blob: 91f08207db6efa8afd4c57495fb46fbecd16e8d4 [file] [log] [blame]
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01001/*
2 * Elliptic curves over GF(p)
3 *
Paul Bakkercf4365f2013-01-16 17:00:43 +01004 * Copyright (C) 2006-2013, Brainspark B.V.
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01005 *
6 * This file is part of PolarSSL (http://www.polarssl.org)
7 * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
8 *
9 * All rights reserved.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 */
25
26/*
27 * References:
28 *
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +010029 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +010030 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +010031 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +010032 * RFC 4492 for the related TLS structures and constants
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +020033 *
34 * [1] OKEYA, Katsuyuki and TAKAGI, Tsuyoshi. The width-w NAF method provides
35 * small memory and fast elliptic scalar multiplications secure against
36 * side channel attacks. In : Topics in Cryptology—CT-RSA 2003. Springer
37 * Berlin Heidelberg, 2003. p. 328-343.
38 * <http://rd.springer.com/chapter/10.1007/3-540-36563-X_23>.
39 *
40 * [2] CORON, Jean-Sébastien. Resistance against differential power analysis
41 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
42 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
43 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +010044 *
45 * [3] HEDABOU, Mustapha, PINEL, Pierre, et BÉNÉTEAU, Lucien. A comb method to
46 * render ECC resistant against Side Channel Attacks. IACR Cryptology
47 * ePrint Archive, 2004, vol. 2004, p. 342.
48 * <http://eprint.iacr.org/2004/342.pdf>
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +010049 */
50
51#include "polarssl/config.h"
52
53#if defined(POLARSSL_ECP_C)
54
55#include "polarssl/ecp.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020056
57#if defined(POLARSSL_MEMORY_C)
58#include "polarssl/memory.h"
59#else
60#define polarssl_malloc malloc
61#define polarssl_free free
62#endif
63
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +010064#include <limits.h>
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +010065#include <stdlib.h>
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +010066
Paul Bakker6a6087e2013-10-28 18:53:08 +010067#if defined(_MSC_VER) && !defined(inline)
68#define inline _inline
69#else
70#if defined(__ARMCC_VERSION) && !defined(inline)
71#define inline __inline
72#endif /* __ARMCC_VERSION */
73#endif /*_MSC_VER */
74
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +010075#if defined(POLARSSL_SELF_TEST)
76/*
77 * Counts of point addition and doubling operations.
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +020078 * Used to test resistance of point multiplication to simple timing attacks.
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +010079 */
80unsigned long add_count, dbl_count;
81#endif
82
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +010083/*
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +020084 * List of supported curves:
85 * - internal ID
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +020086 * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +020087 * - size in bits
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +020088 * - readable name
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +020089 */
Manuel Pégourié-Gonnarda79d1232013-09-17 15:42:35 +020090const ecp_curve_info ecp_supported_curves[] =
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +020091{
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +020092#if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
93 { POLARSSL_ECP_DP_BP512R1, 28, 512, "brainpool512r1" },
94#endif
95#if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
96 { POLARSSL_ECP_DP_BP384R1, 27, 384, "brainpool384r1" },
97#endif
98#if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
99 { POLARSSL_ECP_DP_BP256R1, 26, 256, "brainpool256r1" },
100#endif
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200101#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200102 { POLARSSL_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200103#endif
104#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200105 { POLARSSL_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200106#endif
107#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200108 { POLARSSL_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200109#endif
110#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200111 { POLARSSL_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200112#endif
113#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200114 { POLARSSL_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200115#endif
Manuel Pégourié-Gonnard8195c1a2013-10-07 19:40:41 +0200116 { POLARSSL_ECP_DP_NONE, 0, 0, NULL },
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200117};
118
119/*
Manuel Pégourié-Gonnardda179e42013-09-18 15:31:24 +0200120 * List of supported curves and associated info
121 */
122const ecp_curve_info *ecp_curve_list( void )
123{
124 return ecp_supported_curves;
125}
126
127/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200128 * Get the curve info for the internal identifer
129 */
130const ecp_curve_info *ecp_curve_info_from_grp_id( ecp_group_id grp_id )
131{
132 const ecp_curve_info *curve_info;
133
134 for( curve_info = ecp_curve_list();
135 curve_info->grp_id != POLARSSL_ECP_DP_NONE;
136 curve_info++ )
137 {
138 if( curve_info->grp_id == grp_id )
139 return( curve_info );
140 }
141
142 return( NULL );
143}
144
145/*
146 * Get the curve info from the TLS identifier
147 */
148const ecp_curve_info *ecp_curve_info_from_tls_id( uint16_t tls_id )
149{
150 const ecp_curve_info *curve_info;
151
152 for( curve_info = ecp_curve_list();
153 curve_info->grp_id != POLARSSL_ECP_DP_NONE;
154 curve_info++ )
155 {
156 if( curve_info->tls_id == tls_id )
157 return( curve_info );
158 }
159
160 return( NULL );
161}
162
163/*
Manuel Pégourié-Gonnardb505c272012-11-05 17:27:54 +0100164 * Initialize (the components of) a point
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100165 */
166void ecp_point_init( ecp_point *pt )
167{
168 if( pt == NULL )
169 return;
170
Manuel Pégourié-Gonnardb505c272012-11-05 17:27:54 +0100171 mpi_init( &pt->X );
172 mpi_init( &pt->Y );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100173 mpi_init( &pt->Z );
Manuel Pégourié-Gonnardb505c272012-11-05 17:27:54 +0100174}
175
176/*
177 * Initialize (the components of) a group
178 */
179void ecp_group_init( ecp_group *grp )
180{
181 if( grp == NULL )
182 return;
183
Manuel Pégourié-Gonnardc9727702013-09-16 18:56:28 +0200184 memset( grp, 0, sizeof( ecp_group ) );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100185}
186
187/*
Manuel Pégourié-Gonnardb8c6e0e2013-07-01 13:40:52 +0200188 * Initialize (the components of) a key pair
189 */
190void ecp_keypair_init( ecp_keypair *key )
191{
192 if ( key == NULL )
193 return;
194
195 ecp_group_init( &key->grp );
196 mpi_init( &key->d );
197 ecp_point_init( &key->Q );
Manuel Pégourié-Gonnardb8c6e0e2013-07-01 13:40:52 +0200198}
199
200/*
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +0100201 * Unallocate (the components of) a point
202 */
203void ecp_point_free( ecp_point *pt )
204{
205 if( pt == NULL )
206 return;
207
208 mpi_free( &( pt->X ) );
209 mpi_free( &( pt->Y ) );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100210 mpi_free( &( pt->Z ) );
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +0100211}
212
213/*
214 * Unallocate (the components of) a group
215 */
216void ecp_group_free( ecp_group *grp )
217{
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +0200218 size_t i;
219
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +0100220 if( grp == NULL )
221 return;
222
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +0100223 mpi_free( &grp->P );
Manuel Pégourié-Gonnarda070ada2013-10-08 12:04:56 +0200224 mpi_free( &grp->A );
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +0100225 mpi_free( &grp->B );
226 ecp_point_free( &grp->G );
227 mpi_free( &grp->N );
Manuel Pégourié-Gonnardc9727702013-09-16 18:56:28 +0200228
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +0200229 if( grp->T != NULL )
230 {
231 for( i = 0; i < grp->T_size; i++ )
232 ecp_point_free( &grp->T[i] );
233 polarssl_free( grp->T );
234 }
235
Manuel Pégourié-Gonnardc9727702013-09-16 18:56:28 +0200236 memset( grp, 0, sizeof( ecp_group ) );
Manuel Pégourié-Gonnard1e8c8ec2012-10-31 19:24:21 +0100237}
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +0100238
Manuel Pégourié-Gonnard883f3132012-11-02 09:40:25 +0100239/*
Manuel Pégourié-Gonnardb8c6e0e2013-07-01 13:40:52 +0200240 * Unallocate (the components of) a key pair
241 */
242void ecp_keypair_free( ecp_keypair *key )
243{
244 if ( key == NULL )
245 return;
246
247 ecp_group_free( &key->grp );
248 mpi_free( &key->d );
249 ecp_point_free( &key->Q );
Manuel Pégourié-Gonnardb8c6e0e2013-07-01 13:40:52 +0200250}
251
252/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200253 * Copy the contents of a point
254 */
255int ecp_copy( ecp_point *P, const ecp_point *Q )
256{
257 int ret;
258
259 MPI_CHK( mpi_copy( &P->X, &Q->X ) );
260 MPI_CHK( mpi_copy( &P->Y, &Q->Y ) );
261 MPI_CHK( mpi_copy( &P->Z, &Q->Z ) );
262
263cleanup:
264 return( ret );
265}
266
267/*
268 * Copy the contents of a group object
269 */
270int ecp_group_copy( ecp_group *dst, const ecp_group *src )
271{
272 return ecp_use_known_dp( dst, src->id );
273}
274
275/*
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100276 * Set point to zero
277 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100278int ecp_set_zero( ecp_point *pt )
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100279{
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100280 int ret;
281
282 MPI_CHK( mpi_lset( &pt->X , 1 ) );
283 MPI_CHK( mpi_lset( &pt->Y , 1 ) );
284 MPI_CHK( mpi_lset( &pt->Z , 0 ) );
285
286cleanup:
287 return( ret );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +0100288}
289
290/*
Manuel Pégourié-Gonnard6545ca72013-01-26 16:05:22 +0100291 * Tell if a point is zero
292 */
293int ecp_is_zero( ecp_point *pt )
294{
295 return( mpi_cmp_int( &pt->Z, 0 ) == 0 );
296}
297
298/*
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100299 * Import a non-zero point from ASCII strings
300 */
301int ecp_point_read_string( ecp_point *P, int radix,
302 const char *x, const char *y )
303{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100304 int ret;
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100305
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100306 MPI_CHK( mpi_read_string( &P->X, radix, x ) );
307 MPI_CHK( mpi_read_string( &P->Y, radix, y ) );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100308 MPI_CHK( mpi_lset( &P->Z, 1 ) );
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100309
310cleanup:
311 return( ret );
312}
313
314/*
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100315 * Export a point into unsigned binary data (SEC1 2.3.3)
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100316 */
Manuel Pégourié-Gonnard7e860252013-02-10 10:58:48 +0100317int ecp_point_write_binary( const ecp_group *grp, const ecp_point *P,
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100318 int format, size_t *olen,
Manuel Pégourié-Gonnard7e860252013-02-10 10:58:48 +0100319 unsigned char *buf, size_t buflen )
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100320{
Paul Bakkera280d0f2013-04-08 13:40:17 +0200321 int ret = 0;
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100322 size_t plen;
323
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100324 if( format != POLARSSL_ECP_PF_UNCOMPRESSED &&
325 format != POLARSSL_ECP_PF_COMPRESSED )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100326 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100327
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100328 /*
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100329 * Common case: P == 0
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100330 */
331 if( mpi_cmp_int( &P->Z, 0 ) == 0 )
332 {
333 if( buflen < 1 )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100334 return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100335
336 buf[0] = 0x00;
337 *olen = 1;
338
339 return( 0 );
340 }
341
342 plen = mpi_size( &grp->P );
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100343
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100344 if( format == POLARSSL_ECP_PF_UNCOMPRESSED )
345 {
346 *olen = 2 * plen + 1;
