blob: c57d06a362c8d8a918dbeeb13fc0d1176df42a03 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
18 * Copyright (C) 2018, ARM Limited, All Rights Reserved
19 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
32 *
33 * This file is part of mbed TLS (https://tls.mbed.org)
34 */
35
36#ifndef PSA_CRYPTO_VALUES_H
37#define PSA_CRYPTO_VALUES_H
38
39/** \defgroup error Error codes
40 * @{
41 */
42
David Saadab4ecc272019-02-14 13:48:10 +020043/* PSA error codes */
44
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045/** The action was completed successfully. */
46#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010047
48/** An error occurred that does not correspond to any defined
49 * failure cause.
50 *
51 * Implementations may use this error code if none of the other standard
52 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020053#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010054
55/** The requested operation or a parameter is not supported
56 * by this implementation.
57 *
58 * Implementations should return this error code when an enumeration
59 * parameter such as a key type, algorithm, etc. is not recognized.
60 * If a combination of parameters is recognized and identified as
61 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020062#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010063
64/** The requested action is denied by a policy.
65 *
66 * Implementations should return this error code when the parameters
67 * are recognized as valid and supported, and a policy explicitly
68 * denies the requested operation.
69 *
70 * If a subset of the parameters of a function call identify a
71 * forbidden operation, and another subset of the parameters are
72 * not valid or not supported, it is unspecified whether the function
73 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
74 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020075#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010076
77/** An output buffer is too small.
78 *
79 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
80 * description to determine a sufficient buffer size.
81 *
82 * Implementations should preferably return this error code only
83 * in cases when performing the operation with a larger output
84 * buffer would succeed. However implementations may return this
85 * error if a function has invalid or unsupported parameters in addition
86 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020087#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088
David Saadab4ecc272019-02-14 13:48:10 +020089/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010090 *
David Saadab4ecc272019-02-14 13:48:10 +020091 * Implementations should return this error, when attempting
92 * to write an item (like a key) that already exists. */
93#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094
David Saadab4ecc272019-02-14 13:48:10 +020095/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010096 *
David Saadab4ecc272019-02-14 13:48:10 +020097 * Implementations should return this error, if a requested item (like
98 * a key) does not exist. */
99#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100
101/** The requested action cannot be performed in the current state.
102 *
103 * Multipart operations return this error when one of the
104 * functions is called out of sequence. Refer to the function
105 * descriptions for permitted sequencing of functions.
106 *
107 * Implementations shall not return this error code to indicate
108 * that a key slot is occupied when it needs to be free or vice versa,
David Saadab4ecc272019-02-14 13:48:10 +0200109 * but shall return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100110 * as applicable. */
David Saadab4ecc272019-02-14 13:48:10 +0200111#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100112
113/** The parameters passed to the function are invalid.
114 *
115 * Implementations may return this error any time a parameter or
116 * combination of parameters are recognized as invalid.
117 *
118 * Implementations shall not return this error code to indicate
119 * that a key slot is occupied when it needs to be free or vice versa,
David Saadab4ecc272019-02-14 13:48:10 +0200120 * but shall return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100121 * as applicable.
122 *
123 * Implementation shall not return this error code to indicate that a
124 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
125 * instead.
126 */
David Saadab4ecc272019-02-14 13:48:10 +0200127#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100128
129/** There is not enough runtime memory.
130 *
131 * If the action is carried out across multiple security realms, this
132 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200133#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100134
135/** There is not enough persistent storage.
136 *
137 * Functions that modify the key storage return this error code if
138 * there is insufficient storage space on the host media. In addition,
139 * many functions that do not otherwise access storage may return this
140 * error code if the implementation requires a mandatory log entry for
141 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200142#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100143
144/** There was a communication failure inside the implementation.
145 *
146 * This can indicate a communication failure between the application
147 * and an external cryptoprocessor or between the cryptoprocessor and
148 * an external volatile or persistent memory. A communication failure
149 * may be transient or permanent depending on the cause.
150 *
151 * \warning If a function returns this error, it is undetermined
152 * whether the requested action has completed or not. Implementations
153 * should return #PSA_SUCCESS on successful completion whenver
154 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
155 * if the requested action was completed successfully in an external
156 * cryptoprocessor but there was a breakdown of communication before
157 * the cryptoprocessor could report the status to the application.
158 */
David Saadab4ecc272019-02-14 13:48:10 +0200159#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100160
161/** There was a storage failure that may have led to data loss.
162 *
163 * This error indicates that some persistent storage is corrupted.
164 * It should not be used for a corruption of volatile memory
165 * (use #PSA_ERROR_TAMPERING_DETECTED), for a communication error
166 * between the cryptoprocessor and its external storage (use
167 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
168 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
169 *
170 * Note that a storage failure does not indicate that any data that was
171 * previously read is invalid. However this previously read data may no
172 * longer be readable from storage.
173 *
174 * When a storage failure occurs, it is no longer possible to ensure
175 * the global integrity of the keystore. Depending on the global
176 * integrity guarantees offered by the implementation, access to other
177 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100178 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100179 *
180 * Implementations should only use this error code to report a
181 * permanent storage corruption. However application writers should
182 * keep in mind that transient errors while reading the storage may be
183 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200184#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100185
186/** A hardware failure was detected.
187 *
188 * A hardware failure may be transient or permanent depending on the
189 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200190#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100191
192/** A tampering attempt was detected.
193 *
194 * If an application receives this error code, there is no guarantee
195 * that previously accessed or computed data was correct and remains
196 * confidential. Applications should not perform any security function
197 * and should enter a safe failure state.
198 *
199 * Implementations may return this error code if they detect an invalid
200 * state that cannot happen during normal operation and that indicates
201 * that the implementation's security guarantees no longer hold. Depending
202 * on the implementation architecture and on its security and safety goals,
203 * the implementation may forcibly terminate the application.
