blob: 42be815ba89d6f2dd4a584b7f282aecebfc833be [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
Janos Follath4614b9a2022-07-21 15:34:47 +010041#include "bignum_core.h"
Chris Jones4c5819c2021-03-03 17:45:34 +000042#include "bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050043#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000044#include "mbedtls/error.h"
Gabor Mezei22c9a6f2021-10-20 12:09:35 +020045#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000046
Dave Rodgman351c71b2021-12-06 17:50:53 +000047#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000048#include <string.h>
49
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000050#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020051
Gabor Mezei66669142022-08-03 12:52:26 +020052#define MPI_VALIDATE_RET( cond ) \
53 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA )
54#define MPI_VALIDATE( cond ) \
55 MBEDTLS_INTERNAL_VALIDATE( cond )
56
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +010057#define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
58
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050059/* Implementation that should never be optimized out by the compiler */
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050060static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n )
61{
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050062 mbedtls_platform_zeroize( v, ciL * n );
63}
64
Paul Bakker5121ce52009-01-03 21:22:43 +000065/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000066 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000067 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020068void mbedtls_mpi_init( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000069{
Hanno Becker73d7d792018-12-11 10:35:51 +000070 MPI_VALIDATE( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +000071
Paul Bakker6c591fa2011-05-05 11:49:20 +000072 X->s = 1;
73 X->n = 0;
74 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000075}
76
77/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000078 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000079 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020080void mbedtls_mpi_free( mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +000081{
Paul Bakker6c591fa2011-05-05 11:49:20 +000082 if( X == NULL )
83 return;
Paul Bakker5121ce52009-01-03 21:22:43 +000084
Paul Bakker6c591fa2011-05-05 11:49:20 +000085 if( X->p != NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +000086 {
Alexey Skalozube17a8da2016-01-13 17:19:33 +020087 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020088 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +000089 }
90
Paul Bakker6c591fa2011-05-05 11:49:20 +000091 X->s = 1;
92 X->n = 0;
93 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000094}
95
96/*
97 * Enlarge to the specified number of limbs
98 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020099int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
Paul Bakker5121ce52009-01-03 21:22:43 +0000100{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200101 mbedtls_mpi_uint *p;
Hanno Becker73d7d792018-12-11 10:35:51 +0000102 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000103
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200104 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200105 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakkerf9688572011-05-05 10:00:45 +0000106
Paul Bakker5121ce52009-01-03 21:22:43 +0000107 if( X->n < nblimbs )
108 {
Simon Butcher29176892016-05-20 00:19:09 +0100109 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200110 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Paul Bakker5121ce52009-01-03 21:22:43 +0000111
Paul Bakker5121ce52009-01-03 21:22:43 +0000112 if( X->p != NULL )
113 {
114 memcpy( p, X->p, X->n * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200115 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200116 mbedtls_free( X->p );
Paul Bakker5121ce52009-01-03 21:22:43 +0000117 }
118
119 X->n = nblimbs;
120 X->p = p;
121 }
122
123 return( 0 );
124}
125
126/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100127 * Resize down as much as possible,
128 * while keeping at least the specified number of limbs
129 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200130int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100131{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200132 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100133 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000134 MPI_VALIDATE_RET( X != NULL );
135
136 if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
137 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100138
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100139 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100140 if( X->n <= nblimbs )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200141 return( mbedtls_mpi_grow( X, nblimbs ) );
Gilles Peskine322752b2020-01-21 13:59:51 +0100142 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100143
144 for( i = X->n - 1; i > 0; i-- )
145 if( X->p[i] != 0 )
146 break;
147 i++;
148
149 if( i < nblimbs )
150 i = nblimbs;
151
Simon Butcher29176892016-05-20 00:19:09 +0100152 if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
Manuel Pégourié-Gonnard6a8ca332015-05-28 09:33:39 +0200153 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100154
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100155 if( X->p != NULL )
156 {
157 memcpy( p, X->p, i * ciL );
Alexey Skalozube17a8da2016-01-13 17:19:33 +0200158 mbedtls_mpi_zeroize( X->p, X->n );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200159 mbedtls_free( X->p );
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100160 }
161
162 X->n = i;
163 X->p = p;
164
165 return( 0 );
166}
167
Gilles Peskineed32b572021-06-02 22:17:52 +0200168/* Resize X to have exactly n limbs and set it to 0. */
169static int mbedtls_mpi_resize_clear( mbedtls_mpi *X, size_t limbs )
170{
171 if( limbs == 0 )
172 {
173 mbedtls_mpi_free( X );
174 return( 0 );
175 }
176 else if( X->n == limbs )
177 {
178 memset( X->p, 0, limbs * ciL );
179 X->s = 1;
180 return( 0 );
181 }
182 else
183 {
184 mbedtls_mpi_free( X );
185 return( mbedtls_mpi_grow( X, limbs ) );
186 }
187}
188
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100189/*
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200190 * Copy the contents of Y into X.
191 *
192 * This function is not constant-time. Leading zeros in Y may be removed.
193 *
194 * Ensure that X does not shrink. This is not guaranteed by the public API,
195 * but some code in the bignum module relies on this property, for example
196 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000197 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200198int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000199{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100200 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000201 size_t i;
Hanno Becker73d7d792018-12-11 10:35:51 +0000202 MPI_VALIDATE_RET( X != NULL );
203 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000204
205 if( X == Y )
206 return( 0 );
207
Gilles Peskinedb420622020-01-20 21:12:50 +0100208 if( Y->n == 0 )
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200209 {
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200210 if( X->n != 0 )
211 {
212 X->s = 1;
213 memset( X->p, 0, X->n * ciL );
214 }
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200215 return( 0 );
216 }
217
Paul Bakker5121ce52009-01-03 21:22:43 +0000218 for( i = Y->n - 1; i > 0; i-- )
219 if( Y->p[i] != 0 )
220 break;
221 i++;
222
223 X->s = Y->s;
224
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100225 if( X->n < i )
226 {
227 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
228 }
229 else
230 {
231 memset( X->p + i, 0, ( X->n - i ) * ciL );
232 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000233
Paul Bakker5121ce52009-01-03 21:22:43 +0000234 memcpy( X->p, Y->p, i * ciL );
235
236cleanup:
237
238 return( ret );
239}
240
241/*
242 * Swap the contents of X and Y
243 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200244void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000245{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200246 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000247 MPI_VALIDATE( X != NULL );
248 MPI_VALIDATE( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000249
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200250 memcpy( &T, X, sizeof( mbedtls_mpi ) );
251 memcpy( X, Y, sizeof( mbedtls_mpi ) );
252 memcpy( Y, &T, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000253}
254
255/*
256 * Set value from integer
257 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200258int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000259{
Janos Follath24eed8d2019-11-22 13:21:35 +0000260 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +0000261 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000262
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200263 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000264 memset( X->p, 0, X->n * ciL );
265
266 X->p[0] = ( z < 0 ) ? -z : z;
267 X->s = ( z < 0 ) ? -1 : 1;
268
269cleanup:
270
271 return( ret );
272}
273
274/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000275 * Get a specific bit
276 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200277int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000278{
Hanno Becker73d7d792018-12-11 10:35:51 +0000279 MPI_VALIDATE_RET( X != NULL );
280
Paul Bakker2f5947e2011-05-18 15:47:11 +0000281 if( X->n * biL <= pos )
282 return( 0 );
283
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200284 return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000285}
286
287/*
288 * Set a bit to a specific value of 0 or 1
289 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200290int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
Paul Bakker2f5947e2011-05-18 15:47:11 +0000291{
292 int ret = 0;
293 size_t off = pos / biL;
294 size_t idx = pos % biL;
Hanno Becker73d7d792018-12-11 10:35:51 +0000295 MPI_VALIDATE_RET( X != NULL );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000296
297 if( val != 0 && val != 1 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200298 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker9af723c2014-05-01 13:03:14 +0200299
Paul Bakker2f5947e2011-05-18 15:47:11 +0000300 if( X->n * biL <= pos )
301 {
302 if( val == 0 )
Paul Bakkerd8bb8262014-06-17 14:06:49 +0200303 return( 0 );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000304
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200305 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
Paul Bakker2f5947e2011-05-18 15:47:11 +0000306 }
307
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200308 X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
309 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000310
311cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200312
Paul Bakker2f5947e2011-05-18 15:47:11 +0000313 return( ret );
314}
315
316/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200317 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000318 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200319size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000320{
Paul Bakker23986e52011-04-24 08:57:21 +0000321 size_t i, j, count = 0;
Hanno Beckerf25ee7f2018-12-19 16:51:02 +0000322 MBEDTLS_INTERNAL_VALIDATE_RET( X != NULL, 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000323
324 for( i = 0; i < X->n; i++ )
Paul Bakkerf9688572011-05-05 10:00:45 +0000325 for( j = 0; j < biL; j++, count++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000326 if( ( ( X->p[i] >> j ) & 1 ) != 0 )
327 return( count );
328
329 return( 0 );
330}
331
332/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200333 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000334 */
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200335size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000336{
Gabor Mezei89e31462022-08-12 15:36:56 +0200337 return( mbedtls_mpi_core_bitlen( X->p, X->n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000338}
339
340/*
341 * Return the total size in bytes
342 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200343size_t mbedtls_mpi_size( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +0000344{
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200345 return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000346}
347
348/*
349 * Convert an ASCII character to digit value
350 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200351static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
Paul Bakker5121ce52009-01-03 21:22:43 +0000352{
353 *d = 255;
354
355 if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
356 if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
357 if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
358
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200359 if( *d >= (mbedtls_mpi_uint) radix )
360 return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
Paul Bakker5121ce52009-01-03 21:22:43 +0000361
362 return( 0 );
363}
364
365/*
366 * Import from an ASCII string
367 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200368int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000369{
Janos Follath24eed8d2019-11-22 13:21:35 +0000370 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000371 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200372 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200373 mbedtls_mpi_uint d;
374 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000375 MPI_VALIDATE_RET( X != NULL );
376 MPI_VALIDATE_RET( s != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000377
378 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000379 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000380
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200381 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000382
Gilles Peskine7cba8592021-06-08 18:32:34 +0200383 if( s[0] == 0 )
384 {
385 mbedtls_mpi_free( X );
386 return( 0 );
387 }
388
Gilles Peskine80f56732021-04-03 18:26:13 +0200389 if( s[0] == '-' )
390 {
391 ++s;
392 sign = -1;
393 }
394
Paul Bakkerff60ee62010-03-16 21:09:09 +0000395 slen = strlen( s );
396
Paul Bakker5121ce52009-01-03 21:22:43 +0000397 if( radix == 16 )
398 {
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +0100399 if( slen > MPI_SIZE_T_MAX >> 2 )
Manuel Pégourié-Gonnard58fb4952015-09-28 13:48:04 +0200400 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
401
Paul Bakkerff60ee62010-03-16 21:09:09 +0000402 n = BITS_TO_LIMBS( slen << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000403
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200404 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
405 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000406
Paul Bakker23986e52011-04-24 08:57:21 +0000407 for( i = slen, j = 0; i > 0; i--, j++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000408 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200409 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
Paul Bakker66d5d072014-06-17 16:39:18 +0200410 X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000411 }
412 }
413 else
414 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200415 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000416
Paul Bakkerff60ee62010-03-16 21:09:09 +0000417 for( i = 0; i < slen; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +0000418 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200419 MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
420 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
Gilles Peskine80f56732021-04-03 18:26:13 +0200421 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000422 }
423 }
424
Gilles Peskine80f56732021-04-03 18:26:13 +0200425 if( sign < 0 && mbedtls_mpi_bitlen( X ) != 0 )
426 X->s = -1;
427
Paul Bakker5121ce52009-01-03 21:22:43 +0000428cleanup:
429
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200430 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000431
432 return( ret );
433}
434
435/*
Ron Eldora16fa292018-11-20 14:07:01 +0200436 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000437 */
Ron Eldora16fa292018-11-20 14:07:01 +0200438static int mpi_write_hlp( mbedtls_mpi *X, int radix,
439 char **p, const size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000440{
Janos Follath24eed8d2019-11-22 13:21:35 +0000441 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200442 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200443 size_t length = 0;
444 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000445
Ron Eldora16fa292018-11-20 14:07:01 +0200446 do
447 {
448 if( length >= buflen )
449 {
450 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
451 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000452
Ron Eldora16fa292018-11-20 14:07:01 +0200453 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
454 MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
455 /*
456 * Write the residue in the current position, as an ASCII character.