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100347
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100348 if( buflen < *olen )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100349 return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100350
351 buf[0] = 0x04;
352 MPI_CHK( mpi_write_binary( &P->X, buf + 1, plen ) );
353 MPI_CHK( mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
354 }
355 else if( format == POLARSSL_ECP_PF_COMPRESSED )
356 {
357 *olen = plen + 1;
358
359 if( buflen < *olen )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100360 return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
Manuel Pégourié-Gonnard37d218a2012-11-24 15:19:55 +0100361
362 buf[0] = 0x02 + mpi_get_bit( &P->Y, 0 );
363 MPI_CHK( mpi_write_binary( &P->X, buf + 1, plen ) );
364 }
Manuel Pégourié-Gonnarde19feb52012-11-24 14:10:14 +0100365
366cleanup:
367 return( ret );
368}
369
370/*
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100371 * Import a point from unsigned binary data (SEC1 2.3.4)
372 */
Manuel Pégourié-Gonnard7e860252013-02-10 10:58:48 +0100373int ecp_point_read_binary( const ecp_group *grp, ecp_point *pt,
374 const unsigned char *buf, size_t ilen ) {
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100375 int ret;
376 size_t plen;
377
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100378 if( ilen == 1 && buf[0] == 0x00 )
Manuel Pégourié-Gonnardd84895d2013-02-10 10:53:04 +0100379 return( ecp_set_zero( pt ) );
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100380
Manuel Pégourié-Gonnardd84895d2013-02-10 10:53:04 +0100381 plen = mpi_size( &grp->P );
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100382
383 if( ilen != 2 * plen + 1 || buf[0] != 0x04 )
Manuel Pégourié-Gonnardd84895d2013-02-10 10:53:04 +0100384 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100385
Manuel Pégourié-Gonnardd84895d2013-02-10 10:53:04 +0100386 MPI_CHK( mpi_read_binary( &pt->X, buf + 1, plen ) );
387 MPI_CHK( mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
388 MPI_CHK( mpi_lset( &pt->Z, 1 ) );
Manuel Pégourié-Gonnard5e402d82012-11-24 16:19:42 +0100389
390cleanup:
391 return( ret );
392}
393
394/*
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100395 * Import a point from a TLS ECPoint record (RFC 4492)
396 * struct {
397 * opaque point <1..2^8-1>;
398 * } ECPoint;
399 */
400int ecp_tls_read_point( const ecp_group *grp, ecp_point *pt,
Manuel Pégourié-Gonnard98f51812013-02-10 13:38:29 +0100401 const unsigned char **buf, size_t buf_len )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100402{
403 unsigned char data_len;
Manuel Pégourié-Gonnard98f51812013-02-10 13:38:29 +0100404 const unsigned char *buf_start;
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100405
406 /*
407 * We must have at least two bytes (1 for length, at least of for data)
408 */
409 if( buf_len < 2 )
410 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
411
Manuel Pégourié-Gonnard98f51812013-02-10 13:38:29 +0100412 data_len = *(*buf)++;
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100413 if( data_len < 1 || data_len > buf_len - 1 )
414 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
415
Manuel Pégourié-Gonnard98f51812013-02-10 13:38:29 +0100416 /*
417 * Save buffer start for read_binary and update buf
418 */
419 buf_start = *buf;
420 *buf += data_len;
421
422 return ecp_point_read_binary( grp, pt, buf_start, data_len );
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100423}
424
425/*
426 * Export a point as a TLS ECPoint record (RFC 4492)
427 * struct {
428 * opaque point <1..2^8-1>;
429 * } ECPoint;
430 */
431int ecp_tls_write_point( const ecp_group *grp, const ecp_point *pt,
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100432 int format, size_t *olen,
433 unsigned char *buf, size_t blen )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100434{
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100435 int ret;
436
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100437 /*
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100438 * buffer length must be at least one, for our length byte
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100439 */
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100440 if( blen < 1 )
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100441 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
442
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100443 if( ( ret = ecp_point_write_binary( grp, pt, format,
444 olen, buf + 1, blen - 1) ) != 0 )
445 return( ret );
446
447 /*
448 * write length to the first byte and update total length
449 */
Paul Bakkerb9cfaa02013-10-11 18:58:55 +0200450 buf[0] = (unsigned char) *olen;
Manuel Pégourié-Gonnard420f1eb2013-02-10 12:22:46 +0100451 ++*olen;
452
453 return 0;
Manuel Pégourié-Gonnard00794052013-02-09 19:00:07 +0100454}
455
456/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200457 * Import an ECP group from ASCII strings, general case (A used)
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100458 */
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200459static int ecp_group_read_string_gen( ecp_group *grp, int radix,
460 const char *p, const char *a, const char *b,
461 const char *gx, const char *gy, const char *n)
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100462{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100463 int ret;
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100464
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200465 MPI_CHK( mpi_read_string( &grp->P, radix, p ) );
466 MPI_CHK( mpi_read_string( &grp->A, radix, a ) );
467 MPI_CHK( mpi_read_string( &grp->B, radix, b ) );
468 MPI_CHK( ecp_point_read_string( &grp->G, radix, gx, gy ) );
469 MPI_CHK( mpi_read_string( &grp->N, radix, n ) );
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100470
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200471 grp->pbits = mpi_msb( &grp->P );
472 grp->nbits = mpi_msb( &grp->N );
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100473
474cleanup:
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200475 if( ret != 0 )
476 ecp_group_free( grp );
477
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100478 return( ret );
479}
480
Manuel Pégourié-Gonnard210b4582013-10-23 14:03:00 +0200481/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200482 * Import an ECP group from ASCII strings, case A == -3
Manuel Pégourié-Gonnard210b4582013-10-23 14:03:00 +0200483 */
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200484int ecp_group_read_string( ecp_group *grp, int radix,
485 const char *p, const char *b,
486 const char *gx, const char *gy, const char *n)
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +0100487{
488 int ret;
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +0100489
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200490 MPI_CHK( ecp_group_read_string_gen( grp, radix, p, "00", b, gx, gy, n ) );
491 MPI_CHK( mpi_add_int( &grp->A, &grp->P, -3 ) );
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +0100492
493cleanup:
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200494 if( ret != 0 )
495 ecp_group_free( grp );
Manuel Pégourié-Gonnarde783f062013-10-21 14:52:21 +0200496
497 return( ret );
498}
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200499
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100500/*
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100501 * Domain parameters for secp192r1
502 */
503#define SECP192R1_P \
504 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF"
505#define SECP192R1_B \
506 "64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1"
507#define SECP192R1_GX \
508 "188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012"
509#define SECP192R1_GY \
510 "07192B95FFC8DA78631011ED6B24CDD573F977A11E794811"
511#define SECP192R1_N \
512 "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831"
513
514/*
515 * Domain parameters for secp224r1
516 */
517#define SECP224R1_P \
518 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001"
519#define SECP224R1_B \
520 "B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4"
521#define SECP224R1_GX \
522 "B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21"
523#define SECP224R1_GY \
524 "BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34"
525#define SECP224R1_N \
526 "FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D"
527
528/*
529 * Domain parameters for secp256r1
530 */
531#define SECP256R1_P \
532 "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF"
533#define SECP256R1_B \
534 "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B"
535#define SECP256R1_GX \
536 "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296"
537#define SECP256R1_GY \
538 "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5"
539#define SECP256R1_N \
540 "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551"
541
542/*
543 * Domain parameters for secp384r1
544 */
545#define SECP384R1_P \
546 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
547 "FFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF"
548#define SECP384R1_B \
549 "B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE814112" \
550 "0314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF"
551#define SECP384R1_GX \
552 "AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B98" \
553 "59F741E082542A385502F25DBF55296C3A545E3872760AB7"
554#define SECP384R1_GY \
555 "3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147C" \
556 "E9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F"
557#define SECP384R1_N \
558 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
559 "C7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973"
560
561/*
562 * Domain parameters for secp521r1
563 */
564#define SECP521R1_P \
565 "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
566 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
567 "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
568#define SECP521R1_B \
569 "00000051953EB9618E1C9A1F929A21A0B68540EEA2DA725B" \
570 "99B315F3B8B489918EF109E156193951EC7E937B1652C0BD" \
571 "3BB1BF073573DF883D2C34F1EF451FD46B503F00"
572#define SECP521R1_GX \
573 "000000C6858E06B70404E9CD9E3ECB662395B4429C648139" \
574 "053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127" \
575 "A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66"
576#define SECP521R1_GY \
577 "0000011839296A789A3BC0045C8A5FB42C7D1BD998F54449" \
578 "579B446817AFBD17273E662C97EE72995EF42640C550B901" \
579 "3FAD0761353C7086A272C24088BE94769FD16650"
580#define SECP521R1_N \
581 "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
582 "FFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148" \
583 "F709A5D03BB5C9B8899C47AEBB6FB71E91386409"
584
585/*
Manuel Pégourié-Gonnardcec4a532013-10-07 19:52:27 +0200586 * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
587 */
588#define BP256R1_P \
589 "A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377"
590#define BP256R1_A \
591 "7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9"
592#define BP256R1_B \
593 "26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6"
594#define BP256R1_GX \
595 "8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262"
596#define BP256R1_GY \
597 "547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997"
598#define BP256R1_N \
599 "A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7"
600
601/*
602 * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
603 */
604#define BP384R1_P \
605 "8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB711" \
606 "23ACD3A729901D1A71874700133107EC53"
607#define BP384R1_A \
608 "7BC382C63D8C150C3C72080ACE05AFA0C2BEA28E4FB22787139165EFBA91F9" \
609 "0F8AA5814A503AD4EB04A8C7DD22CE2826"
610#define BP384R1_B \
611 "04A8C7DD22CE28268B39B55416F0447C2FB77DE107DCD2A62E880EA53EEB62" \
612 "D57CB4390295DBC9943AB78696FA504C11"
613#define BP384R1_GX \
614 "1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10" \
615 "E8E826E03436D646AAEF87B2E247D4AF1E"
616#define BP384R1_GY \
617 "8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF99129" \
618 "280E4646217791811142820341263C5315"
619#define BP384R1_N \
620 "8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425" \
621 "A7CF3AB6AF6B7FC3103B883202E9046565"
622
623/*
624 * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
625 */
626#define BP512R1_P \
627 "AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308" \
628 "717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A48F3"
629#define BP512R1_A \
630 "7830A3318B603B89E2327145AC234CC594CBDD8D3DF91610A83441CAEA9863" \
631 "BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CA"