204 *
205 * This error code is intended as a last resort when a security breach
206 * is detected and it is unsure whether the keystore data is still
207 * protected. Implementations shall only return this error code
208 * to report an alarm from a tampering detector, to indicate that
209 * the confidentiality of stored data can no longer be guaranteed,
210 * or to indicate that the integrity of previously returned data is now
211 * considered compromised. Implementations shall not use this error code
212 * to indicate a hardware failure that merely makes it impossible to
213 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
214 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
215 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
216 * instead).
217 *
218 * This error indicates an attack against the application. Implementations
219 * shall not return this error code as a consequence of the behavior of
220 * the application itself. */
David Saadab4ecc272019-02-14 13:48:10 +0200221#define PSA_ERROR_TAMPERING_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100222
223/** There is not enough entropy to generate random data needed
224 * for the requested action.
225 *
226 * This error indicates a failure of a hardware random generator.
227 * Application writers should note that this error can be returned not
228 * only by functions whose purpose is to generate random data, such
229 * as key, IV or nonce generation, but also by functions that execute
230 * an algorithm with a randomized result, as well as functions that
231 * use randomization of intermediate computations as a countermeasure
232 * to certain attacks.
233 *
234 * Implementations should avoid returning this error after psa_crypto_init()
235 * has succeeded. Implementations should generate sufficient
236 * entropy during initialization and subsequently use a cryptographically
237 * secure pseudorandom generator (PRNG). However implementations may return
238 * this error at any time if a policy requires the PRNG to be reseeded
239 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200240#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100241
242/** The signature, MAC or hash is incorrect.
243 *
244 * Verification functions return this error if the verification
245 * calculations completed successfully, and the value to be verified
246 * was determined to be incorrect.
247 *
248 * If the value to verify has an invalid size, implementations may return
249 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200250#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100251
252/** The decrypted padding is incorrect.
253 *
254 * \warning In some protocols, when decrypting data, it is essential that
255 * the behavior of the application does not depend on whether the padding
256 * is correct, down to precise timing. Applications should prefer
257 * protocols that use authenticated encryption rather than plain
258 * encryption. If the application must perform a decryption of
259 * unauthenticated data, the application writer should take care not
260 * to reveal whether the padding is invalid.
261 *
262 * Implementations should strive to make valid and invalid padding
263 * as close as possible to indistinguishable to an external observer.
264 * In particular, the timing of a decryption operation should not
265 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200266#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100267
David Saadab4ecc272019-02-14 13:48:10 +0200268/** Return this error when there's insufficient data when attempting
269 * to read from a resource. */
270#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100271
272/** The key handle is not valid.
273 */
David Saadab4ecc272019-02-14 13:48:10 +0200274#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100275
276/**@}*/
277
278/** \defgroup crypto_types Key and algorithm types
279 * @{
280 */
281
282/** An invalid key type value.
283 *
284 * Zero is not the encoding of any key type.
285 */
286#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
287
288/** Vendor-defined flag
289 *
290 * Key types defined by this standard will never have the
291 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
292 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
293 * respect the bitwise structure used by standard encodings whenever practical.
294 */
295#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
296
297#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000)
298#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000)
299#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000)
300#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000)
301#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000)
302
303#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000)
304
305/** Whether a key type is vendor-defined. */
306#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
307 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
308
309/** Whether a key type is an unstructured array of bytes.
310 *
311 * This encompasses both symmetric keys and non-key data.
312 */
313#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
314 (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \
315 PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
316
317/** Whether a key type is asymmetric: either a key pair or a public key. */
318#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
319 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
320 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
321 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
322/** Whether a key type is the public part of a key pair. */
323#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
324 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
325/** Whether a key type is a key pair containing a private part and a public
326 * part. */
327#define PSA_KEY_TYPE_IS_KEYPAIR(type) \
328 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
329/** The key pair type corresponding to a public key type.
330 *
331 * You may also pass a key pair type as \p type, it will be left unchanged.
332 *
333 * \param type A public key type or key pair type.
334 *
335 * \return The corresponding key pair type.
336 * If \p type is not a public key or a key pair,
337 * the return value is undefined.
338 */
339#define PSA_KEY_TYPE_KEYPAIR_OF_PUBLIC_KEY(type) \
340 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
341/** The public key type corresponding to a key pair type.
342 *
343 * You may also pass a key pair type as \p type, it will be left unchanged.
344 *
345 * \param type A public key type or key pair type.
346 *
347 * \return The corresponding public key type.
348 * If \p type is not a public key or a key pair,
349 * the return value is undefined.
350 */
351#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) \
352 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
353
354/** Raw data.
355 *
356 * A "key" of this type cannot be used for any cryptographic operation.
357 * Applications may use this type to store arbitrary data in the keystore. */
358#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001)
359
360/** HMAC key.
361 *
362 * The key policy determines which underlying hash algorithm the key can be
363 * used for.
364 *
365 * HMAC keys should generally have the same size as the underlying hash.
366 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
367 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
368#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000)
369
370/** A secret for key derivation.
371 *
372 * The key policy determines which key derivation algorithm the key
373 * can be used for.
374 */
375#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000)
376
377/** Key for an cipher, AEAD or MAC algorithm based on the AES block cipher.
378 *
379 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
380 * 32 bytes (AES-256).
381 */
382#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001)
383
384/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
385 *
386 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
387 * 24 bytes (3-key 3DES).
388 *
389 * Note that single DES and 2-key 3DES are weak and strongly
390 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
391 * is weak and deprecated and should only be used in legacy protocols.
392 */
393#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002)
394
395/** Key for an cipher, AEAD or MAC algorithm based on the
396 * Camellia block cipher. */
397#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003)
398
399/** Key for the RC4 stream cipher.
