blob: 9bc1c2d43f837a412311e6498c34fc781a9e3ff9 [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
Janos Follath4614b9a2022-07-21 15:34:47 +010041#include "bignum_core.h"
Chris Jones4c5819c2021-03-03 17:45:34 +000042#include "bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050043#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000044#include "mbedtls/error.h"
Gabor Mezei22c9a6f2021-10-20 12:09:35 +020045#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000046
Dave Rodgman351c71b2021-12-06 17:50:53 +000047#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000048#include <string.h>
49
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000050#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020051
Gilles Peskine449bd832023-01-11 14:50:10 +010052#define MPI_VALIDATE_RET(cond) \
53 MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
54#define MPI_VALIDATE(cond) \
55 MBEDTLS_INTERNAL_VALIDATE(cond)
Gabor Mezei66669142022-08-03 12:52:26 +020056
Gilles Peskine449bd832023-01-11 14:50:10 +010057#define MPI_SIZE_T_MAX ((size_t) -1) /* SIZE_T_MAX is not standard */
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +010058
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050059/* Implementation that should never be optimized out by the compiler */
Gilles Peskine449bd832023-01-11 14:50:10 +010060static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n)
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050061{
Gilles Peskine449bd832023-01-11 14:50:10 +010062 mbedtls_platform_zeroize(v, ciL * n);
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050063}
64
Paul Bakker5121ce52009-01-03 21:22:43 +000065/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000066 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000067 */
Gilles Peskine449bd832023-01-11 14:50:10 +010068void mbedtls_mpi_init(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000069{
Gilles Peskine449bd832023-01-11 14:50:10 +010070 MPI_VALIDATE(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +000071
Paul Bakker6c591fa2011-05-05 11:49:20 +000072 X->s = 1;
73 X->n = 0;
74 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000075}
76
77/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000078 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000079 */
Gilles Peskine449bd832023-01-11 14:50:10 +010080void mbedtls_mpi_free(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000081{
Gilles Peskine449bd832023-01-11 14:50:10 +010082 if (X == NULL) {
Paul Bakker6c591fa2011-05-05 11:49:20 +000083 return;
Gilles Peskine449bd832023-01-11 14:50:10 +010084 }
Paul Bakker5121ce52009-01-03 21:22:43 +000085
Gilles Peskine449bd832023-01-11 14:50:10 +010086 if (X->p != NULL) {
87 mbedtls_mpi_zeroize(X->p, X->n);
88 mbedtls_free(X->p);
Paul Bakker5121ce52009-01-03 21:22:43 +000089 }
90
Paul Bakker6c591fa2011-05-05 11:49:20 +000091 X->s = 1;
92 X->n = 0;
93 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000094}
95
96/*
97 * Enlarge to the specified number of limbs
98 */
Gilles Peskine449bd832023-01-11 14:50:10 +010099int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
Paul Bakker5121ce52009-01-03 21:22:43 +0000100{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200101 mbedtls_mpi_uint *p;
Gilles Peskine449bd832023-01-11 14:50:10 +0100102 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000103
Gilles Peskine449bd832023-01-11 14:50:10 +0100104 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
105 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
106 }
Paul Bakkerf9688572011-05-05 10:00:45 +0000107
Gilles Peskine449bd832023-01-11 14:50:10 +0100108 if (X->n < nblimbs) {
109 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
110 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
111 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000112
Gilles Peskine449bd832023-01-11 14:50:10 +0100113 if (X->p != NULL) {
114 memcpy(p, X->p, X->n * ciL);
115 mbedtls_mpi_zeroize(X->p, X->n);
116 mbedtls_free(X->p);
Paul Bakker5121ce52009-01-03 21:22:43 +0000117 }
118
119 X->n = nblimbs;
120 X->p = p;
121 }
122
Gilles Peskine449bd832023-01-11 14:50:10 +0100123 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000124}
125
126/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100127 * Resize down as much as possible,
128 * while keeping at least the specified number of limbs
129 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100130int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100131{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200132 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100133 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100134 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000135
Gilles Peskine449bd832023-01-11 14:50:10 +0100136 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
137 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
138 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100139
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100140 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100141 if (X->n <= nblimbs) {
142 return mbedtls_mpi_grow(X, nblimbs);
143 }
Gilles Peskine322752b2020-01-21 13:59:51 +0100144 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100145
Gilles Peskine449bd832023-01-11 14:50:10 +0100146 for (i = X->n - 1; i > 0; i--) {
147 if (X->p[i] != 0) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100148 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100149 }
150 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100151 i++;
152
Gilles Peskine449bd832023-01-11 14:50:10 +0100153 if (i < nblimbs) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100154 i = nblimbs;
Gilles Peskine449bd832023-01-11 14:50:10 +0100155 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100156
Gilles Peskine449bd832023-01-11 14:50:10 +0100157 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
158 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
159 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100160
Gilles Peskine449bd832023-01-11 14:50:10 +0100161 if (X->p != NULL) {
162 memcpy(p, X->p, i * ciL);
163 mbedtls_mpi_zeroize(X->p, X->n);
164 mbedtls_free(X->p);
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100165 }
166
167 X->n = i;
168 X->p = p;
169
Gilles Peskine449bd832023-01-11 14:50:10 +0100170 return 0;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100171}
172
Gilles Peskineed32b572021-06-02 22:17:52 +0200173/* Resize X to have exactly n limbs and set it to 0. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100174static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
Gilles Peskineed32b572021-06-02 22:17:52 +0200175{
Gilles Peskine449bd832023-01-11 14:50:10 +0100176 if (limbs == 0) {
177 mbedtls_mpi_free(X);
178 return 0;
179 } else if (X->n == limbs) {
180 memset(X->p, 0, limbs * ciL);
Gilles Peskineed32b572021-06-02 22:17:52 +0200181 X->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100182 return 0;
183 } else {
184 mbedtls_mpi_free(X);
185 return mbedtls_mpi_grow(X, limbs);
Gilles Peskineed32b572021-06-02 22:17:52 +0200186 }
187}
188
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100189/*
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200190 * Copy the contents of Y into X.
191 *
192 * This function is not constant-time. Leading zeros in Y may be removed.
193 *
194 * Ensure that X does not shrink. This is not guaranteed by the public API,
195 * but some code in the bignum module relies on this property, for example
196 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000197 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100198int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000199{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100200 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000201 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100202 MPI_VALIDATE_RET(X != NULL);
203 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000204
Gilles Peskine449bd832023-01-11 14:50:10 +0100205 if (X == Y) {
206 return 0;
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200207 }
208
Gilles Peskine449bd832023-01-11 14:50:10 +0100209 if (Y->n == 0) {
210 if (X->n != 0) {
211 X->s = 1;
212 memset(X->p, 0, X->n * ciL);
213 }
214 return 0;
215 }
216
217 for (i = Y->n - 1; i > 0; i--) {
218 if (Y->p[i] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000219 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100220 }
221 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000222 i++;
223
224 X->s = Y->s;
225
Gilles Peskine449bd832023-01-11 14:50:10 +0100226 if (X->n < i) {
227 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
228 } else {
229 memset(X->p + i, 0, (X->n - i) * ciL);
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100230 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000231
Gilles Peskine449bd832023-01-11 14:50:10 +0100232 memcpy(X->p, Y->p, i * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000233
234cleanup:
235
Gilles Peskine449bd832023-01-11 14:50:10 +0100236 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000237}
238
239/*
240 * Swap the contents of X and Y
241 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100242void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000243{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200244 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100245 MPI_VALIDATE(X != NULL);
246 MPI_VALIDATE(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000247
Gilles Peskine449bd832023-01-11 14:50:10 +0100248 memcpy(&T, X, sizeof(mbedtls_mpi));
249 memcpy(X, Y, sizeof(mbedtls_mpi));
250 memcpy(Y, &T, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +0000251}
252
Gilles Peskine449bd832023-01-11 14:50:10 +0100253static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100254{
Gilles Peskine449bd832023-01-11 14:50:10 +0100255 if (z >= 0) {
256 return z;
257 }
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100258 /* Take care to handle the most negative value (-2^(biL-1)) correctly.
259 * A naive -z would have undefined behavior.