632#define BP512R1_B \
633 "3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117" \
634 "A72BF2C7B9E7C1AC4D77FC94CADC083E67984050B75EBAE5DD2809BD638016F723"
635#define BP512R1_GX \
636 "81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D009" \
637 "8EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822"
638#define BP512R1_GY \
639 "7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F81" \
640 "11B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892"
641#define BP512R1_N \
642 "AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308" \
643 "70553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069"
644
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200645#if defined(POLARSSL_ECP_NIST_OPTIM)
646/* Forward declarations */
647static int ecp_mod_p192( mpi * );
648static int ecp_mod_p224( mpi * );
649static int ecp_mod_p256( mpi * );
650static int ecp_mod_p384( mpi * );
651static int ecp_mod_p521( mpi * );
652#endif
653
Manuel Pégourié-Gonnardcec4a532013-10-07 19:52:27 +0200654/*
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100655 * Set a group using well-known domain parameters
656 */
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100657int ecp_use_known_dp( ecp_group *grp, ecp_group_id id )
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100658{
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100659 grp->id = id;
660
661 switch( id )
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100662 {
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200663#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100664 case POLARSSL_ECP_DP_SECP192R1:
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200665#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnard84338242012-11-11 20:45:18 +0100666 grp->modp = ecp_mod_p192;
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200667#endif
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100668 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100669 SECP192R1_P, SECP192R1_B,
670 SECP192R1_GX, SECP192R1_GY, SECP192R1_N ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200671#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100672
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200673#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100674 case POLARSSL_ECP_DP_SECP224R1:
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200675#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnarde783f062013-10-21 14:52:21 +0200676 grp->modp = ecp_mod_p224;
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200677#endif
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100678 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100679 SECP224R1_P, SECP224R1_B,
680 SECP224R1_GX, SECP224R1_GY, SECP224R1_N ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200681#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100682
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200683#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100684 case POLARSSL_ECP_DP_SECP256R1:
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200685#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnardec655c92013-10-23 14:50:39 +0200686 grp->modp = ecp_mod_p256;
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200687#endif
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100688 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100689 SECP256R1_P, SECP256R1_B,
690 SECP256R1_GX, SECP256R1_GY, SECP256R1_N ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200691#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100692
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200693#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100694 case POLARSSL_ECP_DP_SECP384R1:
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200695#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnard0f9149c2013-10-23 15:06:37 +0200696 grp->modp = ecp_mod_p384;
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200697#endif
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100698 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100699 SECP384R1_P, SECP384R1_B,
700 SECP384R1_GX, SECP384R1_GY, SECP384R1_N ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200701#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100702
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200703#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100704 case POLARSSL_ECP_DP_SECP521R1:
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200705#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100706 grp->modp = ecp_mod_p521;
Manuel Pégourié-Gonnardc04c5302013-10-23 16:11:52 +0200707#endif
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100708 return( ecp_group_read_string( grp, 16,
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100709 SECP521R1_P, SECP521R1_B,
710 SECP521R1_GX, SECP521R1_GY, SECP521R1_N ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +0200711#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100712
Manuel Pégourié-Gonnarda070ada2013-10-08 12:04:56 +0200713#if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
714 case POLARSSL_ECP_DP_BP256R1:
715 return( ecp_group_read_string_gen( grp, 16,
716 BP256R1_P, BP256R1_A, BP256R1_B,
717 BP256R1_GX, BP256R1_GY, BP256R1_N ) );
718#endif /* POLARSSL_ECP_DP_BP256R1_ENABLED */
719
720#if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
721 case POLARSSL_ECP_DP_BP384R1:
722 return( ecp_group_read_string_gen( grp, 16,
723 BP384R1_P, BP384R1_A, BP384R1_B,
724 BP384R1_GX, BP384R1_GY, BP384R1_N ) );
725#endif /* POLARSSL_ECP_DP_BP384R1_ENABLED */
726
727#if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
728 case POLARSSL_ECP_DP_BP512R1:
729 return( ecp_group_read_string_gen( grp, 16,
730 BP512R1_P, BP512R1_A, BP512R1_B,
731 BP512R1_GX, BP512R1_GY, BP512R1_N ) );
732#endif /* POLARSSL_ECP_DP_BP512R1_ENABLED */
733
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200734 default:
Manuel Pégourié-Gonnarda070ada2013-10-08 12:04:56 +0200735 ecp_group_free( grp );
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200736 return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
737 }
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +0100738}
739
740/*
741 * Set a group from an ECParameters record (RFC 4492)
742 */
Manuel Pégourié-Gonnard7c145c62013-02-10 13:20:52 +0100743int ecp_tls_read_group( ecp_group *grp, const unsigned char **buf, size_t len )
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +0100744{
Manuel Pégourié-Gonnardf24b4a72013-09-23 18:14:50 +0200745 uint16_t tls_id;
746 const ecp_curve_info *curve_info;
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +0100747
748 /*
749 * We expect at least three bytes (see below)
750 */
751 if( len < 3 )
752 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
753
754 /*
755 * First byte is curve_type; only named_curve is handled
756 */
Manuel Pégourié-Gonnard7c145c62013-02-10 13:20:52 +0100757 if( *(*buf)++ != POLARSSL_ECP_TLS_NAMED_CURVE )
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +0100758 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
759
760 /*
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100761 * Next two bytes are the namedcurve value
Manuel Pégourié-Gonnard1a967282013-02-09 17:03:58 +0100762 */
Manuel Pégourié-Gonnardf24b4a72013-09-23 18:14:50 +0200763 tls_id = *(*buf)++;
764 tls_id <<= 8;
765 tls_id |= *(*buf)++;
766
767 if( ( curve_info = ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
768 return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
769
770 return ecp_use_known_dp( grp, curve_info->grp_id );
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100771}
772
773/*
774 * Write the ECParameters record corresponding to a group (RFC 4492)
775 */
776int ecp_tls_write_group( const ecp_group *grp, size_t *olen,
777 unsigned char *buf, size_t blen )
778{
Manuel Pégourié-Gonnardf24b4a72013-09-23 18:14:50 +0200779 const ecp_curve_info *curve_info;
780
781 if( ( curve_info = ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
782 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200783
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100784 /*
785 * We are going to write 3 bytes (see below)
786 */
787 *olen = 3;
788 if( blen < *olen )
789 return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
790
791 /*
792 * First byte is curve_type, always named_curve
793 */
794 *buf++ = POLARSSL_ECP_TLS_NAMED_CURVE;
795
796 /*
797 * Next two bytes are the namedcurve value
798 */
Manuel Pégourié-Gonnardf24b4a72013-09-23 18:14:50 +0200799 buf[0] = curve_info->tls_id >> 8;
800 buf[1] = curve_info->tls_id & 0xFF;
Manuel Pégourié-Gonnardb3258872013-02-10 12:06:19 +0100801
802 return 0;
Manuel Pégourié-Gonnarda5402fe2012-11-07 20:24:05 +0100803}
Manuel Pégourié-Gonnardab38b702012-11-05 17:34:55 +0100804
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200805/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200806 * Wrapper around fast quasi-modp functions, with fall-back to mpi_mod_mpi.
807 * See the documentation of struct ecp_group.
808 *
809 * This function is in the critial loop for ecp_mul, so pay attention to perf.
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200810 */
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200811static int ecp_modp( mpi *N, const ecp_group *grp )
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200812{
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200813 int ret;
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200814
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200815 if( grp->modp == NULL )
816 return( mpi_mod_mpi( N, N, &grp->P ) );
817
818 /* N->s < 0 is a much faster test, which fails only if N is 0 */
819 if( ( N->s < 0 && mpi_cmp_int( N, 0 ) != 0 ) ||
820 mpi_msb( N ) > 2 * grp->pbits )
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200821 {
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200822 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200823 }
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200824
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200825 MPI_CHK( grp->modp( N ) );
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200826
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200827 /* N->s < 0 is a much faster test, which fails only if N is 0 */
828 while( N->s < 0 && mpi_cmp_int( N, 0 ) != 0 )
829 MPI_CHK( mpi_add_mpi( N, N, &grp->P ) );
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200830
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200831 while( mpi_cmp_mpi( N, &grp->P ) >= 0 )
832 /* we known P, N and the result are positive */
833 MPI_CHK( mpi_sub_abs( N, N, &grp->P ) );
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200834
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200835cleanup:
836 return( ret );
Manuel Pégourié-Gonnard70380392013-09-16 16:19:53 +0200837}
Manuel Pégourié-Gonnard568c9cf2013-09-16 17:30:04 +0200838
Manuel Pégourié-Gonnard847395a2012-11-05 13:13:44 +0100839/*
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100840 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100841 *
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100842 * In order to guarantee that, we need to ensure that operands of
843 * mpi_mul_mpi are in the 0..p range. So, after each operation we will
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100844 * bring the result back to this range.
845 *
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100846 * The following macros are shortcuts for doing that.
Manuel Pégourié-Gonnarddada4da2012-11-10 14:23:17 +0100847 */
848
849/*
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100850 * Reduce a mpi mod p in-place, general case, to use after mpi_mul_mpi
851 */
Manuel Pégourié-Gonnard62aad142012-11-10 00:27:12 +0100852#define MOD_MUL( N ) MPI_CHK( ecp_modp( &N, grp ) )
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100853
854/*
855 * Reduce a mpi mod p in-place, to use after mpi_sub_mpi
Manuel Pégourié-Gonnardc9e387c2013-10-17 17:15:35 +0200856 * N->s < 0 is a very fast test, which fails only if N is 0
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100857 */
858#define MOD_SUB( N ) \
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +0200859 while( N.s < 0 && mpi_cmp_int( &N, 0 ) != 0 ) \
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100860 MPI_CHK( mpi_add_mpi( &N, &N, &grp->P ) )
861
862/*
Manuel Pégourié-Gonnardc9e387c2013-10-17 17:15:35 +0200863 * Reduce a mpi mod p in-place, to use after mpi_add_mpi and mpi_mul_int.
864 * We known P, N and the result are positive, so sub_abs is correct, and
865 * a bit faster.
