47; |
| out1[3] = x21; |
| out1[4] = x24; |
| out1[5] = x27; |
| out1[6] = x30; |
| out1[7] = x33; |
| out1[8] = x36; |
| out1[9] = x39; |
| } |
| |
| static void fe_mul121666(fe *h, const fe_loose *f) { |
| assert_fe_loose(f->v); |
| fiat_25519_carry_scmul_121666(h->v, f->v); |
| assert_fe(h->v); |
| } |
| |
| static void x25519_scalar_mult_generic(uint8_t out[32], |
| const uint8_t scalar[32], |
| const uint8_t point[32]) { |
| fe x1, x2, z2, x3, z3, tmp0, tmp1; |
| fe_loose x2l, z2l, x3l, tmp0l, tmp1l; |
| |
| uint8_t e[32]; |
| memcpy(e, scalar, 32); |
| e[0] &= 248; |
| e[31] &= 127; |
| e[31] |= 64; |
| |
| // The following implementation was transcribed to Coq and proven to |
| // correspond to unary scalar multiplication in affine coordinates given that |
| // x1 != 0 is the x coordinate of some point on the curve. It was also checked |
| // in Coq that doing a ladderstep with x1 = x3 = 0 gives z2' = z3' = 0, and z2 |
| // = z3 = 0 gives z2' = z3' = 0. The statement was quantified over the |
| // underlying field, so it applies to Curve25519 itself and the quadratic |
| // twist of Curve25519. It was not proven in Coq that prime-field arithmetic |
| // correctly simulates extension-field arithmetic on prime-field values. |
| // The decoding of the byte array representation of e was not considered. |
| // Specification of Montgomery curves in affine coordinates: |
| // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27> |
| // Proof that these form a group that is isomorphic to a Weierstrass curve: |
| // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35> |
| // Coq transcription and correctness proof of the loop (where scalarbits=255): |
| // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118> |
| // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278> |
| // preconditions: 0 <= e < 2^255 (not necessarily e < order), fe_invert(0) = 0 |
| fe_frombytes(&x1, point); |
| fe_1(&x2); |
| fe_0(&z2); |
| fe_copy(&x3, &x1); |
| fe_1(&z3); |
| |
| unsigned swap = 0; |
| int pos; |
| for (pos = 254; pos >= 0; --pos) { |
| // loop invariant as of right before the test, for the case where x1 != 0: |
| // pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3 is nonzero |
| // let r := e >> (pos+1) in the following equalities of projective points: |
| // to_xz (r*P) === if swap then (x3, z3) else (x2, z2) |
| // to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3) |
| // x1 is the nonzero x coordinate of the nonzero point (r*P-(r+1)*P) |
| unsigned b = 1 & (e[pos / 8] >> (pos & 7)); |
| swap ^= b; |
| fe_cswap(&x2, &x3, swap); |
| fe_cswap(&z2, &z3, swap); |
| swap = b; |
| // Coq transcription of ladderstep formula (called from transcribed loop): |
| // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89> |
| // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131> |
| // x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217> |
| // x1 = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147> |
| fe_sub(&tmp0l, &x3, &z3); |
| fe_sub(&tmp1l, &x2, &z2); |
| fe_add(&x2l, &x2, &z2); |
| fe_add(&z2l, &x3, &z3); |
| fe_mul_tll(&z3, &tmp0l, &x2l); |
| fe_mul_tll(&z2, &z2l, &tmp1l); |
| fe_sq_tl(&tmp0, &tmp1l); |
| fe_sq_tl(&tmp1, &x2l); |
| fe_add(&x3l, &z3, &z2); |
| fe_sub(&z2l, &z3, &z2); |
| fe_mul_ttt(&x2, &tmp1, &tmp0); |
| fe_sub(&tmp1l, &tmp1, &tmp0); |
| fe_sq_tl(&z2, &z2l); |
| fe_mul121666(&z3, &tmp1l); |
| fe_sq_tl(&x3, &x3l); |
| fe_add(&tmp0l, &tmp0, &z3); |
| fe_mul_ttt(&z3, &x1, &z2); |
| fe_mul_tll(&z2, &tmp1l, &tmp0l); |
| } |
| // here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3) else (x2, z2) |
| fe_cswap(&x2, &x3, swap); |
| fe_cswap(&z2, &z3, swap); |
| |
| fe_invert(&z2, &z2); |
| fe_mul_ttt(&x2, &x2, &z2); |
| fe_tobytes(out, &x2); |
| } |
| |
| int X25519(uint8_t out_shared_key[32], const uint8_t private_key[32], |
| const uint8_t peer_public_value[32]) { |
| static const uint8_t kZeros[32] = {0}; |
| x25519_scalar_mult_generic(out_shared_key, private_key, peer_public_value); |
| // The all-zero output results when the input is a point of small order. |
| return CRYPTO_memcmp(kZeros, out_shared_key, 32) != 0; |
| } |