457 */
458 if( r < 0xA )
459 *(--p_end) = (char)( '0' + r );
460 else
461 *(--p_end) = (char)( 'A' + ( r - 0xA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000462
Ron Eldora16fa292018-11-20 14:07:01 +0200463 length++;
464 } while( mbedtls_mpi_cmp_int( X, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000465
Ron Eldora16fa292018-11-20 14:07:01 +0200466 memmove( *p, p_end, length );
467 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000468
469cleanup:
470
471 return( ret );
472}
473
474/*
475 * Export into an ASCII string
476 */
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100477int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
478 char *buf, size_t buflen, size_t *olen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000479{
Paul Bakker23986e52011-04-24 08:57:21 +0000480 int ret = 0;
481 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000482 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200483 mbedtls_mpi T;
Hanno Becker73d7d792018-12-11 10:35:51 +0000484 MPI_VALIDATE_RET( X != NULL );
485 MPI_VALIDATE_RET( olen != NULL );
486 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000487
488 if( radix < 2 || radix > 16 )
Hanno Becker54c91dd2018-12-12 13:37:06 +0000489 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000490
Hanno Becker23cfea02019-02-04 09:45:07 +0000491 n = mbedtls_mpi_bitlen( X ); /* Number of bits necessary to present `n`. */
492 if( radix >= 4 ) n >>= 1; /* Number of 4-adic digits necessary to present
493 * `n`. If radix > 4, this might be a strict
494 * overapproximation of the number of
495 * radix-adic digits needed to present `n`. */
496 if( radix >= 16 ) n >>= 1; /* Number of hexadecimal digits necessary to
497 * present `n`. */
498
Janos Follath80470622019-03-06 13:43:02 +0000499 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000500 n += 1; /* Compensate for the divisions above, which round down `n`
501 * in case it's not even. */
502 n += 1; /* Potential '-'-sign. */
503 n += ( n & 1 ); /* Make n even to have enough space for hexadecimal writing,
504 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000505
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100506 if( buflen < n )
Paul Bakker5121ce52009-01-03 21:22:43 +0000507 {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100508 *olen = n;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200509 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000510 }
511
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100512 p = buf;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200513 mbedtls_mpi_init( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000514
515 if( X->s == -1 )
Hanno Beckerc983c812019-02-01 16:41:30 +0000516 {
Paul Bakker5121ce52009-01-03 21:22:43 +0000517 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000518 buflen--;
519 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000520
521 if( radix == 16 )
522 {
Paul Bakker23986e52011-04-24 08:57:21 +0000523 int c;
524 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000525
Paul Bakker23986e52011-04-24 08:57:21 +0000526 for( i = X->n, k = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000527 {
Paul Bakker23986e52011-04-24 08:57:21 +0000528 for( j = ciL; j > 0; j-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000529 {
Paul Bakker23986e52011-04-24 08:57:21 +0000530 c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000531
Paul Bakker6c343d72014-07-10 14:36:19 +0200532 if( c == 0 && k == 0 && ( i + j ) != 2 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000533 continue;
534
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000535 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000536 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000537 k = 1;
538 }
539 }
540 }
541 else
542 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200543 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000544
545 if( T.s == -1 )
546 T.s = 1;
547
Ron Eldora16fa292018-11-20 14:07:01 +0200548 MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000549 }
550
551 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100552 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000553
554cleanup:
555
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200556 mbedtls_mpi_free( &T );
Paul Bakker5121ce52009-01-03 21:22:43 +0000557
558 return( ret );
559}
560
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200561#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000562/*
563 * Read X from an opened file
564 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200565int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
Paul Bakker5121ce52009-01-03 21:22:43 +0000566{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200567 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000568 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000569 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000570 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000571 * Buffer should have space for (short) label and decimal formatted MPI,
572 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000573 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200574 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Paul Bakker5121ce52009-01-03 21:22:43 +0000575
Hanno Becker73d7d792018-12-11 10:35:51 +0000576 MPI_VALIDATE_RET( X != NULL );
577 MPI_VALIDATE_RET( fin != NULL );
578
579 if( radix < 2 || radix > 16 )
580 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
581
Paul Bakker5121ce52009-01-03 21:22:43 +0000582 memset( s, 0, sizeof( s ) );
583 if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200584 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000585
586 slen = strlen( s );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000587 if( slen == sizeof( s ) - 2 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200588 return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
Paul Bakkercb37aa52011-11-30 16:00:20 +0000589
Hanno Beckerb2034b72017-04-26 11:46:46 +0100590 if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
591 if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
Paul Bakker5121ce52009-01-03 21:22:43 +0000592
593 p = s + slen;
Hanno Beckerb2034b72017-04-26 11:46:46 +0100594 while( p-- > s )
Paul Bakker5121ce52009-01-03 21:22:43 +0000595 if( mpi_get_digit( &d, radix, *p ) != 0 )
596 break;
597
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200598 return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000599}
600
601/*
602 * Write X into an opened file (or stdout if fout == NULL)
603 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200604int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
Paul Bakker5121ce52009-01-03 21:22:43 +0000605{
Janos Follath24eed8d2019-11-22 13:21:35 +0000606 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000607 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000608 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000609 * Buffer should have space for (short) label and decimal formatted MPI,
610 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000611 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200612 char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
Hanno Becker73d7d792018-12-11 10:35:51 +0000613 MPI_VALIDATE_RET( X != NULL );
614
615 if( radix < 2 || radix > 16 )
616 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +0000617
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100618 memset( s, 0, sizeof( s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000619
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100620 MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000621
622 if( p == NULL ) p = "";
623
624 plen = strlen( p );
625 slen = strlen( s );
626 s[slen++] = '\r';
627 s[slen++] = '\n';
628
629 if( fout != NULL )
630 {
631 if( fwrite( p, 1, plen, fout ) != plen ||
632 fwrite( s, 1, slen, fout ) != slen )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200633 return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
Paul Bakker5121ce52009-01-03 21:22:43 +0000634 }
635 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200636 mbedtls_printf( "%s%s", p, s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000637
638cleanup:
639
640 return( ret );
641}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200642#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000643
644/*
Janos Follatha778a942019-02-13 10:28:28 +0000645 * Import X from unsigned binary data, little endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100646 *
647 * This function is guaranteed to return an MPI with exactly the necessary
648 * number of limbs (in particular, it does not skip 0s in the input).
Janos Follatha778a942019-02-13 10:28:28 +0000649 */
650int mbedtls_mpi_read_binary_le( mbedtls_mpi *X,
651 const unsigned char *buf, size_t buflen )
652{
Janos Follath24eed8d2019-11-22 13:21:35 +0000653 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +0100654 const size_t limbs = CHARS_TO_LIMBS( buflen );
Janos Follatha778a942019-02-13 10:28:28 +0000655
656 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +0200657 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Janos Follatha778a942019-02-13 10:28:28 +0000658
Janos Follath5f016652022-07-22 16:18:41 +0100659 MBEDTLS_MPI_CHK( mbedtls_mpi_core_read_le( X->p, X->n, buf, buflen ) );
Janos Follatha778a942019-02-13 10:28:28 +0000660
661cleanup:
662
Janos Follath171a7ef2019-02-15 16:17:45 +0000663 /*
664 * This function is also used to import keys. However, wiping the buffers
665 * upon failure is not necessary because failure only can happen before any
666 * input is copied.
667 */
Janos Follatha778a942019-02-13 10:28:28 +0000668 return( ret );
669}
670
671/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000672 * Import X from unsigned binary data, big endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100673 *
674 * This function is guaranteed to return an MPI with exactly the necessary
675 * number of limbs (in particular, it does not skip 0s in the input).
Paul Bakker5121ce52009-01-03 21:22:43 +0000676 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200677int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000678{
Janos Follath24eed8d2019-11-22 13:21:35 +0000679 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +0100680 const size_t limbs = CHARS_TO_LIMBS( buflen );
Paul Bakker5121ce52009-01-03 21:22:43 +0000681
Hanno Becker8ce11a32018-12-19 16:18:52 +0000682 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +0000683 MPI_VALIDATE_RET( buflen == 0 || buf != NULL );
684
Hanno Becker073c1992017-10-17 15:17:27 +0100685 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +0200686 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000687
Janos Follath5f016652022-07-22 16:18:41 +0100688 MBEDTLS_MPI_CHK( mbedtls_mpi_core_read_be( X->p, X->n, buf, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000689
690cleanup:
691
Janos Follath171a7ef2019-02-15 16:17:45 +0000692 /*
693 * This function is also used to import keys. However, wiping the buffers
694 * upon failure is not necessary because failure only can happen before any
695 * input is copied.