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100866 */
867#define MOD_ADD( N ) \
868 while( mpi_cmp_mpi( &N, &grp->P ) >= 0 ) \
Manuel Pégourié-Gonnardc9e387c2013-10-17 17:15:35 +0200869 MPI_CHK( mpi_sub_abs( &N, &N, &grp->P ) )
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +0100870
871/*
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100872 * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
Manuel Pégourié-Gonnard04a02252013-11-20 22:57:38 +0100873 * Cost: 1N := 1I + 3M + 1S
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100874 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100875static int ecp_normalize( const ecp_group *grp, ecp_point *pt )
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100876{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +0100877 int ret;
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100878 mpi Zi, ZZi;
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100879
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100880 if( mpi_cmp_int( &pt->Z, 0 ) == 0 )
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100881 return( 0 );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100882
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100883 mpi_init( &Zi ); mpi_init( &ZZi );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100884
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100885 /*
886 * X = X / Z^2 mod p
887 */
888 MPI_CHK( mpi_inv_mod( &Zi, &pt->Z, &grp->P ) );
889 MPI_CHK( mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
890 MPI_CHK( mpi_mul_mpi( &pt->X, &pt->X, &ZZi ) ); MOD_MUL( pt->X );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100891
892 /*
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100893 * Y = Y / Z^3 mod p
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100894 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100895 MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &ZZi ) ); MOD_MUL( pt->Y );
896 MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &Zi ) ); MOD_MUL( pt->Y );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100897
898 /*
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100899 * Z = 1
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100900 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +0100901 MPI_CHK( mpi_lset( &pt->Z, 1 ) );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100902
903cleanup:
904
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100905 mpi_free( &Zi ); mpi_free( &ZZi );
Manuel Pégourié-Gonnardd070f512012-11-08 17:40:51 +0100906
907 return( ret );
908}
909
910/*
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +0100911 * Normalize jacobian coordinates of an array of (pointers to) points,
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +0100912 * using Montgomery's trick to perform only one inversion mod P.
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100913 * (See for example Cohen's "A Course in Computational Algebraic Number
914 * Theory", Algorithm 10.3.4.)
915 *
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +0200916 * Warning: fails (returning an error) if one of the points is zero!
Manuel Pégourié-Gonnard3680c822012-11-21 18:49:45 +0100917 * This should never happen, see choice of w in ecp_mul().
Manuel Pégourié-Gonnard04a02252013-11-20 22:57:38 +0100918 *
919 * Cost: 1N(t) := 1I + (6t - 3)M + 1S
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100920 */
921static int ecp_normalize_many( const ecp_group *grp,
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +0100922 ecp_point *T[], size_t t_len )
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100923{
924 int ret;
925 size_t i;
926 mpi *c, u, Zi, ZZi;
927
928 if( t_len < 2 )
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +0100929 return( ecp_normalize( grp, *T ) );
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100930
Paul Bakker6e339b52013-07-03 13:37:05 +0200931 if( ( c = (mpi *) polarssl_malloc( t_len * sizeof( mpi ) ) ) == NULL )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +0200932 return( POLARSSL_ERR_ECP_MALLOC_FAILED );
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100933
934 mpi_init( &u ); mpi_init( &Zi ); mpi_init( &ZZi );
935 for( i = 0; i < t_len; i++ )
936 mpi_init( &c[i] );
937
938 /*
939 * c[i] = Z_0 * ... * Z_i
940 */
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +0100941 MPI_CHK( mpi_copy( &c[0], &T[0]->Z ) );
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100942 for( i = 1; i < t_len; i++ )
943 {
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +0100944 MPI_CHK( mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100945 MOD_MUL( c[i] );
946 }
947
948 /*
949 * u = 1 / (Z_0 * ... * Z_n) mod P
950 */
951 MPI_CHK( mpi_inv_mod( &u, &c[t_len-1], &grp->P ) );
952
953 for( i = t_len - 1; ; i-- )
954 {
955 /*
956 * Zi = 1 / Z_i mod p
957 * u = 1 / (Z_0 * ... * Z_i) mod P
958 */
959 if( i == 0 ) {
960 MPI_CHK( mpi_copy( &Zi, &u ) );
961 }
962 else
963 {
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +0100964 MPI_CHK( mpi_mul_mpi( &Zi, &u, &c[i-1] ) ); MOD_MUL( Zi );
965 MPI_CHK( mpi_mul_mpi( &u, &u, &T[i]->Z ) ); MOD_MUL( u );
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100966 }
967
968 /*
969 * proceed as in normalize()
970 */
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +0100971 MPI_CHK( mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
972 MPI_CHK( mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );
973 MPI_CHK( mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );
974 MPI_CHK( mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi ) ); MOD_MUL( T[i]->Y );
975 MPI_CHK( mpi_lset( &T[i]->Z, 1 ) );
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100976
977 if( i == 0 )
978 break;
979 }
980
981cleanup:
982
983 mpi_free( &u ); mpi_free( &Zi ); mpi_free( &ZZi );
984 for( i = 0; i < t_len; i++ )
985 mpi_free( &c[i] );
Paul Bakker6e339b52013-07-03 13:37:05 +0200986 polarssl_free( c );
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100987
988 return( ret );
989}
990
Manuel Pégourié-Gonnardcdd44322012-11-21 16:00:55 +0100991/*
Manuel Pégourié-Gonnard0cd6f982013-10-10 15:55:39 +0200992 * Point doubling R = 2 P, Jacobian coordinates
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +0200993 *
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +0200994 * http://www.hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian/doubling/dbl-2007-bl.op3
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +0200995 * with heavy variable renaming, some reordering and one minor modification
996 * (a = 2 * b, c = d - 2a replaced with c = d, c = c - b, c = c - b)
997 * in order to use a lot less intermediate variables (6 vs 25).
Manuel Pégourié-Gonnard04a02252013-11-20 22:57:38 +0100998 *
999 * Cost: 1D := 2M + 8S
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +02001000 */
Manuel Pégourié-Gonnard0cd6f982013-10-10 15:55:39 +02001001static int ecp_double_jac( const ecp_group *grp, ecp_point *R,
1002 const ecp_point *P )
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +02001003{
1004 int ret;
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +02001005 mpi T1, T2, T3, X3, Y3, Z3;
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +02001006
Manuel Pégourié-Gonnard0cd6f982013-10-10 15:55:39 +02001007#if defined(POLARSSL_SELF_TEST)
1008 dbl_count++;
1009#endif
1010
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +02001011 mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 );
1012 mpi_init( &X3 ); mpi_init( &Y3 ); mpi_init( &Z3 );
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +02001013
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +02001014 MPI_CHK( mpi_mul_mpi( &T3, &P->X, &P->X ) ); MOD_MUL( T3 );
1015 MPI_CHK( mpi_mul_mpi( &T2, &P->Y, &P->Y ) ); MOD_MUL( T2 );
1016 MPI_CHK( mpi_mul_mpi( &Y3, &T2, &T2 ) ); MOD_MUL( Y3 );
1017 MPI_CHK( mpi_add_mpi( &X3, &P->X, &T2 ) ); MOD_ADD( X3 );
1018 MPI_CHK( mpi_mul_mpi( &X3, &X3, &X3 ) ); MOD_MUL( X3 );
1019 MPI_CHK( mpi_sub_mpi( &X3, &X3, &Y3 ) ); MOD_SUB( X3 );
1020 MPI_CHK( mpi_sub_mpi( &X3, &X3, &T3 ) ); MOD_SUB( X3 );
1021 MPI_CHK( mpi_mul_int( &T1, &X3, 2 ) ); MOD_ADD( T1 );
1022 MPI_CHK( mpi_mul_mpi( &Z3, &P->Z, &P->Z ) ); MOD_MUL( Z3 );
1023 MPI_CHK( mpi_mul_mpi( &X3, &Z3, &Z3 ) ); MOD_MUL( X3 );
1024 MPI_CHK( mpi_mul_int( &T3, &T3, 3 ) ); MOD_ADD( T3 );
1025 MPI_CHK( mpi_mul_mpi( &X3, &X3, &grp->A ) ); MOD_MUL( X3 );
1026 MPI_CHK( mpi_add_mpi( &T3, &T3, &X3 ) ); MOD_ADD( T3 );
1027 MPI_CHK( mpi_mul_mpi( &X3, &T3, &T3 ) ); MOD_MUL( X3 );
1028 MPI_CHK( mpi_sub_mpi( &X3, &X3, &T1 ) ); MOD_SUB( X3 );
1029 MPI_CHK( mpi_sub_mpi( &X3, &X3, &T1 ) ); MOD_SUB( X3 );
1030 MPI_CHK( mpi_sub_mpi( &T1, &T1, &X3 ) ); MOD_SUB( T1 );
1031 MPI_CHK( mpi_mul_mpi( &T1, &T3, &T1 ) ); MOD_MUL( T1 );
1032 MPI_CHK( mpi_mul_int( &T3, &Y3, 8 ) ); MOD_ADD( T3 );
1033 MPI_CHK( mpi_sub_mpi( &Y3, &T1, &T3 ) ); MOD_SUB( Y3 );
1034 MPI_CHK( mpi_add_mpi( &T1, &P->Y, &P->Z ) ); MOD_ADD( T1 );
1035 MPI_CHK( mpi_mul_mpi( &T1, &T1, &T1 ) ); MOD_MUL( T1 );
1036 MPI_CHK( mpi_sub_mpi( &T1, &T1, &T2 ) ); MOD_SUB( T1 );
1037 MPI_CHK( mpi_sub_mpi( &Z3, &T1, &Z3 ) ); MOD_SUB( Z3 );
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +02001038
1039 MPI_CHK( mpi_copy( &R->X, &X3 ) );
1040 MPI_CHK( mpi_copy( &R->Y, &Y3 ) );
1041 MPI_CHK( mpi_copy( &R->Z, &Z3 ) );
1042
1043cleanup:
Manuel Pégourié-Gonnard0ace4b32013-10-10 12:44:27 +02001044 mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 );
1045 mpi_free( &X3 ); mpi_free( &Y3 ); mpi_free( &Z3 );
Manuel Pégourié-Gonnard1c4aa242013-10-09 16:09:46 +02001046
1047 return( ret );
1048}
1049
1050/*
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001051 * Addition or subtraction: R = P + Q or R = P - Q,
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001052 * mixed affine-Jacobian coordinates (GECC 3.22)
1053 *
1054 * The coordinates of Q must be normalized (= affine),
1055 * but those of P don't need to. R is not normalized.
1056 *
1057 * If sign >= 0, perform addition, otherwise perform subtraction,
1058 * taking advantage of the fact that, for Q != 0, we have
1059 * -Q = (Q.X, -Q.Y, Q.Z)
Manuel Pégourié-Gonnard04a02252013-11-20 22:57:38 +01001060 *
1061 * Cost: 1A := 8M + 3S
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001062 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001063static int ecp_add_mixed( const ecp_group *grp, ecp_point *R,
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001064 const ecp_point *P, const ecp_point *Q,
1065 signed char sign )
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001066{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001067 int ret;
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001068 mpi T1, T2, T3, T4, X, Y, Z;
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001069
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01001070#if defined(POLARSSL_SELF_TEST)
1071 add_count++;
1072#endif
1073
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001074 /*
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001075 * Trivial cases: P == 0 or Q == 0
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001076 * (Check Q first, so that we know Q != 0 when we compute -Q.)
