Fabio Utzig | 705dfb3 | 2019-05-11 20:06:37 -0300 | [diff] [blame] | 1 | // The MIT License (MIT) |
| 2 | // |
| 3 | // Copyright (c) 2015-2016 the fiat-crypto authors (see the AUTHORS file). |
| 4 | // |
| 5 | // Permission is hereby granted, free of charge, to any person obtaining a copy |
| 6 | // of this software and associated documentation files (the "Software"), to deal |
| 7 | // in the Software without restriction, including without limitation the rights |
| 8 | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 9 | // copies of the Software, and to permit persons to whom the Software is |
| 10 | // furnished to do so, subject to the following conditions: |
| 11 | // |
| 12 | // The above copyright notice and this permission notice shall be included in all |
| 13 | // copies or substantial portions of the Software. |
| 14 | // |
| 15 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 16 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 17 | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 18 | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 19 | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 20 | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 21 | // SOFTWARE. |
| 22 | |
| 23 | // Some of this code is taken from the ref10 version of Ed25519 in SUPERCOP |
| 24 | // 20141124 (http://bench.cr.yp.to/supercop.html). That code is released as |
| 25 | // public domain but parts have been replaced with code generated by Fiat |
| 26 | // (https://github.com/mit-plv/fiat-crypto), which is MIT licensed. |
| 27 | // |
| 28 | // The field functions are shared by Ed25519 and X25519 where possible. |
| 29 | |
| 30 | #include <assert.h> |
| 31 | #include <string.h> |
| 32 | #include <stdint.h> |
| 33 | |
Fabio Utzig | a1c142d | 2020-01-03 08:28:11 -0300 | [diff] [blame] | 34 | #include <mcuboot_config/mcuboot_config.h> |
| 35 | |
| 36 | #if defined(MCUBOOT_USE_MBED_TLS) |
Fabio Utzig | 705dfb3 | 2019-05-11 20:06:37 -0300 | [diff] [blame] | 37 | #include <mbedtls/platform_util.h> |
| 38 | #include <mbedtls/sha512.h> |
Fabio Utzig | a1c142d | 2020-01-03 08:28:11 -0300 | [diff] [blame] | 39 | #else |
| 40 | #include <tinycrypt/constants.h> |
| 41 | #include <tinycrypt/utils.h> |
| 42 | #include <tinycrypt/sha512.h> |
| 43 | #endif |
Fabio Utzig | 705dfb3 | 2019-05-11 20:06:37 -0300 | [diff] [blame] | 44 | |
| 45 | #include "curve25519.h" |
| 46 | // Various pre-computed constants. |
| 47 | #include "curve25519_tables.h" |
| 48 | |
| 49 | #define SHA512_DIGEST_LENGTH 64 |
| 50 | |
| 51 | // Low-level intrinsic operations |
| 52 | |
| 53 | static uint64_t load_3(const uint8_t *in) { |
| 54 | uint64_t result; |
| 55 | result = (uint64_t)in[0]; |
| 56 | result |= ((uint64_t)in[1]) << 8; |
| 57 | result |= ((uint64_t)in[2]) << 16; |
| 58 | return result; |
| 59 | } |
| 60 | |
| 61 | static uint64_t load_4(const uint8_t *in) { |
| 62 | uint64_t result; |
| 63 | result = (uint64_t)in[0]; |
| 64 | result |= ((uint64_t)in[1]) << 8; |
| 65 | result |= ((uint64_t)in[2]) << 16; |
| 66 | result |= ((uint64_t)in[3]) << 24; |
| 67 | return result; |
| 68 | } |
| 69 | |
| 70 | |
| 71 | // Field operations. |
| 72 | |
| 73 | typedef uint32_t fe_limb_t; |
| 74 | #define FE_NUM_LIMBS 10 |
| 75 | |
| 76 | // assert_fe asserts that |f| satisfies bounds: |
| 77 | // |
| 78 | // [[0x0 ~> 0x4666666], [0x0 ~> 0x2333333], |
| 79 | // [0x0 ~> 0x4666666], [0x0 ~> 0x2333333], |
| 80 | // [0x0 ~> 0x4666666], [0x0 ~> 0x2333333], |
| 81 | // [0x0 ~> 0x4666666], [0x0 ~> 0x2333333], |
| 82 | // [0x0 ~> 0x4666666], [0x0 ~> 0x2333333]] |
| 83 | // |
| 84 | // See comments in curve25519_32.h for which functions use these bounds for |
| 85 | // inputs or outputs. |
| 86 | #define assert_fe(f) \ |
| 87 | do { \ |
| 88 | for (unsigned _assert_fe_i = 0; _assert_fe_i < 10; _assert_fe_i++) { \ |
| 89 | assert(f[_assert_fe_i] <= \ |
| 90 | ((_assert_fe_i & 1) ? 0x2333333u : 0x4666666u)); \ |
| 91 | } \ |
| 92 | } while (0) |
| 93 | |
| 94 | // assert_fe_loose asserts that |f| satisfies bounds: |
| 95 | // |
| 96 | // [[0x0 ~> 0xd333332], [0x0 ~> 0x6999999], |
| 97 | // [0x0 ~> 0xd333332], [0x0 ~> 0x6999999], |
| 98 | // [0x0 ~> 0xd333332], [0x0 ~> 0x6999999], |
| 99 | // [0x0 ~> 0xd333332], [0x0 ~> 0x6999999], |
| 100 | // [0x0 ~> 0xd333332], [0x0 ~> 0x6999999]] |
| 101 | // |
| 102 | // See comments in curve25519_32.h for which functions use these bounds for |
| 103 | // inputs or outputs. |
| 104 | #define assert_fe_loose(f) \ |
| 105 | do { \ |
| 106 | for (unsigned _assert_fe_i = 0; _assert_fe_i < 10; _assert_fe_i++) { \ |
| 107 | assert(f[_assert_fe_i] <= \ |
| 108 | ((_assert_fe_i & 1) ? 0x6999999u : 0xd333332u)); \ |
| 109 | } \ |
| 110 | } while (0) |
| 111 | |
| 112 | //FIXME: use Zephyr macro |
| 113 | _Static_assert(sizeof(fe) == sizeof(fe_limb_t) * FE_NUM_LIMBS, |
| 114 | "fe_limb_t[FE_NUM_LIMBS] is inconsistent with fe"); |
| 115 | |
| 116 | static void fe_frombytes_strict(fe *h, const uint8_t s[32]) { |
| 117 | // |fiat_25519_from_bytes| requires the top-most bit be clear. |
| 118 | assert((s[31] & 0x80) == 0); |
| 119 | fiat_25519_from_bytes(h->v, s); |
| 120 | assert_fe(h->v); |
| 121 | } |
| 122 | |
| 123 | static void fe_frombytes(fe *h, const uint8_t s[32]) { |
| 124 | uint8_t s_copy[32]; |
| 125 | memcpy(s_copy, s, 32); |
| 126 | s_copy[31] &= 0x7f; |
| 127 | fe_frombytes_strict(h, s_copy); |
| 128 | } |
| 129 | |
| 130 | static void fe_tobytes(uint8_t s[32], const fe *f) { |
| 131 | assert_fe(f->v); |
| 132 | fiat_25519_to_bytes(s, f->v); |
| 133 | } |
| 134 | |
| 135 | // h = 0 |
| 136 | static void fe_0(fe *h) { |
Fabio Utzig | a1c142d | 2020-01-03 08:28:11 -0300 | [diff] [blame] | 137 | #if defined(MCUBOOT_USE_MBED_TLS) |