400 *
401 * Note that RC4 is weak and deprecated and should only be used in
402 * legacy protocols. */
403#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004)
404
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200405/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
406 *
407 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
408 *
409 * Implementations must support 12-byte nonces, may support 8-byte nonces,
410 * and should reject other sizes.
411 */
412#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x40000005)
413
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100414/** RSA public key. */
415#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000)
416/** RSA key pair (private and public key). */
417#define PSA_KEY_TYPE_RSA_KEYPAIR ((psa_key_type_t)0x70010000)
418/** Whether a key type is an RSA key (pair or public-only). */
419#define PSA_KEY_TYPE_IS_RSA(type) \
420 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
421
422/** DSA public key. */
423#define PSA_KEY_TYPE_DSA_PUBLIC_KEY ((psa_key_type_t)0x60020000)
424/** DSA key pair (private and public key). */
425#define PSA_KEY_TYPE_DSA_KEYPAIR ((psa_key_type_t)0x70020000)
426/** Whether a key type is an DSA key (pair or public-only). */
427#define PSA_KEY_TYPE_IS_DSA(type) \
428 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_DSA_PUBLIC_KEY)
429
430#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000)
431#define PSA_KEY_TYPE_ECC_KEYPAIR_BASE ((psa_key_type_t)0x70030000)
432#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff)
433/** Elliptic curve key pair. */
434#define PSA_KEY_TYPE_ECC_KEYPAIR(curve) \
435 (PSA_KEY_TYPE_ECC_KEYPAIR_BASE | (curve))
436/** Elliptic curve public key. */
437#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
438 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
439
440/** Whether a key type is an elliptic curve key (pair or public-only). */
441#define PSA_KEY_TYPE_IS_ECC(type) \
442 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) & \
443 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100444/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100445#define PSA_KEY_TYPE_IS_ECC_KEYPAIR(type) \
446 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
447 PSA_KEY_TYPE_ECC_KEYPAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100448/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100449#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
450 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
451 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
452
453/** Extract the curve from an elliptic curve key type. */
454#define PSA_KEY_TYPE_GET_CURVE(type) \
455 ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
456 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
457 0))
458
459/* The encoding of curve identifiers is currently aligned with the
460 * TLS Supported Groups Registry (formerly known as the
461 * TLS EC Named Curve Registry)
462 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
463 * The values are defined by RFC 8422 and RFC 7027. */
464#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001)
465#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002)
466#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003)
467#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004)
468#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005)
469#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006)
470#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007)
471#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008)
472#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009)
473#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a)
474#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b)
475#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c)
476#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d)
477#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e)
478#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f)
479#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010)
480#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011)
481#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012)
482#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013)
483#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014)
484#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015)
485#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016)
486#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017)
487#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018)
488#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019)
489#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a)
490#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b)
491#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c)
492#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d)
493#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e)
494
Jaeden Amero8851c402019-01-11 14:20:03 +0000495/** Diffie-Hellman key exchange public key. */
496#define PSA_KEY_TYPE_DH_PUBLIC_KEY ((psa_key_type_t)0x60040000)
497/** Diffie-Hellman key exchange key pair (private and public key). */
498#define PSA_KEY_TYPE_DH_KEYPAIR ((psa_key_type_t)0x70040000)
499/** Whether a key type is a Diffie-Hellman key exchange key (pair or
500 * public-only). */
501#define PSA_KEY_TYPE_IS_DH(type) \
502 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_DH_PUBLIC_KEY)
503
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100504/** The block size of a block cipher.
505 *
506 * \param type A cipher key type (value of type #psa_key_type_t).
507 *
508 * \return The block size for a block cipher, or 1 for a stream cipher.
509 * The return value is undefined if \p type is not a supported
510 * cipher key type.
511 *
512 * \note It is possible to build stream cipher algorithms on top of a block
513 * cipher, for example CTR mode (#PSA_ALG_CTR).
514 * This macro only takes the key type into account, so it cannot be
515 * used to determine the size of the data that #psa_cipher_update()
516 * might buffer for future processing in general.
517 *
518 * \note This macro returns a compile-time constant if its argument is one.
519 *
520 * \warning This macro may evaluate its argument multiple times.
521 */
522#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
523 ( \
524 (type) == PSA_KEY_TYPE_AES ? 16 : \
525 (type) == PSA_KEY_TYPE_DES ? 8 : \
526 (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \
527 (type) == PSA_KEY_TYPE_ARC4 ? 1 : \
528 0)
529
530#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
531#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
532#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
533#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
534#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
535#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
536#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
537#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100538#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
539#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100540
541#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
542 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
543
544/** Whether the specified algorithm is a hash algorithm.
545 *
546 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
547 *
548 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
549 * This macro may return either 0 or 1 if \p alg is not a supported
550 * algorithm identifier.
551 */
552#define PSA_ALG_IS_HASH(alg) \
553 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
554
555/** Whether the specified algorithm is a MAC algorithm.
556 *
557 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
558 *
559 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
560 * This macro may return either 0 or 1 if \p alg is not a supported
561 * algorithm identifier.
562 */
563#define PSA_ALG_IS_MAC(alg) \
564 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
565
566/** Whether the specified algorithm is a symmetric cipher algorithm.
567 *
568 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
569 *
570 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
571 * This macro may return either 0 or 1 if \p alg is not a supported
572 * algorithm identifier.
573 */
574#define PSA_ALG_IS_CIPHER(alg) \
575 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
576
577/** Whether the specified algorithm is an authenticated encryption
578 * with associated data (AEAD) algorithm.
579 *
580 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
581 *
582 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
583 * This macro may return either 0 or 1 if \p alg is not a supported
584 * algorithm identifier.
585 */
586#define PSA_ALG_IS_AEAD(alg) \
587 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
588
589/** Whether the specified algorithm is a public-key signature algorithm.