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001077 */
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001078 if( mpi_cmp_int( &Q->Z, 0 ) == 0 )
1079 return( ecp_copy( R, P ) );
1080
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001081 if( mpi_cmp_int( &P->Z, 0 ) == 0 )
1082 {
1083 ret = ecp_copy( R, Q );
1084
1085 /*
1086 * -R.Y mod P = P - R.Y unless R.Y == 0
1087 */
1088 if( ret == 0 && sign < 0)
1089 if( mpi_cmp_int( &R->Y, 0 ) != 0 )
1090 ret = mpi_sub_mpi( &R->Y, &grp->P, &R->Y );
1091
1092 return( ret );
1093 }
1094
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001095 /*
1096 * Make sure Q coordinates are normalized
1097 */
1098 if( mpi_cmp_int( &Q->Z, 1 ) != 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001099 return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001100
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001101 mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 ); mpi_init( &T4 );
1102 mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z );
Manuel Pégourié-Gonnardab38b702012-11-05 17:34:55 +01001103
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001104 MPI_CHK( mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 );
1105 MPI_CHK( mpi_mul_mpi( &T2, &T1, &P->Z ) ); MOD_MUL( T2 );
1106 MPI_CHK( mpi_mul_mpi( &T1, &T1, &Q->X ) ); MOD_MUL( T1 );
1107 MPI_CHK( mpi_mul_mpi( &T2, &T2, &Q->Y ) ); MOD_MUL( T2 );
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001108
1109 /*
1110 * For subtraction, -Q.Y should have been used instead of Q.Y,
1111 * so we replace T2 by -T2, which is P - T2 mod P
1112 */
1113 if( sign < 0 )
1114 {
1115 MPI_CHK( mpi_sub_mpi( &T2, &grp->P, &T2 ) );
1116 MOD_SUB( T2 );
1117 }
1118
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001119 MPI_CHK( mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 );
1120 MPI_CHK( mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001121
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001122 if( mpi_cmp_int( &T1, 0 ) == 0 )
1123 {
1124 if( mpi_cmp_int( &T2, 0 ) == 0 )
1125 {
1126 ret = ecp_double_jac( grp, R, P );
1127 goto cleanup;
1128 }
1129 else
1130 {
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001131 ret = ecp_set_zero( R );
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001132 goto cleanup;
1133 }
1134 }
1135
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001136 MPI_CHK( mpi_mul_mpi( &Z, &P->Z, &T1 ) ); MOD_MUL( Z );
1137 MPI_CHK( mpi_mul_mpi( &T3, &T1, &T1 ) ); MOD_MUL( T3 );
1138 MPI_CHK( mpi_mul_mpi( &T4, &T3, &T1 ) ); MOD_MUL( T4 );
1139 MPI_CHK( mpi_mul_mpi( &T3, &T3, &P->X ) ); MOD_MUL( T3 );
1140 MPI_CHK( mpi_mul_int( &T1, &T3, 2 ) ); MOD_ADD( T1 );
1141 MPI_CHK( mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X );
1142 MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X );
1143 MPI_CHK( mpi_sub_mpi( &X, &X, &T4 ) ); MOD_SUB( X );
1144 MPI_CHK( mpi_sub_mpi( &T3, &T3, &X ) ); MOD_SUB( T3 );
1145 MPI_CHK( mpi_mul_mpi( &T3, &T3, &T2 ) ); MOD_MUL( T3 );
1146 MPI_CHK( mpi_mul_mpi( &T4, &T4, &P->Y ) ); MOD_MUL( T4 );
1147 MPI_CHK( mpi_sub_mpi( &Y, &T3, &T4 ) ); MOD_SUB( Y );
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001148
Manuel Pégourié-Gonnard84d1aea2012-11-09 02:09:38 +01001149 MPI_CHK( mpi_copy( &R->X, &X ) );
1150 MPI_CHK( mpi_copy( &R->Y, &Y ) );
1151 MPI_CHK( mpi_copy( &R->Z, &Z ) );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001152
1153cleanup:
1154
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001155 mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 ); mpi_free( &T4 );
1156 mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001157
1158 return( ret );
1159}
1160
1161/*
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001162 * Addition: R = P + Q, result's coordinates normalized
Manuel Pégourié-Gonnard04a02252013-11-20 22:57:38 +01001163 * Cost: 1A + 1N = 1I + 11M + 4S
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001164 */
1165int ecp_add( const ecp_group *grp, ecp_point *R,
1166 const ecp_point *P, const ecp_point *Q )
1167{
Manuel Pégourié-Gonnard47123252012-11-10 14:44:24 +01001168 int ret;
Manuel Pégourié-Gonnard989c32b2012-11-08 22:02:42 +01001169
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001170 MPI_CHK( ecp_add_mixed( grp, R, P, Q , 1 ) );
1171 MPI_CHK( ecp_normalize( grp, R ) );
1172
1173cleanup:
1174 return( ret );
1175}
1176
1177/*
1178 * Subtraction: R = P - Q, result's coordinates normalized
Manuel Pégourié-Gonnard04a02252013-11-20 22:57:38 +01001179 * Cost: 1A + 1N = 1I + 11M + 4S
Manuel Pégourié-Gonnard9674fd02012-11-19 21:23:27 +01001180 */
1181int ecp_sub( const ecp_group *grp, ecp_point *R,
1182 const ecp_point *P, const ecp_point *Q )
1183{
1184 int ret;
1185
1186 MPI_CHK( ecp_add_mixed( grp, R, P, Q, -1 ) );
Manuel Pégourié-Gonnard1c2782c2012-11-19 20:16:28 +01001187 MPI_CHK( ecp_normalize( grp, R ) );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001188
Manuel Pégourié-Gonnard989c32b2012-11-08 22:02:42 +01001189cleanup:
Manuel Pégourié-Gonnard7e0adfb2012-11-08 23:21:46 +01001190 return( ret );
Manuel Pégourié-Gonnardae180d02012-11-02 18:14:40 +01001191}
1192
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001193/*
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +02001194 * Randomize jacobian coordinates:
1195 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1196 * This is sort of the reverse operation of ecp_normalize().
1197 */
1198static int ecp_randomize_coordinates( const ecp_group *grp, ecp_point *pt,
1199 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1200{
1201 int ret;
1202 mpi l, ll;
1203 size_t p_size = (grp->pbits + 7) / 8;
1204 int count = 0;
1205
1206 mpi_init( &l ); mpi_init( &ll );
1207
1208 /* Generate l such that 1 < l < p */
1209 do
1210 {
1211 mpi_fill_random( &l, p_size, f_rng, p_rng );
1212
1213 while( mpi_cmp_mpi( &l, &grp->P ) >= 0 )
1214 mpi_shift_r( &l, 1 );
1215
1216 if( count++ > 10 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001217 return( POLARSSL_ERR_ECP_RANDOM_FAILED );
Manuel Pégourié-Gonnard07de4b12013-09-02 16:26:04 +02001218 }
1219 while( mpi_cmp_int( &l, 1 ) <= 0 );
1220
1221 /* Z = l * Z */
1222 MPI_CHK( mpi_mul_mpi( &pt->Z, &pt->Z, &l ) ); MOD_MUL( pt->Z );
1223
1224 /* X = l^2 * X */
1225 MPI_CHK( mpi_mul_mpi( &ll, &l, &l ) ); MOD_MUL( ll );
1226 MPI_CHK( mpi_mul_mpi( &pt->X, &pt->X, &ll ) ); MOD_MUL( pt->X );
1227
1228 /* Y = l^3 * Y */
1229 MPI_CHK( mpi_mul_mpi( &ll, &ll, &l ) ); MOD_MUL( ll );
1230 MPI_CHK( mpi_mul_mpi( &pt->Y, &pt->Y, &ll ) ); MOD_MUL( pt->Y );
1231
1232cleanup:
1233 mpi_free( &l ); mpi_free( &ll );
1234
1235 return( ret );
1236}
1237
1238/*
Manuel Pégourié-Gonnardc30200e2013-11-20 18:39:55 +01001239 * Check and define parameters used by the comb method (see below for details)
1240 */
1241#if POLARSSL_ECP_WINDOW_SIZE < 2 || POLARSSL_ECP_WINDOW_SIZE > 7
1242#error "POLARSSL_ECP_WINDOW_SIZE out of bounds"
1243#endif
1244
1245/* d = ceil( n / w ) */
1246#define COMB_MAX_D ( POLARSSL_ECP_MAX_BITS + 1 ) / 2
1247
1248/* number of precomputed points */
1249#define COMB_MAX_PRE ( 1 << ( POLARSSL_ECP_WINDOW_SIZE - 1 ) )
1250
1251/*
1252 * Compute the representation of m that will be used with our comb method.
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001253 *
1254 * The basic comb method is described in GECC 3.44 for example. We use a
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001255 * modified version that provides resistance to SPA by avoiding zero
1256 * digits in the representation as in [3]. We modify the method further by
1257 * requiring that all K_i be odd, which has the small cost that our
Manuel Pégourié-Gonnardc30200e2013-11-20 18:39:55 +01001258 * representation uses one more K_i, due to carries.
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001259 *
1260 * Also, for the sake of compactness, only the seven low-order bits of x[i]
1261 * are used to represent K_i, and the msb of x[i] encodes the the sign (s_i in
1262 * the paper): it is set if and only if if s_i == -1;
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001263 *
1264 * Calling conventions:
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001265 * - x is an array of size d + 1
Manuel Pégourié-Gonnardc30200e2013-11-20 18:39:55 +01001266 * - w is the size, ie number of teeth, of the comb, and must be between
1267 * 2 and 7 (in practice, between 2 and POLARSSL_ECP_WINDOW_SIZE)
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001268 * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1269 * (the result will be incorrect if these assumptions are not satisfied)
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001270 */
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001271static void ecp_comb_fixed( unsigned char x[], size_t d,
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001272 unsigned char w, const mpi *m )
1273{
1274 size_t i, j;
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001275 unsigned char c, cc, adjust;
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001276
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001277 memset( x, 0, d+1 );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001278
1279 /* For x[0] use the classical comb value without adjustement */
1280 for( j = 0; j < w; j++ )
1281 x[0] |= mpi_get_bit( m, d * j ) << j;
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001282 c = 0;
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001283
1284 for( i = 1; i < d; i++ )
1285 {
1286 /* Get the classical comb value */
1287 for( j = 0; j < w; j++ )
1288 x[i] |= mpi_get_bit( m, i + d * j ) << j;
1289
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001290 /* Add carry and update it */
1291 cc = x[i] & c;
1292 x[i] = x[i] ^ c;
1293 c = cc;
1294
1295 /* Make sure x[i] is odd, avoiding if-branches */
1296 adjust = 1 - ( x[i] & 0x01 );
1297 c |= x[i] & ( x[i-1] * adjust );
1298 x[i] = x[i] ^ ( x[i-1] * adjust );
1299 x[i-1] |= adjust << 7;
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001300 }
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001301
1302 /* Finish with the carry */
1303 x[i] = c;
1304 adjust = 1 - ( x[i] & 0x01 );
1305 c |= x[i] & ( x[i-1] * adjust );
1306 x[i] = x[i] ^ ( x[i-1] * adjust );
1307 x[i-1] |= adjust << 7;
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001308}
1309
1310/*
1311 * Precompute points for the comb method
1312 *
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001313 * If i = i_{w-1} ... i_1 is the binary representation of i, then
1314 * T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001315 *
Manuel Pégourié-Gonnard04a02252013-11-20 22:57:38 +01001316 * T must be able to hold 2^{w - 1} elements
1317 *
1318 * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001319 */
1320static int ecp_precompute_comb( const ecp_group *grp,
1321 ecp_point T[], const ecp_point *P,
1322 unsigned char w, size_t d )
1323{
1324 int ret;
Manuel Pégourié-Gonnardc30200e2013-11-20 18:39:55 +01001325 unsigned char i, k;
1326 size_t j;
1327 ecp_point *cur, *TT[COMB_MAX_PRE - 1];
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001328
1329 /*
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001330 * Set T[0] = P and
1331 * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001332 */
1333 MPI_CHK( ecp_copy( &T[0], P ) );
1334
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001335 k = 0;
1336 for( i = 1; i < ( 1U << (w-1) ); i <<= 1 )
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001337 {
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001338 cur = T + i;
1339 MPI_CHK( ecp_copy( cur, T + ( i >> 1 ) ) );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001340 for( j = 0; j < d; j++ )
1341 MPI_CHK( ecp_double_jac( grp, cur, cur ) );
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001342
1343 TT[k++] = cur;
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001344 }
1345
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001346 ecp_normalize_many( grp, TT, k );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001347
1348 /*
1349 * Compute the remaining ones using the minimal number of additions
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001350 * Be careful to update T[2^l] only after using it!