Fabio Utzig | 705dfb3 | 2019-05-11 20:06:37 -0300 | [diff] [blame] | 138 | mbedtls_platform_zeroize(h, sizeof(fe)); |
Fabio Utzig | a1c142d | 2020-01-03 08:28:11 -0300 | [diff] [blame] | 139 | #else |
| 140 | _set(h, 0, sizeof(fe)); |
| 141 | #endif |
Fabio Utzig | 705dfb3 | 2019-05-11 20:06:37 -0300 | [diff] [blame] | 142 | } |
| 143 | |
| 144 | // h = 1 |
| 145 | static void fe_1(fe *h) { |
Fabio Utzig | a1c142d | 2020-01-03 08:28:11 -0300 | [diff] [blame] | 146 | #if defined(MCUBOOT_USE_MBED_TLS) |
Fabio Utzig | 705dfb3 | 2019-05-11 20:06:37 -0300 | [diff] [blame] | 147 | mbedtls_platform_zeroize(h, sizeof(fe)); |
Fabio Utzig | a1c142d | 2020-01-03 08:28:11 -0300 | [diff] [blame] | 148 | #else |
| 149 | _set(h, 0, sizeof(fe)); |
| 150 | #endif |
Fabio Utzig | 705dfb3 | 2019-05-11 20:06:37 -0300 | [diff] [blame] | 151 | h->v[0] = 1; |
| 152 | } |
| 153 | |
| 154 | // h = f + g |
| 155 | // Can overlap h with f or g. |
| 156 | static void fe_add(fe_loose *h, const fe *f, const fe *g) { |
| 157 | assert_fe(f->v); |
| 158 | assert_fe(g->v); |
| 159 | fiat_25519_add(h->v, f->v, g->v); |
| 160 | assert_fe_loose(h->v); |
| 161 | } |
| 162 | |
| 163 | // h = f - g |
| 164 | // Can overlap h with f or g. |
| 165 | static void fe_sub(fe_loose *h, const fe *f, const fe *g) { |
| 166 | assert_fe(f->v); |
| 167 | assert_fe(g->v); |
| 168 | fiat_25519_sub(h->v, f->v, g->v); |
| 169 | assert_fe_loose(h->v); |
| 170 | } |
| 171 | |
| 172 | static void fe_carry(fe *h, const fe_loose* f) { |
| 173 | assert_fe_loose(f->v); |
| 174 | fiat_25519_carry(h->v, f->v); |
| 175 | assert_fe(h->v); |
| 176 | } |
| 177 | |
| 178 | static void fe_mul_impl(fe_limb_t out[FE_NUM_LIMBS], |
| 179 | const fe_limb_t in1[FE_NUM_LIMBS], |
| 180 | const fe_limb_t in2[FE_NUM_LIMBS]) { |
| 181 | assert_fe_loose(in1); |
| 182 | assert_fe_loose(in2); |
| 183 | fiat_25519_carry_mul(out, in1, in2); |
| 184 | assert_fe(out); |
| 185 | } |
| 186 | |
| 187 | static void fe_mul_ltt(fe_loose *h, const fe *f, const fe *g) { |
| 188 | fe_mul_impl(h->v, f->v, g->v); |
| 189 | } |
| 190 | |
| 191 | static void fe_mul_ttt(fe *h, const fe *f, const fe *g) { |
| 192 | fe_mul_impl(h->v, f->v, g->v); |
| 193 | } |
| 194 | |
| 195 | static void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g) { |
| 196 | fe_mul_impl(h->v, f->v, g->v); |
| 197 | } |
| 198 | |
| 199 | static void fe_mul_ttl(fe *h, const fe *f, const fe_loose *g) { |
| 200 | fe_mul_impl(h->v, f->v, g->v); |
| 201 | } |
| 202 | |
| 203 | static void fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g) { |
| 204 | fe_mul_impl(h->v, f->v, g->v); |
| 205 | } |
| 206 | |
| 207 | static void fe_sq_tl(fe *h, const fe_loose *f) { |
| 208 | assert_fe_loose(f->v); |
| 209 | fiat_25519_carry_square(h->v, f->v); |
| 210 | assert_fe(h->v); |
| 211 | } |
| 212 | |
| 213 | static void fe_sq_tt(fe *h, const fe *f) { |
| 214 | assert_fe_loose(f->v); |
| 215 | fiat_25519_carry_square(h->v, f->v); |
| 216 | assert_fe(h->v); |
| 217 | } |
| 218 | |
| 219 | // h = -f |
| 220 | static void fe_neg(fe_loose *h, const fe *f) { |
| 221 | assert_fe(f->v); |
| 222 | fiat_25519_opp(h->v, f->v); |
| 223 | assert_fe_loose(h->v); |
| 224 | } |
| 225 | |
| 226 | // h = f |
| 227 | static void fe_copy(fe *h, const fe *f) { |
| 228 | memmove(h, f, sizeof(fe)); |
| 229 | } |
| 230 | |
| 231 | static void fe_copy_lt(fe_loose *h, const fe *f) { |
| 232 | //FIXME: use Zephyr macro |
| 233 | _Static_assert(sizeof(fe_loose) == sizeof(fe), "fe and fe_loose mismatch"); |
| 234 | memmove(h, f, sizeof(fe)); |
| 235 | } |
| 236 | |
| 237 | static void fe_loose_invert(fe *out, const fe_loose *z) { |
| 238 | fe t0; |
| 239 | fe t1; |
| 240 | fe t2; |
| 241 | fe t3; |
| 242 | int i; |
| 243 | |
| 244 | fe_sq_tl(&t0, z); |
| 245 | fe_sq_tt(&t1, &t0); |
| 246 | for (i = 1; i < 2; ++i) { |
| 247 | fe_sq_tt(&t1, &t1); |
| 248 | } |
| 249 | fe_mul_tlt(&t1, z, &t1); |
| 250 | fe_mul_ttt(&t0, &t0, &t1); |
| 251 | fe_sq_tt(&t2, &t0); |
| 252 | fe_mul_ttt(&t1, &t1, &t2); |
| 253 | fe_sq_tt(&t2, &t1); |
| 254 | for (i = 1; i < 5; ++i) { |
| 255 | fe_sq_tt(&t2, &t2); |
| 256 | } |
| 257 | fe_mul_ttt(&t1, &t2, &t1); |
| 258 | fe_sq_tt(&t2, &t1); |
| 259 | for (i = 1; i < 10; ++i) { |
| 260 | fe_sq_tt(&t2, &t2); |
| 261 | } |
| 262 | fe_mul_ttt(&t2, &t2, &t1); |
| 263 | fe_sq_tt(&t3, &t2); |
| 264 | for (i = 1; i < 20; ++i) { |
| 265 | fe_sq_tt(&t3, &t3); |
| 266 | } |
| 267 | fe_mul_ttt(&t2, &t3, &t2); |
| 268 | fe_sq_tt(&t2, &t2); |
| 269 | for (i = 1; i < 10; ++i) { |
| 270 | fe_sq_tt(&t2, &t2); |
| 271 | } |
| 272 | fe_mul_ttt(&t1, &t2, &t1); |
| 273 | fe_sq_tt(&t2, &t1); |
| 274 | for (i = 1; i < 50; ++i) { |
| 275 | fe_sq_tt(&t2, &t2); |
| 276 | } |
| 277 | fe_mul_ttt(&t2, &t2, &t1); |
| 278 | fe_sq_tt(&t3, &t2); |
| 279 | for (i = 1; i < 100; ++i) { |
| 280 | fe_sq_tt(&t3, &t3); |
| 281 | } |
| 282 | fe_mul_ttt(&t2, &t3, &t2); |
| 283 | fe_sq_tt(&t2, &t2); |
| 284 | for (i = 1; i < 50; ++i) { |
| 285 | fe_sq_tt(&t2, &t2); |
| 286 | } |
| 287 | fe_mul_ttt(&t1, &t2, &t1); |
| 288 | fe_sq_tt(&t1, &t1); |
| 289 | for (i = 1; i < 5; ++i) { |
| 290 | fe_sq_tt(&t1, &t1); |
| 291 | } |
| 292 | fe_mul_ttt(out, &t1, &t0); |
| 293 | } |
| 294 | |
| 295 | static void fe_invert(fe *out, const fe *z) { |
| 296 | fe_loose l; |
| 297 | fe_copy_lt(&l, z); |
| 298 | fe_loose_invert(out, &l); |
| 299 | } |
| 300 | |
| 301 | static int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) { |
| 302 | const uint8_t *a = in_a; |
| 303 | const uint8_t *b = in_b; |
| 304 | uint8_t x = 0; |
| 305 | |
| 306 | for (size_t i = 0; i < len; i++) { |
| 307 | x |= a[i] ^ b[i]; |
| 308 | } |
| 309 | |
| 310 | return x; |
| 311 | } |
| 312 | |
| 313 | // return 0 if f == 0 |
| 314 | // return 1 if f != 0 |
| 315 | static int fe_isnonzero(const fe_loose *f) { |
| 316 | fe tight; |