696 */
Paul Bakker5121ce52009-01-03 21:22:43 +0000697 return( ret );
698}
699
700/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000701 * Export X into unsigned binary data, little endian
702 */
703int mbedtls_mpi_write_binary_le( const mbedtls_mpi *X,
704 unsigned char *buf, size_t buflen )
705{
Janos Follathca5688e2022-08-19 12:05:28 +0100706 return( mbedtls_mpi_core_write_le( X->p, X->n, buf, buflen ) );
Janos Follathe344d0f2019-02-19 16:17:40 +0000707}
708
709/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000710 * Export X into unsigned binary data, big endian
711 */
Gilles Peskine11cdb052018-11-20 16:47:47 +0100712int mbedtls_mpi_write_binary( const mbedtls_mpi *X,
713 unsigned char *buf, size_t buflen )
Paul Bakker5121ce52009-01-03 21:22:43 +0000714{
Janos Follath5f016652022-07-22 16:18:41 +0100715 return( mbedtls_mpi_core_write_be( X->p, X->n, buf, buflen ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000716}
717
718/*
719 * Left-shift: X <<= count
720 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200721int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000722{
Janos Follath24eed8d2019-11-22 13:21:35 +0000723 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000724 size_t i, v0, t1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200725 mbedtls_mpi_uint r0 = 0, r1;
Hanno Becker73d7d792018-12-11 10:35:51 +0000726 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000727
728 v0 = count / (biL );
729 t1 = count & (biL - 1);
730
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200731 i = mbedtls_mpi_bitlen( X ) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000732
Paul Bakkerf9688572011-05-05 10:00:45 +0000733 if( X->n * biL < i )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200734 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000735
736 ret = 0;
737
738 /*
739 * shift by count / limb_size
740 */
741 if( v0 > 0 )
742 {
Paul Bakker23986e52011-04-24 08:57:21 +0000743 for( i = X->n; i > v0; i-- )
744 X->p[i - 1] = X->p[i - v0 - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +0000745
Paul Bakker23986e52011-04-24 08:57:21 +0000746 for( ; i > 0; i-- )
747 X->p[i - 1] = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000748 }
749
750 /*
751 * shift by count % limb_size
752 */
753 if( t1 > 0 )
754 {
755 for( i = v0; i < X->n; i++ )
756 {
757 r1 = X->p[i] >> (biL - t1);
758 X->p[i] <<= t1;
759 X->p[i] |= r0;
760 r0 = r1;
761 }
762 }
763
764cleanup:
765
766 return( ret );
767}
768
769/*
770 * Right-shift: X >>= count
771 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200772int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
Paul Bakker5121ce52009-01-03 21:22:43 +0000773{
Gilles Peskine66414202022-09-21 15:36:16 +0200774 MPI_VALIDATE_RET( X != NULL );
775 if( X->n != 0 )
776 mbedtls_mpi_core_shift_r( X->p, X->n, count );
777 return( 0 );
778}
779
Paul Bakker5121ce52009-01-03 21:22:43 +0000780/*
781 * Compare unsigned values
782 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200783int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000784{
Paul Bakker23986e52011-04-24 08:57:21 +0000785 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000786 MPI_VALIDATE_RET( X != NULL );
787 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000788
Paul Bakker23986e52011-04-24 08:57:21 +0000789 for( i = X->n; i > 0; i-- )
790 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000791 break;
792
Paul Bakker23986e52011-04-24 08:57:21 +0000793 for( j = Y->n; j > 0; j-- )
794 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000795 break;
796
Paul Bakker23986e52011-04-24 08:57:21 +0000797 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000798 return( 0 );
799
800 if( i > j ) return( 1 );
801 if( j > i ) return( -1 );
802
Paul Bakker23986e52011-04-24 08:57:21 +0000803 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000804 {
Paul Bakker23986e52011-04-24 08:57:21 +0000805 if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
806 if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
Paul Bakker5121ce52009-01-03 21:22:43 +0000807 }
808
809 return( 0 );
810}
811
812/*
813 * Compare signed values
814 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200815int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
Paul Bakker5121ce52009-01-03 21:22:43 +0000816{
Paul Bakker23986e52011-04-24 08:57:21 +0000817 size_t i, j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000818 MPI_VALIDATE_RET( X != NULL );
819 MPI_VALIDATE_RET( Y != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000820
Paul Bakker23986e52011-04-24 08:57:21 +0000821 for( i = X->n; i > 0; i-- )
822 if( X->p[i - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000823 break;
824
Paul Bakker23986e52011-04-24 08:57:21 +0000825 for( j = Y->n; j > 0; j-- )
826 if( Y->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000827 break;
828
Paul Bakker23986e52011-04-24 08:57:21 +0000829 if( i == 0 && j == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000830 return( 0 );
831
832 if( i > j ) return( X->s );
Paul Bakker0c8f73b2012-03-22 14:08:57 +0000833 if( j > i ) return( -Y->s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000834
835 if( X->s > 0 && Y->s < 0 ) return( 1 );
836 if( Y->s > 0 && X->s < 0 ) return( -1 );
837
Paul Bakker23986e52011-04-24 08:57:21 +0000838 for( ; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +0000839 {
Paul Bakker23986e52011-04-24 08:57:21 +0000840 if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
841 if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
Paul Bakker5121ce52009-01-03 21:22:43 +0000842 }
843
844 return( 0 );
845}
846
Janos Follathee6abce2019-09-05 14:47:19 +0100847/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000848 * Compare signed values
849 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200850int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
Paul Bakker5121ce52009-01-03 21:22:43 +0000851{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200852 mbedtls_mpi Y;
853 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +0000854 MPI_VALIDATE_RET( X != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000855
856 *p = ( z < 0 ) ? -z : z;
857 Y.s = ( z < 0 ) ? -1 : 1;
858 Y.n = 1;
859 Y.p = p;
860
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200861 return( mbedtls_mpi_cmp_mpi( X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000862}
863
864/*
865 * Unsigned addition: X = |A| + |B| (HAC 14.7)
866 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200867int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000868{
Janos Follath24eed8d2019-11-22 13:21:35 +0000869 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100870 size_t j;
Hanno Becker73d7d792018-12-11 10:35:51 +0000871 MPI_VALIDATE_RET( X != NULL );
872 MPI_VALIDATE_RET( A != NULL );
873 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000874
875 if( X == B )
876 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200877 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +0000878 }
879
880 if( X != A )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200881 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Paul Bakker9af723c2014-05-01 13:03:14 +0200882
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000883 /*
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100884 * X must always be positive as a result of unsigned additions.
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000885 */
886 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000887
Paul Bakker23986e52011-04-24 08:57:21 +0000888 for( j = B->n; j > 0; j-- )
889 if( B->p[j - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000890 break;
891
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200892 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
Paul Bakker5121ce52009-01-03 21:22:43 +0000893
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100894 /* j is the number of non-zero limbs of B. Add those to X. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000895
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100896 mbedtls_mpi_uint *p = X->p;
897
Tom Cosgrove6469fdf2022-10-25 12:46:13 +0100898 mbedtls_mpi_uint c = mbedtls_mpi_core_add( p, p, B->p, j );
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100899
900 p += j;
901
902 /* Now propagate any carry */
Paul Bakker5121ce52009-01-03 21:22:43 +0000903
904 while( c != 0 )
905 {
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100906 if( j >= X->n )
Paul Bakker5121ce52009-01-03 21:22:43 +0000907 {
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100908 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j + 1 ) );
909 p = X->p + j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000910 }
911
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100912 *p += c; c = ( *p < c ); j++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +0000913 }
914
915cleanup:
916
917 return( ret );
918}
919
Paul Bakker5121ce52009-01-03 21:22:43 +0000920/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200921 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +0000922 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200923int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000924{
Janos Follath24eed8d2019-11-22 13:21:35 +0000925 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000926 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200927 mbedtls_mpi_uint carry;
Hanno Becker73d7d792018-12-11 10:35:51 +0000928 MPI_VALIDATE_RET( X != NULL );
929 MPI_VALIDATE_RET( A != NULL );
930 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000931
Paul Bakker23986e52011-04-24 08:57:21 +0000932 for( n = B->n; n > 0; n-- )
933 if( B->p[n - 1] != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000934 break;
Gilles Peskinec8a91772021-01-27 22:30:43 +0100935 if( n > A->n )
936 {
937 /* B >= (2^ciL)^n > A */
938 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
939 goto cleanup;
940 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000941
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200942 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, A->n ) );
943
944 /* Set the high limbs of X to match A. Don't touch the lower limbs
945 * because X might be aliased to B, and we must not overwrite the
946 * significant digits of B. */
947 if( A->n > n )
948 memcpy( X->p + n, A->p + n, ( A->n - n ) * ciL );
949 if( X->n > A->n )
950 memset( X->p + A->n, 0, ( X->n - A->n ) * ciL );
951
Tom Cosgrove7e655f72022-07-20 14:02:11 +0100952 carry = mbedtls_mpi_core_sub( X->p, A->p, B->p, n );
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200953 if( carry != 0 )
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200954 {
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200955 /* Propagate the carry to the first nonzero limb of X. */
956 for( ; n < X->n && X->p[n] == 0; n++ )
957 --X->p[n];
958 /* If we ran out of space for the carry, it means that the result
959 * is negative. */
960 if( n == X->n )
Gilles Peskine89b41302020-07-23 01:16:46 +0200961 {
962 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
963 goto cleanup;
964 }
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200965 --X->p[n];
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200966 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000967
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200968 /* X should always be positive as a result of unsigned subtractions. */
969 X->s = 1;
970
Paul Bakker5121ce52009-01-03 21:22:43 +0000971cleanup:
Paul Bakker5121ce52009-01-03 21:22:43 +0000972 return( ret );
973}
974
Gilles Peskine72ee1e32022-11-09 21:34:09 +0100975/* Common function for signed addition and subtraction.
976 * Calculate A + B * flip_B where flip_B is 1 or -1.