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001351 */
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001352 k = 0;
1353 for( i = 1; i < ( 1U << (w-1) ); i <<= 1 )
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001354 {
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001355 j = i;
1356 while( j-- )
1357 {
1358 ecp_add_mixed( grp, &T[i + j], &T[j], &T[i], +1 );
1359 TT[k++] = &T[i + j];
1360 }
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001361 }
1362
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001363 ecp_normalize_many( grp, TT, k );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001364
1365cleanup:
1366 return( ret );
1367}
1368
1369/*
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001370 * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001371 */
1372static int ecp_select_comb( const ecp_group *grp, ecp_point *R,
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001373 const ecp_point T[], unsigned char i )
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001374{
1375 int ret;
1376
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001377 /* Ignore the "sign" bit */
1378 MPI_CHK( ecp_copy( R, &T[ ( i & 0x7Fu ) >> 1 ] ) );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001379
1380 /*
1381 * -R = (R.X, -R.Y, R.Z), and
1382 * -R.Y mod P = P - R.Y unless R.Y == 0
1383 */
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001384 if( ( i & 0x80 ) != 0 )
1385 if( mpi_cmp_int( &R->Y, 0 ) != 0 )
1386 MPI_CHK( mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001387
1388cleanup:
1389 return( ret );
1390}
1391
1392/*
1393 * Core multiplication algorithm for the (modified) comb method.
1394 * This part is actually common with the basic comb method (GECC 3.44)
Manuel Pégourié-Gonnard04a02252013-11-20 22:57:38 +01001395 *
1396 * Cost: d A + d D + 1 R
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001397 */
1398static int ecp_mul_comb_core( const ecp_group *grp, ecp_point *R,
Manuel Pégourié-Gonnard70c14372013-11-20 20:07:26 +01001399 const ecp_point T[],
1400 const unsigned char x[], size_t d,
1401 int (*f_rng)(void *, unsigned char *, size_t),
1402 void *p_rng )
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001403{
1404 int ret;
1405 ecp_point Txi;
1406 size_t i;
1407
1408 ecp_point_init( &Txi );
1409
Manuel Pégourié-Gonnard70c14372013-11-20 20:07:26 +01001410 /* Start with a non-zero point and randomize its coordinates */
Manuel Pégourié-Gonnard101a39f2013-11-20 14:47:19 +01001411 i = d;
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001412 MPI_CHK( ecp_select_comb( grp, R, T, x[i] ) );
Manuel Pégourié-Gonnard70c14372013-11-20 20:07:26 +01001413 if( f_rng != 0 )
1414 MPI_CHK( ecp_randomize_coordinates( grp, R, f_rng, p_rng ) );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001415
1416 while( i-- != 0 )
1417 {
1418 MPI_CHK( ecp_double_jac( grp, R, R ) );
1419 MPI_CHK( ecp_select_comb( grp, &Txi, T, x[i] ) );
1420 MPI_CHK( ecp_add_mixed( grp, R, R, &Txi, +1 ) );
1421 }
1422
1423cleanup:
1424 ecp_point_free( &Txi );
1425
1426 return( ret );
1427}
1428
1429/*
Manuel Pégourié-Gonnard04a02252013-11-20 22:57:38 +01001430 * Multiplication using the comb method
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001431 */
Manuel Pégourié-Gonnard09ceaf42013-11-20 23:06:14 +01001432int ecp_mul( ecp_group *grp, ecp_point *R,
1433 const mpi *m, const ecp_point *P,
1434 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001435{
1436 int ret;
1437 unsigned char w, m_is_odd, p_eq_g;
1438 size_t pre_len, d, i;
Manuel Pégourié-Gonnardc30200e2013-11-20 18:39:55 +01001439 unsigned char k[COMB_MAX_D + 1];
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001440 ecp_point Q, *T = NULL, S[2];
1441 mpi M;
1442
Manuel Pégourié-Gonnardff27b7c2013-11-21 09:28:03 +01001443 /*
1444 * Sanity checks (before we even initialize anything)
1445 */
1446 if( ( ret = ecp_check_privkey( grp, m ) ) != 0 )
1447 return( ret );
1448
1449 /* We'll need this later, but do it now to possibly avoid cheking P */
1450 p_eq_g = ( mpi_cmp_int( &P->Z, 1 ) == 0 &&
1451 mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
1452 mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
1453 if( ! p_eq_g && ( ret = ecp_check_pubkey( grp, P ) ) != 0 )
1454 return( ret );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001455
1456 mpi_init( &M );
1457 ecp_point_init( &Q );
1458 ecp_point_init( &S[0] );
1459 ecp_point_init( &S[1] );
1460
1461 /*
Manuel Pégourié-Gonnard04a02252013-11-20 22:57:38 +01001462 * Minimize the number of multiplications, that is minimize
1463 * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w
1464 * (see costs of the various parts, with 1S = 1M)
1465 */
1466 w = grp->nbits >= 384 ? 5 : 4;
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001467
Manuel Pégourié-Gonnard04a02252013-11-20 22:57:38 +01001468 /*
1469 * If P == G, pre-compute a bit more, since this may be re-used later.
1470 * Just adding one ups the cost of the first mul by at most 3%.
1471 */
1472 if( p_eq_g )
1473 w++;
1474
1475 /*
1476 * Make sure w is within limits.
1477 * (The last test is useful only for very small curves in the test suite.)
1478 */
1479 if( w > POLARSSL_ECP_WINDOW_SIZE )
1480 w = POLARSSL_ECP_WINDOW_SIZE;
1481 if( w < 2 || w >= grp->nbits )
1482 w = 2;
1483
1484 /* Other sizes that depend on w */
Manuel Pégourié-Gonnardc30200e2013-11-20 18:39:55 +01001485 pre_len = 1U << ( w - 1 );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001486 d = ( grp->nbits + w - 1 ) / w;
1487
1488 /*
1489 * Prepare precomputed points: if P == G we want to
1490 * use grp->T if already initialized, or initiliaze it.
1491 */
1492 if( ! p_eq_g || grp->T == NULL )
1493 {
1494 T = (ecp_point *) polarssl_malloc( pre_len * sizeof( ecp_point ) );
1495 if( T == NULL )
1496 {
1497 ret = POLARSSL_ERR_ECP_MALLOC_FAILED;
1498 goto cleanup;
1499 }
1500
1501 for( i = 0; i < pre_len; i++ )
1502 ecp_point_init( &T[i] );
1503
1504 MPI_CHK( ecp_precompute_comb( grp, T, P, w, d ) );
1505
1506 if( p_eq_g )
1507 {
1508 grp->T = T;
1509 grp->T_size = pre_len;
1510 }
1511 }
1512 else
1513 {
1514 T = grp->T;
1515
1516 /* Should never happen, but we want to be extra sure */
1517 if( pre_len != grp->T_size )
1518 {
1519 ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA;
1520 goto cleanup;
1521 }
1522 }
1523
1524 /*
1525 * Make sure M is odd (M = m + 1 or M = m + 2)
1526 * later we'll get m * P by subtracting P or 2 * P to M * P.