| 317 | fe_carry(&tight, f); |
| 318 | uint8_t s[32]; |
| 319 | fe_tobytes(s, &tight); |
| 320 | |
| 321 | static const uint8_t zero[32] = {0}; |
| 322 | return CRYPTO_memcmp(s, zero, sizeof(zero)) != 0; |
| 323 | } |
| 324 | |
| 325 | // return 1 if f is in {1,3,5,...,q-2} |
| 326 | // return 0 if f is in {0,2,4,...,q-1} |
| 327 | static int fe_isnegative(const fe *f) { |
| 328 | uint8_t s[32]; |
| 329 | fe_tobytes(s, f); |
| 330 | return s[0] & 1; |
| 331 | } |
| 332 | |
| 333 | static void fe_sq2_tt(fe *h, const fe *f) { |
| 334 | // h = f^2 |
| 335 | fe_sq_tt(h, f); |
| 336 | |
| 337 | // h = h + h |
| 338 | fe_loose tmp; |
| 339 | fe_add(&tmp, h, h); |
| 340 | fe_carry(h, &tmp); |
| 341 | } |
| 342 | |
| 343 | static void fe_pow22523(fe *out, const fe *z) { |
| 344 | fe t0; |
| 345 | fe t1; |
| 346 | fe t2; |
| 347 | int i; |
| 348 | |
| 349 | fe_sq_tt(&t0, z); |
| 350 | fe_sq_tt(&t1, &t0); |
| 351 | for (i = 1; i < 2; ++i) { |
| 352 | fe_sq_tt(&t1, &t1); |
| 353 | } |
| 354 | fe_mul_ttt(&t1, z, &t1); |
| 355 | fe_mul_ttt(&t0, &t0, &t1); |
| 356 | fe_sq_tt(&t0, &t0); |
| 357 | fe_mul_ttt(&t0, &t1, &t0); |
| 358 | fe_sq_tt(&t1, &t0); |
| 359 | for (i = 1; i < 5; ++i) { |
| 360 | fe_sq_tt(&t1, &t1); |
| 361 | } |
| 362 | fe_mul_ttt(&t0, &t1, &t0); |
| 363 | fe_sq_tt(&t1, &t0); |
| 364 | for (i = 1; i < 10; ++i) { |
| 365 | fe_sq_tt(&t1, &t1); |
| 366 | } |
| 367 | fe_mul_ttt(&t1, &t1, &t0); |
| 368 | fe_sq_tt(&t2, &t1); |
| 369 | for (i = 1; i < 20; ++i) { |
| 370 | fe_sq_tt(&t2, &t2); |
| 371 | } |
| 372 | fe_mul_ttt(&t1, &t2, &t1); |
| 373 | fe_sq_tt(&t1, &t1); |
| 374 | for (i = 1; i < 10; ++i) { |
| 375 | fe_sq_tt(&t1, &t1); |
| 376 | } |
| 377 | fe_mul_ttt(&t0, &t1, &t0); |
| 378 | fe_sq_tt(&t1, &t0); |
| 379 | for (i = 1; i < 50; ++i) { |
| 380 | fe_sq_tt(&t1, &t1); |
| 381 | } |
| 382 | fe_mul_ttt(&t1, &t1, &t0); |
| 383 | fe_sq_tt(&t2, &t1); |
| 384 | for (i = 1; i < 100; ++i) { |
| 385 | fe_sq_tt(&t2, &t2); |
| 386 | } |
| 387 | fe_mul_ttt(&t1, &t2, &t1); |
| 388 | fe_sq_tt(&t1, &t1); |
| 389 | for (i = 1; i < 50; ++i) { |
| 390 | fe_sq_tt(&t1, &t1); |
| 391 | } |
| 392 | fe_mul_ttt(&t0, &t1, &t0); |
| 393 | fe_sq_tt(&t0, &t0); |
| 394 | for (i = 1; i < 2; ++i) { |
| 395 | fe_sq_tt(&t0, &t0); |
| 396 | } |
| 397 | fe_mul_ttt(out, &t0, z); |
| 398 | } |
| 399 | |
| 400 | |
| 401 | // Group operations. |
| 402 | |
| 403 | void x25519_ge_tobytes(uint8_t s[32], const ge_p2 *h) { |
| 404 | fe recip; |
| 405 | fe x; |
| 406 | fe y; |
| 407 | |
| 408 | fe_invert(&recip, &h->Z); |
| 409 | fe_mul_ttt(&x, &h->X, &recip); |
| 410 | fe_mul_ttt(&y, &h->Y, &recip); |
| 411 | fe_tobytes(s, &y); |
| 412 | s[31] ^= fe_isnegative(&x) << 7; |
| 413 | } |
| 414 | |
| 415 | int x25519_ge_frombytes_vartime(ge_p3 *h, const uint8_t s[32]) { |
| 416 | fe u; |
| 417 | fe_loose v; |
| 418 | fe v3; |
| 419 | fe vxx; |
| 420 | fe_loose check; |
| 421 | |
| 422 | fe_frombytes(&h->Y, s); |
| 423 | fe_1(&h->Z); |
| 424 | fe_sq_tt(&v3, &h->Y); |
| 425 | fe_mul_ttt(&vxx, &v3, &d); |
| 426 | fe_sub(&v, &v3, &h->Z); // u = y^2-1 |
| 427 | fe_carry(&u, &v); |
| 428 | fe_add(&v, &vxx, &h->Z); // v = dy^2+1 |
| 429 | |
| 430 | fe_sq_tl(&v3, &v); |
| 431 | fe_mul_ttl(&v3, &v3, &v); // v3 = v^3 |
| 432 | fe_sq_tt(&h->X, &v3); |
| 433 | fe_mul_ttl(&h->X, &h->X, &v); |
| 434 | fe_mul_ttt(&h->X, &h->X, &u); // x = uv^7 |
| 435 | |
| 436 | fe_pow22523(&h->X, &h->X); // x = (uv^7)^((q-5)/8) |
| 437 | fe_mul_ttt(&h->X, &h->X, &v3); |
| 438 | fe_mul_ttt(&h->X, &h->X, &u); // x = uv^3(uv^7)^((q-5)/8) |
| 439 | |
| 440 | fe_sq_tt(&vxx, &h->X); |
| 441 | fe_mul_ttl(&vxx, &vxx, &v); |
| 442 | fe_sub(&check, &vxx, &u); |
| 443 | if (fe_isnonzero(&check)) { |
| 444 | fe_add(&check, &vxx, &u); |
| 445 | if (fe_isnonzero(&check)) { |
| 446 | return 0; |
| 447 | } |
| 448 | fe_mul_ttt(&h->X, &h->X, &sqrtm1); |
| 449 | } |
| 450 | |
| 451 | if (fe_isnegative(&h->X) != (s[31] >> 7)) { |
| 452 | fe_loose t; |
| 453 | fe_neg(&t, &h->X); |
| 454 | fe_carry(&h->X, &t); |
| 455 | } |
| 456 | |
| 457 | fe_mul_ttt(&h->T, &h->X, &h->Y); |
| 458 | return 1; |
| 459 | } |
| 460 | |
| 461 | static void ge_p2_0(ge_p2 *h) { |
| 462 | fe_0(&h->X); |
| 463 | fe_1(&h->Y); |
| 464 | fe_1(&h->Z); |
| 465 | } |
| 466 | |
| 467 | // r = p |
| 468 | static void ge_p3_to_p2(ge_p2 *r, const ge_p3 *p) { |
| 469 | fe_copy(&r->X, &p->X); |
| 470 | fe_copy(&r->Y, &p->Y); |
| 471 | fe_copy(&r->Z, &p->Z); |
| 472 | } |
| 473 | |
| 474 | // r = p |
| 475 | void x25519_ge_p3_to_cached(ge_cached *r, const ge_p3 *p) { |
| 476 | fe_add(&r->YplusX, &p->Y, &p->X); |
| 477 | fe_sub(&r->YminusX, &p->Y, &p->X); |
| 478 | fe_copy_lt(&r->Z, &p->Z); |
| 479 | fe_mul_ltt(&r->T2d, &p->T, &d2); |
| 480 | } |
| 481 | |
| 482 | // r = p |
| 483 | void x25519_ge_p1p1_to_p2(ge_p2 *r, const ge_p1p1 *p) { |
| 484 | fe_mul_tll(&r->X, &p->X, &p->T); |
| 485 | fe_mul_tll(&r->Y, &p->Y, &p->Z); |
| 486 | fe_mul_tll(&r->Z, &p->Z, &p->T); |
| 487 | } |
| 488 | |
| 489 | // r = p |
| 490 | void x25519_ge_p1p1_to_p3(ge_p3 *r, const ge_p1p1 *p) { |
| 491 | fe_mul_tll(&r->X, &p->X, &p->T); |
| 492 | fe_mul_tll(&r->Y, &p->Y, &p->Z); |
| 493 | fe_mul_tll(&r->Z, &p->Z, &p->T); |
| 494 | fe_mul_tll(&r->T, &p->X, &p->Y); |
| 495 | } |
| 496 | |
| 497 | // r = 2 * p |
| 498 | static void ge_p2_dbl(ge_p1p1 *r, const ge_p2 *p) { |
| 499 | fe trX, trZ, trT; |
| 500 | fe t0; |
| 501 | |
| 502 | fe_sq_tt(&trX, &p->X); |
| 503 | fe_sq_tt(&trZ, &p->Y); |
| 504 | fe_sq2_tt(&trT, &p->Z); |
| 505 | fe_add(&r->Y, &p->X, &p->Y); |
| 506 | fe_sq_tl(&t0, &r->Y); |
| 507 | |
| 508 | fe_add(&r->Y, &trZ, &trX); |
| 509 | fe_sub(&r->Z, &trZ, &trX); |
| 510 | fe_carry(&trZ, &r->Y); |
| 511 | fe_sub(&r->X, &t0, &trZ); |
| 512 | fe_carry(&trZ, &r->Z); |
| 513 | fe_sub(&r->T, &trT, &trZ); |
| 514 | } |
| 515 | |