590 *
591 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
592 *
593 * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise.
594 * This macro may return either 0 or 1 if \p alg is not a supported
595 * algorithm identifier.
596 */
597#define PSA_ALG_IS_SIGN(alg) \
598 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
599
600/** Whether the specified algorithm is a public-key encryption algorithm.
601 *
602 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
603 *
604 * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise.
605 * This macro may return either 0 or 1 if \p alg is not a supported
606 * algorithm identifier.
607 */
608#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
609 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
610
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100611/** Whether the specified algorithm is a key agreement algorithm.
612 *
613 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
614 *
615 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
616 * This macro may return either 0 or 1 if \p alg is not a supported
617 * algorithm identifier.
618 */
619#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100620 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100621
622/** Whether the specified algorithm is a key derivation algorithm.
623 *
624 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
625 *
626 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
627 * This macro may return either 0 or 1 if \p alg is not a supported
628 * algorithm identifier.
629 */
630#define PSA_ALG_IS_KEY_DERIVATION(alg) \
631 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
632
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100633#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100634
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100635#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
636#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
637#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
638#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
639#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
640/** SHA2-224 */
641#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
642/** SHA2-256 */
643#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
644/** SHA2-384 */
645#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
646/** SHA2-512 */
647#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
648/** SHA2-512/224 */
649#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
650/** SHA2-512/256 */
651#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
652/** SHA3-224 */
653#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
654/** SHA3-256 */
655#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
656/** SHA3-384 */
657#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
658/** SHA3-512 */
659#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
660
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100661/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100662 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100663 * This value may be used to form the algorithm usage field of a policy
664 * for a signature algorithm that is parametrized by a hash. The key
665 * may then be used to perform operations using the same signature
666 * algorithm parametrized with any supported hash.
667 *
668 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100669 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
670 * - #PSA_ALG_DSA, #PSA_ALG_DETERMINISTIC_DSA,
671 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100672 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100673 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
674 * ```
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200675 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN); // or VERIFY
676 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100677 * ```
678 * - Import or generate key material.
679 * - Call psa_asymmetric_sign() or psa_asymmetric_verify(), passing
680 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
681 * call to sign or verify a message may use a different hash.
682 * ```
683 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
684 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
685 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
686 * ```
687 *
688 * This value may not be used to build other algorithms that are
689 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100690 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100691 *
692 * This value may not be used to build an algorithm specification to
693 * perform an operation. It is only valid to build policies.
694 */
695#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
696
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100697#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
698#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
699/** Macro to build an HMAC algorithm.
700 *
701 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
702 *
703 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
704 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
705 *
706 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100707 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100708 * hash algorithm.
709 */
710#define PSA_ALG_HMAC(hash_alg) \
711 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
712
713#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
714 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
715
716/** Whether the specified algorithm is an HMAC algorithm.
717 *
718 * HMAC is a family of MAC algorithms that are based on a hash function.
719 *
720 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
721 *
722 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
723 * This macro may return either 0 or 1 if \p alg is not a supported
724 * algorithm identifier.
725 */
726#define PSA_ALG_IS_HMAC(alg) \
727 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
728 PSA_ALG_HMAC_BASE)
729
730/* In the encoding of a MAC algorithm, the bits corresponding to
731 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
732 * truncated. As an exception, the value 0 means the untruncated algorithm,
733 * whatever its length is. The length is encoded in 6 bits, so it can
734 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
735 * to full length is correctly encoded as 0 and any non-trivial truncation
736 * is correctly encoded as a value between 1 and 63. */
737#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
738#define PSA_MAC_TRUNCATION_OFFSET 8
739
740/** Macro to build a truncated MAC algorithm.
741 *
742 * A truncated MAC algorithm is identical to the corresponding MAC
743 * algorithm except that the MAC value for the truncated algorithm
744 * consists of only the first \p mac_length bytes of the MAC value
745 * for the untruncated algorithm.
746 *
747 * \note This macro may allow constructing algorithm identifiers that
748 * are not valid, either because the specified length is larger
749 * than the untruncated MAC or because the specified length is
750 * smaller than permitted by the implementation.
751 *
752 * \note It is implementation-defined whether a truncated MAC that
753 * is truncated to the same length as the MAC of the untruncated
754 * algorithm is considered identical to the untruncated algorithm
755 * for policy comparison purposes.
756 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200757 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100758 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
759 * is true). This may be a truncated or untruncated
760 * MAC algorithm.
761 * \param mac_length Desired length of the truncated MAC in bytes.
762 * This must be at most the full length of the MAC
763 * and must be at least an implementation-specified
764 * minimum. The implementation-specified minimum
765 * shall not be zero.
766 *
767 * \return The corresponding MAC algorithm with the specified
768 * length.
769 * \return Unspecified if \p alg is not a supported
770 * MAC algorithm or if \p mac_length is too small or
771 * too large for the specified MAC algorithm.
772 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200773#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
774 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100775 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
776
777/** Macro to build the base MAC algorithm corresponding to a truncated
778 * MAC algorithm.
779 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200780 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100781 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
782 * is true). This may be a truncated or untruncated
783 * MAC algorithm.
784 *
785 * \return The corresponding base MAC algorithm.
786 * \return Unspecified if \p alg is not a supported
787 * MAC algorithm.
788 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200789#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
790 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100791
792/** Length to which a MAC algorithm is truncated.
793 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200794 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100795 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
796 * is true).
797 *
798 * \return Length of the truncated MAC in bytes.
799 * \return 0 if \p alg is a non-truncated MAC algorithm.
800 * \return Unspecified if \p alg is not a supported
801 * MAC algorithm.