260 * Write this in a way that makes popular compilers happy (GCC, Clang,
261 * MSVC). */
Gilles Peskine449bd832023-01-11 14:50:10 +0100262 return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100263}
264
Paul Bakker5121ce52009-01-03 21:22:43 +0000265/*
266 * Set value from integer
267 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100268int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +0000269{
Janos Follath24eed8d2019-11-22 13:21:35 +0000270 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100271 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000272
Gilles Peskine449bd832023-01-11 14:50:10 +0100273 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
274 memset(X->p, 0, X->n * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000275
Gilles Peskine449bd832023-01-11 14:50:10 +0100276 X->p[0] = mpi_sint_abs(z);
277 X->s = (z < 0) ? -1 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000278
279cleanup:
280
Gilles Peskine449bd832023-01-11 14:50:10 +0100281 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000282}
283
284/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000285 * Get a specific bit
286 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100287int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000288{
Gilles Peskine449bd832023-01-11 14:50:10 +0100289 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000290
Gilles Peskine449bd832023-01-11 14:50:10 +0100291 if (X->n * biL <= pos) {
292 return 0;
293 }
Paul Bakker2f5947e2011-05-18 15:47:11 +0000294
Gilles Peskine449bd832023-01-11 14:50:10 +0100295 return (X->p[pos / biL] >> (pos % biL)) & 0x01;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000296}
297
298/*
299 * Set a bit to a specific value of 0 or 1
300 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100301int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000302{
303 int ret = 0;
304 size_t off = pos / biL;
305 size_t idx = pos % biL;
Gilles Peskine449bd832023-01-11 14:50:10 +0100306 MPI_VALIDATE_RET(X != NULL);
Paul Bakker2f5947e2011-05-18 15:47:11 +0000307
Gilles Peskine449bd832023-01-11 14:50:10 +0100308 if (val != 0 && val != 1) {
309 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000310 }
311
Gilles Peskine449bd832023-01-11 14:50:10 +0100312 if (X->n * biL <= pos) {
313 if (val == 0) {
314 return 0;
315 }
316
317 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
318 }
319
320 X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200321 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000322
323cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200324
Gilles Peskine449bd832023-01-11 14:50:10 +0100325 return ret;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000326}
327
328/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200329 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000330 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100331size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000332{
Paul Bakker23986e52011-04-24 08:57:21 +0000333 size_t i, j, count = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +0100334 MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000335
Gilles Peskine449bd832023-01-11 14:50:10 +0100336 for (i = 0; i < X->n; i++) {
337 for (j = 0; j < biL; j++, count++) {
338 if (((X->p[i] >> j) & 1) != 0) {
339 return count;
340 }
341 }
342 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000343
Gilles Peskine449bd832023-01-11 14:50:10 +0100344 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000345}
346
347/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200348 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000349 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100350size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000351{
Gilles Peskine449bd832023-01-11 14:50:10 +0100352 return mbedtls_mpi_core_bitlen(X->p, X->n);
Paul Bakker5121ce52009-01-03 21:22:43 +0000353}
354
355/*
356 * Return the total size in bytes
357 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100358size_t mbedtls_mpi_size(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000359{
Gilles Peskine449bd832023-01-11 14:50:10 +0100360 return (mbedtls_mpi_bitlen(X) + 7) >> 3;
Paul Bakker5121ce52009-01-03 21:22:43 +0000361}
362
363/*
364 * Convert an ASCII character to digit value
365 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100366static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
Paul Bakker5121ce52009-01-03 21:22:43 +0000367{
368 *d = 255;
369
Gilles Peskine449bd832023-01-11 14:50:10 +0100370 if (c >= 0x30 && c <= 0x39) {
371 *d = c - 0x30;
372 }
373 if (c >= 0x41 && c <= 0x46) {
374 *d = c - 0x37;
375 }
376 if (c >= 0x61 && c <= 0x66) {
377 *d = c - 0x57;
378 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000379
Gilles Peskine449bd832023-01-11 14:50:10 +0100380 if (*d >= (mbedtls_mpi_uint) radix) {
381 return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
382 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000383
Gilles Peskine449bd832023-01-11 14:50:10 +0100384 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000385}
386
387/*
388 * Import from an ASCII string
389 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100390int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
Paul Bakker5121ce52009-01-03 21:22:43 +0000391{
Janos Follath24eed8d2019-11-22 13:21:35 +0000392 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000393 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200394 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200395 mbedtls_mpi_uint d;
396 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100397 MPI_VALIDATE_RET(X != NULL);
398 MPI_VALIDATE_RET(s != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000399
Gilles Peskine449bd832023-01-11 14:50:10 +0100400 if (radix < 2 || radix > 16) {
401 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskine7cba8592021-06-08 18:32:34 +0200402 }
403
Gilles Peskine449bd832023-01-11 14:50:10 +0100404 mbedtls_mpi_init(&T);
405
406 if (s[0] == 0) {
407 mbedtls_mpi_free(X);
408 return 0;
409 }
410
411 if (s[0] == '-') {
Gilles Peskine80f56732021-04-03 18:26:13 +0200412 ++s;
413 sign = -1;
414 }
415
Gilles Peskine449bd832023-01-11 14:50:10 +0100416 slen = strlen(s);
Paul Bakkerff60ee62010-03-16 21:09:09 +0000417
Gilles Peskine449bd832023-01-11 14:50:10 +0100418 if (radix == 16) {
419 if (slen > MPI_SIZE_T_MAX >> 2) {
420 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker5121ce52009-01-03 21:22:43 +0000421 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000422
Gilles Peskine449bd832023-01-11 14:50:10 +0100423 n = BITS_TO_LIMBS(slen << 2);
424
425 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
426 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
427
428 for (i = slen, j = 0; i > 0; i--, j++) {
429 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
430 X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
431 }
432 } else {
433 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
434
435 for (i = 0; i < slen; i++) {
436 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
437 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
438 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
Paul Bakker5121ce52009-01-03 21:22:43 +0000439 }
440 }
441
Gilles Peskine449bd832023-01-11 14:50:10 +0100442 if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
Gilles Peskine80f56732021-04-03 18:26:13 +0200443 X->s = -1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100444 }
Gilles Peskine80f56732021-04-03 18:26:13 +0200445
Paul Bakker5121ce52009-01-03 21:22:43 +0000446cleanup:
447
Gilles Peskine449bd832023-01-11 14:50:10 +0100448 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000449
Gilles Peskine449bd832023-01-11 14:50:10 +0100450 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000451}
452
453/*
Ron Eldora16fa292018-11-20 14:07:01 +0200454 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000455 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100456static int mpi_write_hlp(mbedtls_mpi *X, int radix,
457 char **p, const size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000458{
Janos Follath24eed8d2019-11-22 13:21:35 +0000459 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200460 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200461 size_t length = 0;
462 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000463
Gilles Peskine449bd832023-01-11 14:50:10 +0100464 do {
465 if (length >= buflen) {
466 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Ron Eldora16fa292018-11-20 14:07:01 +0200467 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000468
Gilles Peskine449bd832023-01-11 14:50:10 +0100469 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
470 MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
Ron Eldora16fa292018-11-20 14:07:01 +0200471 /*
472 * Write the residue in the current position, as an ASCII character.
473 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100474 if (r < 0xA) {
475 *(--p_end) = (char) ('0' + r);
476 } else {
477 *(--p_end) = (char) ('A' + (r - 0xA));
478 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000479
Ron Eldora16fa292018-11-20 14:07:01 +0200480 length++;
Gilles Peskine449bd832023-01-11 14:50:10 +0100481 } while (mbedtls_mpi_cmp_int(X, 0) != 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000482
Gilles Peskine449bd832023-01-11 14:50:10 +0100483 memmove(*p, p_end, length);
Ron Eldora16fa292018-11-20 14:07:01 +0200484 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000485
486cleanup:
487
Gilles Peskine449bd832023-01-11 14:50:10 +0100488 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000489}
490
491/*
492 * Export into an ASCII string
493 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100494int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
495 char *buf, size_t buflen, size_t *olen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000496{
Paul Bakker23986e52011-04-24 08:57:21 +0000497 int ret = 0;
498 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000499 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200500 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100501 MPI_VALIDATE_RET(X != NULL);
502 MPI_VALIDATE_RET(olen != NULL);
503 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000504
Gilles Peskine449bd832023-01-11 14:50:10 +0100505 if (radix < 2 || radix > 16) {
506 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
507 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000508
Gilles Peskine449bd832023-01-11 14:50:10 +0100509 n = mbedtls_mpi_bitlen(X); /* Number of bits necessary to present `n`. */
510 if (radix >= 4) {
511 n >>= 1; /* Number of 4-adic digits necessary to present
Hanno Becker23cfea02019-02-04 09:45:07 +0000512 * `n`. If radix > 4, this might be a strict
513 * overapproximation of the number of
514 * radix-adic digits needed to present `n`. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100515 }
516 if (radix >= 16) {
517 n >>= 1; /* Number of hexadecimal digits necessary to
Hanno Becker23cfea02019-02-04 09:45:07 +0000518 * present `n`. */
519
Gilles Peskine449bd832023-01-11 14:50:10 +0100520 }
Janos Follath80470622019-03-06 13:43:02 +0000521 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000522 n += 1; /* Compensate for the divisions above, which round down `n`
523 * in case it's not even. */
524 n += 1; /* Potential '-'-sign. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100525 n += (n & 1); /* Make n even to have enough space for hexadecimal writing,
Hanno Becker23cfea02019-02-04 09:45:07 +0000526 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000527
Gilles Peskine449bd832023-01-11 14:50:10 +0100528 if (buflen < n) {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100529 *olen = n;
Gilles Peskine449bd832023-01-11 14:50:10 +0100530 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Paul Bakker5121ce52009-01-03 21:22:43 +0000531 }
532
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100533 p = buf;
Gilles Peskine449bd832023-01-11 14:50:10 +0100534 mbedtls_mpi_init(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000535
Gilles Peskine449bd832023-01-11 14:50:10 +0100536 if (X->s == -1) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000537 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000538 buflen--;
539 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000540
Gilles Peskine449bd832023-01-11 14:50:10 +0100541 if (radix == 16) {
Paul Bakker23986e52011-04-24 08:57:21 +0000542 int c;
543 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000544
Gilles Peskine449bd832023-01-11 14:50:10 +0100545 for (i = X->n, k = 0; i > 0; i--) {
546 for (j = ciL; j > 0; j--) {
547 c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000548
Gilles Peskine449bd832023-01-11 14:50:10 +0100549 if (c == 0 && k == 0 && (i + j) != 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000550 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +0100551 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000552
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000553 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000554 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000555 k = 1;
556 }
557 }
Gilles Peskine449bd832023-01-11 14:50:10 +0100558 } else {
559 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000560
Gilles Peskine449bd832023-01-11 14:50:10 +0100561 if (T.s == -1) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000562 T.s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100563 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000564
Gilles Peskine449bd832023-01-11 14:50:10 +0100565 MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
Paul Bakker5121ce52009-01-03 21:22:43 +0000566 }
567
568 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100569 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000570
571cleanup:
572
Gilles Peskine449bd832023-01-11 14:50:10 +0100573 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000574
Gilles Peskine449bd832023-01-11 14:50:10 +0100575 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000576}
577
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200578#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000579/*
580 * Read X from an opened file
581 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100582int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
Paul Bakker5121ce52009-01-03 21:22:43 +0000583{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200584 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000585 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000586 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000587 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000588 * Buffer should have space for (short) label and decimal formatted MPI,
589 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000590 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100591 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
Paul Bakker5121ce52009-01-03 21:22:43 +0000592
Gilles Peskine449bd832023-01-11 14:50:10 +0100593 MPI_VALIDATE_RET(X != NULL);
594 MPI_VALIDATE_RET(fin != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000595
Gilles Peskine449bd832023-01-11 14:50:10 +0100596 if (radix < 2 || radix > 16) {
597 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
598 }
Hanno Becker73d7d792018-12-11 10:35:51 +0000599
Gilles Peskine449bd832023-01-11 14:50:10 +0100600 memset(s, 0, sizeof(s));
601 if (fgets(s, sizeof(s) - 1, fin) == NULL) {
602 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
603 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000604
Gilles Peskine449bd832023-01-11 14:50:10 +0100605 slen = strlen(s);
606 if (slen == sizeof(s) - 2) {
607 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
608 }
Paul Bakkercb37aa52011-11-30 16:00:20 +0000609
Gilles Peskine449bd832023-01-11 14:50:10 +0100610 if (slen > 0 && s[slen - 1] == '\n') {
611 slen--; s[slen] = '\0';
612 }
613 if (slen > 0 && s[slen - 1] == '\r') {
614 slen--; s[slen] = '\0';
615 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000616
617 p = s + slen;
Gilles Peskine449bd832023-01-11 14:50:10 +0100618 while (p-- > s) {
619 if (mpi_get_digit(&d, radix, *p) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000620 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100621 }
622 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000623
Gilles Peskine449bd832023-01-11 14:50:10 +0100624 return mbedtls_mpi_read_string(X, radix, p + 1);
Paul Bakker5121ce52009-01-03 21:22:43 +0000625}
626
627/*
628 * Write X into an opened file (or stdout if fout == NULL)
629 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100630int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
Paul Bakker5121ce52009-01-03 21:22:43 +0000631{
Janos Follath24eed8d2019-11-22 13:21:35 +0000632 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000633 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000634 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000635 * Buffer should have space for (short) label and decimal formatted MPI,
636 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000637 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100638 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
639 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000640
Gilles Peskine449bd832023-01-11 14:50:10 +0100641 if (radix < 2 || radix > 16) {
642 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
643 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000644
Gilles Peskine449bd832023-01-11 14:50:10 +0100645 memset(s, 0, sizeof(s));
Paul Bakker5121ce52009-01-03 21:22:43 +0000646
Gilles Peskine449bd832023-01-11 14:50:10 +0100647 MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
Paul Bakker5121ce52009-01-03 21:22:43 +0000648
Gilles Peskine449bd832023-01-11 14:50:10 +0100649 if (p == NULL) {
650 p = "";
651 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000652
Gilles Peskine449bd832023-01-11 14:50:10 +0100653 plen = strlen(p);
654 slen = strlen(s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000655 s[slen++] = '\r';
656 s[slen++] = '\n';
657
Gilles Peskine449bd832023-01-11 14:50:10 +0100658 if (fout != NULL) {
659 if (fwrite(p, 1, plen, fout) != plen ||
660 fwrite(s, 1, slen, fout) != slen) {
661 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
662 }
663 } else {
664 mbedtls_printf("%s%s", p, s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000665 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000666
667cleanup:
668
Gilles Peskine449bd832023-01-11 14:50:10 +0100669 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000670}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200671#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000672
673/*
Janos Follatha778a942019-02-13 10:28:28 +0000674 * Import X from unsigned binary data, little endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100675 *
676 * This function is guaranteed to return an MPI with exactly the necessary
677 * number of limbs (in particular, it does not skip 0s in the input).