| 516 | // r = 2 * p |
| 517 | static void ge_p3_dbl(ge_p1p1 *r, const ge_p3 *p) { |
| 518 | ge_p2 q; |
| 519 | ge_p3_to_p2(&q, p); |
| 520 | ge_p2_dbl(r, &q); |
| 521 | } |
| 522 | |
| 523 | // r = p + q |
| 524 | static void ge_madd(ge_p1p1 *r, const ge_p3 *p, const ge_precomp *q) { |
| 525 | fe trY, trZ, trT; |
| 526 | |
| 527 | fe_add(&r->X, &p->Y, &p->X); |
| 528 | fe_sub(&r->Y, &p->Y, &p->X); |
| 529 | fe_mul_tll(&trZ, &r->X, &q->yplusx); |
| 530 | fe_mul_tll(&trY, &r->Y, &q->yminusx); |
| 531 | fe_mul_tlt(&trT, &q->xy2d, &p->T); |
| 532 | fe_add(&r->T, &p->Z, &p->Z); |
| 533 | fe_sub(&r->X, &trZ, &trY); |
| 534 | fe_add(&r->Y, &trZ, &trY); |
| 535 | fe_carry(&trZ, &r->T); |
| 536 | fe_add(&r->Z, &trZ, &trT); |
| 537 | fe_sub(&r->T, &trZ, &trT); |
| 538 | } |
| 539 | |
| 540 | // r = p - q |
| 541 | static void ge_msub(ge_p1p1 *r, const ge_p3 *p, const ge_precomp *q) { |
| 542 | fe trY, trZ, trT; |
| 543 | |
| 544 | fe_add(&r->X, &p->Y, &p->X); |
| 545 | fe_sub(&r->Y, &p->Y, &p->X); |
| 546 | fe_mul_tll(&trZ, &r->X, &q->yminusx); |
| 547 | fe_mul_tll(&trY, &r->Y, &q->yplusx); |
| 548 | fe_mul_tlt(&trT, &q->xy2d, &p->T); |
| 549 | fe_add(&r->T, &p->Z, &p->Z); |
| 550 | fe_sub(&r->X, &trZ, &trY); |
| 551 | fe_add(&r->Y, &trZ, &trY); |
| 552 | fe_carry(&trZ, &r->T); |
| 553 | fe_sub(&r->Z, &trZ, &trT); |
| 554 | fe_add(&r->T, &trZ, &trT); |
| 555 | } |
| 556 | |
| 557 | // r = p + q |
| 558 | void x25519_ge_add(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q) { |
| 559 | fe trX, trY, trZ, trT; |
| 560 | |
| 561 | fe_add(&r->X, &p->Y, &p->X); |
| 562 | fe_sub(&r->Y, &p->Y, &p->X); |
| 563 | fe_mul_tll(&trZ, &r->X, &q->YplusX); |
| 564 | fe_mul_tll(&trY, &r->Y, &q->YminusX); |
| 565 | fe_mul_tlt(&trT, &q->T2d, &p->T); |
| 566 | fe_mul_ttl(&trX, &p->Z, &q->Z); |
| 567 | fe_add(&r->T, &trX, &trX); |
| 568 | fe_sub(&r->X, &trZ, &trY); |
| 569 | fe_add(&r->Y, &trZ, &trY); |
| 570 | fe_carry(&trZ, &r->T); |
| 571 | fe_add(&r->Z, &trZ, &trT); |
| 572 | fe_sub(&r->T, &trZ, &trT); |
| 573 | } |
| 574 | |
| 575 | // r = p - q |
| 576 | void x25519_ge_sub(ge_p1p1 *r, const ge_p3 *p, const ge_cached *q) { |
| 577 | fe trX, trY, trZ, trT; |
| 578 | |
| 579 | fe_add(&r->X, &p->Y, &p->X); |
| 580 | fe_sub(&r->Y, &p->Y, &p->X); |
| 581 | fe_mul_tll(&trZ, &r->X, &q->YminusX); |
| 582 | fe_mul_tll(&trY, &r->Y, &q->YplusX); |
| 583 | fe_mul_tlt(&trT, &q->T2d, &p->T); |
| 584 | fe_mul_ttl(&trX, &p->Z, &q->Z); |
| 585 | fe_add(&r->T, &trX, &trX); |
| 586 | fe_sub(&r->X, &trZ, &trY); |
| 587 | fe_add(&r->Y, &trZ, &trY); |
| 588 | fe_carry(&trZ, &r->T); |
| 589 | fe_sub(&r->Z, &trZ, &trT); |
| 590 | fe_add(&r->T, &trZ, &trT); |
| 591 | } |
| 592 | |
| 593 | static void slide(signed char *r, const uint8_t *a) { |
| 594 | int i; |
| 595 | int b; |
| 596 | int k; |
| 597 | |
| 598 | for (i = 0; i < 256; ++i) { |
| 599 | r[i] = 1 & (a[i >> 3] >> (i & 7)); |
| 600 | } |
| 601 | |
| 602 | for (i = 0; i < 256; ++i) { |
| 603 | if (r[i]) { |
| 604 | for (b = 1; b <= 6 && i + b < 256; ++b) { |
| 605 | if (r[i + b]) { |
| 606 | if (r[i] + (r[i + b] << b) <= 15) { |
| 607 | r[i] += r[i + b] << b; |
| 608 | r[i + b] = 0; |
| 609 | } else if (r[i] - (r[i + b] << b) >= -15) { |
| 610 | r[i] -= r[i + b] << b; |
| 611 | for (k = i + b; k < 256; ++k) { |
| 612 | if (!r[k]) { |
| 613 | r[k] = 1; |
| 614 | break; |
| 615 | } |
| 616 | r[k] = 0; |
| 617 | } |
| 618 | } else { |
| 619 | break; |
| 620 | } |
| 621 | } |
| 622 | } |
| 623 | } |
| 624 | } |
| 625 | } |
| 626 | |
| 627 | // r = a * A + b * B |
| 628 | // where a = a[0]+256*a[1]+...+256^31 a[31]. |
| 629 | // and b = b[0]+256*b[1]+...+256^31 b[31]. |
| 630 | // B is the Ed25519 base point (x,4/5) with x positive. |
| 631 | static void ge_double_scalarmult_vartime(ge_p2 *r, const uint8_t *a, |
| 632 | const ge_p3 *A, const uint8_t *b) { |
| 633 | signed char aslide[256]; |
| 634 | signed char bslide[256]; |
| 635 | ge_cached Ai[8]; // A,3A,5A,7A,9A,11A,13A,15A |
| 636 | ge_p1p1 t; |
| 637 | ge_p3 u; |
| 638 | ge_p3 A2; |
| 639 | int i; |
| 640 | |
| 641 | slide(aslide, a); |
| 642 | slide(bslide, b); |
| 643 | |
| 644 | x25519_ge_p3_to_cached(&Ai[0], A); |
| 645 | ge_p3_dbl(&t, A); |
| 646 | x25519_ge_p1p1_to_p3(&A2, &t); |
| 647 | x25519_ge_add(&t, &A2, &Ai[0]); |
| 648 | x25519_ge_p1p1_to_p3(&u, &t); |
| 649 | x25519_ge_p3_to_cached(&Ai[1], &u); |
| 650 | x25519_ge_add(&t, &A2, &Ai[1]); |
| 651 | x25519_ge_p1p1_to_p3(&u, &t); |
| 652 | x25519_ge_p3_to_cached(&Ai[2], &u); |
| 653 | x25519_ge_add(&t, &A2, &Ai[2]); |
| 654 | x25519_ge_p1p1_to_p3(&u, &t); |
| 655 | x25519_ge_p3_to_cached(&Ai[3], &u); |
| 656 | x25519_ge_add(&t, &A2, &Ai[3]); |
| 657 | x25519_ge_p1p1_to_p3(&u, &t); |
| 658 | x25519_ge_p3_to_cached(&Ai[4], &u); |
| 659 | x25519_ge_add(&t, &A2, &Ai[4]); |
| 660 | x25519_ge_p1p1_to_p3(&u, &t); |
| 661 | x25519_ge_p3_to_cached(&Ai[5], &u); |
| 662 | x25519_ge_add(&t, &A2, &Ai[5]); |
| 663 | x25519_ge_p1p1_to_p3(&u, &t); |
| 664 | x25519_ge_p3_to_cached(&Ai[6], &u); |
| 665 | x25519_ge_add(&t, &A2, &Ai[6]); |
| 666 | x25519_ge_p1p1_to_p3(&u, &t); |
| 667 | x25519_ge_p3_to_cached(&Ai[7], &u); |
| 668 | |
| 669 | ge_p2_0(r); |
| 670 | |
| 671 | for (i = 255; i >= 0; --i) { |
| 672 | if (aslide[i] || bslide[i]) { |
| 673 | break; |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | for (; i >= 0; --i) { |
| 678 | ge_p2_dbl(&t, r); |
| 679 | |
| 680 | if (aslide[i] > 0) { |
| 681 | x25519_ge_p1p1_to_p3(&u, &t); |
| 682 | x25519_ge_add(&t, &u, &Ai[aslide[i] / 2]); |
| 683 | } else if (aslide[i] < 0) { |
| 684 | x25519_ge_p1p1_to_p3(&u, &t); |
| 685 | x25519_ge_sub(&t, &u, &Ai[(-aslide[i]) / 2]); |
| 686 | } |
| 687 | |
| 688 | if (bslide[i] > 0) { |
| 689 | x25519_ge_p1p1_to_p3(&u, &t); |
| 690 | ge_madd(&t, &u, &Bi[bslide[i] / 2]); |