802 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200803#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
804 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100805
806#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
807#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
808#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
809#define PSA_ALG_GMAC ((psa_algorithm_t)0x02c00003)
810
811/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
812 *
813 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
814 *
815 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
816 * This macro may return either 0 or 1 if \p alg is not a supported
817 * algorithm identifier.
818 */
819#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
820 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
821 PSA_ALG_CIPHER_MAC_BASE)
822
823#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
824#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
825
826/** Whether the specified algorithm is a stream cipher.
827 *
828 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
829 * by applying a bitwise-xor with a stream of bytes that is generated
830 * from a key.
831 *
832 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
833 *
834 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
835 * This macro may return either 0 or 1 if \p alg is not a supported
836 * algorithm identifier or if it is not a symmetric cipher algorithm.
837 */
838#define PSA_ALG_IS_STREAM_CIPHER(alg) \
839 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
840 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
841
842/** The ARC4 stream cipher algorithm.
843 */
844#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
845
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200846/** The ChaCha20 stream cipher.
847 *
848 * ChaCha20 is defined in RFC 7539.
849 *
850 * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv()
851 * must be 12.
852 *
853 * The initial block counter is always 0.
854 *
855 */
856#define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005)
857
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100858/** The CTR stream cipher mode.
859 *
860 * CTR is a stream cipher which is built from a block cipher.
861 * The underlying block cipher is determined by the key type.
862 * For example, to use AES-128-CTR, use this algorithm with
863 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
864 */
865#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
866
867#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
868
869#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
870
871/** The XTS cipher mode.
872 *
873 * XTS is a cipher mode which is built from a block cipher. It requires at
874 * least one full block of input, but beyond this minimum the input
875 * does not need to be a whole number of blocks.
876 */
877#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
878
879/** The CBC block cipher chaining mode, with no padding.
880 *
881 * The underlying block cipher is determined by the key type.
882 *
883 * This symmetric cipher mode can only be used with messages whose lengths
884 * are whole number of blocks for the chosen block cipher.
885 */
886#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
887
888/** The CBC block cipher chaining mode with PKCS#7 padding.
889 *
890 * The underlying block cipher is determined by the key type.
891 *
892 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
893 */
894#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
895
Gilles Peskine679693e2019-05-06 15:10:16 +0200896#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
897
898/** Whether the specified algorithm is an AEAD mode on a block cipher.
899 *
900 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
901 *
902 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
903 * a block cipher, 0 otherwise.
904 * This macro may return either 0 or 1 if \p alg is not a supported
905 * algorithm identifier.
906 */
907#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
908 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
909 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
910
Gilles Peskine9153ec02019-02-15 13:02:02 +0100911/** The CCM authenticated encryption algorithm.
912 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200913#define PSA_ALG_CCM ((psa_algorithm_t)0x06401001)
Gilles Peskine9153ec02019-02-15 13:02:02 +0100914
915/** The GCM authenticated encryption algorithm.
916 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200917#define PSA_ALG_GCM ((psa_algorithm_t)0x06401002)
918
919/** The Chacha20-Poly1305 AEAD algorithm.
920 *
921 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200922 *
923 * Implementations must support 12-byte nonces, may support 8-byte nonces,
924 * and should reject other sizes.
925 *
926 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +0200927 */
928#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100929
930/* In the encoding of a AEAD algorithm, the bits corresponding to
931 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
932 * The constants for default lengths follow this encoding.
933 */
934#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
935#define PSA_AEAD_TAG_LENGTH_OFFSET 8
936
937/** Macro to build a shortened AEAD algorithm.
938 *
939 * A shortened AEAD algorithm is similar to the corresponding AEAD
940 * algorithm, but has an authentication tag that consists of fewer bytes.
941 * Depending on the algorithm, the tag length may affect the calculation
942 * of the ciphertext.
943 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200944 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100945 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
946 * is true).
947 * \param tag_length Desired length of the authentication tag in bytes.
948 *
949 * \return The corresponding AEAD algorithm with the specified
950 * length.
951 * \return Unspecified if \p alg is not a supported
952 * AEAD algorithm or if \p tag_length is not valid
953 * for the specified AEAD algorithm.
954 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200955#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
956 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100957 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
958 PSA_ALG_AEAD_TAG_LENGTH_MASK))
959
960/** Calculate the corresponding AEAD algorithm with the default tag length.
961 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200962 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
963 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100964 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200965 * \return The corresponding AEAD algorithm with the default
966 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100967 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200968#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100969 ( \
Gilles Peskine434899f2018-10-19 11:30:26 +0200970 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_CCM) \
971 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_GCM) \
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200972 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100973 0)
Gilles Peskine434899f2018-10-19 11:30:26 +0200974#define PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, ref) \
975 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100976 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
977 ref :
978
979#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
980/** RSA PKCS#1 v1.5 signature with hashing.
981 *
982 * This is the signature scheme defined by RFC 8017
983 * (PKCS#1: RSA Cryptography Specifications) under the name
984 * RSASSA-PKCS1-v1_5.
985 *
986 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
987 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100988 * This includes #PSA_ALG_ANY_HASH
989 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100990 *
991 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100992 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100993 * hash algorithm.
994 */
995#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
996 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
997/** Raw PKCS#1 v1.5 signature.
998 *
999 * The input to this algorithm is the DigestInfo structure used by
1000 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1001 * steps 3&ndash;6.
1002 */
1003#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1004#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1005 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1006
1007#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
1008/** RSA PSS signature with hashing.
1009 *
1010 * This is the signature scheme defined by RFC 8017
1011 * (PKCS#1: RSA Cryptography Specifications) under the name
1012 * RSASSA-PSS, with the message generation function MGF1, and with
1013 * a salt length equal to the length of the hash. The specified
1014 * hash algorithm is used to hash the input message, to create the
1015 * salted hash, and for the mask generation.