Janos Follatha778a942019-02-13 10:28:28 +0000678 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100679int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
680 const unsigned char *buf, size_t buflen)
Janos Follatha778a942019-02-13 10:28:28 +0000681{
Janos Follath24eed8d2019-11-22 13:21:35 +0000682 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100683 const size_t limbs = CHARS_TO_LIMBS(buflen);
Janos Follatha778a942019-02-13 10:28:28 +0000684
685 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +0100686 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Janos Follatha778a942019-02-13 10:28:28 +0000687
Gilles Peskine449bd832023-01-11 14:50:10 +0100688 MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
Janos Follatha778a942019-02-13 10:28:28 +0000689
690cleanup:
691
Janos Follath171a7ef2019-02-15 16:17:45 +0000692 /*
693 * This function is also used to import keys. However, wiping the buffers
694 * upon failure is not necessary because failure only can happen before any
695 * input is copied.
696 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100697 return ret;
Janos Follatha778a942019-02-13 10:28:28 +0000698}
699
700/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000701 * Import X from unsigned binary data, big endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100702 *
703 * This function is guaranteed to return an MPI with exactly the necessary
704 * number of limbs (in particular, it does not skip 0s in the input).
Paul Bakker5121ce52009-01-03 21:22:43 +0000705 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100706int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000707{
Janos Follath24eed8d2019-11-22 13:21:35 +0000708 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100709 const size_t limbs = CHARS_TO_LIMBS(buflen);
Paul Bakker5121ce52009-01-03 21:22:43 +0000710
Gilles Peskine449bd832023-01-11 14:50:10 +0100711 MPI_VALIDATE_RET(X != NULL);
712 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000713
Hanno Becker073c1992017-10-17 15:17:27 +0100714 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +0100715 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Paul Bakker5121ce52009-01-03 21:22:43 +0000716
Gilles Peskine449bd832023-01-11 14:50:10 +0100717 MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
Paul Bakker5121ce52009-01-03 21:22:43 +0000718
719cleanup:
720
Janos Follath171a7ef2019-02-15 16:17:45 +0000721 /*
722 * This function is also used to import keys. However, wiping the buffers
723 * upon failure is not necessary because failure only can happen before any
724 * input is copied.
725 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100726 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000727}
728
729/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000730 * Export X into unsigned binary data, little endian
731 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100732int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
733 unsigned char *buf, size_t buflen)
Janos Follathe344d0f2019-02-19 16:17:40 +0000734{
Gilles Peskine449bd832023-01-11 14:50:10 +0100735 return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
Janos Follathe344d0f2019-02-19 16:17:40 +0000736}
737
738/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000739 * Export X into unsigned binary data, big endian
740 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100741int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
742 unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000743{
Gilles Peskine449bd832023-01-11 14:50:10 +0100744 return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
Paul Bakker5121ce52009-01-03 21:22:43 +0000745}
746
747/*
748 * Left-shift: X <<= count
749 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100750int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000751{
Janos Follath24eed8d2019-11-22 13:21:35 +0000752 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000753 size_t i, v0, t1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200754 mbedtls_mpi_uint r0 = 0, r1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100755 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000756
Gilles Peskine449bd832023-01-11 14:50:10 +0100757 v0 = count / (biL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000758 t1 = count & (biL - 1);
759
Gilles Peskine449bd832023-01-11 14:50:10 +0100760 i = mbedtls_mpi_bitlen(X) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000761
Gilles Peskine449bd832023-01-11 14:50:10 +0100762 if (X->n * biL < i) {
763 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
764 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000765
766 ret = 0;
767
768 /*
769 * shift by count / limb_size
770 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100771 if (v0 > 0) {
772 for (i = X->n; i > v0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +0000773 X->p[i - 1] = X->p[i - v0 - 1];
Gilles Peskine449bd832023-01-11 14:50:10 +0100774 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000775
Gilles Peskine449bd832023-01-11 14:50:10 +0100776 for (; i > 0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +0000777 X->p[i - 1] = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +0100778 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000779 }
780
781 /*
782 * shift by count % limb_size
783 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100784 if (t1 > 0) {
785 for (i = v0; i < X->n; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000786 r1 = X->p[i] >> (biL - t1);
787 X->p[i] <<= t1;
788 X->p[i] |= r0;
789 r0 = r1;
790 }
791 }
792
793cleanup:
794
Gilles Peskine449bd832023-01-11 14:50:10 +0100795 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000796}
797
798/*
799 * Right-shift: X >>= count
800 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100801int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000802{
Gilles Peskine449bd832023-01-11 14:50:10 +0100803 MPI_VALIDATE_RET(X != NULL);
804 if (X->n != 0) {
805 mbedtls_mpi_core_shift_r(X->p, X->n, count);
806 }
807 return 0;
Gilles Peskine66414202022-09-21 15:36:16 +0200808}
809
Paul Bakker5121ce52009-01-03 21:22:43 +0000810/*
811 * Compare unsigned values
812 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100813int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000814{
Paul Bakker23986e52011-04-24 08:57:21 +0000815 size_t i, j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100816 MPI_VALIDATE_RET(X != NULL);
817 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000818
Gilles Peskine449bd832023-01-11 14:50:10 +0100819 for (i = X->n; i > 0; i--) {
820 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000821 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100822 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000823 }
824
Gilles Peskine449bd832023-01-11 14:50:10 +0100825 for (j = Y->n; j > 0; j--) {
826 if (Y->p[j - 1] != 0) {
827 break;
828 }
829 }
830
831 if (i == 0 && j == 0) {
832 return 0;
833 }
834
835 if (i > j) {
836 return 1;
837 }
838 if (j > i) {
839 return -1;
840 }
841
842 for (; i > 0; i--) {
843 if (X->p[i - 1] > Y->p[i - 1]) {
844 return 1;
845 }
846 if (X->p[i - 1] < Y->p[i - 1]) {
847 return -1;
848 }
849 }
850
851 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000852}
853
854/*
855 * Compare signed values
856 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100857int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000858{
Paul Bakker23986e52011-04-24 08:57:21 +0000859 size_t i, j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100860 MPI_VALIDATE_RET(X != NULL);
861 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000862
Gilles Peskine449bd832023-01-11 14:50:10 +0100863 for (i = X->n; i > 0; i--) {
864 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000865 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100866 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000867 }
868
Gilles Peskine449bd832023-01-11 14:50:10 +0100869 for (j = Y->n; j > 0; j--) {
870 if (Y->p[j - 1] != 0) {
871 break;
872 }
873 }
874
875 if (i == 0 && j == 0) {
876 return 0;
877 }
878
879 if (i > j) {
880 return X->s;
881 }
882 if (j > i) {
883 return -Y->s;
884 }
885
886 if (X->s > 0 && Y->s < 0) {
887 return 1;
888 }
889 if (Y->s > 0 && X->s < 0) {
890 return -1;
891 }
892
893 for (; i > 0; i--) {
894 if (X->p[i - 1] > Y->p[i - 1]) {
895 return X->s;
896 }
897 if (X->p[i - 1] < Y->p[i - 1]) {
898 return -X->s;
899 }
900 }
901
902 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000903}
904
Janos Follathee6abce2019-09-05 14:47:19 +0100905/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000906 * Compare signed values
907 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100908int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +0000909{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200910 mbedtls_mpi Y;
911 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +0100912 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000913
Gilles Peskine449bd832023-01-11 14:50:10 +0100914 *p = mpi_sint_abs(z);
915 Y.s = (z < 0) ? -1 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000916 Y.n = 1;
917 Y.p = p;
918
Gilles Peskine449bd832023-01-11 14:50:10 +0100919 return mbedtls_mpi_cmp_mpi(X, &Y);
Paul Bakker5121ce52009-01-03 21:22:43 +0000920}
921
922/*
923 * Unsigned addition: X = |A| + |B| (HAC 14.7)
924 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100925int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +0000926{
Janos Follath24eed8d2019-11-22 13:21:35 +0000927 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100928 size_t j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100929 MPI_VALIDATE_RET(X != NULL);
930 MPI_VALIDATE_RET(A != NULL);
931 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000932
Gilles Peskine449bd832023-01-11 14:50:10 +0100933 if (X == B) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200934 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +0000935 }
936
Gilles Peskine449bd832023-01-11 14:50:10 +0100937 if (X != A) {
938 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
939 }
Paul Bakker9af723c2014-05-01 13:03:14 +0200940
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000941 /*
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100942 * X must always be positive as a result of unsigned additions.