| 691 | } else if (bslide[i] < 0) { |
| 692 | x25519_ge_p1p1_to_p3(&u, &t); |
| 693 | ge_msub(&t, &u, &Bi[(-bslide[i]) / 2]); |
| 694 | } |
| 695 | |
| 696 | x25519_ge_p1p1_to_p2(r, &t); |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | // int64_lshift21 returns |a << 21| but is defined when shifting bits into the |
| 701 | // sign bit. This works around a language flaw in C. |
| 702 | static inline int64_t int64_lshift21(int64_t a) { |
| 703 | return (int64_t)((uint64_t)a << 21); |
| 704 | } |
| 705 | |
| 706 | // The set of scalars is \Z/l |
| 707 | // where l = 2^252 + 27742317777372353535851937790883648493. |
| 708 | |
| 709 | // Input: |
| 710 | // s[0]+256*s[1]+...+256^63*s[63] = s |
| 711 | // |
| 712 | // Output: |
| 713 | // s[0]+256*s[1]+...+256^31*s[31] = s mod l |
| 714 | // where l = 2^252 + 27742317777372353535851937790883648493. |
| 715 | // Overwrites s in place. |
| 716 | void x25519_sc_reduce(uint8_t s[64]) { |
| 717 | int64_t s0 = 2097151 & load_3(s); |
| 718 | int64_t s1 = 2097151 & (load_4(s + 2) >> 5); |
| 719 | int64_t s2 = 2097151 & (load_3(s + 5) >> 2); |
| 720 | int64_t s3 = 2097151 & (load_4(s + 7) >> 7); |
| 721 | int64_t s4 = 2097151 & (load_4(s + 10) >> 4); |
| 722 | int64_t s5 = 2097151 & (load_3(s + 13) >> 1); |
| 723 | int64_t s6 = 2097151 & (load_4(s + 15) >> 6); |
| 724 | int64_t s7 = 2097151 & (load_3(s + 18) >> 3); |
| 725 | int64_t s8 = 2097151 & load_3(s + 21); |
| 726 | int64_t s9 = 2097151 & (load_4(s + 23) >> 5); |
| 727 | int64_t s10 = 2097151 & (load_3(s + 26) >> 2); |
| 728 | int64_t s11 = 2097151 & (load_4(s + 28) >> 7); |
| 729 | int64_t s12 = 2097151 & (load_4(s + 31) >> 4); |
| 730 | int64_t s13 = 2097151 & (load_3(s + 34) >> 1); |
| 731 | int64_t s14 = 2097151 & (load_4(s + 36) >> 6); |
| 732 | int64_t s15 = 2097151 & (load_3(s + 39) >> 3); |
| 733 | int64_t s16 = 2097151 & load_3(s + 42); |
| 734 | int64_t s17 = 2097151 & (load_4(s + 44) >> 5); |
| 735 | int64_t s18 = 2097151 & (load_3(s + 47) >> 2); |
| 736 | int64_t s19 = 2097151 & (load_4(s + 49) >> 7); |
| 737 | int64_t s20 = 2097151 & (load_4(s + 52) >> 4); |
| 738 | int64_t s21 = 2097151 & (load_3(s + 55) >> 1); |
| 739 | int64_t s22 = 2097151 & (load_4(s + 57) >> 6); |
| 740 | int64_t s23 = (load_4(s + 60) >> 3); |
| 741 | int64_t carry0; |
| 742 | int64_t carry1; |
| 743 | int64_t carry2; |
| 744 | int64_t carry3; |
| 745 | int64_t carry4; |
| 746 | int64_t carry5; |
| 747 | int64_t carry6; |
| 748 | int64_t carry7; |
| 749 | int64_t carry8; |
| 750 | int64_t carry9; |
| 751 | int64_t carry10; |
| 752 | int64_t carry11; |
| 753 | int64_t carry12; |
| 754 | int64_t carry13; |
| 755 | int64_t carry14; |
| 756 | int64_t carry15; |
| 757 | int64_t carry16; |
| 758 | |
| 759 | s11 += s23 * 666643; |
| 760 | s12 += s23 * 470296; |
| 761 | s13 += s23 * 654183; |
| 762 | s14 -= s23 * 997805; |
| 763 | s15 += s23 * 136657; |
| 764 | s16 -= s23 * 683901; |
| 765 | s23 = 0; |
| 766 | |
| 767 | s10 += s22 * 666643; |
| 768 | s11 += s22 * 470296; |
| 769 | s12 += s22 * 654183; |
| 770 | s13 -= s22 * 997805; |
| 771 | s14 += s22 * 136657; |
| 772 | s15 -= s22 * 683901; |
| 773 | s22 = 0; |
| 774 | |
| 775 | s9 += s21 * 666643; |
| 776 | s10 += s21 * 470296; |
| 777 | s11 += s21 * 654183; |
| 778 | s12 -= s21 * 997805; |
| 779 | s13 += s21 * 136657; |
| 780 | s14 -= s21 * 683901; |
| 781 | s21 = 0; |
| 782 | |
| 783 | s8 += s20 * 666643; |
| 784 | s9 += s20 * 470296; |
| 785 | s10 += s20 * 654183; |
| 786 | s11 -= s20 * 997805; |
| 787 | s12 += s20 * 136657; |
| 788 | s13 -= s20 * 683901; |
| 789 | s20 = 0; |
| 790 | |
| 791 | s7 += s19 * 666643; |
| 792 | s8 += s19 * 470296; |
| 793 | s9 += s19 * 654183; |
| 794 | s10 -= s19 * 997805; |
| 795 | s11 += s19 * 136657; |
| 796 | s12 -= s19 * 683901; |
| 797 | s19 = 0; |
| 798 | |
| 799 | s6 += s18 * 666643; |
| 800 | s7 += s18 * 470296; |
| 801 | s8 += s18 * 654183; |
| 802 | s9 -= s18 * 997805; |
| 803 | s10 += s18 * 136657; |
| 804 | s11 -= s18 * 683901; |
| 805 | s18 = 0; |
| 806 | |
| 807 | carry6 = (s6 + (1 << 20)) >> 21; |
| 808 | s7 += carry6; |
| 809 | s6 -= int64_lshift21(carry6); |
| 810 | carry8 = (s8 + (1 << 20)) >> 21; |
| 811 | s9 += carry8; |
| 812 | s8 -= int64_lshift21(carry8); |
| 813 | carry10 = (s10 + (1 << 20)) >> 21; |
| 814 | s11 += carry10; |
| 815 | s10 -= int64_lshift21(carry10); |
| 816 | carry12 = (s12 + (1 << 20)) >> 21; |
| 817 | s13 += carry12; |
| 818 | s12 -= int64_lshift21(carry12); |
| 819 | carry14 = (s14 + (1 << 20)) >> 21; |
| 820 | s15 += carry14; |
| 821 | s14 -= int64_lshift21(carry14); |
| 822 | carry16 = (s16 + (1 << 20)) >> 21; |
| 823 | s17 += carry16; |
| 824 | s16 -= int64_lshift21(carry16); |
| 825 | |
| 826 | carry7 = (s7 + (1 << 20)) >> 21; |
| 827 | s8 += carry7; |
| 828 | s7 -= int64_lshift21(carry7); |
| 829 | carry9 = (s9 + (1 << 20)) >> 21; |
| 830 | s10 += carry9; |
| 831 | s9 -= int64_lshift21(carry9); |
| 832 | carry11 = (s11 + (1 << 20)) >> 21; |
| 833 | s12 += carry11; |
| 834 | s11 -= int64_lshift21(carry11); |
| 835 | carry13 = (s13 + (1 << 20)) >> 21; |
| 836 | s14 += carry13; |
| 837 | s13 -= int64_lshift21(carry13); |
| 838 | carry15 = (s15 + (1 << 20)) >> 21; |
| 839 | s16 += carry15; |
| 840 | s15 -= int64_lshift21(carry15); |
| 841 | |
| 842 | s5 += s17 * 666643; |
| 843 | s6 += s17 * 470296; |
| 844 | s7 += s17 * 654183; |
| 845 | s8 -= s17 * 997805; |
| 846 | s9 += s17 * 136657; |
| 847 | s10 -= s17 * 683901; |
| 848 | s17 = 0; |
| 849 | |
| 850 | s4 += s16 * 666643; |
| 851 | s5 += s16 * 470296; |
| 852 | s6 += s16 * 654183; |
| 853 | s7 -= s16 * 997805; |
| 854 | s8 += s16 * 136657; |
| 855 | s9 -= s16 * 683901; |
| 856 | s16 = 0; |
| 857 | |
| 858 | s3 += s15 * 666643; |
| 859 | s4 += s15 * 470296; |
| 860 | s5 += s15 * 654183; |
| 861 | s6 -= s15 * 997805; |