1016 *
1017 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1018 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001019 * This includes #PSA_ALG_ANY_HASH
1020 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001021 *
1022 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001023 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001024 * hash algorithm.
1025 */
1026#define PSA_ALG_RSA_PSS(hash_alg) \
1027 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1028#define PSA_ALG_IS_RSA_PSS(alg) \
1029 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1030
1031#define PSA_ALG_DSA_BASE ((psa_algorithm_t)0x10040000)
1032/** DSA signature with hashing.
1033 *
1034 * This is the signature scheme defined by FIPS 186-4,
1035 * with a random per-message secret number (*k*).
1036 *
1037 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1038 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001039 * This includes #PSA_ALG_ANY_HASH
1040 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001041 *
1042 * \return The corresponding DSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001043 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001044 * hash algorithm.
1045 */
1046#define PSA_ALG_DSA(hash_alg) \
1047 (PSA_ALG_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1048#define PSA_ALG_DETERMINISTIC_DSA_BASE ((psa_algorithm_t)0x10050000)
1049#define PSA_ALG_DSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00010000)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001050/** Deterministic DSA signature with hashing.
1051 *
1052 * This is the deterministic variant defined by RFC 6979 of
1053 * the signature scheme defined by FIPS 186-4.
1054 *
1055 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1056 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1057 * This includes #PSA_ALG_ANY_HASH
1058 * when specifying the algorithm in a usage policy.
1059 *
1060 * \return The corresponding DSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001061 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskine9153ec02019-02-15 13:02:02 +01001062 * hash algorithm.
1063 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001064#define PSA_ALG_DETERMINISTIC_DSA(hash_alg) \
1065 (PSA_ALG_DETERMINISTIC_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1066#define PSA_ALG_IS_DSA(alg) \
1067 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
1068 PSA_ALG_DSA_BASE)
1069#define PSA_ALG_DSA_IS_DETERMINISTIC(alg) \
1070 (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
1071#define PSA_ALG_IS_DETERMINISTIC_DSA(alg) \
1072 (PSA_ALG_IS_DSA(alg) && PSA_ALG_DSA_IS_DETERMINISTIC(alg))
1073#define PSA_ALG_IS_RANDOMIZED_DSA(alg) \
1074 (PSA_ALG_IS_DSA(alg) && !PSA_ALG_DSA_IS_DETERMINISTIC(alg))
1075
1076#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1077/** ECDSA signature with hashing.
1078 *
1079 * This is the ECDSA signature scheme defined by ANSI X9.62,
1080 * with a random per-message secret number (*k*).
1081 *
1082 * The representation of the signature as a byte string consists of
1083 * the concatentation of the signature values *r* and *s*. Each of
1084 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1085 * of the base point of the curve in octets. Each value is represented
1086 * in big-endian order (most significant octet first).
1087 *
1088 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1089 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001090 * This includes #PSA_ALG_ANY_HASH
1091 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001092 *
1093 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001094 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001095 * hash algorithm.
1096 */
1097#define PSA_ALG_ECDSA(hash_alg) \
1098 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1099/** ECDSA signature without hashing.
1100 *
1101 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1102 * without specifying a hash algorithm. This algorithm may only be
1103 * used to sign or verify a sequence of bytes that should be an
1104 * already-calculated hash. Note that the input is padded with
1105 * zeros on the left or truncated on the left as required to fit
1106 * the curve size.
1107 */
1108#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1109#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1110/** Deterministic ECDSA signature with hashing.
1111 *
1112 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1113 *
1114 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1115 *
1116 * Note that when this algorithm is used for verification, signatures
1117 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1118 * same private key are accepted. In other words,
1119 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1120 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1121 *
1122 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1123 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001124 * This includes #PSA_ALG_ANY_HASH
1125 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001126 *
1127 * \return The corresponding deterministic ECDSA signature
1128 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001129 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001130 * hash algorithm.
1131 */
1132#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1133 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1134#define PSA_ALG_IS_ECDSA(alg) \
1135 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
1136 PSA_ALG_ECDSA_BASE)
1137#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
1138 (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
1139#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1140 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1141#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1142 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1143
Gilles Peskined35b4892019-01-14 16:02:15 +01001144/** Whether the specified algorithm is a hash-and-sign algorithm.
1145 *
1146 * Hash-and-sign algorithms are public-key signature algorithms structured
1147 * in two parts: first the calculation of a hash in a way that does not
1148 * depend on the key, then the calculation of a signature from the
1149 * hash value and the key.
1150 *
1151 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1152 *
1153 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1154 * This macro may return either 0 or 1 if \p alg is not a supported
1155 * algorithm identifier.
1156 */
1157#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1158 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1159 PSA_ALG_IS_DSA(alg) || PSA_ALG_IS_ECDSA(alg))
1160
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001161/** Get the hash used by a hash-and-sign signature algorithm.
1162 *
1163 * A hash-and-sign algorithm is a signature algorithm which is
1164 * composed of two phases: first a hashing phase which does not use
1165 * the key and produces a hash of the input message, then a signing
1166 * phase which only uses the hash and the key and not the message
1167 * itself.
1168 *
1169 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1170 * #PSA_ALG_IS_SIGN(\p alg) is true).
1171 *
1172 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1173 * algorithm.
1174 * \return 0 if \p alg is a signature algorithm that does not
1175 * follow the hash-and-sign structure.
1176 * \return Unspecified if \p alg is not a signature algorithm or
1177 * if it is not supported by the implementation.
1178 */
1179#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001180 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001181 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1182 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1183 0)
1184
1185/** RSA PKCS#1 v1.5 encryption.
1186 */
1187#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1188
1189#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1190/** RSA OAEP encryption.
1191 *
1192 * This is the encryption scheme defined by RFC 8017
1193 * (PKCS#1: RSA Cryptography Specifications) under the name
1194 * RSAES-OAEP, with the message generation function MGF1.