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000943 */
944 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000945
Gilles Peskine449bd832023-01-11 14:50:10 +0100946 for (j = B->n; j > 0; j--) {
947 if (B->p[j - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000948 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100949 }
950 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000951
Gilles Peskinedb14a9d2022-11-15 22:59:00 +0100952 /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
953 * and B is 0 (of any size). */
Gilles Peskine449bd832023-01-11 14:50:10 +0100954 if (j == 0) {
955 return 0;
956 }
Gilles Peskinedb14a9d2022-11-15 22:59:00 +0100957
Gilles Peskine449bd832023-01-11 14:50:10 +0100958 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
Paul Bakker5121ce52009-01-03 21:22:43 +0000959
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100960 /* j is the number of non-zero limbs of B. Add those to X. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000961
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100962 mbedtls_mpi_uint *p = X->p;
963
Gilles Peskine449bd832023-01-11 14:50:10 +0100964 mbedtls_mpi_uint c = mbedtls_mpi_core_add(p, p, B->p, j);
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100965
966 p += j;
967
968 /* Now propagate any carry */
Paul Bakker5121ce52009-01-03 21:22:43 +0000969
Gilles Peskine449bd832023-01-11 14:50:10 +0100970 while (c != 0) {
971 if (j >= X->n) {
972 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100973 p = X->p + j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000974 }
975
Gilles Peskine449bd832023-01-11 14:50:10 +0100976 *p += c; c = (*p < c); j++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +0000977 }
978
979cleanup:
980
Gilles Peskine449bd832023-01-11 14:50:10 +0100981 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000982}
983
Paul Bakker5121ce52009-01-03 21:22:43 +0000984/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200985 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +0000986 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100987int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +0000988{
Janos Follath24eed8d2019-11-22 13:21:35 +0000989 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000990 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200991 mbedtls_mpi_uint carry;
Gilles Peskine449bd832023-01-11 14:50:10 +0100992 MPI_VALIDATE_RET(X != NULL);
993 MPI_VALIDATE_RET(A != NULL);
994 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000995
Gilles Peskine449bd832023-01-11 14:50:10 +0100996 for (n = B->n; n > 0; n--) {
997 if (B->p[n - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000998 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100999 }
1000 }
1001 if (n > A->n) {
Gilles Peskinec8a91772021-01-27 22:30:43 +01001002 /* B >= (2^ciL)^n > A */
1003 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1004 goto cleanup;
1005 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001006
Gilles Peskine449bd832023-01-11 14:50:10 +01001007 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001008
1009 /* Set the high limbs of X to match A. Don't touch the lower limbs
1010 * because X might be aliased to B, and we must not overwrite the
1011 * significant digits of B. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001012 if (A->n > n) {
1013 memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
1014 }
1015 if (X->n > A->n) {
1016 memset(X->p + A->n, 0, (X->n - A->n) * ciL);
1017 }
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001018
Gilles Peskine449bd832023-01-11 14:50:10 +01001019 carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
1020 if (carry != 0) {
Tom Cosgrove452c99c2022-08-25 10:07:07 +01001021 /* Propagate the carry through the rest of X. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001022 carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
Tom Cosgrove452c99c2022-08-25 10:07:07 +01001023
1024 /* If we have further carry/borrow, the result is negative. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001025 if (carry != 0) {
Gilles Peskine89b41302020-07-23 01:16:46 +02001026 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1027 goto cleanup;
1028 }
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001029 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001030
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001031 /* X should always be positive as a result of unsigned subtractions. */
1032 X->s = 1;
1033
Paul Bakker5121ce52009-01-03 21:22:43 +00001034cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001035 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001036}
1037
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001038/* Common function for signed addition and subtraction.
1039 * Calculate A + B * flip_B where flip_B is 1 or -1.
Paul Bakker5121ce52009-01-03 21:22:43 +00001040 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001041static int add_sub_mpi(mbedtls_mpi *X,
1042 const mbedtls_mpi *A, const mbedtls_mpi *B,
1043 int flip_B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001044{
Hanno Becker73d7d792018-12-11 10:35:51 +00001045 int ret, s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001046 MPI_VALIDATE_RET(X != NULL);
1047 MPI_VALIDATE_RET(A != NULL);
1048 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001049
Hanno Becker73d7d792018-12-11 10:35:51 +00001050 s = A->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001051 if (A->s * B->s * flip_B < 0) {
1052 int cmp = mbedtls_mpi_cmp_abs(A, B);
1053 if (cmp >= 0) {
1054 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
Gilles Peskine4a768dd2022-11-09 22:02:16 +01001055 /* If |A| = |B|, the result is 0 and we must set the sign bit
1056 * to +1 regardless of which of A or B was negative. Otherwise,
1057 * since |A| > |B|, the sign is the sign of A. */
1058 X->s = cmp == 0 ? 1 : s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001059 } else {
1060 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
Gilles Peskine4a768dd2022-11-09 22:02:16 +01001061 /* Since |A| < |B|, the sign is the opposite of A. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001062 X->s = -s;
1063 }
Gilles Peskine449bd832023-01-11 14:50:10 +01001064 } else {
1065 MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001066 X->s = s;
1067 }
1068
1069cleanup:
1070
Gilles Peskine449bd832023-01-11 14:50:10 +01001071 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001072}
1073
1074/*
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001075 * Signed addition: X = A + B
1076 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001077int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001078{
Gilles Peskine449bd832023-01-11 14:50:10 +01001079 return add_sub_mpi(X, A, B, 1);
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001080}
1081
1082/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001083 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001084 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001085int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001086{
Gilles Peskine449bd832023-01-11 14:50:10 +01001087 return add_sub_mpi(X, A, B, -1);
Paul Bakker5121ce52009-01-03 21:22:43 +00001088}
1089
1090/*
1091 * Signed addition: X = A + b
1092 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001093int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001094{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001095 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001096 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001097 MPI_VALIDATE_RET(X != NULL);
1098 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001099
Gilles Peskine449bd832023-01-11 14:50:10 +01001100 p[0] = mpi_sint_abs(b);
1101 B.s = (b < 0) ? -1 : 1;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001102 B.n = 1;
1103 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001104
Gilles Peskine449bd832023-01-11 14:50:10 +01001105 return mbedtls_mpi_add_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001106}
1107
1108/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001109 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001110 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001111int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001112{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001113 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001114 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001115 MPI_VALIDATE_RET(X != NULL);
1116 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001117
Gilles Peskine449bd832023-01-11 14:50:10 +01001118 p[0] = mpi_sint_abs(b);
1119 B.s = (b < 0) ? -1 : 1;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001120 B.n = 1;
1121 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001122
Gilles Peskine449bd832023-01-11 14:50:10 +01001123 return mbedtls_mpi_sub_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001124}
1125
Paul Bakker5121ce52009-01-03 21:22:43 +00001126/*
1127 * Baseline multiplication: X = A * B (HAC 14.12)
1128 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001129int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001130{
Janos Follath24eed8d2019-11-22 13:21:35 +00001131 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker1772e052022-04-13 06:51:40 +01001132 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001133 mbedtls_mpi TA, TB;
Hanno Beckerda763de2022-04-13 06:50:02 +01001134 int result_is_zero = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001135 MPI_VALIDATE_RET(X != NULL);
1136 MPI_VALIDATE_RET(A != NULL);
1137 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001138
Gilles Peskine449bd832023-01-11 14:50:10 +01001139 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00001140
Gilles Peskine449bd832023-01-11 14:50:10 +01001141 if (X == A) {
1142 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
1143 }
1144 if (X == B) {
1145 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
1146 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001147
Gilles Peskine449bd832023-01-11 14:50:10 +01001148 for (i = A->n; i > 0; i--) {
1149 if (A->p[i - 1] != 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001150 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001151 }
1152 }
1153 if (i == 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001154 result_is_zero = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001155 }
Hanno Beckerda763de2022-04-13 06:50:02 +01001156
Gilles Peskine449bd832023-01-11 14:50:10 +01001157 for (j = B->n; j > 0; j--) {
1158 if (B->p[j - 1] != 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001159 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001160 }
1161 }
1162 if (j == 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001163 result_is_zero = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001164 }
Hanno Beckerda763de2022-04-13 06:50:02 +01001165
Gilles Peskine449bd832023-01-11 14:50:10 +01001166 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
1167 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
Paul Bakker5121ce52009-01-03 21:22:43 +00001168
Gilles Peskine449bd832023-01-11 14:50:10 +01001169 for (size_t k = 0; k < j; k++) {
Hanno Beckerfee261a2022-04-06 06:20:22 +01001170 /* We know that there cannot be any carry-out since we're
1171 * iterating from bottom to top. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001172 (void) mbedtls_mpi_core_mla(X->p + k, i + 1,
1173 A->p, i,
1174 B->p[k]);
Hanno Beckerfee261a2022-04-06 06:20:22 +01001175 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001176
Hanno Beckerda763de2022-04-13 06:50:02 +01001177 /* If the result is 0, we don't shortcut the operation, which reduces
1178 * but does not eliminate side channels leaking the zero-ness. We do
1179 * need to take care to set the sign bit properly since the library does
1180 * not fully support an MPI object with a value of 0 and s == -1. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001181 if (result_is_zero) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001182 X->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001183 } else {
Hanno Beckerda763de2022-04-13 06:50:02 +01001184 X->s = A->s * B->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001185 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001186
1187cleanup:
1188
Gilles Peskine449bd832023-01-11 14:50:10 +01001189 mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
Paul Bakker5121ce52009-01-03 21:22:43 +00001190
Gilles Peskine449bd832023-01-11 14:50:10 +01001191 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001192}
1193
1194/*
1195 * Baseline multiplication: X = A * b
1196 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001197int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001198{
Gilles Peskine449bd832023-01-11 14:50:10 +01001199 MPI_VALIDATE_RET(X != NULL);
1200 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001201
Hanno Becker35771312022-04-14 11:52:11 +01001202 size_t n = A->n;
Gilles Peskine449bd832023-01-11 14:50:10 +01001203 while (n > 0 && A->p[n - 1] == 0) {
Hanno Becker35771312022-04-14 11:52:11 +01001204 --n;
Gilles Peskine449bd832023-01-11 14:50:10 +01001205 }
Hanno Becker35771312022-04-14 11:52:11 +01001206
Hanno Becker74a11a32022-04-06 06:27:00 +01001207 /* The general method below doesn't work if b==0. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001208 if (b == 0 || n == 0) {
1209 return mbedtls_mpi_lset(X, 0);
1210 }
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001211
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001212 /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001213 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001214 /* In general, A * b requires 1 limb more than b. If
1215 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1216 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001217 * copy() will take care of the growth if needed. However, experimentally,
1218 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001219 * calls to calloc() in ECP code, presumably because it reuses the
1220 * same mpi for a while and this way the mpi is more likely to directly
Hanno Becker9137b9c2022-04-12 10:51:54 +01001221 * grow to its final size.