Paul Bakker5121ce52009-01-03 21:22:43 +0000977 */
Gilles Peskine72ee1e32022-11-09 21:34:09 +0100978static int add_sub_mpi( mbedtls_mpi *X,
979 const mbedtls_mpi *A, const mbedtls_mpi *B,
980 int flip_B )
Paul Bakker5121ce52009-01-03 21:22:43 +0000981{
Hanno Becker73d7d792018-12-11 10:35:51 +0000982 int ret, s;
983 MPI_VALIDATE_RET( X != NULL );
984 MPI_VALIDATE_RET( A != NULL );
985 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +0000986
Hanno Becker73d7d792018-12-11 10:35:51 +0000987 s = A->s;
Gilles Peskine72ee1e32022-11-09 21:34:09 +0100988 if( A->s * B->s * flip_B < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000989 {
Gilles Peskine4a768dd2022-11-09 22:02:16 +0100990 int cmp = mbedtls_mpi_cmp_abs( A, B );
991 if( cmp >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +0000992 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200993 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
Gilles Peskine4a768dd2022-11-09 22:02:16 +0100994 /* If |A| = |B|, the result is 0 and we must set the sign bit
995 * to +1 regardless of which of A or B was negative. Otherwise,
996 * since |A| > |B|, the sign is the sign of A. */
997 X->s = cmp == 0 ? 1 : s;
Paul Bakker5121ce52009-01-03 21:22:43 +0000998 }
999 else
1000 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001001 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
Gilles Peskine4a768dd2022-11-09 22:02:16 +01001002 /* Since |A| < |B|, the sign is the opposite of A. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001003 X->s = -s;
1004 }
1005 }
1006 else
1007 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001008 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001009 X->s = s;
1010 }
1011
1012cleanup:
1013
1014 return( ret );
1015}
1016
1017/*
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001018 * Signed addition: X = A + B
1019 */
1020int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
1021{
1022 return( add_sub_mpi( X, A, B, 1 ) );
1023}
1024
1025/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001026 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001027 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001028int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001029{
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001030 return( add_sub_mpi( X, A, B, -1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001031}
1032
1033/*
1034 * Signed addition: X = A + b
1035 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001036int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001037{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001038 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001039 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001040 MPI_VALIDATE_RET( X != NULL );
1041 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001042
1043 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001044 B.s = ( b < 0 ) ? -1 : 1;
1045 B.n = 1;
1046 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001047
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001048 return( mbedtls_mpi_add_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001049}
1050
1051/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001052 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001053 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001054int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001055{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001056 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001057 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001058 MPI_VALIDATE_RET( X != NULL );
1059 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001060
1061 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001062 B.s = ( b < 0 ) ? -1 : 1;
1063 B.n = 1;
1064 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001065
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001066 return( mbedtls_mpi_sub_mpi( X, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001067}
1068
Paul Bakker5121ce52009-01-03 21:22:43 +00001069/*
1070 * Baseline multiplication: X = A * B (HAC 14.12)
1071 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001072int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001073{
Janos Follath24eed8d2019-11-22 13:21:35 +00001074 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker1772e052022-04-13 06:51:40 +01001075 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001076 mbedtls_mpi TA, TB;
Hanno Beckerda763de2022-04-13 06:50:02 +01001077 int result_is_zero = 0;
Hanno Becker73d7d792018-12-11 10:35:51 +00001078 MPI_VALIDATE_RET( X != NULL );
1079 MPI_VALIDATE_RET( A != NULL );
1080 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001081
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001082 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001083
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001084 if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
1085 if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
Paul Bakker5121ce52009-01-03 21:22:43 +00001086
Hanno Beckerda763de2022-04-13 06:50:02 +01001087 for( i = A->n; i > 0; i-- )
1088 if( A->p[i - 1] != 0 )
1089 break;
1090 if( i == 0 )
1091 result_is_zero = 1;
1092
1093 for( j = B->n; j > 0; j-- )
1094 if( B->p[j - 1] != 0 )
1095 break;
1096 if( j == 0 )
1097 result_is_zero = 1;
1098
1099 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001100 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001101
Hanno Becker1772e052022-04-13 06:51:40 +01001102 for( size_t k = 0; k < j; k++ )
Hanno Beckerfee261a2022-04-06 06:20:22 +01001103 {
1104 /* We know that there cannot be any carry-out since we're
1105 * iterating from bottom to top. */
Hanno Beckerda763de2022-04-13 06:50:02 +01001106 (void) mbedtls_mpi_core_mla( X->p + k, i + 1,
1107 A->p, i,
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001108 B->p[k] );
Hanno Beckerfee261a2022-04-06 06:20:22 +01001109 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001110
Hanno Beckerda763de2022-04-13 06:50:02 +01001111 /* If the result is 0, we don't shortcut the operation, which reduces
1112 * but does not eliminate side channels leaking the zero-ness. We do
1113 * need to take care to set the sign bit properly since the library does
1114 * not fully support an MPI object with a value of 0 and s == -1. */
1115 if( result_is_zero )
1116 X->s = 1;
1117 else
1118 X->s = A->s * B->s;
Paul Bakker5121ce52009-01-03 21:22:43 +00001119
1120cleanup:
1121
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001122 mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001123
1124 return( ret );
1125}
1126
1127/*
1128 * Baseline multiplication: X = A * b
1129 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001130int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001131{
Hanno Becker73d7d792018-12-11 10:35:51 +00001132 MPI_VALIDATE_RET( X != NULL );
1133 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001134
Hanno Becker35771312022-04-14 11:52:11 +01001135 size_t n = A->n;
1136 while( n > 0 && A->p[n - 1] == 0 )
1137 --n;
1138
Hanno Becker74a11a32022-04-06 06:27:00 +01001139 /* The general method below doesn't work if b==0. */
Hanno Becker35771312022-04-14 11:52:11 +01001140 if( b == 0 || n == 0 )
Paul Elliott986b55a2021-04-20 21:46:29 +01001141 return( mbedtls_mpi_lset( X, 0 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001142
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001143 /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001144 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001145 /* In general, A * b requires 1 limb more than b. If
1146 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1147 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001148 * copy() will take care of the growth if needed. However, experimentally,
1149 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001150 * calls to calloc() in ECP code, presumably because it reuses the
1151 * same mpi for a while and this way the mpi is more likely to directly
Hanno Becker9137b9c2022-04-12 10:51:54 +01001152 * grow to its final size.
1153 *
1154 * Note that calculating A*b as 0 + A*b doesn't work as-is because
1155 * A,X can be the same. */
Hanno Becker35771312022-04-14 11:52:11 +01001156 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n + 1 ) );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001157 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
Hanno Becker35771312022-04-14 11:52:11 +01001158 mbedtls_mpi_core_mla( X->p, X->n, A->p, n, b - 1 );
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001159
1160cleanup:
1161 return( ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00001162}
1163
1164/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001165 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1166 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001167 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001168static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
1169 mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
Simon Butcher15b15d12015-11-26 19:35:03 +00001170{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001171#if defined(MBEDTLS_HAVE_UDBL)
1172 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001173#else
Simon Butcher9803d072016-01-03 00:24:34 +00001174 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
1175 const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001176 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1177 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001178 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001179#endif
1180
Simon Butcher15b15d12015-11-26 19:35:03 +00001181 /*
1182 * Check for overflow
1183 */
Simon Butcherf5ba0452015-12-27 23:01:55 +00001184 if( 0 == d || u1 >= d )
Simon Butcher15b15d12015-11-26 19:35:03 +00001185 {
Simon Butcherf5ba0452015-12-27 23:01:55 +00001186 if (r != NULL) *r = ~0;
Simon Butcher15b15d12015-11-26 19:35:03 +00001187
Simon Butcherf5ba0452015-12-27 23:01:55 +00001188 return ( ~0 );
Simon Butcher15b15d12015-11-26 19:35:03 +00001189 }
1190
1191#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001192 dividend = (mbedtls_t_udbl) u1 << biL;
1193 dividend |= (mbedtls_t_udbl) u0;
1194 quotient = dividend / d;
1195 if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
1196 quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
1197
1198 if( r != NULL )
Simon Butcher9803d072016-01-03 00:24:34 +00001199 *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001200
1201 return (mbedtls_mpi_uint) quotient;
1202#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001203
1204 /*
1205 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1206 * Vol. 2 - Seminumerical Algorithms, Knuth
1207 */
1208
1209 /*
1210 * Normalize the divisor, d, and dividend, u0, u1
1211 */
Janos Follath4670f882022-07-21 18:25:42 +01001212 s = mbedtls_mpi_core_clz( d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001213 d = d << s;
1214
1215 u1 = u1 << s;
Simon Butcher9803d072016-01-03 00:24:34 +00001216 u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
Simon Butcher15b15d12015-11-26 19:35:03 +00001217 u0 = u0 << s;
1218
1219 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001220 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001221
1222 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001223 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001224
1225 /*
1226 * Find the first quotient and remainder
1227 */
1228 q1 = u1 / d1;
1229 r0 = u1 - d1 * q1;
1230
1231 while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
1232 {
1233 q1 -= 1;
1234 r0 += d1;
1235
1236 if ( r0 >= radix ) break;
1237 }
1238
Simon Butcherf5ba0452015-12-27 23:01:55 +00001239 rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
Simon Butcher15b15d12015-11-26 19:35:03 +00001240 q0 = rAX / d1;
1241 r0 = rAX - q0 * d1;
1242
1243 while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
1244 {
1245 q0 -= 1;
1246 r0 += d1;
1247
1248 if ( r0 >= radix ) break;
1249 }
1250
1251 if (r != NULL)
Simon Butcherf5ba0452015-12-27 23:01:55 +00001252 *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
Simon Butcher15b15d12015-11-26 19:35:03 +00001253
1254 quotient = q1 * radix + q0;
1255
1256 return quotient;
1257#endif
1258}
1259
1260/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001261 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001262 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001263int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1264 const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001265{
Janos Follath24eed8d2019-11-22 13:21:35 +00001266 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001267 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001268 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001269 mbedtls_mpi_uint TP2[3];
Hanno Becker73d7d792018-12-11 10:35:51 +00001270 MPI_VALIDATE_RET( A != NULL );
1271 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001272
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001273 if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
1274 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001275
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001276 mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001277 mbedtls_mpi_init( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001278 /*
1279 * Avoid dynamic memory allocations for constant-size T2.
1280 *
1281 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1282 * so nobody increase the size of the MPI and we're safe to use an on-stack
1283 * buffer.