1195 *
1196 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1197 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1198 * for MGF1.
1199 *
1200 * \return The corresponding RSA OAEP signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001201 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001202 * hash algorithm.
1203 */
1204#define PSA_ALG_RSA_OAEP(hash_alg) \
1205 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1206#define PSA_ALG_IS_RSA_OAEP(alg) \
1207 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1208#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1209 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1210 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1211 0)
1212
Gilles Peskine6843c292019-01-18 16:44:49 +01001213#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001214/** Macro to build an HKDF algorithm.
1215 *
1216 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1217 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001218 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001219 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001220 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001221 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1222 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1223 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1224 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001225 * starting to generate output.
1226 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001227 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1228 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1229 *
1230 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001231 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001232 * hash algorithm.
1233 */
1234#define PSA_ALG_HKDF(hash_alg) \
1235 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1236/** Whether the specified algorithm is an HKDF algorithm.
1237 *
1238 * HKDF is a family of key derivation algorithms that are based on a hash
1239 * function and the HMAC construction.
1240 *
1241 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1242 *
1243 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1244 * This macro may return either 0 or 1 if \c alg is not a supported
1245 * key derivation algorithm identifier.
1246 */
1247#define PSA_ALG_IS_HKDF(alg) \
1248 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1249#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1250 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1251
Gilles Peskine6843c292019-01-18 16:44:49 +01001252#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001253/** Macro to build a TLS-1.2 PRF algorithm.
1254 *
1255 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1256 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1257 * used with either SHA-256 or SHA-384.
1258 *
1259 * For the application to TLS-1.2, the salt and label arguments passed
1260 * to psa_key_derivation() are what's called 'seed' and 'label' in RFC 5246,
1261 * respectively. For example, for TLS key expansion, the salt is the
1262 * concatenation of ServerHello.Random + ClientHello.Random,
1263 * while the label is "key expansion".
1264 *
1265 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1266 * TLS 1.2 PRF using HMAC-SHA-256.
1267 *
1268 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1269 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1270 *
1271 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001272 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001273 * hash algorithm.
1274 */
1275#define PSA_ALG_TLS12_PRF(hash_alg) \
1276 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1277
1278/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1279 *
1280 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1281 *
1282 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1283 * This macro may return either 0 or 1 if \c alg is not a supported
1284 * key derivation algorithm identifier.
1285 */
1286#define PSA_ALG_IS_TLS12_PRF(alg) \
1287 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1288#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1289 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1290
Gilles Peskine6843c292019-01-18 16:44:49 +01001291#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001292/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1293 *
1294 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1295 * from the PreSharedKey (PSK) through the application of padding
1296 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1297 * The latter is based on HMAC and can be used with either SHA-256
1298 * or SHA-384.
1299 *
1300 * For the application to TLS-1.2, the salt passed to psa_key_derivation()
1301 * (and forwarded to the TLS-1.2 PRF) is the concatenation of the
1302 * ClientHello.Random + ServerHello.Random, while the label is "master secret"
1303 * or "extended master secret".
1304 *
1305 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1306 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1307 *
1308 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1309 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1310 *
1311 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001312 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001313 * hash algorithm.
1314 */
1315#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1316 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1317
1318/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1319 *
1320 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1321 *
1322 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1323 * This macro may return either 0 or 1 if \c alg is not a supported
1324 * key derivation algorithm identifier.
1325 */
1326#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1327 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1328#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1329 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1330
Gilles Peskinea52460c2019-04-12 00:11:21 +02001331#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff)
1332#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001333
Gilles Peskine6843c292019-01-18 16:44:49 +01001334/** Macro to build a combined algorithm that chains a key agreement with
1335 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001336 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001337 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1338 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1339 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1340 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001341 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001342 * \return The corresponding key agreement and derivation
1343 * algorithm.
1344 * \return Unspecified if \p ka_alg is not a supported
1345 * key agreement algorithm or \p kdf_alg is not a
1346 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001347 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001348#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1349 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001350
1351#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1352 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1353
Gilles Peskine6843c292019-01-18 16:44:49 +01001354#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1355 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001356
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001357/** Whether the specified algorithm is a raw key agreement algorithm.
1358 *
1359 * A raw key agreement algorithm is one that does not specify
1360 * a key derivation function.
1361 * Usually, raw key agreement algorithms are constructed directly with
1362 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
1363 * constructed with PSA_ALG_KEY_AGREEMENT().
1364 *
1365 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1366 *
1367 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1368 * This macro may return either 0 or 1 if \p alg is not a supported
1369 * algorithm identifier.
1370 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001371#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001372 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1373 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001374
1375#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1376 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1377
1378/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001379 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001380 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001381 * `g^{ab}` in big-endian format.
1382 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1383 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001384 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001385#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1386
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001387/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1388 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001389 * This includes the raw finite field Diffie-Hellman algorithm as well as
1390 * finite-field Diffie-Hellman followed by any supporter key derivation
1391 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001392 *
1393 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1394 *
1395 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1396 * This macro may return either 0 or 1 if \c alg is not a supported
1397 * key agreement algorithm identifier.
1398 */
1399#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001400 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001401
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001402/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1403 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001404 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001405 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1406 * `m` is the bit size associated with the curve, i.e. the bit size of the
1407 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1408 * the byte containing the most significant bit of the shared secret
1409 * is padded with zero bits. The byte order is either little-endian
1410 * or big-endian depending on the curve type.
1411 *
1412 * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`),
1413 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1414 * in little-endian byte order.
1415 * The bit size is 448 for Curve448 and 255 for Curve25519.
1416 * - For Weierstrass curves over prime fields (curve types
1417 * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`),
1418 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1419 * in big-endian byte order.