1222 *
1223 * Note that calculating A*b as 0 + A*b doesn't work as-is because
1224 * A,X can be the same. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001225 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
1226 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1227 mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001228
1229cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001230 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001231}
1232
1233/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001234 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1235 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001236 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001237static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
1238 mbedtls_mpi_uint u0,
1239 mbedtls_mpi_uint d,
1240 mbedtls_mpi_uint *r)
Simon Butcher15b15d12015-11-26 19:35:03 +00001241{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001242#if defined(MBEDTLS_HAVE_UDBL)
1243 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001244#else
Simon Butcher9803d072016-01-03 00:24:34 +00001245 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
Gilles Peskine449bd832023-01-11 14:50:10 +01001246 const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001247 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1248 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001249 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001250#endif
1251
Simon Butcher15b15d12015-11-26 19:35:03 +00001252 /*
1253 * Check for overflow
1254 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001255 if (0 == d || u1 >= d) {
1256 if (r != NULL) {
1257 *r = ~(mbedtls_mpi_uint) 0u;
1258 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001259
Gilles Peskine449bd832023-01-11 14:50:10 +01001260 return ~(mbedtls_mpi_uint) 0u;
Simon Butcher15b15d12015-11-26 19:35:03 +00001261 }
1262
1263#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001264 dividend = (mbedtls_t_udbl) u1 << biL;
1265 dividend |= (mbedtls_t_udbl) u0;
1266 quotient = dividend / d;
Gilles Peskine449bd832023-01-11 14:50:10 +01001267 if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
1268 quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
1269 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001270
Gilles Peskine449bd832023-01-11 14:50:10 +01001271 if (r != NULL) {
1272 *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
1273 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001274
1275 return (mbedtls_mpi_uint) quotient;
1276#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001277
1278 /*
1279 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1280 * Vol. 2 - Seminumerical Algorithms, Knuth
1281 */
1282
1283 /*
1284 * Normalize the divisor, d, and dividend, u0, u1
1285 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001286 s = mbedtls_mpi_core_clz(d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001287 d = d << s;
1288
1289 u1 = u1 << s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001290 u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
Simon Butcher15b15d12015-11-26 19:35:03 +00001291 u0 = u0 << s;
1292
1293 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001294 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001295
1296 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001297 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001298
1299 /*
1300 * Find the first quotient and remainder
1301 */
1302 q1 = u1 / d1;
1303 r0 = u1 - d1 * q1;
1304
Gilles Peskine449bd832023-01-11 14:50:10 +01001305 while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001306 q1 -= 1;
1307 r0 += d1;
1308
Gilles Peskine449bd832023-01-11 14:50:10 +01001309 if (r0 >= radix) {
1310 break;
1311 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001312 }
1313
Gilles Peskine449bd832023-01-11 14:50:10 +01001314 rAX = (u1 * radix) + (u0_msw - q1 * d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001315 q0 = rAX / d1;
1316 r0 = rAX - q0 * d1;
1317
Gilles Peskine449bd832023-01-11 14:50:10 +01001318 while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001319 q0 -= 1;
1320 r0 += d1;
1321
Gilles Peskine449bd832023-01-11 14:50:10 +01001322 if (r0 >= radix) {
1323 break;
1324 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001325 }
1326
Gilles Peskine449bd832023-01-11 14:50:10 +01001327 if (r != NULL) {
1328 *r = (rAX * radix + u0_lsw - q0 * d) >> s;
1329 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001330
1331 quotient = q1 * radix + q0;
1332
1333 return quotient;
1334#endif
1335}
1336
1337/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001338 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001339 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001340int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1341 const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001342{
Janos Follath24eed8d2019-11-22 13:21:35 +00001343 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001344 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001345 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001346 mbedtls_mpi_uint TP2[3];
Gilles Peskine449bd832023-01-11 14:50:10 +01001347 MPI_VALIDATE_RET(A != NULL);
1348 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001349
Gilles Peskine449bd832023-01-11 14:50:10 +01001350 if (mbedtls_mpi_cmp_int(B, 0) == 0) {
1351 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1352 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001353
Gilles Peskine449bd832023-01-11 14:50:10 +01001354 mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
1355 mbedtls_mpi_init(&T1);
Alexander Kd19a1932019-11-01 18:20:42 +03001356 /*
1357 * Avoid dynamic memory allocations for constant-size T2.
1358 *
1359 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1360 * so nobody increase the size of the MPI and we're safe to use an on-stack
1361 * buffer.
1362 */
Alexander K35d6d462019-10-31 14:46:45 +03001363 T2.s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001364 T2.n = sizeof(TP2) / sizeof(*TP2);
Alexander Kd19a1932019-11-01 18:20:42 +03001365 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001366
Gilles Peskine449bd832023-01-11 14:50:10 +01001367 if (mbedtls_mpi_cmp_abs(A, B) < 0) {
1368 if (Q != NULL) {
1369 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
1370 }
1371 if (R != NULL) {
1372 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
1373 }
1374 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001375 }
1376
Gilles Peskine449bd832023-01-11 14:50:10 +01001377 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
1378 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001379 X.s = Y.s = 1;
1380
Gilles Peskine449bd832023-01-11 14:50:10 +01001381 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
1382 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z, 0));
1383 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001384
Gilles Peskine449bd832023-01-11 14:50:10 +01001385 k = mbedtls_mpi_bitlen(&Y) % biL;
1386 if (k < biL - 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001387 k = biL - 1 - k;
Gilles Peskine449bd832023-01-11 14:50:10 +01001388 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
1389 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
1390 } else {
1391 k = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001392 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001393
1394 n = X.n - 1;
1395 t = Y.n - 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001396 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001397
Gilles Peskine449bd832023-01-11 14:50:10 +01001398 while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001399 Z.p[n - t]++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001400 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
Paul Bakker5121ce52009-01-03 21:22:43 +00001401 }
Gilles Peskine449bd832023-01-11 14:50:10 +01001402 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001403
Gilles Peskine449bd832023-01-11 14:50:10 +01001404 for (i = n; i > t; i--) {
1405 if (X.p[i] >= Y.p[t]) {
1406 Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
1407 } else {
1408 Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
1409 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001410 }
1411
Gilles Peskine449bd832023-01-11 14:50:10 +01001412 T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
1413 T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
Alexander K35d6d462019-10-31 14:46:45 +03001414 T2.p[2] = X.p[i];
1415
Paul Bakker5121ce52009-01-03 21:22:43 +00001416 Z.p[i - t - 1]++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001417 do {
Paul Bakker5121ce52009-01-03 21:22:43 +00001418 Z.p[i - t - 1]--;
1419
Gilles Peskine449bd832023-01-11 14:50:10 +01001420 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
1421 T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001422 T1.p[1] = Y.p[t];
Gilles Peskine449bd832023-01-11 14:50:10 +01001423 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
1424 } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00001425
Gilles Peskine449bd832023-01-11 14:50:10 +01001426 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
1427 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1428 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001429
Gilles Peskine449bd832023-01-11 14:50:10 +01001430 if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
1431 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
1432 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1433 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001434 Z.p[i - t - 1]--;
1435 }
1436 }
1437
Gilles Peskine449bd832023-01-11 14:50:10 +01001438 if (Q != NULL) {
1439 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
Paul Bakker5121ce52009-01-03 21:22:43 +00001440 Q->s = A->s * B->s;
1441 }
1442
Gilles Peskine449bd832023-01-11 14:50:10 +01001443 if (R != NULL) {
1444 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
Paul Bakkerf02c5642012-11-13 10:25:21 +00001445 X.s = A->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001446 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
Paul Bakker5121ce52009-01-03 21:22:43 +00001447
Gilles Peskine449bd832023-01-11 14:50:10 +01001448 if (mbedtls_mpi_cmp_int(R, 0) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001449 R->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001450 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001451 }
1452
1453cleanup:
1454
Gilles Peskine449bd832023-01-11 14:50:10 +01001455 mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
1456 mbedtls_mpi_free(&T1);
1457 mbedtls_platform_zeroize(TP2, sizeof(TP2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001458
Gilles Peskine449bd832023-01-11 14:50:10 +01001459 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001460}
1461
1462/*
1463 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001464 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001465int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
1466 const mbedtls_mpi *A,
1467 mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001468{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001469 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001470 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001471 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001472
Gilles Peskine449bd832023-01-11 14:50:10 +01001473 p[0] = mpi_sint_abs(b);
1474 B.s = (b < 0) ? -1 : 1;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001475 B.n = 1;
1476 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001477
Gilles Peskine449bd832023-01-11 14:50:10 +01001478 return mbedtls_mpi_div_mpi(Q, R, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001479}
1480
1481/*
1482 * Modulo: R = A mod B
1483 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001484int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001485{
Janos Follath24eed8d2019-11-22 13:21:35 +00001486 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +01001487 MPI_VALIDATE_RET(R != NULL);
1488 MPI_VALIDATE_RET(A != NULL);
1489 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001490
Gilles Peskine449bd832023-01-11 14:50:10 +01001491 if (mbedtls_mpi_cmp_int(B, 0) < 0) {
1492 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1493 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001494
Gilles Peskine449bd832023-01-11 14:50:10 +01001495 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001496
Gilles Peskine449bd832023-01-11 14:50:10 +01001497 while (mbedtls_mpi_cmp_int(R, 0) < 0) {
1498 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
1499 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001500
Gilles Peskine449bd832023-01-11 14:50:10 +01001501 while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
1502 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
1503 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001504
1505cleanup:
1506
Gilles Peskine449bd832023-01-11 14:50:10 +01001507 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001508}
1509
1510/*
1511 * Modulo: r = A mod b
1512 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001513int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001514{
Paul Bakker23986e52011-04-24 08:57:21 +00001515 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001516 mbedtls_mpi_uint x, y, z;
Gilles Peskine449bd832023-01-11 14:50:10 +01001517 MPI_VALIDATE_RET(r != NULL);
1518 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001519
Gilles Peskine449bd832023-01-11 14:50:10 +01001520 if (b == 0) {
1521 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1522 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001523
Gilles Peskine449bd832023-01-11 14:50:10 +01001524 if (b < 0) {
1525 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1526 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001527
1528 /*
1529 * handle trivial cases
1530 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001531 if (b == 1 || A->n == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001532 *r = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001533 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001534 }
1535
Gilles Peskine449bd832023-01-11 14:50:10 +01001536 if (b == 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001537 *r = A->p[0] & 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001538 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001539 }
1540
1541 /*
1542 * general case
1543 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001544 for (i = A->n, y = 0; i > 0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +00001545 x = A->p[i - 1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001546 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001547 z = y / b;
1548 y -= z * b;
1549
1550 x <<= biH;
Gilles Peskine449bd832023-01-11 14:50:10 +01001551 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001552 z = y / b;
1553 y -= z * b;
1554 }
1555
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001556 /*
1557 * If A is negative, then the current y represents a negative value.
1558 * Flipping it to the positive side.
1559 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001560 if (A->s < 0 && y != 0) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001561 y = b - y;
Gilles Peskine449bd832023-01-11 14:50:10 +01001562 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001563
Paul Bakker5121ce52009-01-03 21:22:43 +00001564 *r = y;
1565
Gilles Peskine449bd832023-01-11 14:50:10 +01001566 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001567}
1568
Gilles Peskine449bd832023-01-11 14:50:10 +01001569static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00001570{
Gilles Peskine449bd832023-01-11 14:50:10 +01001571 *mm = mbedtls_mpi_core_montmul_init(N->p);
Paul Bakker5121ce52009-01-03 21:22:43 +00001572}
1573
Tom Cosgrove93842842022-08-05 16:59:43 +01001574/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1575 *
1576 * \param[in,out] A One of the numbers to multiply.
1577 * It must have at least as many limbs as N
1578 * (A->n >= N->n), and any limbs beyond n are ignored.
1579 * On successful completion, A contains the result of
1580 * the multiplication A * B * R^-1 mod N where
1581 * R = (2^ciL)^n.