| 862 | s7 += s15 * 136657; |
| 863 | s8 -= s15 * 683901; |
| 864 | s15 = 0; |
| 865 | |
| 866 | s2 += s14 * 666643; |
| 867 | s3 += s14 * 470296; |
| 868 | s4 += s14 * 654183; |
| 869 | s5 -= s14 * 997805; |
| 870 | s6 += s14 * 136657; |
| 871 | s7 -= s14 * 683901; |
| 872 | s14 = 0; |
| 873 | |
| 874 | s1 += s13 * 666643; |
| 875 | s2 += s13 * 470296; |
| 876 | s3 += s13 * 654183; |
| 877 | s4 -= s13 * 997805; |
| 878 | s5 += s13 * 136657; |
| 879 | s6 -= s13 * 683901; |
| 880 | s13 = 0; |
| 881 | |
| 882 | s0 += s12 * 666643; |
| 883 | s1 += s12 * 470296; |
| 884 | s2 += s12 * 654183; |
| 885 | s3 -= s12 * 997805; |
| 886 | s4 += s12 * 136657; |
| 887 | s5 -= s12 * 683901; |
| 888 | s12 = 0; |
| 889 | |
| 890 | carry0 = (s0 + (1 << 20)) >> 21; |
| 891 | s1 += carry0; |
| 892 | s0 -= int64_lshift21(carry0); |
| 893 | carry2 = (s2 + (1 << 20)) >> 21; |
| 894 | s3 += carry2; |
| 895 | s2 -= int64_lshift21(carry2); |
| 896 | carry4 = (s4 + (1 << 20)) >> 21; |
| 897 | s5 += carry4; |
| 898 | s4 -= int64_lshift21(carry4); |
| 899 | carry6 = (s6 + (1 << 20)) >> 21; |
| 900 | s7 += carry6; |
| 901 | s6 -= int64_lshift21(carry6); |
| 902 | carry8 = (s8 + (1 << 20)) >> 21; |
| 903 | s9 += carry8; |
| 904 | s8 -= int64_lshift21(carry8); |
| 905 | carry10 = (s10 + (1 << 20)) >> 21; |
| 906 | s11 += carry10; |
| 907 | s10 -= int64_lshift21(carry10); |
| 908 | |
| 909 | carry1 = (s1 + (1 << 20)) >> 21; |
| 910 | s2 += carry1; |
| 911 | s1 -= int64_lshift21(carry1); |
| 912 | carry3 = (s3 + (1 << 20)) >> 21; |
| 913 | s4 += carry3; |
| 914 | s3 -= int64_lshift21(carry3); |
| 915 | carry5 = (s5 + (1 << 20)) >> 21; |
| 916 | s6 += carry5; |
| 917 | s5 -= int64_lshift21(carry5); |
| 918 | carry7 = (s7 + (1 << 20)) >> 21; |
| 919 | s8 += carry7; |
| 920 | s7 -= int64_lshift21(carry7); |
| 921 | carry9 = (s9 + (1 << 20)) >> 21; |
| 922 | s10 += carry9; |
| 923 | s9 -= int64_lshift21(carry9); |
| 924 | carry11 = (s11 + (1 << 20)) >> 21; |
| 925 | s12 += carry11; |
| 926 | s11 -= int64_lshift21(carry11); |
| 927 | |
| 928 | s0 += s12 * 666643; |
| 929 | s1 += s12 * 470296; |
| 930 | s2 += s12 * 654183; |
| 931 | s3 -= s12 * 997805; |
| 932 | s4 += s12 * 136657; |
| 933 | s5 -= s12 * 683901; |
| 934 | s12 = 0; |
| 935 | |
| 936 | carry0 = s0 >> 21; |
| 937 | s1 += carry0; |
| 938 | s0 -= int64_lshift21(carry0); |
| 939 | carry1 = s1 >> 21; |
| 940 | s2 += carry1; |
| 941 | s1 -= int64_lshift21(carry1); |
| 942 | carry2 = s2 >> 21; |
| 943 | s3 += carry2; |
| 944 | s2 -= int64_lshift21(carry2); |
| 945 | carry3 = s3 >> 21; |
| 946 | s4 += carry3; |
| 947 | s3 -= int64_lshift21(carry3); |
| 948 | carry4 = s4 >> 21; |
| 949 | s5 += carry4; |
| 950 | s4 -= int64_lshift21(carry4); |
| 951 | carry5 = s5 >> 21; |
| 952 | s6 += carry5; |
| 953 | s5 -= int64_lshift21(carry5); |
| 954 | carry6 = s6 >> 21; |
| 955 | s7 += carry6; |
| 956 | s6 -= int64_lshift21(carry6); |
| 957 | carry7 = s7 >> 21; |
| 958 | s8 += carry7; |
| 959 | s7 -= int64_lshift21(carry7); |
| 960 | carry8 = s8 >> 21; |
| 961 | s9 += carry8; |
| 962 | s8 -= int64_lshift21(carry8); |
| 963 | carry9 = s9 >> 21; |
| 964 | s10 += carry9; |
| 965 | s9 -= int64_lshift21(carry9); |
| 966 | carry10 = s10 >> 21; |
| 967 | s11 += carry10; |
| 968 | s10 -= int64_lshift21(carry10); |
| 969 | carry11 = s11 >> 21; |
| 970 | s12 += carry11; |
| 971 | s11 -= int64_lshift21(carry11); |
| 972 | |
| 973 | s0 += s12 * 666643; |
| 974 | s1 += s12 * 470296; |
| 975 | s2 += s12 * 654183; |
| 976 | s3 -= s12 * 997805; |
| 977 | s4 += s12 * 136657; |
| 978 | s5 -= s12 * 683901; |
| 979 | s12 = 0; |
| 980 | |
| 981 | carry0 = s0 >> 21; |
| 982 | s1 += carry0; |
| 983 | s0 -= int64_lshift21(carry0); |
| 984 | carry1 = s1 >> 21; |
| 985 | s2 += carry1; |
| 986 | s1 -= int64_lshift21(carry1); |
| 987 | carry2 = s2 >> 21; |
| 988 | s3 += carry2; |
| 989 | s2 -= int64_lshift21(carry2); |
| 990 | carry3 = s3 >> 21; |
| 991 | s4 += carry3; |
| 992 | s3 -= int64_lshift21(carry3); |
| 993 | carry4 = s4 >> 21; |
| 994 | s5 += carry4; |
| 995 | s4 -= int64_lshift21(carry4); |
| 996 | carry5 = s5 >> 21; |
| 997 | s6 += carry5; |
| 998 | s5 -= int64_lshift21(carry5); |
| 999 | carry6 = s6 >> 21; |
| 1000 | s7 += carry6; |
| 1001 | s6 -= int64_lshift21(carry6); |
| 1002 | carry7 = s7 >> 21; |
| 1003 | s8 += carry7; |
| 1004 | s7 -= int64_lshift21(carry7); |
| 1005 | carry8 = s8 >> 21; |
| 1006 | s9 += carry8; |
| 1007 | s8 -= int64_lshift21(carry8); |
| 1008 | carry9 = s9 >> 21; |
| 1009 | s10 += carry9; |
| 1010 | s9 -= int64_lshift21(carry9); |
| 1011 | carry10 = s10 >> 21; |
| 1012 | s11 += carry10; |
| 1013 | s10 -= int64_lshift21(carry10); |
| 1014 | |
| 1015 | s[0] = s0 >> 0; |
| 1016 | s[1] = s0 >> 8; |
| 1017 | s[2] = (s0 >> 16) | (s1 << 5); |
| 1018 | s[3] = s1 >> 3; |
| 1019 | s[4] = s1 >> 11; |
| 1020 | s[5] = (s1 >> 19) | (s2 << 2); |
| 1021 | s[6] = s2 >> 6; |
| 1022 | s[7] = (s2 >> 14) | (s3 << 7); |
| 1023 | s[8] = s3 >> 1; |
| 1024 | s[9] = s3 >> 9; |
| 1025 | s[10] = (s3 >> 17) | (s4 << 4); |
| 1026 | s[11] = s4 >> 4; |
| 1027 | s[12] = s4 >> 12; |
| 1028 | s[13] = (s4 >> 20) | (s5 << 1); |
| 1029 | s[14] = s5 >> 7; |
| 1030 | s[15] = (s5 >> 15) | (s6 << 6); |
| 1031 | s[16] = s6 >> 2; |
| 1032 | s[17] = s6 >> 10; |
| 1033 | s[18] = (s6 >> 18) | (s7 << 3); |
| 1034 | s[19] = s7 >> 5; |
| 1035 | s[20] = s7 >> 13; |
| 1036 | s[21] = s8 >> 0; |
| 1037 | s[22] = s8 >> 8; |
| 1038 | s[23] = (s8 >> 16) | (s9 << 5); |
| 1039 | s[24] = s9 >> 3; |
| 1040 | s[25] = s9 >> 11; |
| 1041 | s[26] = (s9 >> 19) | (s10 << 2); |
| 1042 | s[27] = s10 >> 6; |
| 1043 | s[28] = (s10 >> 14) | (s11 << 7); |
| 1044 | s[29] = s11 >> 1; |
| 1045 | s[30] = s11 >> 9; |
| 1046 | s[31] = s11 >> 17; |
| 1047 | } |
| 1048 | |
| 1049 | int ED25519_verify(const uint8_t *message, size_t message_len, |