1420 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1421 * - For Weierstrass curves over binary fields (curve types
1422 * `PSA_ECC_CURVE_SECTXXX`),
1423 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1424 * in big-endian byte order.
1425 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001426 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001427#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1428
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001429/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1430 * algorithm.
1431 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001432 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1433 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1434 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001435 *
1436 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1437 *
1438 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1439 * 0 otherwise.
1440 * This macro may return either 0 or 1 if \c alg is not a supported
1441 * key agreement algorithm identifier.
1442 */
1443#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001444 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001445
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001446/** Whether the specified algorithm encoding is a wildcard.
1447 *
1448 * Wildcard values may only be used to set the usage algorithm field in
1449 * a policy, not to perform an operation.
1450 *
1451 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1452 *
1453 * \return 1 if \c alg is a wildcard algorithm encoding.
1454 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1455 * an operation).
1456 * \return This macro may return either 0 or 1 if \c alg is not a supported
1457 * algorithm identifier.
1458 */
1459#define PSA_ALG_IS_WILDCARD(alg) \
1460 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1461 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1462 (alg) == PSA_ALG_ANY_HASH)
1463
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001464/**@}*/
1465
1466/** \defgroup key_lifetimes Key lifetimes
1467 * @{
1468 */
1469
1470/** A volatile key only exists as long as the handle to it is not closed.
1471 * The key material is guaranteed to be erased on a power reset.
1472 */
1473#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1474
1475/** The default storage area for persistent keys.
1476 *
1477 * A persistent key remains in storage until it is explicitly destroyed or
1478 * until the corresponding storage area is wiped. This specification does
1479 * not define any mechanism to wipe a storage area, but implementations may
1480 * provide their own mechanism (for example to perform a factory reset,
1481 * to prepare for device refurbishment, or to uninstall an application).
1482 *
1483 * This lifetime value is the default storage area for the calling
1484 * application. Implementations may offer other storage areas designated
1485 * by other lifetime values as implementation-specific extensions.
1486 */
1487#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1488
Gilles Peskine4a231b82019-05-06 18:56:14 +02001489/** The minimum value for a key identifier chosen by the application.
1490 */
Gilles Peskinef9fbc382019-05-15 18:42:09 +02001491#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001492/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001493 */
1494#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001495/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001496 */
1497#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001498/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001499 */
1500#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
1501
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001502/**@}*/
1503
1504/** \defgroup policy Key policies
1505 * @{
1506 */
1507
1508/** Whether the key may be exported.
1509 *
1510 * A public key or the public part of a key pair may always be exported
1511 * regardless of the value of this permission flag.
1512 *
1513 * If a key does not have export permission, implementations shall not
1514 * allow the key to be exported in plain form from the cryptoprocessor,
1515 * whether through psa_export_key() or through a proprietary interface.
1516 * The key may however be exportable in a wrapped form, i.e. in a form
1517 * where it is encrypted by another key.
1518 */
1519#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1520
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001521/** Whether the key may be copied.
1522 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001523 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001524 * with the same policy or a more restrictive policy.
1525 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001526 * For lifetimes for which the key is located in a secure element which
1527 * enforce the non-exportability of keys, copying a key outside the secure
1528 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1529 * Copying the key inside the secure element is permitted with just
1530 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1531 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001532 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1533 * is sufficient to permit the copy.
1534 */
1535#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1536
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001537/** Whether the key may be used to encrypt a message.
1538 *
1539 * This flag allows the key to be used for a symmetric encryption operation,
1540 * for an AEAD encryption-and-authentication operation,
1541 * or for an asymmetric encryption operation,
1542 * if otherwise permitted by the key's type and policy.
1543 *
1544 * For a key pair, this concerns the public key.
1545 */
1546#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1547
1548/** Whether the key may be used to decrypt a message.
1549 *
1550 * This flag allows the key to be used for a symmetric decryption operation,
1551 * for an AEAD decryption-and-verification operation,
1552 * or for an asymmetric decryption operation,
1553 * if otherwise permitted by the key's type and policy.
1554 *
1555 * For a key pair, this concerns the private key.
1556 */
1557#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1558
1559/** Whether the key may be used to sign a message.
1560 *
1561 * This flag allows the key to be used for a MAC calculation operation
1562 * or for an asymmetric signature operation,
1563 * if otherwise permitted by the key's type and policy.
1564 *
1565 * For a key pair, this concerns the private key.
1566 */
1567#define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400)
1568
1569/** Whether the key may be used to verify a message signature.
1570 *
1571 * This flag allows the key to be used for a MAC verification operation
1572 * or for an asymmetric signature verification operation,
1573 * if otherwise permitted by by the key's type and policy.
1574 *
1575 * For a key pair, this concerns the public key.
1576 */
1577#define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800)
1578
1579/** Whether the key may be used to derive other keys.
1580 */
1581#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1582
1583/**@}*/
1584
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001585/** \defgroup derivation Key derivation
1586 * @{
1587 */
1588
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001589/** A secret input for key derivation.
1590 *
1591 * This must be a key of type #PSA_KEY_TYPE_DERIVE.
1592 */
Gilles Peskine03410b52019-05-16 16:05:19 +02001593#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001594
1595/** A label for key derivation.
1596 *
1597 * This must be a direct input.
1598 */
Gilles Peskine03410b52019-05-16 16:05:19 +02001599#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001600
1601/** A salt for key derivation.
1602 *
1603 * This must be a direct input.
1604 */
Gilles Peskine03410b52019-05-16 16:05:19 +02001605#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001606
1607/** An information string for key derivation.
1608 *
1609 * This must be a direct input.
1610 */
Gilles Peskine03410b52019-05-16 16:05:19 +02001611#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001612
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001613/**@}*/
1614
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001615#endif /* PSA_CRYPTO_VALUES_H */