1582 * \param[in] B One of the numbers to multiply.
1583 * It must be nonzero and must not have more limbs than N
1584 * (B->n <= N->n).
Tom Cosgrove40d22942022-08-17 06:42:44 +01001585 * \param[in] N The modulus. \p N must be odd.
Tom Cosgrove93842842022-08-05 16:59:43 +01001586 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1587 * This is -N^-1 mod 2^ciL.
1588 * \param[in,out] T A bignum for temporary storage.
1589 * It must be at least twice the limb size of N plus 1
1590 * (T->n >= 2 * N->n + 1).
1591 * Its initial content is unused and
1592 * its final content is indeterminate.
Tom Cosgrove5dd97e62022-08-30 14:31:49 +01001593 * It does not get reallocated.
Tom Cosgrove93842842022-08-05 16:59:43 +01001594 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001595static void mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B,
1596 const mbedtls_mpi *N, mbedtls_mpi_uint mm,
1597 mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00001598{
Gilles Peskine449bd832023-01-11 14:50:10 +01001599 mbedtls_mpi_core_montmul(A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p);
Paul Bakker5121ce52009-01-03 21:22:43 +00001600}
1601
1602/*
1603 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001604 *
Tom Cosgrove93842842022-08-05 16:59:43 +01001605 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001606 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001607static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N,
1608 mbedtls_mpi_uint mm, mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00001609{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001610 mbedtls_mpi_uint z = 1;
1611 mbedtls_mpi U;
Paul Bakker5121ce52009-01-03 21:22:43 +00001612
Paul Bakker8ddb6452013-02-27 14:56:33 +01001613 U.n = U.s = (int) z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001614 U.p = &z;
1615
Gilles Peskine449bd832023-01-11 14:50:10 +01001616 mpi_montmul(A, &U, N, mm, T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001617}
1618
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001619/**
1620 * Select an MPI from a table without leaking the index.
1621 *
1622 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1623 * reads the entire table in order to avoid leaking the value of idx to an
1624 * attacker able to observe memory access patterns.
1625 *
1626 * \param[out] R Where to write the selected MPI.
1627 * \param[in] T The table to read from.
1628 * \param[in] T_size The number of elements in the table.
1629 * \param[in] idx The index of the element to select;
1630 * this must satisfy 0 <= idx < T_size.
1631 *
1632 * \return \c 0 on success, or a negative error code.
1633 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001634static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx)
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001635{
1636 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1637
Gilles Peskine449bd832023-01-11 14:50:10 +01001638 for (size_t i = 0; i < T_size; i++) {
1639 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i],
1640 (unsigned char) mbedtls_ct_size_bool_eq(i,
1641 idx)));
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001642 }
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001643
1644cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001645 return ret;
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001646}
1647
Paul Bakker5121ce52009-01-03 21:22:43 +00001648/*
1649 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1650 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001651int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
1652 const mbedtls_mpi *E, const mbedtls_mpi *N,
1653 mbedtls_mpi *prec_RR)
Paul Bakker5121ce52009-01-03 21:22:43 +00001654{
Janos Follath24eed8d2019-11-22 13:21:35 +00001655 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath74601202022-11-21 15:54:20 +00001656 size_t window_bitsize;
Paul Bakker23986e52011-04-24 08:57:21 +00001657 size_t i, j, nblimbs;
1658 size_t bufsize, nbits;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001659 mbedtls_mpi_uint ei, mm, state;
Gilles Peskine449bd832023-01-11 14:50:10 +01001660 mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00001661 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00001662
Gilles Peskine449bd832023-01-11 14:50:10 +01001663 MPI_VALIDATE_RET(X != NULL);
1664 MPI_VALIDATE_RET(A != NULL);
1665 MPI_VALIDATE_RET(E != NULL);
1666 MPI_VALIDATE_RET(N != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00001667
Gilles Peskine449bd832023-01-11 14:50:10 +01001668 if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
1669 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1670 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001671
Gilles Peskine449bd832023-01-11 14:50:10 +01001672 if (mbedtls_mpi_cmp_int(E, 0) < 0) {
1673 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1674 }
Paul Bakkerf6198c12012-05-16 08:02:29 +00001675
Gilles Peskine449bd832023-01-11 14:50:10 +01001676 if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
1677 mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
1678 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1679 }
Chris Jones9246d042020-11-25 15:12:39 +00001680
Paul Bakkerf6198c12012-05-16 08:02:29 +00001681 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001682 * Init temps and window size
1683 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001684 mpi_montg_init(&mm, N);
1685 mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T);
1686 mbedtls_mpi_init(&Apos);
1687 mbedtls_mpi_init(&WW);
1688 memset(W, 0, sizeof(W));
Paul Bakker5121ce52009-01-03 21:22:43 +00001689
Gilles Peskine449bd832023-01-11 14:50:10 +01001690 i = mbedtls_mpi_bitlen(E);
Paul Bakker5121ce52009-01-03 21:22:43 +00001691
Gilles Peskine449bd832023-01-11 14:50:10 +01001692 window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 :
1693 (i > 79) ? 4 : (i > 23) ? 3 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001694
Gilles Peskine449bd832023-01-11 14:50:10 +01001695#if (MBEDTLS_MPI_WINDOW_SIZE < 6)
1696 if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) {
Janos Follath7fa11b82022-11-21 14:48:02 +00001697 window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
Gilles Peskine449bd832023-01-11 14:50:10 +01001698 }
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001699#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00001700
Janos Follathc8d66d52022-11-22 10:47:10 +00001701 const size_t w_table_used_size = (size_t) 1 << window_bitsize;
Janos Follath06000952022-11-22 10:18:06 +00001702
Paul Bakker5121ce52009-01-03 21:22:43 +00001703 /*
Janos Follathbe54ca72022-11-21 16:14:54 +00001704 * This function is not constant-trace: its memory accesses depend on the
1705 * exponent value. To defend against timing attacks, callers (such as RSA
1706 * and DHM) should use exponent blinding. However this is not enough if the
1707 * adversary can find the exponent in a single trace, so this function
1708 * takes extra precautions against adversaries who can observe memory
1709 * access patterns.
Janos Follathf08b40e2022-11-11 15:56:38 +00001710 *
Janos Follathbe54ca72022-11-21 16:14:54 +00001711 * This function performs a series of multiplications by table elements and
1712 * squarings, and we want the prevent the adversary from finding out which
1713 * table element was used, and from distinguishing between multiplications
1714 * and squarings. Firstly, when multiplying by an element of the window
1715 * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
1716 * squarings as having a different memory access patterns from other
1717 * multiplications. So secondly, we put the accumulator X in the table as
1718 * well, and also do a constant-trace table lookup to multiply by X.
1719 *
1720 * This way, all multiplications take the form of a lookup-and-multiply.
1721 * The number of lookup-and-multiply operations inside each iteration of
1722 * the main loop still depends on the bits of the exponent, but since the
1723 * other operations in the loop don't have an easily recognizable memory
1724 * trace, an adversary is unlikely to be able to observe the exact
1725 * patterns.
1726 *
1727 * An adversary may still be able to recover the exponent if they can
1728 * observe both memory accesses and branches. However, branch prediction
1729 * exploitation typically requires many traces of execution over the same
1730 * data, which is defeated by randomized blinding.
Janos Follath84461482022-11-21 14:31:22 +00001731 *
1732 * To achieve this, we make a copy of X and we use the table entry in each
1733 * calculation from this point on.
Janos Follath8e7d6a02022-10-04 13:27:40 +01001734 */
Janos Follathc8d66d52022-11-22 10:47:10 +00001735 const size_t x_index = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001736 mbedtls_mpi_init(&W[x_index]);
1737 mbedtls_mpi_copy(&W[x_index], X);
Janos Follath84461482022-11-21 14:31:22 +00001738
Paul Bakker5121ce52009-01-03 21:22:43 +00001739 j = N->n + 1;
Tom Cosgrove93842842022-08-05 16:59:43 +01001740 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
Paul Bakker5121ce52009-01-03 21:22:43 +00001741 * and mpi_montred() calls later. Here we ensure that W[1] and X are
1742 * large enough, and later we'll grow other W[i] to the same length.
1743 * They must not be shrunk midway through this function!
1744 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001745 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j));
1746 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], j));
1747 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001748
1749 /*
Paul Bakker50546922012-05-19 08:40:49 +00001750 * Compensate for negative A (and correct at the end)
1751 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001752 neg = (A->s == -1);
1753 if (neg) {
1754 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));
Paul Bakker50546922012-05-19 08:40:49 +00001755 Apos.s = 1;
1756 A = &Apos;
1757 }
1758
1759 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001760 * If 1st call, pre-compute R^2 mod N
1761 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001762 if (prec_RR == NULL || prec_RR->p == NULL) {
1763 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1));
1764 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL));
1765 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00001766
Gilles Peskine449bd832023-01-11 14:50:10 +01001767 if (prec_RR != NULL) {
1768 memcpy(prec_RR, &RR, sizeof(mbedtls_mpi));
1769 }
1770 } else {
1771 memcpy(&RR, prec_RR, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +00001772 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001773
1774 /*
1775 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1776 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001777 if (mbedtls_mpi_cmp_mpi(A, N) >= 0) {
1778 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001779 /* This should be a no-op because W[1] is already that large before
1780 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
Tom Cosgrove93842842022-08-05 16:59:43 +01001781 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001782 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1));
1783 } else {
1784 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001785 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001786
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001787 /* Note that this is safe because W[1] always has at least N->n limbs
1788 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001789 mpi_montmul(&W[1], &RR, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001790
1791 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001792 * W[x_index] = R^2 * R^-1 mod N = R mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001793 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001794 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR));
1795 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001796
Janos Follathc8d66d52022-11-22 10:47:10 +00001797
Gilles Peskine449bd832023-01-11 14:50:10 +01001798 if (window_bitsize > 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001799 /*
Janos Follath74601202022-11-21 15:54:20 +00001800 * W[i] = W[1] ^ i
1801 *
1802 * The first bit of the sliding window is always 1 and therefore we
1803 * only need to store the second half of the table.
Janos Follathc8d66d52022-11-22 10:47:10 +00001804 *
1805 * (There are two special elements in the table: W[0] for the
1806 * accumulator/result and W[1] for A in Montgomery form. Both of these
1807 * are already set at this point.)