| 1050 | const uint8_t signature[64], const uint8_t public_key[32]) { |
| 1051 | ge_p3 A; |
| 1052 | if ((signature[63] & 224) != 0 || |
| 1053 | !x25519_ge_frombytes_vartime(&A, public_key)) { |
| 1054 | return 0; |
| 1055 | } |
| 1056 | |
| 1057 | fe_loose t; |
| 1058 | fe_neg(&t, &A.X); |
| 1059 | fe_carry(&A.X, &t); |
| 1060 | fe_neg(&t, &A.T); |
| 1061 | fe_carry(&A.T, &t); |
| 1062 | |
| 1063 | uint8_t pkcopy[32]; |
| 1064 | memcpy(pkcopy, public_key, 32); |
| 1065 | uint8_t rcopy[32]; |
| 1066 | memcpy(rcopy, signature, 32); |
| 1067 | union { |
| 1068 | uint64_t u64[4]; |
| 1069 | uint8_t u8[32]; |
| 1070 | } scopy; |
| 1071 | memcpy(&scopy.u8[0], signature + 32, 32); |
| 1072 | |
| 1073 | // https://tools.ietf.org/html/rfc8032#section-5.1.7 requires that s be in |
| 1074 | // the range [0, order) in order to prevent signature malleability. |
| 1075 | |
| 1076 | // kOrder is the order of Curve25519 in little-endian form. |
| 1077 | static const uint64_t kOrder[4] = { |
| 1078 | UINT64_C(0x5812631a5cf5d3ed), |
| 1079 | UINT64_C(0x14def9dea2f79cd6), |
| 1080 | 0, |
| 1081 | UINT64_C(0x1000000000000000), |
| 1082 | }; |
| 1083 | for (size_t i = 3;; i--) { |
| 1084 | if (scopy.u64[i] > kOrder[i]) { |
| 1085 | return 0; |
| 1086 | } else if (scopy.u64[i] < kOrder[i]) { |
| 1087 | break; |
| 1088 | } else if (i == 0) { |
| 1089 | return 0; |
| 1090 | } |
| 1091 | } |
| 1092 | |
Fabio Utzig | a1c142d | 2020-01-03 08:28:11 -0300 | [diff] [blame] | 1093 | #if defined(MCUBOOT_USE_MBED_TLS) |
| 1094 | |
Fabio Utzig | 705dfb3 | 2019-05-11 20:06:37 -0300 | [diff] [blame] | 1095 | mbedtls_sha512_context ctx; |
Fabio Utzig | 705dfb3 | 2019-05-11 20:06:37 -0300 | [diff] [blame] | 1096 | int ret; |
Fabio Utzig | a1c142d | 2020-01-03 08:28:11 -0300 | [diff] [blame] | 1097 | |
| 1098 | mbedtls_sha512_init(&ctx); |
| 1099 | |
Fabio Utzig | 705dfb3 | 2019-05-11 20:06:37 -0300 | [diff] [blame] | 1100 | ret = mbedtls_sha512_starts_ret(&ctx, 0); |
| 1101 | assert(ret == 0); |
| 1102 | |
| 1103 | ret = mbedtls_sha512_update_ret(&ctx, signature, 32); |
| 1104 | assert(ret == 0); |
| 1105 | ret = mbedtls_sha512_update_ret(&ctx, public_key, 32); |
| 1106 | assert(ret == 0); |
| 1107 | ret = mbedtls_sha512_update_ret(&ctx, message, message_len); |
| 1108 | assert(ret == 0); |
| 1109 | |
| 1110 | uint8_t h[SHA512_DIGEST_LENGTH]; |
| 1111 | ret = mbedtls_sha512_finish_ret(&ctx, h); |
| 1112 | assert(ret == 0); |
| 1113 | mbedtls_sha512_free(&ctx); |
| 1114 | |
Fabio Utzig | a1c142d | 2020-01-03 08:28:11 -0300 | [diff] [blame] | 1115 | #else |
| 1116 | |
| 1117 | struct tc_sha512_state_struct s; |
| 1118 | int rc; |
| 1119 | |
| 1120 | rc = tc_sha512_init(&s); |
| 1121 | assert(rc == TC_CRYPTO_SUCCESS); |
| 1122 | |
| 1123 | rc = tc_sha512_update(&s, signature, 32); |
| 1124 | assert(rc == TC_CRYPTO_SUCCESS); |
| 1125 | rc = tc_sha512_update(&s, public_key, 32); |
| 1126 | assert(rc == TC_CRYPTO_SUCCESS); |
| 1127 | rc = tc_sha512_update(&s, message, message_len); |
| 1128 | assert(rc == TC_CRYPTO_SUCCESS); |
| 1129 | |
| 1130 | uint8_t h[TC_SHA512_DIGEST_SIZE]; |
| 1131 | rc = tc_sha512_final(h, &s); |
| 1132 | assert(rc == TC_CRYPTO_SUCCESS); |
| 1133 | |
| 1134 | #endif |
| 1135 | |
Fabio Utzig | 705dfb3 | 2019-05-11 20:06:37 -0300 | [diff] [blame] | 1136 | x25519_sc_reduce(h); |
| 1137 | |
| 1138 | ge_p2 R; |
| 1139 | ge_double_scalarmult_vartime(&R, h, &A, scopy.u8); |
| 1140 | |
| 1141 | uint8_t rcheck[32]; |
| 1142 | x25519_ge_tobytes(rcheck, &R); |
| 1143 | |
| 1144 | return CRYPTO_memcmp(rcheck, rcopy, sizeof(rcheck)) == 0; |
| 1145 | } |
Fabio Utzig | 8fcdb6d | 2020-04-02 10:22:28 -0300 | [diff] [blame] | 1146 | |
| 1147 | static void fe_cswap(fe *f, fe *g, fe_limb_t b) { |
| 1148 | b = 0-b; |
| 1149 | for (unsigned i = 0; i < FE_NUM_LIMBS; i++) { |
| 1150 | fe_limb_t x = f->v[i] ^ g->v[i]; |
| 1151 | x &= b; |
| 1152 | f->v[i] ^= x; |
| 1153 | g->v[i] ^= x; |
| 1154 | } |
| 1155 | } |
| 1156 | |
| 1157 | static void fiat_25519_carry_scmul_121666(uint32_t out1[10], const uint32_t arg1[10]) { |
| 1158 | uint64_t x1 = ((uint64_t)UINT32_C(0x1db42) * (arg1[9])); |
| 1159 | uint64_t x2 = ((uint64_t)UINT32_C(0x1db42) * (arg1[8])); |
| 1160 | uint64_t x3 = ((uint64_t)UINT32_C(0x1db42) * (arg1[7])); |
| 1161 | uint64_t x4 = ((uint64_t)UINT32_C(0x1db42) * (arg1[6])); |
| 1162 | uint64_t x5 = ((uint64_t)UINT32_C(0x1db42) * (arg1[5])); |
| 1163 | uint64_t x6 = ((uint64_t)UINT32_C(0x1db42) * (arg1[4])); |
| 1164 | uint64_t x7 = ((uint64_t)UINT32_C(0x1db42) * (arg1[3])); |
| 1165 | uint64_t x8 = ((uint64_t)UINT32_C(0x1db42) * (arg1[2])); |
| 1166 | uint64_t x9 = ((uint64_t)UINT32_C(0x1db42) * (arg1[1])); |
| 1167 | uint64_t x10 = ((uint64_t)UINT32_C(0x1db42) * (arg1[0])); |
| 1168 | uint32_t x11 = (uint32_t)(x10 >> 26); |
| 1169 | uint32_t x12 = (uint32_t)(x10 & UINT32_C(0x3ffffff)); |
| 1170 | uint64_t x13 = (x11 + x9); |
| 1171 | uint32_t x14 = (uint32_t)(x13 >> 25); |
| 1172 | uint32_t x15 = (uint32_t)(x13 & UINT32_C(0x1ffffff)); |
| 1173 | uint64_t x16 = (x14 + x8); |
| 1174 | uint32_t x17 = (uint32_t)(x16 >> 26); |
| 1175 | uint32_t x18 = (uint32_t)(x16 & UINT32_C(0x3ffffff)); |
| 1176 | uint64_t x19 = (x17 + x7); |
| 1177 | uint32_t x20 = (uint32_t)(x19 >> 25); |
| 1178 | uint32_t x21 = (uint32_t)(x19 & UINT32_C(0x1ffffff)); |
| 1179 | uint64_t x22 = (x20 + x6); |
| 1180 | uint32_t x23 = (uint32_t)(x22 >> 26); |
| 1181 | uint32_t x24 = (uint32_t)(x22 & UINT32_C(0x3ffffff)); |
| 1182 | uint64_t x25 = (x23 + x5); |
| 1183 | uint32_t x26 = (uint32_t)(x25 >> 25); |
| 1184 | uint32_t x27 = (uint32_t)(x25 & UINT32_C(0x1ffffff)); |
| 1185 | uint64_t x28 = (x26 + x4); |
| 1186 | uint32_t x29 = (uint32_t)(x28 >> 26); |
| 1187 | uint32_t x30 = (uint32_t)(x28 & UINT32_C(0x3ffffff)); |