1284 */
Alexander K35d6d462019-10-31 14:46:45 +03001285 T2.s = 1;
Alexander Kd19a1932019-11-01 18:20:42 +03001286 T2.n = sizeof( TP2 ) / sizeof( *TP2 );
1287 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001288
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001289 if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001290 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001291 if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
1292 if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001293 return( 0 );
1294 }
1295
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001296 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
1297 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001298 X.s = Y.s = 1;
1299
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001300 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
1301 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
Gilles Peskine2536aa72020-07-24 00:12:59 +02001302 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, A->n + 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001303
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001304 k = mbedtls_mpi_bitlen( &Y ) % biL;
Paul Bakkerf9688572011-05-05 10:00:45 +00001305 if( k < biL - 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001306 {
1307 k = biL - 1 - k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001308 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
1309 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001310 }
1311 else k = 0;
1312
1313 n = X.n - 1;
1314 t = Y.n - 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001315 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001316
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001317 while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001318 {
1319 Z.p[n - t]++;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001320 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001321 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001322 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001323
1324 for( i = n; i > t ; i-- )
1325 {
1326 if( X.p[i] >= Y.p[t] )
1327 Z.p[i - t - 1] = ~0;
1328 else
1329 {
Simon Butcher15b15d12015-11-26 19:35:03 +00001330 Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
1331 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001332 }
1333
Alexander K35d6d462019-10-31 14:46:45 +03001334 T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
1335 T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
1336 T2.p[2] = X.p[i];
1337
Paul Bakker5121ce52009-01-03 21:22:43 +00001338 Z.p[i - t - 1]++;
1339 do
1340 {
1341 Z.p[i - t - 1]--;
1342
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001343 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
Paul Bakker66d5d072014-06-17 16:39:18 +02001344 T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001345 T1.p[1] = Y.p[t];
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001346 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001347 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001348 while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001349
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001350 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
1351 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1352 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001353
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001354 if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001355 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001356 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
1357 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
1358 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001359 Z.p[i - t - 1]--;
1360 }
1361 }
1362
1363 if( Q != NULL )
1364 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001365 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001366 Q->s = A->s * B->s;
1367 }
1368
1369 if( R != NULL )
1370 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001371 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
Paul Bakkerf02c5642012-11-13 10:25:21 +00001372 X.s = A->s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001373 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001374
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001375 if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001376 R->s = 1;
1377 }
1378
1379cleanup:
1380
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001381 mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
Alexander K35d6d462019-10-31 14:46:45 +03001382 mbedtls_mpi_free( &T1 );
Alexander Kd19a1932019-11-01 18:20:42 +03001383 mbedtls_platform_zeroize( TP2, sizeof( TP2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001384
1385 return( ret );
1386}
1387
1388/*
1389 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001390 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001391int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R,
1392 const mbedtls_mpi *A,
1393 mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001394{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001395 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001396 mbedtls_mpi_uint p[1];
Hanno Becker73d7d792018-12-11 10:35:51 +00001397 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001398
1399 p[0] = ( b < 0 ) ? -b : b;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001400 B.s = ( b < 0 ) ? -1 : 1;
1401 B.n = 1;
1402 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001403
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001404 return( mbedtls_mpi_div_mpi( Q, R, A, &B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001405}
1406
1407/*
1408 * Modulo: R = A mod B
1409 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001410int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001411{
Janos Follath24eed8d2019-11-22 13:21:35 +00001412 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker73d7d792018-12-11 10:35:51 +00001413 MPI_VALIDATE_RET( R != NULL );
1414 MPI_VALIDATE_RET( A != NULL );
1415 MPI_VALIDATE_RET( B != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001416
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001417 if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
1418 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001419
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001420 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001421
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001422 while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
1423 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001424
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001425 while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
1426 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001427
1428cleanup:
1429
1430 return( ret );
1431}
1432
1433/*
1434 * Modulo: r = A mod b
1435 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001436int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
Paul Bakker5121ce52009-01-03 21:22:43 +00001437{
Paul Bakker23986e52011-04-24 08:57:21 +00001438 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001439 mbedtls_mpi_uint x, y, z;
Hanno Becker73d7d792018-12-11 10:35:51 +00001440 MPI_VALIDATE_RET( r != NULL );
1441 MPI_VALIDATE_RET( A != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00001442
1443 if( b == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001444 return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
Paul Bakker5121ce52009-01-03 21:22:43 +00001445
1446 if( b < 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001447 return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
Paul Bakker5121ce52009-01-03 21:22:43 +00001448
1449 /*
1450 * handle trivial cases
1451 */
Gilles Peskineae25bb02022-06-09 19:32:46 +02001452 if( b == 1 || A->n == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001453 {
1454 *r = 0;
1455 return( 0 );
1456 }
1457
1458 if( b == 2 )
1459 {
1460 *r = A->p[0] & 1;
1461 return( 0 );
1462 }
1463
1464 /*
1465 * general case
1466 */
Paul Bakker23986e52011-04-24 08:57:21 +00001467 for( i = A->n, y = 0; i > 0; i-- )
Paul Bakker5121ce52009-01-03 21:22:43 +00001468 {
Paul Bakker23986e52011-04-24 08:57:21 +00001469 x = A->p[i - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001470 y = ( y << biH ) | ( x >> biH );
1471 z = y / b;
1472 y -= z * b;
1473
1474 x <<= biH;
1475 y = ( y << biH ) | ( x >> biH );
1476 z = y / b;
1477 y -= z * b;
1478 }
1479
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001480 /*
1481 * If A is negative, then the current y represents a negative value.
1482 * Flipping it to the positive side.
1483 */
1484 if( A->s < 0 && y != 0 )
1485 y = b - y;
1486
Paul Bakker5121ce52009-01-03 21:22:43 +00001487 *r = y;
1488
1489 return( 0 );
1490}
1491
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001492static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00001493{
Tom Cosgroveb7438d12022-09-15 15:05:59 +01001494 *mm = mbedtls_mpi_core_montmul_init( N->p );
Paul Bakker5121ce52009-01-03 21:22:43 +00001495}
1496
Tom Cosgrove93842842022-08-05 16:59:43 +01001497/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1498 *
1499 * \param[in,out] A One of the numbers to multiply.
1500 * It must have at least as many limbs as N
1501 * (A->n >= N->n), and any limbs beyond n are ignored.
1502 * On successful completion, A contains the result of
1503 * the multiplication A * B * R^-1 mod N where
1504 * R = (2^ciL)^n.
1505 * \param[in] B One of the numbers to multiply.
1506 * It must be nonzero and must not have more limbs than N
1507 * (B->n <= N->n).
Tom Cosgrove40d22942022-08-17 06:42:44 +01001508 * \param[in] N The modulus. \p N must be odd.
Tom Cosgrove93842842022-08-05 16:59:43 +01001509 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1510 * This is -N^-1 mod 2^ciL.
1511 * \param[in,out] T A bignum for temporary storage.
1512 * It must be at least twice the limb size of N plus 1
1513 * (T->n >= 2 * N->n + 1).
1514 * Its initial content is unused and
1515 * its final content is indeterminate.
Tom Cosgrove5dd97e62022-08-30 14:31:49 +01001516 * It does not get reallocated.
Tom Cosgrove93842842022-08-05 16:59:43 +01001517 */
1518static void mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B,
1519 const mbedtls_mpi *N, mbedtls_mpi_uint mm,
Tom Cosgrovef88b47e2022-08-17 08:42:58 +01001520 mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001521{
Tom Cosgrove93842842022-08-05 16:59:43 +01001522 mbedtls_mpi_core_montmul( A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p );
Paul Bakker5121ce52009-01-03 21:22:43 +00001523}
1524
1525/*
1526 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001527 *
Tom Cosgrove93842842022-08-05 16:59:43 +01001528 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001529 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001530static void mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N,
Tom Cosgrovef88b47e2022-08-17 08:42:58 +01001531 mbedtls_mpi_uint mm, mbedtls_mpi *T )
Paul Bakker5121ce52009-01-03 21:22:43 +00001532{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001533 mbedtls_mpi_uint z = 1;
1534 mbedtls_mpi U;
Paul Bakker5121ce52009-01-03 21:22:43 +00001535
Paul Bakker8ddb6452013-02-27 14:56:33 +01001536 U.n = U.s = (int) z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001537 U.p = &z;
1538
Tom Cosgrove93842842022-08-05 16:59:43 +01001539 mpi_montmul( A, &U, N, mm, T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001540}
1541
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001542/**
1543 * Select an MPI from a table without leaking the index.
1544 *
1545 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1546 * reads the entire table in order to avoid leaking the value of idx to an
1547 * attacker able to observe memory access patterns.
1548 *
1549 * \param[out] R Where to write the selected MPI.
1550 * \param[in] T The table to read from.
1551 * \param[in] T_size The number of elements in the table.
1552 * \param[in] idx The index of the element to select;
1553 * this must satisfy 0 <= idx < T_size.
1554 *
1555 * \return \c 0 on success, or a negative error code.
1556 */
1557static int mpi_select( mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx )
1558{
1559 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1560
1561 for( size_t i = 0; i < T_size; i++ )
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001562 {
1563 MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( R, &T[i],
Gabor Mezei90437e32021-10-20 11:59:27 +02001564 (unsigned char) mbedtls_ct_size_bool_eq( i, idx ) ) );
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001565 }
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001566
1567cleanup:
1568 return( ret );
1569}
1570
Paul Bakker5121ce52009-01-03 21:22:43 +00001571/*
1572 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1573 */
Hanno Becker73d7d792018-12-11 10:35:51 +00001574int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A,
1575 const mbedtls_mpi *E, const mbedtls_mpi *N,
Yuto Takano538a0cb2021-07-14 10:20:09 +01001576 mbedtls_mpi *prec_RR )
Paul Bakker5121ce52009-01-03 21:22:43 +00001577{
Janos Follath24eed8d2019-11-22 13:21:35 +00001578 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001579 size_t wbits, wsize, one = 1;
1580 size_t i, j, nblimbs;
1581 size_t bufsize, nbits;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001582 mbedtls_mpi_uint ei, mm, state;
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001583 mbedtls_mpi RR, T, W[ 1 << MBEDTLS_MPI_WINDOW_SIZE ], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00001584 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00001585
Hanno Becker73d7d792018-12-11 10:35:51 +00001586 MPI_VALIDATE_RET( X != NULL );
1587 MPI_VALIDATE_RET( A != NULL );
1588 MPI_VALIDATE_RET( E != NULL );
1589 MPI_VALIDATE_RET( N != NULL );
1590
Hanno Becker8d1dd1b2017-09-28 11:02:24 +01001591 if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || ( N->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001592 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00001593
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001594 if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
1595 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakkerf6198c12012-05-16 08:02:29 +00001596
Chris Jones9246d042020-11-25 15:12:39 +00001597 if( mbedtls_mpi_bitlen( E ) > MBEDTLS_MPI_MAX_BITS ||
1598 mbedtls_mpi_bitlen( N ) > MBEDTLS_MPI_MAX_BITS )
1599 return ( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
1600
Paul Bakkerf6198c12012-05-16 08:02:29 +00001601 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001602 * Init temps and window size
1603 */
1604 mpi_montg_init( &mm, N );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001605 mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
1606 mbedtls_mpi_init( &Apos );
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001607 mbedtls_mpi_init( &WW );
Paul Bakker5121ce52009-01-03 21:22:43 +00001608 memset( W, 0, sizeof( W ) );
1609
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02001610 i = mbedtls_mpi_bitlen( E );
Paul Bakker5121ce52009-01-03 21:22:43 +00001611
1612 wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
1613 ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
1614
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001615#if( MBEDTLS_MPI_WINDOW_SIZE < 6 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001616 if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
1617 wsize = MBEDTLS_MPI_WINDOW_SIZE;
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001618#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00001619
Paul Bakker5121ce52009-01-03 21:22:43 +00001620 j = N->n + 1;
Tom Cosgrove93842842022-08-05 16:59:43 +01001621 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001622 * and mpi_montred() calls later. Here we ensure that W[1] and X are
1623 * large enough, and later we'll grow other W[i] to the same length.
1624 * They must not be shrunk midway through this function!