Paul Bakker5121ce52009-01-03 21:22:43 +00001808 */
Janos Follath74601202022-11-21 15:54:20 +00001809 j = w_table_used_size / 2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001810
Gilles Peskine449bd832023-01-11 14:50:10 +01001811 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));
1812 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00001813
Gilles Peskine449bd832023-01-11 14:50:10 +01001814 for (i = 0; i < window_bitsize - 1; i++) {
1815 mpi_montmul(&W[j], &W[j], N, mm, &T);
1816 }
Paul Bakker0d7702c2013-10-29 16:18:35 +01001817
Paul Bakker5121ce52009-01-03 21:22:43 +00001818 /*
1819 * W[i] = W[i - 1] * W[1]
1820 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001821 for (i = j + 1; i < w_table_used_size; i++) {
1822 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));
1823 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00001824
Gilles Peskine449bd832023-01-11 14:50:10 +01001825 mpi_montmul(&W[i], &W[1], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001826 }
1827 }
1828
1829 nblimbs = E->n;
1830 bufsize = 0;
1831 nbits = 0;
Janos Follath7fa11b82022-11-21 14:48:02 +00001832 size_t exponent_bits_in_window = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001833 state = 0;
1834
Gilles Peskine449bd832023-01-11 14:50:10 +01001835 while (1) {
1836 if (bufsize == 0) {
1837 if (nblimbs == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001838 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001839 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001840
Paul Bakker0d7702c2013-10-29 16:18:35 +01001841 nblimbs--;
1842
Gilles Peskine449bd832023-01-11 14:50:10 +01001843 bufsize = sizeof(mbedtls_mpi_uint) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00001844 }
1845
1846 bufsize--;
1847
1848 ei = (E->p[nblimbs] >> bufsize) & 1;
1849
1850 /*
1851 * skip leading 0s
1852 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001853 if (ei == 0 && state == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001854 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +01001855 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001856
Gilles Peskine449bd832023-01-11 14:50:10 +01001857 if (ei == 0 && state == 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001858 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001859 * out of window, square W[x_index]
Paul Bakker5121ce52009-01-03 21:22:43 +00001860 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001861 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1862 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001863 continue;
1864 }
1865
1866 /*
1867 * add ei to current window
1868 */
1869 state = 2;
1870
1871 nbits++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001872 exponent_bits_in_window |= (ei << (window_bitsize - nbits));
Paul Bakker5121ce52009-01-03 21:22:43 +00001873
Gilles Peskine449bd832023-01-11 14:50:10 +01001874 if (nbits == window_bitsize) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001875 /*
Janos Follath7fa11b82022-11-21 14:48:02 +00001876 * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001877 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001878 for (i = 0; i < window_bitsize; i++) {
1879 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1880 x_index));
1881 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follathb764ee12022-10-04 14:00:09 +01001882 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001883
1884 /*
Janos Follath7fa11b82022-11-21 14:48:02 +00001885 * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001886 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001887 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1888 exponent_bits_in_window));
1889 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001890
1891 state--;
1892 nbits = 0;
Janos Follath7fa11b82022-11-21 14:48:02 +00001893 exponent_bits_in_window = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001894 }
1895 }
1896
1897 /*
1898 * process the remaining bits
1899 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001900 for (i = 0; i < nbits; i++) {
1901 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1902 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001903
Janos Follath7fa11b82022-11-21 14:48:02 +00001904 exponent_bits_in_window <<= 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001905
Gilles Peskine449bd832023-01-11 14:50:10 +01001906 if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) {
1907 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1));
1908 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follathb764ee12022-10-04 14:00:09 +01001909 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001910 }
1911
1912 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001913 * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001914 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001915 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001916
Gilles Peskine449bd832023-01-11 14:50:10 +01001917 if (neg && E->n != 0 && (E->p[0] & 1) != 0) {
Janos Follath8e7d6a02022-10-04 13:27:40 +01001918 W[x_index].s = -1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001919 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index]));
Paul Bakkerf6198c12012-05-16 08:02:29 +00001920 }
1921
Janos Follath8e7d6a02022-10-04 13:27:40 +01001922 /*
1923 * Load the result in the output variable.
1924 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001925 mbedtls_mpi_copy(X, &W[x_index]);
Janos Follath8e7d6a02022-10-04 13:27:40 +01001926
Paul Bakker5121ce52009-01-03 21:22:43 +00001927cleanup:
1928
Janos Follathb2c2fca2022-11-21 15:05:31 +00001929 /* The first bit of the sliding window is always 1 and therefore the first
1930 * half of the table was unused. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001931 for (i = w_table_used_size/2; i < w_table_used_size; i++) {
1932 mbedtls_mpi_free(&W[i]);
1933 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001934
Gilles Peskine449bd832023-01-11 14:50:10 +01001935 mbedtls_mpi_free(&W[x_index]);
1936 mbedtls_mpi_free(&W[1]);
1937 mbedtls_mpi_free(&T);
1938 mbedtls_mpi_free(&Apos);
1939 mbedtls_mpi_free(&WW);
Paul Bakker6c591fa2011-05-05 11:49:20 +00001940
Gilles Peskine449bd832023-01-11 14:50:10 +01001941 if (prec_RR == NULL || prec_RR->p == NULL) {
1942 mbedtls_mpi_free(&RR);
1943 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001944
Gilles Peskine449bd832023-01-11 14:50:10 +01001945 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001946}
1947
Paul Bakker5121ce52009-01-03 21:22:43 +00001948/*
1949 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
1950 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001951int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001952{
Janos Follath24eed8d2019-11-22 13:21:35 +00001953 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001954 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03001955 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00001956
Gilles Peskine449bd832023-01-11 14:50:10 +01001957 MPI_VALIDATE_RET(G != NULL);
1958 MPI_VALIDATE_RET(A != NULL);
1959 MPI_VALIDATE_RET(B != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00001960
Gilles Peskine449bd832023-01-11 14:50:10 +01001961 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00001962
Gilles Peskine449bd832023-01-11 14:50:10 +01001963 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
1964 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001965
Gilles Peskine449bd832023-01-11 14:50:10 +01001966 lz = mbedtls_mpi_lsb(&TA);
1967 lzt = mbedtls_mpi_lsb(&TB);
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001968
Gilles Peskine27253bc2021-06-09 13:26:43 +02001969 /* The loop below gives the correct result when A==0 but not when B==0.
1970 * So have a special case for B==0. Leverage the fact that we just
1971 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1972 * slightly more efficient than cmp_int(). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001973 if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
1974 ret = mbedtls_mpi_copy(G, A);
Gilles Peskine27253bc2021-06-09 13:26:43 +02001975 goto cleanup;
1976 }
1977
Gilles Peskine449bd832023-01-11 14:50:10 +01001978 if (lzt < lz) {
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001979 lz = lzt;
Gilles Peskine449bd832023-01-11 14:50:10 +01001980 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001981
Paul Bakker5121ce52009-01-03 21:22:43 +00001982 TA.s = TB.s = 1;
1983
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001984 /* We mostly follow the procedure described in HAC 14.54, but with some
1985 * minor differences:
1986 * - Sequences of multiplications or divisions by 2 are grouped into a
1987 * single shift operation.
Gilles Peskineb09c7ee2021-06-21 18:58:39 +02001988 * - The procedure in HAC assumes that 0 < TB <= TA.
1989 * - The condition TB <= TA is not actually necessary for correctness.
1990 * TA and TB have symmetric roles except for the loop termination
1991 * condition, and the shifts at the beginning of the loop body
1992 * remove any significance from the ordering of TA vs TB before
1993 * the shifts.
1994 * - If TA = 0, the loop goes through 0 iterations and the result is
1995 * correctly TB.
1996 * - The case TB = 0 was short-circuited above.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001997 *
1998 * For the correctness proof below, decompose the original values of
1999 * A and B as
2000 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
2001 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
2002 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
2003 * and gcd(A',B') is odd or 0.
2004 *
2005 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
2006 * The code maintains the following invariant:
2007 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine4df3f1f2021-06-15 22:09:39 +02002008 */
2009
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002010 /* Proof that the loop terminates:
2011 * At each iteration, either the right-shift by 1 is made on a nonzero
2012 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
2013 * by at least 1, or the right-shift by 1 is made on zero and then
2014 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
2015 * since in that case TB is calculated from TB-TA with the condition TB>TA).
2016 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002017 while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002018 /* Divisions by 2 preserve the invariant (I). */
Gilles Peskine449bd832023-01-11 14:50:10 +01002019 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
2020 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
Paul Bakker5121ce52009-01-03 21:22:43 +00002021
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002022 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
2023 * TA-TB is even so the division by 2 has an integer result.
2024 * Invariant (I) is preserved since any odd divisor of both TA and TB
2025 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case8b0ecbc2021-12-20 21:14:10 -08002026 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002027 * divides TA.
2028 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002029 if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
2030 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
2031 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
2032 } else {
2033 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
2034 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002035 }
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002036 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00002037 }
2038
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002039 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2040 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2041 * - If there was at least one loop iteration, then one of TA or TB is odd,
2042 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2043 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2044 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskine4d3fd362021-06-21 11:40:38 +02002045 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002046 */
2047
Gilles Peskine449bd832023-01-11 14:50:10 +01002048 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
2049 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
Paul Bakker5121ce52009-01-03 21:22:43 +00002050
2051cleanup:
2052
Gilles Peskine449bd832023-01-11 14:50:10 +01002053 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00002054
Gilles Peskine449bd832023-01-11 14:50:10 +01002055 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002056}
2057
Paul Bakker33dc46b2014-04-30 16:11:39 +02002058/*
2059 * Fill X with size bytes of random.
Gilles Peskine22cdd0c2022-10-27 20:15:13 +02002060 * The bytes returned from the RNG are used in a specific order which
2061 * is suitable for deterministic ECDSA (see the specification of
2062 * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
Paul Bakker33dc46b2014-04-30 16:11:39 +02002063 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002064int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
2065 int (*f_rng)(void *, unsigned char *, size_t),
2066 void *p_rng)
Paul Bakker287781a2011-03-26 13:18:49 +00002067{
Janos Follath24eed8d2019-11-22 13:21:35 +00002068 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +01002069 const size_t limbs = CHARS_TO_LIMBS(size);
Hanno Beckerda1655a2017-10-18 14:21:44 +01002070
Gilles Peskine449bd832023-01-11 14:50:10 +01002071 MPI_VALIDATE_RET(X != NULL);
2072 MPI_VALIDATE_RET(f_rng != NULL);
Paul Bakker33dc46b2014-04-30 16:11:39 +02002073
Hanno Beckerda1655a2017-10-18 14:21:44 +01002074 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +01002075 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
2076 if (size == 0) {
2077 return 0;
2078 }
Paul Bakker287781a2011-03-26 13:18:49 +00002079
Gilles Peskine449bd832023-01-11 14:50:10 +01002080 ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
Paul Bakker287781a2011-03-26 13:18:49 +00002081
2082cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002083 return ret;
Paul Bakker287781a2011-03-26 13:18:49 +00002084}
2085
Gilles Peskine449bd832023-01-11 14:50:10 +01002086int mbedtls_mpi_random(mbedtls_mpi *X,
2087 mbedtls_mpi_sint min,
2088 const mbedtls_mpi *N,
2089 int (*f_rng)(void *, unsigned char *, size_t),
2090 void *p_rng)
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002091{
Gilles Peskine449bd832023-01-11 14:50:10 +01002092 if (min < 0) {
2093 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2094 }
2095 if (mbedtls_mpi_cmp_int(N, min) <= 0) {
2096 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2097 }
Gilles Peskine1e918f42021-03-29 22:14:51 +02002098
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002099 /* Ensure that target MPI has exactly the same number of limbs
2100 * as the upper bound, even if the upper bound has leading zeros.