1527 */
1528 m_is_odd = ( mpi_get_bit( m, 0 ) == 1 );
1529
1530 MPI_CHK( mpi_copy( &M, m ) );
1531 MPI_CHK( mpi_add_int( &M, &M, 1 + m_is_odd ) );
1532
1533 /*
1534 * Go for comb multiplication, Q = M * P
1535 */
1536 ecp_comb_fixed( k, d, w, &M );
Manuel Pégourié-Gonnard70c14372013-11-20 20:07:26 +01001537 ecp_mul_comb_core( grp, &Q, T, k, d, f_rng, p_rng );
Manuel Pégourié-Gonnardd1c1ba92013-11-16 15:50:12 +01001538
1539 /*
1540 * Now get m * P from M * P
1541 */
1542 MPI_CHK( ecp_copy( &S[0], P ) );
1543 MPI_CHK( ecp_add( grp, &S[1], P, P ) );
1544 MPI_CHK( ecp_sub( grp, R, &Q, &S[m_is_odd] ) );
1545
1546cleanup:
1547
1548 if( T != NULL && ! p_eq_g )
1549 {
1550 for( i = 0; i < pre_len; i++ )
1551 ecp_point_free( &T[i] );
1552 polarssl_free( T );
1553 }
1554
1555 ecp_point_free( &S[1] );
1556 ecp_point_free( &S[0] );
1557 ecp_point_free( &Q );
1558 mpi_free( &M );
1559
1560 return( ret );
1561}
1562
1563/*
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001564 * Check that a point is valid as a public key (SEC1 3.2.3.1)
1565 */
1566int ecp_check_pubkey( const ecp_group *grp, const ecp_point *pt )
1567{
1568 int ret;
1569 mpi YY, RHS;
1570
1571 if( mpi_cmp_int( &pt->Z, 0 ) == 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001572 return( POLARSSL_ERR_ECP_INVALID_KEY );
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001573
1574 /*
1575 * pt coordinates must be normalized for our checks
1576 */
1577 if( mpi_cmp_int( &pt->Z, 1 ) != 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001578 return( POLARSSL_ERR_ECP_INVALID_KEY );
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001579
1580 if( mpi_cmp_int( &pt->X, 0 ) < 0 ||
1581 mpi_cmp_int( &pt->Y, 0 ) < 0 ||
1582 mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
1583 mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001584 return( POLARSSL_ERR_ECP_INVALID_KEY );
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001585
1586 mpi_init( &YY ); mpi_init( &RHS );
1587
1588 /*
1589 * YY = Y^2
Manuel Pégourié-Gonnardcd7458a2013-10-08 13:11:30 +02001590 * RHS = X (X^2 + A) + B = X^3 + A X + B
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001591 */
Manuel Pégourié-Gonnardcd7458a2013-10-08 13:11:30 +02001592 MPI_CHK( mpi_mul_mpi( &YY, &pt->Y, &pt->Y ) ); MOD_MUL( YY );
1593 MPI_CHK( mpi_mul_mpi( &RHS, &pt->X, &pt->X ) ); MOD_MUL( RHS );
Manuel Pégourié-Gonnard0cd6f982013-10-10 15:55:39 +02001594 MPI_CHK( mpi_add_mpi( &RHS, &RHS, &grp->A ) ); MOD_ADD( RHS );
Manuel Pégourié-Gonnardcd7458a2013-10-08 13:11:30 +02001595 MPI_CHK( mpi_mul_mpi( &RHS, &RHS, &pt->X ) ); MOD_MUL( RHS );
1596 MPI_CHK( mpi_add_mpi( &RHS, &RHS, &grp->B ) ); MOD_ADD( RHS );
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001597
1598 if( mpi_cmp_mpi( &YY, &RHS ) != 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001599 ret = POLARSSL_ERR_ECP_INVALID_KEY;
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001600
1601cleanup:
1602
1603 mpi_free( &YY ); mpi_free( &RHS );
1604
1605 return( ret );
1606}
1607
1608/*
1609 * Check that an mpi is valid as a private key (SEC1 3.2)
1610 */
Manuel Pégourié-Gonnardde44a4a2013-07-09 16:05:52 +02001611int ecp_check_privkey( const ecp_group *grp, const mpi *d )
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001612{
1613 /* We want 1 <= d <= N-1 */
1614 if ( mpi_cmp_int( d, 1 ) < 0 || mpi_cmp_mpi( d, &grp->N ) >= 0 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001615 return( POLARSSL_ERR_ECP_INVALID_KEY );
Manuel Pégourié-Gonnardc8dc2952013-07-01 14:06:13 +02001616
1617 return( 0 );
1618}
1619
1620/*
Manuel Pégourié-Gonnard45a035a2013-01-26 14:42:45 +01001621 * Generate a keypair (SEC1 3.2.1)
1622 */
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02001623int ecp_gen_keypair( ecp_group *grp, mpi *d, ecp_point *Q,
Manuel Pégourié-Gonnard45a035a2013-01-26 14:42:45 +01001624 int (*f_rng)(void *, unsigned char *, size_t),
1625 void *p_rng )
1626{
1627 int count = 0;
1628 size_t n_size = (grp->nbits + 7) / 8;
1629
1630 /*
1631 * Generate d such that 1 <= n < N
1632 */
1633 do
1634 {
1635 mpi_fill_random( d, n_size, f_rng, p_rng );
1636
1637 while( mpi_cmp_mpi( d, &grp->N ) >= 0 )
1638 mpi_shift_r( d, 1 );
1639
1640 if( count++ > 10 )
Manuel Pégourié-Gonnard456d3b92013-09-16 18:04:38 +02001641 return( POLARSSL_ERR_ECP_RANDOM_FAILED );
Manuel Pégourié-Gonnard45a035a2013-01-26 14:42:45 +01001642 }
1643 while( mpi_cmp_int( d, 1 ) < 0 );
1644
Manuel Pégourié-Gonnarde09d2f82013-09-02 14:29:09 +02001645 return( ecp_mul( grp, Q, d, &grp->G, f_rng, p_rng ) );
Manuel Pégourié-Gonnard45a035a2013-01-26 14:42:45 +01001646}
Manuel Pégourié-Gonnardefaa31e2012-11-06 21:34:35 +01001647
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001648#if defined(POLARSSL_ECP_NIST_OPTIM)
Manuel Pégourié-Gonnard9fcceac2013-10-23 20:56:12 +02001649/*
1650 * Fast reduction modulo the primes used by the NIST curves.
1651 *
1652 * These functions are: critical for speed, but not need for correct
1653 * operations. So, we make the choice to heavily rely on the internals of our
1654 * bignum library, which creates a tight coupling between these functions and
1655 * our MPI implementation. However, the coupling between the ECP module and
1656 * MPI remains loose, since these functions can be deactivated at will.
1657 */
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001658
1659#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
1660/*
1661 * Compared to the way things are presented in FIPS 186-3 D.2,
1662 * we proceed in columns, from right (least significant chunk) to left,
1663 * adding chunks to N in place, and keeping a carry for the next chunk.
1664 * This avoids moving things around in memory, and uselessly adding zeros,
1665 * compared to the more straightforward, line-oriented approach.
1666 *
1667 * For this prime we need to handle data in chunks of 64 bits.
1668 * Since this is always a multiple of our basic t_uint, we can
1669 * use a t_uint * to designate such a chunk, and small loops to handle it.
1670 */
1671
1672/* Add 64-bit chunks (dst += src) and update carry */
1673static inline void add64( t_uint *dst, t_uint *src, t_uint *carry )
1674{
1675 unsigned char i;
1676 t_uint c = 0;
1677 for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++, src++ )
1678 {
1679 *dst += c; c = ( *dst < c );
1680 *dst += *src; c += ( *dst < *src );
1681 }
1682 *carry += c;
1683}
1684
1685/* Add carry to a 64-bit chunk and update carry */
1686static inline void carry64( t_uint *dst, t_uint *carry )
1687{
1688 unsigned char i;
1689 for( i = 0; i < 8 / sizeof( t_uint ); i++, dst++ )
1690 {
1691 *dst += *carry;
1692 *carry = ( *dst < *carry );
1693 }
1694}
1695
1696#define WIDTH 8 / sizeof( t_uint )
1697#define A( i ) N->p + i * WIDTH
1698#define ADD( i ) add64( p, A( i ), &c )
1699#define NEXT p += WIDTH; carry64( p, &c )
1700#define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0
1701
1702/*
1703 * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
1704 */
1705static int ecp_mod_p192( mpi *N )
1706{
1707 int ret;
1708 t_uint c = 0;
1709 t_uint *p, *end;
1710
1711 /* Make sure we have enough blocks so that A(5) is legal */
1712 MPI_CHK( mpi_grow( N, 6 * WIDTH ) );
1713
1714 p = N->p;
1715 end = p + N->n;
1716
1717 ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5
1718 ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5
1719 ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5
1720
1721cleanup:
1722 return( ret );
1723}
1724
1725#undef WIDTH
1726#undef A
1727#undef ADD
1728#undef NEXT
1729#undef LAST
1730#endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
1731
1732#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) || \
1733 defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) || \
1734 defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
1735/*
1736 * The reader is advised to first understand ecp_mod_p192() since the same
1737 * general structure is used here, but with additional complications:
1738 * (1) chunks of 32 bits, and (2) subtractions.
1739 */
1740
1741/*
1742 * For these primes, we need to handle data in chunks of 32 bits.
1743 * This makes it more complicated if we use 64 bits limbs in MPI,
1744 * which prevents us from using a uniform access method as for p192.
1745 *
1746 * So, we define a mini abstraction layer to access 32 bit chunks,
1747 * load them in 'cur' for work, and store them back from 'cur' when done.
1748 *
1749 * While at it, also define the size of N in terms of 32-bit chunks.
1750 */
1751#define LOAD32 cur = A( i );
1752
1753#if defined(POLARSSL_HAVE_INT8) /* 8 bit */
1754
1755#define MAX32 N->n / 4
1756#define A( j ) (uint32_t)( N->p[4*j+0] ) | \
1757 ( N->p[4*j+1] << 8 ) | \
1758 ( N->p[4*j+2] << 16 ) | \
1759 ( N->p[4*j+3] << 24 )
1760#define STORE32 N->p[4*i+0] = (uint8_t)( cur ); \
1761 N->p[4*i+1] = (uint8_t)( cur >> 8 ); \
1762 N->p[4*i+2] = (uint8_t)( cur >> 16 ); \
1763 N->p[4*i+3] = (uint8_t)( cur >> 24 );
1764
1765#elif defined(POLARSSL_HAVE_INT16) /* 16 bit */
1766
1767#define MAX32 N->n / 2
1768#define A( j ) (uint32_t)( N->p[2*j] ) | ( N->p[2*j+1] << 16 )
1769#define STORE32 N->p[2*i+0] = (uint16_t)( cur ); \
1770 N->p[2*i+1] = (uint16_t)( cur >> 16 );
1771
1772#elif defined(POLARSSL_HAVE_INT32) /* 32 bit */
1773
1774#define MAX32 N->n
1775#define A( j ) N->p[j]
1776#define STORE32 N->p[i] = cur;
1777
1778#else /* 64-bit */
1779
1780#define MAX32 N->n * 2
1781#define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
1782#define STORE32 \
1783 if( i % 2 ) { \
1784 N->p[i/2] &= 0x00000000FFFFFFFF; \
1785 N->p[i/2] |= ((uint64_t) cur) << 32; \
1786 } else { \
1787 N->p[i/2] &= 0xFFFFFFFF00000000; \
1788 N->p[i/2] |= (uint64_t) cur; \
1789 }
1790
1791#endif /* sizeof( t_uint ) */
1792
1793/*
1794 * Helpers for addition and subtraction of chunks, with signed carry.