1625 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001626 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
1627 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
1628 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001629
1630 /*
Paul Bakker50546922012-05-19 08:40:49 +00001631 * Compensate for negative A (and correct at the end)
1632 */
1633 neg = ( A->s == -1 );
Paul Bakker50546922012-05-19 08:40:49 +00001634 if( neg )
1635 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001636 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
Paul Bakker50546922012-05-19 08:40:49 +00001637 Apos.s = 1;
1638 A = &Apos;
1639 }
1640
1641 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001642 * If 1st call, pre-compute R^2 mod N
1643 */
Yuto Takano538a0cb2021-07-14 10:20:09 +01001644 if( prec_RR == NULL || prec_RR->p == NULL )
Paul Bakker5121ce52009-01-03 21:22:43 +00001645 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001646 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
1647 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
1648 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001649
Yuto Takano538a0cb2021-07-14 10:20:09 +01001650 if( prec_RR != NULL )
1651 memcpy( prec_RR, &RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001652 }
1653 else
Yuto Takano538a0cb2021-07-14 10:20:09 +01001654 memcpy( &RR, prec_RR, sizeof( mbedtls_mpi ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001655
1656 /*
1657 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1658 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001659 if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001660 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001661 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001662 /* This should be a no-op because W[1] is already that large before
1663 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
Tom Cosgrove93842842022-08-05 16:59:43 +01001664 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine2aa3f162021-06-15 21:22:48 +02001665 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], N->n + 1 ) );
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001666 }
Paul Bakkerc2024f42014-01-23 20:38:35 +01001667 else
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001668 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001669
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001670 /* Note that this is safe because W[1] always has at least N->n limbs
1671 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Tom Cosgrove93842842022-08-05 16:59:43 +01001672 mpi_montmul( &W[1], &RR, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001673
1674 /*
1675 * X = R^2 * R^-1 mod N = R mod N
1676 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001677 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
Gilles Peskine4e91d472020-06-04 20:55:15 +02001678 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001679
1680 if( wsize > 1 )
1681 {
1682 /*
1683 * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
1684 */
Paul Bakker66d5d072014-06-17 16:39:18 +02001685 j = one << ( wsize - 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00001686
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001687 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
1688 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001689
1690 for( i = 0; i < wsize - 1; i++ )
Tom Cosgrove93842842022-08-05 16:59:43 +01001691 mpi_montmul( &W[j], &W[j], N, mm, &T );
Paul Bakker0d7702c2013-10-29 16:18:35 +01001692
Paul Bakker5121ce52009-01-03 21:22:43 +00001693 /*
1694 * W[i] = W[i - 1] * W[1]
1695 */
Paul Bakker66d5d072014-06-17 16:39:18 +02001696 for( i = j + 1; i < ( one << wsize ); i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00001697 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001698 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
1699 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001700
Tom Cosgrove93842842022-08-05 16:59:43 +01001701 mpi_montmul( &W[i], &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001702 }
1703 }
1704
1705 nblimbs = E->n;
1706 bufsize = 0;
1707 nbits = 0;
1708 wbits = 0;
1709 state = 0;
1710
1711 while( 1 )
1712 {
1713 if( bufsize == 0 )
1714 {
Paul Bakker0d7702c2013-10-29 16:18:35 +01001715 if( nblimbs == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001716 break;
1717
Paul Bakker0d7702c2013-10-29 16:18:35 +01001718 nblimbs--;
1719
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001720 bufsize = sizeof( mbedtls_mpi_uint ) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00001721 }
1722
1723 bufsize--;
1724
1725 ei = (E->p[nblimbs] >> bufsize) & 1;
1726
1727 /*
1728 * skip leading 0s
1729 */
1730 if( ei == 0 && state == 0 )
1731 continue;
1732
1733 if( ei == 0 && state == 1 )
1734 {
1735 /*
1736 * out of window, square X
1737 */
Tom Cosgrove93842842022-08-05 16:59:43 +01001738 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001739 continue;
1740 }
1741
1742 /*
1743 * add ei to current window
1744 */
1745 state = 2;
1746
1747 nbits++;
Paul Bakker66d5d072014-06-17 16:39:18 +02001748 wbits |= ( ei << ( wsize - nbits ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001749
1750 if( nbits == wsize )
1751 {
1752 /*
1753 * X = X^wsize R^-1 mod N
1754 */
1755 for( i = 0; i < wsize; i++ )
Tom Cosgrove93842842022-08-05 16:59:43 +01001756 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001757
1758 /*
1759 * X = X * W[wbits] R^-1 mod N
1760 */
Manuel Pégourié-Gonnarde22176e2021-06-10 09:34:00 +02001761 MBEDTLS_MPI_CHK( mpi_select( &WW, W, (size_t) 1 << wsize, wbits ) );
Tom Cosgrove93842842022-08-05 16:59:43 +01001762 mpi_montmul( X, &WW, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001763
1764 state--;
1765 nbits = 0;
1766 wbits = 0;
1767 }
1768 }
1769
1770 /*
1771 * process the remaining bits
1772 */
1773 for( i = 0; i < nbits; i++ )
1774 {
Tom Cosgrove93842842022-08-05 16:59:43 +01001775 mpi_montmul( X, X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001776
1777 wbits <<= 1;
1778
Paul Bakker66d5d072014-06-17 16:39:18 +02001779 if( ( wbits & ( one << wsize ) ) != 0 )
Tom Cosgrove93842842022-08-05 16:59:43 +01001780 mpi_montmul( X, &W[1], N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001781 }
1782
1783 /*
1784 * X = A^E * R * R^-1 mod N = A^E mod N
1785 */
Gilles Peskine4e91d472020-06-04 20:55:15 +02001786 mpi_montred( X, N, mm, &T );
Paul Bakker5121ce52009-01-03 21:22:43 +00001787
Hanno Beckera4af1c42017-04-18 09:07:45 +01001788 if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
Paul Bakkerf6198c12012-05-16 08:02:29 +00001789 {
1790 X->s = -1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001791 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
Paul Bakkerf6198c12012-05-16 08:02:29 +00001792 }
1793
Paul Bakker5121ce52009-01-03 21:22:43 +00001794cleanup:
1795
Paul Bakker66d5d072014-06-17 16:39:18 +02001796 for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001797 mbedtls_mpi_free( &W[i] );
Paul Bakker5121ce52009-01-03 21:22:43 +00001798
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001799 mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001800 mbedtls_mpi_free( &WW );
Paul Bakker6c591fa2011-05-05 11:49:20 +00001801
Yuto Takano538a0cb2021-07-14 10:20:09 +01001802 if( prec_RR == NULL || prec_RR->p == NULL )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001803 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00001804
1805 return( ret );
1806}
1807
Paul Bakker5121ce52009-01-03 21:22:43 +00001808/*
1809 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
1810 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001811int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
Paul Bakker5121ce52009-01-03 21:22:43 +00001812{
Janos Follath24eed8d2019-11-22 13:21:35 +00001813 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001814 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03001815 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00001816
Hanno Becker73d7d792018-12-11 10:35:51 +00001817 MPI_VALIDATE_RET( G != NULL );
1818 MPI_VALIDATE_RET( A != NULL );
1819 MPI_VALIDATE_RET( B != NULL );
1820
Alexander Ke8ad49f2019-08-16 16:16:07 +03001821 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001822
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001823 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
1824 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001825
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001826 lz = mbedtls_mpi_lsb( &TA );
1827 lzt = mbedtls_mpi_lsb( &TB );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001828
Gilles Peskine27253bc2021-06-09 13:26:43 +02001829 /* The loop below gives the correct result when A==0 but not when B==0.
1830 * So have a special case for B==0. Leverage the fact that we just
1831 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1832 * slightly more efficient than cmp_int(). */
1833 if( lzt == 0 && mbedtls_mpi_get_bit( &TB, 0 ) == 0 )
1834 {
1835 ret = mbedtls_mpi_copy( G, A );
1836 goto cleanup;
1837 }
1838
Paul Bakker66d5d072014-06-17 16:39:18 +02001839 if( lzt < lz )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001840 lz = lzt;
1841
Paul Bakker5121ce52009-01-03 21:22:43 +00001842 TA.s = TB.s = 1;
1843
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001844 /* We mostly follow the procedure described in HAC 14.54, but with some
1845 * minor differences:
1846 * - Sequences of multiplications or divisions by 2 are grouped into a
1847 * single shift operation.
Gilles Peskineb09c7ee2021-06-21 18:58:39 +02001848 * - The procedure in HAC assumes that 0 < TB <= TA.
1849 * - The condition TB <= TA is not actually necessary for correctness.
1850 * TA and TB have symmetric roles except for the loop termination
1851 * condition, and the shifts at the beginning of the loop body
1852 * remove any significance from the ordering of TA vs TB before
1853 * the shifts.
1854 * - If TA = 0, the loop goes through 0 iterations and the result is
1855 * correctly TB.
1856 * - The case TB = 0 was short-circuited above.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001857 *
1858 * For the correctness proof below, decompose the original values of
1859 * A and B as
1860 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
1861 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
1862 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
1863 * and gcd(A',B') is odd or 0.
1864 *
1865 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
1866 * The code maintains the following invariant:
1867 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine4df3f1f2021-06-15 22:09:39 +02001868 */
1869
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001870 /* Proof that the loop terminates:
1871 * At each iteration, either the right-shift by 1 is made on a nonzero
1872 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
1873 * by at least 1, or the right-shift by 1 is made on zero and then
1874 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
1875 * since in that case TB is calculated from TB-TA with the condition TB>TA).
1876 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001877 while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001878 {
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001879 /* Divisions by 2 preserve the invariant (I). */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001880 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
1881 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001882
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001883 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
1884 * TA-TB is even so the division by 2 has an integer result.
1885 * Invariant (I) is preserved since any odd divisor of both TA and TB
1886 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001887 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001888 * divides TA.
1889 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001890 if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00001891 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001892 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
1893 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001894 }
1895 else
1896 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001897 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
1898 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001899 }
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001900 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001901 }
1902
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001903 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
1904 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
1905 * - If there was at least one loop iteration, then one of TA or TB is odd,
1906 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
1907 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
1908 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskine4d3fd362021-06-21 11:40:38 +02001909 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001910 */
1911
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001912 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
1913 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00001914
1915cleanup:
1916
Alexander Ke8ad49f2019-08-16 16:16:07 +03001917 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
Paul Bakker5121ce52009-01-03 21:22:43 +00001918
1919 return( ret );
1920}
1921
Paul Bakker33dc46b2014-04-30 16:11:39 +02001922/*
1923 * Fill X with size bytes of random.
Gilles Peskine22cdd0c2022-10-27 20:15:13 +02001924 * The bytes returned from the RNG are used in a specific order which
1925 * is suitable for deterministic ECDSA (see the specification of
1926 * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
Paul Bakker33dc46b2014-04-30 16:11:39 +02001927 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001928int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
Paul Bakkera3d195c2011-11-27 21:07:34 +00001929 int (*f_rng)(void *, unsigned char *, size_t),
1930 void *p_rng )
Paul Bakker287781a2011-03-26 13:18:49 +00001931{
Janos Follath24eed8d2019-11-22 13:21:35 +00001932 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath620c58c2022-08-15 11:58:42 +01001933 const size_t limbs = CHARS_TO_LIMBS( size );
Hanno Beckerda1655a2017-10-18 14:21:44 +01001934
Hanno Becker8ce11a32018-12-19 16:18:52 +00001935 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00001936 MPI_VALIDATE_RET( f_rng != NULL );
Paul Bakker33dc46b2014-04-30 16:11:39 +02001937
Hanno Beckerda1655a2017-10-18 14:21:44 +01001938 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskineed32b572021-06-02 22:17:52 +02001939 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, limbs ) );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001940 if( size == 0 )
1941 return( 0 );
Paul Bakker287781a2011-03-26 13:18:49 +00001942
Gilles Peskine5980f2b2022-09-09 20:55:53 +02001943 ret = mbedtls_mpi_core_fill_random( X->p, X->n, size, f_rng, p_rng );
Paul Bakker287781a2011-03-26 13:18:49 +00001944
1945cleanup:
1946 return( ret );
1947}
1948
Gilles Peskine02ac93a2021-03-29 22:02:55 +02001949int mbedtls_mpi_random( mbedtls_mpi *X,
1950 mbedtls_mpi_sint min,
1951 const mbedtls_mpi *N,
1952 int (*f_rng)(void *, unsigned char *, size_t),
1953 void *p_rng )
1954{
Gilles Peskine02ac93a2021-03-29 22:02:55 +02001955 int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskinee5381682021-04-13 21:23:25 +02001956 int count;
Gilles Peskine5b0589e2021-04-13 21:09:10 +02001957 unsigned lt_lower = 1, lt_upper = 0;
Gilles Peskine02ac93a2021-03-29 22:02:55 +02001958 size_t n_bits = mbedtls_mpi_bitlen( N );
1959 size_t n_bytes = ( n_bits + 7 ) / 8;
Gilles Peskine5b0589e2021-04-13 21:09:10 +02001960 mbedtls_mpi lower_bound;
Gilles Peskine02ac93a2021-03-29 22:02:55 +02001961
Gilles Peskine1e918f42021-03-29 22:14:51 +02001962 if( min < 0 )
1963 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
1964 if( mbedtls_mpi_cmp_int( N, min ) <= 0 )
1965 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
1966
Gilles Peskinee5381682021-04-13 21:23:25 +02001967 /*
1968 * When min == 0, each try has at worst a probability 1/2 of failing
1969 * (the msb has a probability 1/2 of being 0, and then the result will
1970 * be < N), so after 30 tries failure probability is a most 2**(-30).