| 1188 | uint64_t x31 = (x29 + x3); |
| 1189 | uint32_t x32 = (uint32_t)(x31 >> 25); |
| 1190 | uint32_t x33 = (uint32_t)(x31 & UINT32_C(0x1ffffff)); |
| 1191 | uint64_t x34 = (x32 + x2); |
| 1192 | uint32_t x35 = (uint32_t)(x34 >> 26); |
| 1193 | uint32_t x36 = (uint32_t)(x34 & UINT32_C(0x3ffffff)); |
| 1194 | uint64_t x37 = (x35 + x1); |
| 1195 | uint32_t x38 = (uint32_t)(x37 >> 25); |
| 1196 | uint32_t x39 = (uint32_t)(x37 & UINT32_C(0x1ffffff)); |
| 1197 | uint32_t x40 = (x38 * (uint32_t)UINT8_C(0x13)); |
| 1198 | uint32_t x41 = (x12 + x40); |
| 1199 | uint32_t x42 = (x41 >> 26); |
| 1200 | uint32_t x43 = (x41 & UINT32_C(0x3ffffff)); |
| 1201 | uint32_t x44 = (x42 + x15); |
| 1202 | uint32_t x45 = (x44 >> 25); |
| 1203 | uint32_t x46 = (x44 & UINT32_C(0x1ffffff)); |
| 1204 | uint32_t x47 = (x45 + x18); |
| 1205 | out1[0] = x43; |
| 1206 | out1[1] = x46; |
| 1207 | out1[2] = x47; |
| 1208 | out1[3] = x21; |
| 1209 | out1[4] = x24; |
| 1210 | out1[5] = x27; |
| 1211 | out1[6] = x30; |
| 1212 | out1[7] = x33; |
| 1213 | out1[8] = x36; |
| 1214 | out1[9] = x39; |
| 1215 | } |
| 1216 | |
| 1217 | static void fe_mul121666(fe *h, const fe_loose *f) { |
| 1218 | assert_fe_loose(f->v); |
| 1219 | fiat_25519_carry_scmul_121666(h->v, f->v); |
| 1220 | assert_fe(h->v); |
| 1221 | } |
| 1222 | |
| 1223 | static void x25519_scalar_mult_generic(uint8_t out[32], |
| 1224 | const uint8_t scalar[32], |
| 1225 | const uint8_t point[32]) { |
| 1226 | fe x1, x2, z2, x3, z3, tmp0, tmp1; |
| 1227 | fe_loose x2l, z2l, x3l, tmp0l, tmp1l; |
| 1228 | |
| 1229 | uint8_t e[32]; |
| 1230 | memcpy(e, scalar, 32); |
| 1231 | e[0] &= 248; |
| 1232 | e[31] &= 127; |
| 1233 | e[31] |= 64; |
| 1234 | |
| 1235 | // The following implementation was transcribed to Coq and proven to |
| 1236 | // correspond to unary scalar multiplication in affine coordinates given that |
| 1237 | // x1 != 0 is the x coordinate of some point on the curve. It was also checked |
| 1238 | // in Coq that doing a ladderstep with x1 = x3 = 0 gives z2' = z3' = 0, and z2 |
| 1239 | // = z3 = 0 gives z2' = z3' = 0. The statement was quantified over the |
| 1240 | // underlying field, so it applies to Curve25519 itself and the quadratic |
| 1241 | // twist of Curve25519. It was not proven in Coq that prime-field arithmetic |
| 1242 | // correctly simulates extension-field arithmetic on prime-field values. |
| 1243 | // The decoding of the byte array representation of e was not considered. |
| 1244 | // Specification of Montgomery curves in affine coordinates: |
| 1245 | // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27> |
| 1246 | // Proof that these form a group that is isomorphic to a Weierstrass curve: |
| 1247 | // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35> |
| 1248 | // Coq transcription and correctness proof of the loop (where scalarbits=255): |
| 1249 | // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118> |
| 1250 | // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278> |
| 1251 | // preconditions: 0 <= e < 2^255 (not necessarily e < order), fe_invert(0) = 0 |
| 1252 | fe_frombytes(&x1, point); |
| 1253 | fe_1(&x2); |
| 1254 | fe_0(&z2); |
| 1255 | fe_copy(&x3, &x1); |
| 1256 | fe_1(&z3); |
| 1257 | |
| 1258 | unsigned swap = 0; |
| 1259 | int pos; |
| 1260 | for (pos = 254; pos >= 0; --pos) { |
| 1261 | // loop invariant as of right before the test, for the case where x1 != 0: |
| 1262 | // pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3 is nonzero |
| 1263 | // let r := e >> (pos+1) in the following equalities of projective points: |
| 1264 | // to_xz (r*P) === if swap then (x3, z3) else (x2, z2) |
| 1265 | // to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3) |
| 1266 | // x1 is the nonzero x coordinate of the nonzero point (r*P-(r+1)*P) |
| 1267 | unsigned b = 1 & (e[pos / 8] >> (pos & 7)); |
| 1268 | swap ^= b; |
| 1269 | fe_cswap(&x2, &x3, swap); |
| 1270 | fe_cswap(&z2, &z3, swap); |
| 1271 | swap = b; |
| 1272 | // Coq transcription of ladderstep formula (called from transcribed loop): |
| 1273 | // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89> |
| 1274 | // <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131> |
| 1275 | // x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217> |
| 1276 | // x1 = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147> |
| 1277 | fe_sub(&tmp0l, &x3, &z3); |
| 1278 | fe_sub(&tmp1l, &x2, &z2); |
| 1279 | fe_add(&x2l, &x2, &z2); |
| 1280 | fe_add(&z2l, &x3, &z3); |
| 1281 | fe_mul_tll(&z3, &tmp0l, &x2l); |
| 1282 | fe_mul_tll(&z2, &z2l, &tmp1l); |
| 1283 | fe_sq_tl(&tmp0, &tmp1l); |
| 1284 | fe_sq_tl(&tmp1, &x2l); |
| 1285 | fe_add(&x3l, &z3, &z2); |
| 1286 | fe_sub(&z2l, &z3, &z2); |
| 1287 | fe_mul_ttt(&x2, &tmp1, &tmp0); |
| 1288 | fe_sub(&tmp1l, &tmp1, &tmp0); |
| 1289 | fe_sq_tl(&z2, &z2l); |
| 1290 | fe_mul121666(&z3, &tmp1l); |
| 1291 | fe_sq_tl(&x3, &x3l); |
| 1292 | fe_add(&tmp0l, &tmp0, &z3); |
| 1293 | fe_mul_ttt(&z3, &x1, &z2); |
| 1294 | fe_mul_tll(&z2, &tmp1l, &tmp0l); |
| 1295 | } |
| 1296 | // here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3) else (x2, z2) |
| 1297 | fe_cswap(&x2, &x3, swap); |
| 1298 | fe_cswap(&z2, &z3, swap); |
| 1299 | |
| 1300 | fe_invert(&z2, &z2); |
| 1301 | fe_mul_ttt(&x2, &x2, &z2); |
| 1302 | fe_tobytes(out, &x2); |
| 1303 | } |
| 1304 | |
| 1305 | int X25519(uint8_t out_shared_key[32], const uint8_t private_key[32], |
| 1306 | const uint8_t peer_public_value[32]) { |
| 1307 | static const uint8_t kZeros[32] = {0}; |
| 1308 | x25519_scalar_mult_generic(out_shared_key, private_key, peer_public_value); |
| 1309 | // The all-zero output results when the input is a point of small order. |
| 1310 | return CRYPTO_memcmp(kZeros, out_shared_key, 32) != 0; |
| 1311 | } |