1795 */
1796static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
1797{
1798 *dst += src;
1799 *carry += ( *dst < src );
1800}
1801
1802static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
1803{
1804 *carry -= ( *dst < src );
1805 *dst -= src;
1806}
1807
1808#define ADD( j ) add32( &cur, A( j ), &c );
1809#define SUB( j ) sub32( &cur, A( j ), &c );
1810
1811/*
1812 * Helpers for the main 'loop'
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02001813 * (see fix_negative for the motivation of C)
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001814 */
1815#define INIT( b ) \
1816 int ret; \
1817 signed char c = 0, cc; \
1818 uint32_t cur; \
1819 size_t i = 0, bits = b; \
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02001820 mpi C; \
1821 t_uint Cp[ b / 8 / sizeof( t_uint) + 1 ]; \
1822 \
1823 C.s = 1; \
1824 C.n = b / 8 / sizeof( t_uint) + 1; \
1825 C.p = Cp; \
1826 memset( Cp, 0, C.n * sizeof( t_uint ) ); \
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001827 \
1828 MPI_CHK( mpi_grow( N, b * 2 / 8 / sizeof( t_uint ) ) ); \
1829 LOAD32;
1830
1831#define NEXT \
1832 STORE32; i++; LOAD32; \
1833 cc = c; c = 0; \
1834 if( cc < 0 ) \
1835 sub32( &cur, -cc, &c ); \
1836 else \
1837 add32( &cur, cc, &c ); \
1838
1839#define LAST \
1840 STORE32; i++; \
1841 cur = c > 0 ? c : 0; STORE32; \
1842 cur = 0; while( ++i < MAX32 ) { STORE32; } \
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02001843 if( c < 0 ) fix_negative( N, c, &C, bits );
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001844
1845/*
1846 * If the result is negative, we get it in the form
1847 * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
1848 */
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02001849static inline int fix_negative( mpi *N, signed char c, mpi *C, size_t bits )
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001850{
1851 int ret;
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001852
1853 /* C = - c * 2^(bits + 32) */
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02001854#if !defined(POLARSSL_HAVE_INT64)
1855 ((void) bits);
1856#else
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001857 if( bits == 224 )
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02001858 C->p[ C->n - 1 ] = ((t_uint) -c) << 32;
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001859 else
1860#endif
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02001861 C->p[ C->n - 1 ] = (t_uint) -c;
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001862
1863 /* N = - ( C - N ) */
Manuel Pégourié-Gonnardb21c81f2013-10-23 20:45:04 +02001864 MPI_CHK( mpi_sub_abs( N, C, N ) );
Manuel Pégourié-Gonnardcae6f3e2013-10-23 20:19:57 +02001865 N->s = -1;
1866
1867cleanup:
1868
1869 return( ret );
1870}
1871
1872#if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
1873/*
1874 * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
1875 */
1876static int ecp_mod_p224( mpi *N )
1877{
1878 INIT( 224 );
1879
1880 SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11
1881 SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12
1882 SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13
1883 SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11
1884 SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12
1885 SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13
1886 SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10
1887
1888cleanup:
1889 return( ret );
1890}
1891#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
1892
1893#if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
1894/*
1895 * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
1896 */
1897static int ecp_mod_p256( mpi *N )
1898{
1899 INIT( 256 );
1900
1901 ADD( 8 ); ADD( 9 );
1902 SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0
1903
1904 ADD( 9 ); ADD( 10 );
1905 SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1
1906
1907 ADD( 10 ); ADD( 11 );
1908 SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2
1909
1910 ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
1911 SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3
1912
1913 ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
1914 SUB( 9 ); SUB( 10 ); NEXT; // A4
1915
1916 ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
1917 SUB( 10 ); SUB( 11 ); NEXT; // A5
1918
1919 ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
1920 SUB( 8 ); SUB( 9 ); NEXT; // A6
1921
1922 ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
1923 SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7
1924
1925cleanup:
1926 return( ret );
1927}
1928#endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
1929
1930#if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
1931/*
1932 * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
1933 */
1934static int ecp_mod_p384( mpi *N )
1935{
1936 INIT( 384 );
1937
1938 ADD( 12 ); ADD( 21 ); ADD( 20 );
1939 SUB( 23 ); NEXT; // A0
1940
1941 ADD( 13 ); ADD( 22 ); ADD( 23 );
1942 SUB( 12 ); SUB( 20 ); NEXT; // A2
1943
1944 ADD( 14 ); ADD( 23 );
1945 SUB( 13 ); SUB( 21 ); NEXT; // A2
1946
1947 ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
1948 SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3
1949
1950 ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
1951 SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4
1952
1953 ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
1954 SUB( 16 ); NEXT; // A5
1955
1956 ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
1957 SUB( 17 ); NEXT; // A6
1958
1959 ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
1960 SUB( 18 ); NEXT; // A7
1961
1962 ADD( 20 ); ADD( 17 ); ADD( 16 );
1963 SUB( 19 ); NEXT; // A8
1964
1965 ADD( 21 ); ADD( 18 ); ADD( 17 );
1966 SUB( 20 ); NEXT; // A9
1967
1968 ADD( 22 ); ADD( 19 ); ADD( 18 );
1969 SUB( 21 ); NEXT; // A10
1970
1971 ADD( 23 ); ADD( 20 ); ADD( 19 );
1972 SUB( 22 ); LAST; // A11
1973
1974cleanup:
1975 return( ret );
1976}
1977#endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
1978
1979#undef A
1980#undef LOAD32
1981#undef STORE32
1982#undef MAX32
1983#undef INIT
1984#undef NEXT
1985#undef LAST
1986
1987#endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED ||
1988 POLARSSL_ECP_DP_SECP256R1_ENABLED ||
1989 POLARSSL_ECP_DP_SECP384R1_ENABLED */
1990
1991#if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
1992/*
1993 * Here we have an actual Mersenne prime, so things are more straightforward.
1994 * However, chunks are aligned on a 'weird' boundary (521 bits).
1995 */
1996
1997/* Size of p521 in terms of t_uint */
1998#define P521_WIDTH ( 521 / 8 / sizeof( t_uint ) + 1 )
1999
2000/* Bits to keep in the most significant t_uint */
2001#if defined(POLARSSL_HAVE_INT8)
2002#define P521_MASK 0x01
2003#else
2004#define P521_MASK 0x01FF
2005#endif
2006
2007/*
2008 * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
2009 * Write N as A1 + 2^521 A0, return A0 + A1
2010 */
2011static int ecp_mod_p521( mpi *N )
2012{
2013 int ret;
2014 size_t i;
2015 mpi M;
2016 t_uint Mp[P521_WIDTH + 1];
2017 /* Worst case for the size of M is when t_uint is 16 bits:
2018 * we need to hold bits 513 to 1056, which is 34 limbs, that is
2019 * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
2020
2021 if( N->n < P521_WIDTH )
2022 return( 0 );
2023
2024 /* M = A1 */
2025 M.s = 1;
2026 M.n = N->n - ( P521_WIDTH - 1 );
2027 if( M.n > P521_WIDTH + 1 )
2028 M.n = P521_WIDTH + 1;
2029 M.p = Mp;
2030 memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( t_uint ) );
2031 MPI_CHK( mpi_shift_r( &M, 521 % ( 8 * sizeof( t_uint ) ) ) );
2032
2033 /* N = A0 */
2034 N->p[P521_WIDTH - 1] &= P521_MASK;
2035 for( i = P521_WIDTH; i < N->n; i++ )
2036 N->p[i] = 0;
2037
2038 /* N = A0 + A1 */
2039 MPI_CHK( mpi_add_abs( N, N, &M ) );
2040
2041cleanup:
2042 return( ret );
2043}
2044
2045#undef P521_WIDTH
2046#undef P521_MASK
2047#endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
2048
2049#endif /* POLARSSL_ECP_NIST_OPTIM */
2050
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01002051#if defined(POLARSSL_SELF_TEST)
2052
Manuel Pégourié-Gonnardb505c272012-11-05 17:27:54 +01002053/*
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01002054 * Checkup routine
2055 */
2056int ecp_self_test( int verbose )
2057{
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002058 int ret;
2059 size_t i;
2060 ecp_group grp;
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02002061 ecp_point R, P;
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002062 mpi m;
2063 unsigned long add_c_prev, dbl_c_prev;
Manuel Pégourié-Gonnardb8012fc2013-10-10 15:40:49 +02002064 /* exponents especially adapted for secp192r1 */
Paul Bakkerb6c5d2e2013-06-25 16:25:17 +02002065 const char *exponents[] =
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002066 {
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01002067 "000000000000000000000000000000000000000000000001", /* one */
Manuel Pégourié-Gonnardff27b7c2013-11-21 09:28:03 +01002068 "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
Manuel Pégourié-Gonnardb63f9e92012-11-21 13:00:58 +01002069 "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
Manuel Pégourié-Gonnardff27b7c2013-11-21 09:28:03 +01002070 "400000000000000000000000000000000000000000000000", /* one and zeros */
2071 "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
2072 "555555555555555555555555555555555555555555555555", /* 101010... */
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002073 };
2074
2075 ecp_group_init( &grp );
2076 ecp_point_init( &R );
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02002077 ecp_point_init( &P );
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002078 mpi_init( &m );
2079
Manuel Pégourié-Gonnardb8012fc2013-10-10 15:40:49 +02002080 /* Use secp192r1 if available, or any available curve */
Paul Bakker5dc6b5f2013-06-29 23:26:34 +02002081#if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002082 MPI_CHK( ecp_use_known_dp( &grp, POLARSSL_ECP_DP_SECP192R1 ) );
Paul Bakker5dc6b5f2013-06-29 23:26:34 +02002083#else
Manuel Pégourié-Gonnardb8012fc2013-10-10 15:40:49 +02002084 MPI_CHK( ecp_use_known_dp( &grp, ecp_curve_list()->grp_id ) );
2085#endif
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002086
2087 if( verbose != 0 )
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02002088 printf( " ECP test #1 (constant op_count, base point G): " );
2089
2090 /* Do a dummy multiplication first to trigger precomputation */
2091 MPI_CHK( mpi_lset( &m, 2 ) );
2092 MPI_CHK( ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002093
2094 add_count = 0;
2095 dbl_count = 0;
2096 MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
Manuel Pégourié-Gonnarde09d2f82013-09-02 14:29:09 +02002097 MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002098
2099 for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2100 {
2101 add_c_prev = add_count;
2102 dbl_c_prev = dbl_count;
2103 add_count = 0;
2104 dbl_count = 0;
2105
2106 MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
Manuel Pégourié-Gonnarde09d2f82013-09-02 14:29:09 +02002107 MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002108
2109 if( add_count != add_c_prev || dbl_count != dbl_c_prev )
2110 {
2111 if( verbose != 0 )
2112 printf( "failed (%zu)\n", i );
2113
2114 ret = 1;
2115 goto cleanup;
2116 }
2117 }
2118
2119 if( verbose != 0 )
2120 printf( "passed\n" );
2121
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02002122 if( verbose != 0 )
2123 printf( " ECP test #2 (constant op_count, other point): " );
2124 /* We computed P = 2G last time, use it */
2125
2126 add_count = 0;
2127 dbl_count = 0;
2128 MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
2129 MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2130
2131 for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
2132 {
2133 add_c_prev = add_count;
2134 dbl_c_prev = dbl_count;
2135 add_count = 0;
2136 dbl_count = 0;
2137
2138 MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
2139 MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
2140
2141 if( add_count != add_c_prev || dbl_count != dbl_c_prev )
2142 {
2143 if( verbose != 0 )
2144 printf( "failed (%zu)\n", i );
2145
2146 ret = 1;
2147 goto cleanup;
2148 }
2149 }
2150
2151 if( verbose != 0 )
2152 printf( "passed\n" );
2153
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002154cleanup:
2155
2156 if( ret < 0 && verbose != 0 )
2157 printf( "Unexpected error, return code = %08X\n", ret );
2158
2159 ecp_group_free( &grp );
2160 ecp_point_free( &R );
Manuel Pégourié-Gonnard161ef962013-09-17 19:13:10 +02002161 ecp_point_free( &P );
Manuel Pégourié-Gonnardb4a310b2012-11-13 20:57:00 +01002162 mpi_free( &m );
2163
2164 if( verbose != 0 )
2165 printf( "\n" );
2166
2167 return( ret );
Manuel Pégourié-Gonnard39d2adb2012-10-31 09:26:55 +01002168}
2169
2170#endif
2171
2172#endif