1971 *
1972 * When N is just below a power of 2, as is the case when generating
Gilles Peskinee842e582021-04-15 11:45:19 +02001973 * a random scalar on most elliptic curves, 1 try is enough with
Gilles Peskinee5381682021-04-13 21:23:25 +02001974 * overwhelming probability. When N is just above a power of 2,
Gilles Peskinee842e582021-04-15 11:45:19 +02001975 * as when generating a random scalar on secp224k1, each try has
Gilles Peskinee5381682021-04-13 21:23:25 +02001976 * a probability of failing that is almost 1/2.
1977 *
1978 * The probabilities are almost the same if min is nonzero but negligible
1979 * compared to N. This is always the case when N is crypto-sized, but
1980 * it's convenient to support small N for testing purposes. When N
1981 * is small, use a higher repeat count, otherwise the probability of
1982 * failure is macroscopic.
1983 */
Gilles Peskine87823d72021-06-02 21:18:59 +02001984 count = ( n_bytes > 4 ? 30 : 250 );
Gilles Peskinee5381682021-04-13 21:23:25 +02001985
Gilles Peskine5b0589e2021-04-13 21:09:10 +02001986 mbedtls_mpi_init( &lower_bound );
1987
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001988 /* Ensure that target MPI has exactly the same number of limbs
1989 * as the upper bound, even if the upper bound has leading zeros.
1990 * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
Gilles Peskineed32b572021-06-02 22:17:52 +02001991 MBEDTLS_MPI_CHK( mbedtls_mpi_resize_clear( X, N->n ) );
Gilles Peskine5b0589e2021-04-13 21:09:10 +02001992 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &lower_bound, N->n ) );
1993 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &lower_bound, min ) );
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02001994
Gilles Peskine02ac93a2021-03-29 22:02:55 +02001995 /*
1996 * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
1997 * when f_rng is a suitably parametrized instance of HMAC_DRBG:
1998 * - use the same byte ordering;
1999 * - keep the leftmost n_bits bits of the generated octet string;
2000 * - try until result is in the desired range.
2001 * This also avoids any bias, which is especially important for ECDSA.
2002 */
2003 do
2004 {
Gilles Peskine5980f2b2022-09-09 20:55:53 +02002005 MBEDTLS_MPI_CHK( mbedtls_mpi_core_fill_random( X->p, X->n,
2006 n_bytes,
2007 f_rng, p_rng ) );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002008 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, 8 * n_bytes - n_bits ) );
2009
Gilles Peskinee5381682021-04-13 21:23:25 +02002010 if( --count == 0 )
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002011 {
2012 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2013 goto cleanup;
2014 }
2015
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002016 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, &lower_bound, &lt_lower ) );
2017 MBEDTLS_MPI_CHK( mbedtls_mpi_lt_mpi_ct( X, N, &lt_upper ) );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002018 }
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002019 while( lt_lower != 0 || lt_upper == 0 );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002020
2021cleanup:
Gilles Peskine5b0589e2021-04-13 21:09:10 +02002022 mbedtls_mpi_free( &lower_bound );
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002023 return( ret );
2024}
2025
Paul Bakker5121ce52009-01-03 21:22:43 +00002026/*
2027 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2028 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002029int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
Paul Bakker5121ce52009-01-03 21:22:43 +00002030{
Janos Follath24eed8d2019-11-22 13:21:35 +00002031 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002032 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Hanno Becker73d7d792018-12-11 10:35:51 +00002033 MPI_VALIDATE_RET( X != NULL );
2034 MPI_VALIDATE_RET( A != NULL );
2035 MPI_VALIDATE_RET( N != NULL );
Paul Bakker5121ce52009-01-03 21:22:43 +00002036
Hanno Becker4bcb4912017-04-18 15:49:39 +01002037 if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002038 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002039
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002040 mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
2041 mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
2042 mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002043
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002044 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002045
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002046 if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002047 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002048 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002049 goto cleanup;
2050 }
2051
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002052 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
2053 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
2054 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
2055 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002056
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002057 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
2058 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
2059 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
2060 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002061
2062 do
2063 {
2064 while( ( TU.p[0] & 1 ) == 0 )
2065 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002066 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002067
2068 if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
2069 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002070 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
2071 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002072 }
2073
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002074 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
2075 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002076 }
2077
2078 while( ( TV.p[0] & 1 ) == 0 )
2079 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002080 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002081
2082 if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
2083 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002084 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
2085 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002086 }
2087
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002088 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
2089 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002090 }
2091
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002092 if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002093 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002094 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
2095 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
2096 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002097 }
2098 else
2099 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002100 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
2101 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
2102 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002103 }
2104 }
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002105 while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002106
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002107 while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
2108 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002109
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002110 while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
2111 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002112
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002113 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002114
2115cleanup:
2116
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002117 mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
2118 mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
2119 mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002120
2121 return( ret );
2122}
2123
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002124#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002125
Paul Bakker5121ce52009-01-03 21:22:43 +00002126static const int small_prime[] =
2127{
2128 3, 5, 7, 11, 13, 17, 19, 23,
2129 29, 31, 37, 41, 43, 47, 53, 59,
2130 61, 67, 71, 73, 79, 83, 89, 97,
2131 101, 103, 107, 109, 113, 127, 131, 137,
2132 139, 149, 151, 157, 163, 167, 173, 179,
2133 181, 191, 193, 197, 199, 211, 223, 227,
2134 229, 233, 239, 241, 251, 257, 263, 269,
2135 271, 277, 281, 283, 293, 307, 311, 313,
2136 317, 331, 337, 347, 349, 353, 359, 367,
2137 373, 379, 383, 389, 397, 401, 409, 419,
2138 421, 431, 433, 439, 443, 449, 457, 461,
2139 463, 467, 479, 487, 491, 499, 503, 509,
2140 521, 523, 541, 547, 557, 563, 569, 571,
2141 577, 587, 593, 599, 601, 607, 613, 617,
2142 619, 631, 641, 643, 647, 653, 659, 661,
2143 673, 677, 683, 691, 701, 709, 719, 727,
2144 733, 739, 743, 751, 757, 761, 769, 773,
2145 787, 797, 809, 811, 821, 823, 827, 829,
2146 839, 853, 857, 859, 863, 877, 881, 883,
2147 887, 907, 911, 919, 929, 937, 941, 947,
2148 953, 967, 971, 977, 983, 991, 997, -103
2149};
2150
2151/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002152 * Small divisors test (X must be positive)
2153 *
2154 * Return values:
2155 * 0: no small factor (possible prime, more tests needed)
2156 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002157 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002158 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002159 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002160static int mpi_check_small_factors( const mbedtls_mpi *X )
Paul Bakker5121ce52009-01-03 21:22:43 +00002161{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002162 int ret = 0;
2163 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002164 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002165
Paul Bakker5121ce52009-01-03 21:22:43 +00002166 if( ( X->p[0] & 1 ) == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002167 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002168
2169 for( i = 0; small_prime[i] > 0; i++ )
2170 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002171 if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002172 return( 1 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002173
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002174 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002175
2176 if( r == 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002177 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Paul Bakker5121ce52009-01-03 21:22:43 +00002178 }
2179
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002180cleanup:
2181 return( ret );
2182}
2183
2184/*
2185 * Miller-Rabin pseudo-primality test (HAC 4.24)
2186 */
Janos Follathda31fa12018-09-03 14:45:23 +01002187static int mpi_miller_rabin( const mbedtls_mpi *X, size_t rounds,
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002188 int (*f_rng)(void *, unsigned char *, size_t),
2189 void *p_rng )
2190{
Pascal Junodb99183d2015-03-11 16:49:45 +01002191 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002192 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002193 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002194
Hanno Becker8ce11a32018-12-19 16:18:52 +00002195 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002196 MPI_VALIDATE_RET( f_rng != NULL );
2197
2198 mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R );
2199 mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002200 mbedtls_mpi_init( &RR );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002201
Paul Bakker5121ce52009-01-03 21:22:43 +00002202 /*
2203 * W = |X| - 1
2204 * R = W >> lsb( W )
2205 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002206 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
2207 s = mbedtls_mpi_lsb( &W );
2208 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
2209 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002210
Janos Follathda31fa12018-09-03 14:45:23 +01002211 for( i = 0; i < rounds; i++ )
Paul Bakker5121ce52009-01-03 21:22:43 +00002212 {
2213 /*
2214 * pick a random A, 1 < A < |X| - 1
2215 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002216 count = 0;
2217 do {
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002218 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
Pascal Junodb99183d2015-03-11 16:49:45 +01002219
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +02002220 j = mbedtls_mpi_bitlen( &A );
2221 k = mbedtls_mpi_bitlen( &W );
Pascal Junodb99183d2015-03-11 16:49:45 +01002222 if (j > k) {
Darryl Greene3f95ed2018-10-02 13:21:35 +01002223 A.p[A.n - 1] &= ( (mbedtls_mpi_uint) 1 << ( k - ( A.n - 1 ) * biL - 1 ) ) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002224 }
2225
2226 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002227 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2228 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002229 }
2230
Manuel Pégourié-Gonnard53c76c02015-04-17 20:15:36 +02002231 } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
2232 mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
Paul Bakker5121ce52009-01-03 21:22:43 +00002233
2234 /*
2235 * A = A^R mod |X|
2236 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002237 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002238
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002239 if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
2240 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002241 continue;
2242
2243 j = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002244 while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002245 {
2246 /*
2247 * A = A * A mod |X|
2248 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002249 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
2250 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002251
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002252 if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002253 break;
2254
2255 j++;
2256 }
2257
2258 /*
2259 * not prime if A != |X| - 1 or A == 1
2260 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002261 if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
2262 mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002263 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002264 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002265 break;
2266 }
2267 }
2268
2269cleanup:
Hanno Becker73d7d792018-12-11 10:35:51 +00002270 mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R );
2271 mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002272 mbedtls_mpi_free( &RR );
Paul Bakker5121ce52009-01-03 21:22:43 +00002273
2274 return( ret );
2275}
2276
2277/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002278 * Pseudo-primality test: small factors, then Miller-Rabin
2279 */
Janos Follatha0b67c22018-09-18 14:48:23 +01002280int mbedtls_mpi_is_prime_ext( const mbedtls_mpi *X, int rounds,
2281 int (*f_rng)(void *, unsigned char *, size_t),
2282 void *p_rng )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002283{
Janos Follath24eed8d2019-11-22 13:21:35 +00002284 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002285 mbedtls_mpi XX;
Hanno Becker8ce11a32018-12-19 16:18:52 +00002286 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002287 MPI_VALIDATE_RET( f_rng != NULL );
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002288
2289 XX.s = 1;
2290 XX.n = X->n;
2291 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002292
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002293 if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
2294 mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
2295 return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002296
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002297 if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002298 return( 0 );
2299
2300 if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
2301 {
2302 if( ret == 1 )
2303 return( 0 );
2304
2305 return( ret );
2306 }
2307
Janos Follathda31fa12018-09-03 14:45:23 +01002308 return( mpi_miller_rabin( &XX, rounds, f_rng, p_rng ) );
Janos Follathf301d232018-08-14 13:34:01 +01002309}
2310
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002311/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002312 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002313 *
Janos Follathf301d232018-08-14 13:34:01 +01002314 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2315 * be either 1024 bits or 1536 bits long, and flags must contain
2316 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002317 */
Janos Follath7c025a92018-08-14 11:08:41 +01002318int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int flags,
Paul Bakkera3d195c2011-11-27 21:07:34 +00002319 int (*f_rng)(void *, unsigned char *, size_t),
2320 void *p_rng )
Paul Bakker5121ce52009-01-03 21:22:43 +00002321{
Jethro Beekman66689272018-02-14 19:24:10 -08002322#ifdef MBEDTLS_HAVE_INT64
2323// ceil(2^63.5)
2324#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2325#else
2326// ceil(2^31.5)
2327#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2328#endif
2329 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002330 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002331 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002332 mbedtls_mpi_uint r;
2333 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002334
Hanno Becker8ce11a32018-12-19 16:18:52 +00002335 MPI_VALIDATE_RET( X != NULL );
Hanno Becker73d7d792018-12-11 10:35:51 +00002336 MPI_VALIDATE_RET( f_rng != NULL );
2337
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002338 if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
2339 return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
Paul Bakker5121ce52009-01-03 21:22:43 +00002340
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002341 mbedtls_mpi_init( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002342
2343 n = BITS_TO_LIMBS( nbits );
2344
Janos Follathda31fa12018-09-03 14:45:23 +01002345 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR ) == 0 )
2346 {
2347 /*
2348 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2349 */
2350 rounds = ( ( nbits >= 1300 ) ? 2 : ( nbits >= 850 ) ? 3 :
2351 ( nbits >= 650 ) ? 4 : ( nbits >= 350 ) ? 8 :
2352 ( nbits >= 250 ) ? 12 : ( nbits >= 150 ) ? 18 : 27 );
2353 }
2354 else
2355 {
2356 /*
2357 * 2^-100 error probability, number of rounds computed based on HAC,
2358 * fact 4.48
2359 */
2360 rounds = ( ( nbits >= 1450 ) ? 4 : ( nbits >= 1150 ) ? 5 :
2361 ( nbits >= 1000 ) ? 6 : ( nbits >= 850 ) ? 7 :
2362 ( nbits >= 750 ) ? 8 : ( nbits >= 500 ) ? 13 :
2363 ( nbits >= 250 ) ? 28 : ( nbits >= 150 ) ? 40 : 51 );
2364 }
2365
Jethro Beekman66689272018-02-14 19:24:10 -08002366 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002367 {
Jethro Beekman66689272018-02-14 19:24:10 -08002368 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
2369 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
2370 if( X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2 ) continue;
2371
2372 k = n * biL;
2373 if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits ) );
2374 X->p[0] |= 1;
2375
Janos Follath7c025a92018-08-14 11:08:41 +01002376 if( ( flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH ) == 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002377 {
Janos Follatha0b67c22018-09-18 14:48:23 +01002378 ret = mbedtls_mpi_is_prime_ext( X, rounds, f_rng, p_rng );
Jethro Beekman66689272018-02-14 19:24:10 -08002379
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002380 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
Paul Bakker5121ce52009-01-03 21:22:43 +00002381 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002382 }
Jethro Beekman66689272018-02-14 19:24:10 -08002383 else
Paul Bakker5121ce52009-01-03 21:22:43 +00002384 {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002385 /*
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01002386 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002387 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2388 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002389 */
Jethro Beekman66689272018-02-14 19:24:10 -08002390
2391 X->p[0] |= 2;
2392
2393 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
2394 if( r == 0 )
2395 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
2396 else if( r == 1 )
2397 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
2398
2399 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
2400 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
2401 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
2402
2403 while( 1 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002404 {
Jethro Beekman66689272018-02-14 19:24:10 -08002405 /*
2406 * First, check small factors for X and Y
2407 * before doing Miller-Rabin on any of them
2408 */
2409 if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
2410 ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002411 ( ret = mpi_miller_rabin( X, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002412 == 0 &&
Janos Follathda31fa12018-09-03 14:45:23 +01002413 ( ret = mpi_miller_rabin( &Y, rounds, f_rng, p_rng ) )
Janos Follathf301d232018-08-14 13:34:01 +01002414 == 0 )
Jethro Beekman66689272018-02-14 19:24:10 -08002415 goto cleanup;
2416
2417 if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2418 goto cleanup;
2419
2420 /*
2421 * Next candidates. We want to preserve Y = (X-1) / 2 and
2422 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2423 * so up Y by 6 and X by 12.
2424 */
2425 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
2426 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002427 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002428 }
2429 }
2430
2431cleanup:
2432
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002433 mbedtls_mpi_free( &Y );
Paul Bakker5121ce52009-01-03 21:22:43 +00002434
2435 return( ret );
2436}
2437
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002438#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002439
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002440#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002441
Paul Bakker23986e52011-04-24 08:57:21 +00002442#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002443
2444static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2445{
2446 { 693, 609, 21 },
2447 { 1764, 868, 28 },
2448 { 768454923, 542167814, 1 }
2449};
2450
Paul Bakker5121ce52009-01-03 21:22:43 +00002451/*
2452 * Checkup routine
2453 */
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002454int mbedtls_mpi_self_test( int verbose )
Paul Bakker5121ce52009-01-03 21:22:43 +00002455{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002456 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002457 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002458
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002459 mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
2460 mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002461
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002462 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002463 "EFE021C2645FD1DC586E69184AF4A31E" \
2464 "D5F53E93B5F123FA41680867BA110131" \
2465 "944FE7952E2517337780CB0DB80E61AA" \
2466 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
2467
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002468 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002469 "B2E7EFD37075B9F03FF989C7C5051C20" \
2470 "34D2A323810251127E7BF8625A4F49A5" \
2471 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2472 "5B5C25763222FEFCCFC38B832366C29E" ) );
2473
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002474 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002475 "0066A198186C18C10B2F5ED9B522752A" \
2476 "9830B69916E535C8F047518A889A43A5" \
2477 "94B6BED27A168D31D4A52F88925AA8F5" ) );
2478
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002479 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002480
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002481 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002482 "602AB7ECA597A3D6B56FF9829A5E8B85" \
2483 "9E857EA95A03512E2BAE7391688D264A" \
2484 "A5663B0341DB9CCFD2C4C5F421FEC814" \
2485 "8001B72E848A38CAE1C65F78E56ABDEF" \
2486 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2487 "ECF677152EF804370C1A305CAF3B5BF1" \
2488 "30879B56C61DE584A0F53A2447A51E" ) );
2489
2490 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002491 mbedtls_printf( " MPI test #1 (mul_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002492
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002493 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002494 {
2495 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002496 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002497
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002498 ret = 1;
2499 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002500 }
2501
2502 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002503 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002504
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002505 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002506
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002507 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002508 "256567336059E52CAE22925474705F39A94" ) );
2509
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002510 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002511 "6613F26162223DF488E9CD48CC132C7A" \
2512 "0AC93C701B001B092E4E5B9F73BCD27B" \
2513 "9EE50D0657C77F374E903CDFA4C642" ) );
2514
2515 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002516 mbedtls_printf( " MPI test #2 (div_mpi): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002517
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002518 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
2519 mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002520 {
2521 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002522 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002523
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002524 ret = 1;
2525 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002526 }
2527
2528 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002529 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002530
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002531 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002532
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002533 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002534 "36E139AEA55215609D2816998ED020BB" \
2535 "BD96C37890F65171D948E9BC7CBAA4D9" \
2536 "325D24D6A3C12710F10A09FA08AB87" ) );
2537
2538 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002539 mbedtls_printf( " MPI test #3 (exp_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002540
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002541 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002542 {
2543 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002544 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002545
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002546 ret = 1;
2547 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002548 }
2549
2550 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002551 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002552
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002553 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
Paul Bakker5121ce52009-01-03 21:22:43 +00002554
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002555 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
Paul Bakker5121ce52009-01-03 21:22:43 +00002556 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2557 "C3DBA76456363A10869622EAC2DD84EC" \
2558 "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
2559
2560 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002561 mbedtls_printf( " MPI test #4 (inv_mod): " );
Paul Bakker5121ce52009-01-03 21:22:43 +00002562
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002563 if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
Paul Bakker5121ce52009-01-03 21:22:43 +00002564 {
2565 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002566 mbedtls_printf( "failed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002567
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002568 ret = 1;
2569 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002570 }
2571
2572 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002573 mbedtls_printf( "passed\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002574
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002575 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002576 mbedtls_printf( " MPI test #5 (simple gcd): " );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002577
Paul Bakker66d5d072014-06-17 16:39:18 +02002578 for( i = 0; i < GCD_PAIR_COUNT; i++ )
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002579 {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002580 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
2581 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002582
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002583 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002584
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002585 if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002586 {
2587 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002588 mbedtls_printf( "failed at %d\n", i );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002589
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002590 ret = 1;
2591 goto cleanup;
2592 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002593 }
2594
2595 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002596 mbedtls_printf( "passed\n" );
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002597
Paul Bakker5121ce52009-01-03 21:22:43 +00002598cleanup:
2599
2600 if( ret != 0 && verbose != 0 )
Kenneth Soerensen518d4352020-04-01 17:22:45 +02002601 mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
Paul Bakker5121ce52009-01-03 21:22:43 +00002602
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002603 mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
2604 mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
Paul Bakker5121ce52009-01-03 21:22:43 +00002605
2606 if( verbose != 0 )
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002607 mbedtls_printf( "\n" );
Paul Bakker5121ce52009-01-03 21:22:43 +00002608
2609 return( ret );
2610}
2611
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002612#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00002613
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002614#endif /* MBEDTLS_BIGNUM_C */