Gilles Peskine6b7ce962022-12-15 15:04:33 +01002101 * This is necessary for mbedtls_mpi_core_random. */
Gilles Peskine449bd832023-01-11 14:50:10 +01002102 int ret = mbedtls_mpi_resize_clear(X, N->n);
2103 if (ret != 0) {
2104 return ret;
2105 }
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002106
Gilles Peskine449bd832023-01-11 14:50:10 +01002107 return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002108}
2109
Paul Bakker5121ce52009-01-03 21:22:43 +00002110/*
2111 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2112 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002113int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00002114{
Janos Follath24eed8d2019-11-22 13:21:35 +00002115 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002116 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Gilles Peskine449bd832023-01-11 14:50:10 +01002117 MPI_VALIDATE_RET(X != NULL);
2118 MPI_VALIDATE_RET(A != NULL);
2119 MPI_VALIDATE_RET(N != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00002120
Gilles Peskine449bd832023-01-11 14:50:10 +01002121 if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
2122 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2123 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002124
Gilles Peskine449bd832023-01-11 14:50:10 +01002125 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
2126 mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
2127 mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002128
Gilles Peskine449bd832023-01-11 14:50:10 +01002129 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002130
Gilles Peskine449bd832023-01-11 14:50:10 +01002131 if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002132 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002133 goto cleanup;
2134 }
2135
Gilles Peskine449bd832023-01-11 14:50:10 +01002136 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
2137 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
2138 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
2139 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002140
Gilles Peskine449bd832023-01-11 14:50:10 +01002141 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
2142 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
2143 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
2144 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002145
Gilles Peskine449bd832023-01-11 14:50:10 +01002146 do {
2147 while ((TU.p[0] & 1) == 0) {
2148 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002149
Gilles Peskine449bd832023-01-11 14:50:10 +01002150 if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
2151 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
2152 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002153 }
2154
Gilles Peskine449bd832023-01-11 14:50:10 +01002155 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
2156 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002157 }
2158
Gilles Peskine449bd832023-01-11 14:50:10 +01002159 while ((TV.p[0] & 1) == 0) {
2160 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002161
Gilles Peskine449bd832023-01-11 14:50:10 +01002162 if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
2163 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
2164 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002165 }
2166
Gilles Peskine449bd832023-01-11 14:50:10 +01002167 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
2168 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002169 }
2170
Gilles Peskine449bd832023-01-11 14:50:10 +01002171 if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
2172 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
2173 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
2174 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
2175 } else {
2176 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
2177 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
2178 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
Paul Bakker5121ce52009-01-03 21:22:43 +00002179 }
Gilles Peskine449bd832023-01-11 14:50:10 +01002180 } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
2181
2182 while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
2183 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002184 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002185
Gilles Peskine449bd832023-01-11 14:50:10 +01002186 while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
2187 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
2188 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002189
Gilles Peskine449bd832023-01-11 14:50:10 +01002190 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002191
2192cleanup:
2193
Gilles Peskine449bd832023-01-11 14:50:10 +01002194 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
2195 mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
2196 mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002197
Gilles Peskine449bd832023-01-11 14:50:10 +01002198 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002199}
2200
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002201#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002202
Paul Bakker5121ce52009-01-03 21:22:43 +00002203static const int small_prime[] =
2204{
Gilles Peskine449bd832023-01-11 14:50:10 +01002205 3, 5, 7, 11, 13, 17, 19, 23,
2206 29, 31, 37, 41, 43, 47, 53, 59,
2207 61, 67, 71, 73, 79, 83, 89, 97,
2208 101, 103, 107, 109, 113, 127, 131, 137,
2209 139, 149, 151, 157, 163, 167, 173, 179,
2210 181, 191, 193, 197, 199, 211, 223, 227,
2211 229, 233, 239, 241, 251, 257, 263, 269,
2212 271, 277, 281, 283, 293, 307, 311, 313,
2213 317, 331, 337, 347, 349, 353, 359, 367,
2214 373, 379, 383, 389, 397, 401, 409, 419,
2215 421, 431, 433, 439, 443, 449, 457, 461,
2216 463, 467, 479, 487, 491, 499, 503, 509,
2217 521, 523, 541, 547, 557, 563, 569, 571,
2218 577, 587, 593, 599, 601, 607, 613, 617,
2219 619, 631, 641, 643, 647, 653, 659, 661,
2220 673, 677, 683, 691, 701, 709, 719, 727,
2221 733, 739, 743, 751, 757, 761, 769, 773,
2222 787, 797, 809, 811, 821, 823, 827, 829,
2223 839, 853, 857, 859, 863, 877, 881, 883,
2224 887, 907, 911, 919, 929, 937, 941, 947,
2225 953, 967, 971, 977, 983, 991, 997, -103
Paul Bakker5121ce52009-01-03 21:22:43 +00002226};
2227
2228/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002229 * Small divisors test (X must be positive)
2230 *
2231 * Return values:
2232 * 0: no small factor (possible prime, more tests needed)
2233 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002234 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002235 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002236 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002237static int mpi_check_small_factors(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +00002238{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002239 int ret = 0;
2240 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002241 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002242
Gilles Peskine449bd832023-01-11 14:50:10 +01002243 if ((X->p[0] & 1) == 0) {
2244 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2245 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002246
Gilles Peskine449bd832023-01-11 14:50:10 +01002247 for (i = 0; small_prime[i] > 0; i++) {
2248 if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) {
2249 return 1;
2250 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002251
Gilles Peskine449bd832023-01-11 14:50:10 +01002252 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i]));
Paul Bakker5121ce52009-01-03 21:22:43 +00002253
Gilles Peskine449bd832023-01-11 14:50:10 +01002254 if (r == 0) {
2255 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2256 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002257 }
2258
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002259cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002260 return ret;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002261}
2262
2263/*
2264 * Miller-Rabin pseudo-primality test (HAC 4.24)
2265 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002266static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
2267 int (*f_rng)(void *, unsigned char *, size_t),
2268 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002269{
Pascal Junodb99183d2015-03-11 16:49:45 +01002270 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002271 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002272 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002273
Gilles Peskine449bd832023-01-11 14:50:10 +01002274 MPI_VALIDATE_RET(X != NULL);
2275 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002276
Gilles Peskine449bd832023-01-11 14:50:10 +01002277 mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
2278 mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
2279 mbedtls_mpi_init(&RR);
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002280
Paul Bakker5121ce52009-01-03 21:22:43 +00002281 /*
2282 * W = |X| - 1
2283 * R = W >> lsb( W )
2284 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002285 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
2286 s = mbedtls_mpi_lsb(&W);
2287 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
2288 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
Paul Bakker5121ce52009-01-03 21:22:43 +00002289
Gilles Peskine449bd832023-01-11 14:50:10 +01002290 for (i = 0; i < rounds; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002291 /*
2292 * pick a random A, 1 < A < |X| - 1
2293 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002294 count = 0;
2295 do {
Gilles Peskine449bd832023-01-11 14:50:10 +01002296 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
Pascal Junodb99183d2015-03-11 16:49:45 +01002297
Gilles Peskine449bd832023-01-11 14:50:10 +01002298 j = mbedtls_mpi_bitlen(&A);
2299 k = mbedtls_mpi_bitlen(&W);
Pascal Junodb99183d2015-03-11 16:49:45 +01002300 if (j > k) {
Gilles Peskine449bd832023-01-11 14:50:10 +01002301 A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002302 }
2303
2304 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002305 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2306 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002307 }
2308
Gilles Peskine449bd832023-01-11 14:50:10 +01002309 } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
2310 mbedtls_mpi_cmp_int(&A, 1) <= 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00002311
2312 /*
2313 * A = A^R mod |X|
2314 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002315 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
Paul Bakker5121ce52009-01-03 21:22:43 +00002316
Gilles Peskine449bd832023-01-11 14:50:10 +01002317 if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
2318 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002319 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +01002320 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002321
2322 j = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01002323 while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002324 /*
2325 * A = A * A mod |X|
2326 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002327 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
2328 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
Paul Bakker5121ce52009-01-03 21:22:43 +00002329
Gilles Peskine449bd832023-01-11 14:50:10 +01002330 if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002331 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01002332 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002333
2334 j++;
2335 }
2336
2337 /*
2338 * not prime if A != |X| - 1 or A == 1
2339 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002340 if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
2341 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002342 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002343 break;
2344 }
2345 }
2346
2347cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002348 mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
2349 mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
2350 mbedtls_mpi_free(&RR);
Paul Bakker5121ce52009-01-03 21:22:43 +00002351
Gilles Peskine449bd832023-01-11 14:50:10 +01002352 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002353}
2354
2355/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002356 * Pseudo-primality test: small factors, then Miller-Rabin
2357 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002358int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
2359 int (*f_rng)(void *, unsigned char *, size_t),
2360 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002361{
Janos Follath24eed8d2019-11-22 13:21:35 +00002362 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002363 mbedtls_mpi XX;
Gilles Peskine449bd832023-01-11 14:50:10 +01002364 MPI_VALIDATE_RET(X != NULL);
2365 MPI_VALIDATE_RET(f_rng != NULL);
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002366
2367 XX.s = 1;
2368 XX.n = X->n;
2369 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002370
Gilles Peskine449bd832023-01-11 14:50:10 +01002371 if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
2372 mbedtls_mpi_cmp_int(&XX, 1) == 0) {
2373 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002374 }
2375
Gilles Peskine449bd832023-01-11 14:50:10 +01002376 if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
2377 return 0;
2378 }
2379
2380 if ((ret = mpi_check_small_factors(&XX)) != 0) {
2381 if (ret == 1) {
2382 return 0;
2383 }
2384
2385 return ret;
2386 }
2387
2388 return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
Janos Follathf301d232018-08-14 13:34:01 +01002389}
2390
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002391/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002392 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002393 *
Janos Follathf301d232018-08-14 13:34:01 +01002394 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2395 * be either 1024 bits or 1536 bits long, and flags must contain
2396 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002397 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002398int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
2399 int (*f_rng)(void *, unsigned char *, size_t),
2400 void *p_rng)
Paul Bakker5121ce52009-01-03 21:22:43 +00002401{
Jethro Beekman66689272018-02-14 19:24:10 -08002402#ifdef MBEDTLS_HAVE_INT64
2403// ceil(2^63.5)
2404#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2405#else
2406// ceil(2^31.5)
2407#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2408#endif
2409 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002410 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002411 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002412 mbedtls_mpi_uint r;
2413 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002414
Gilles Peskine449bd832023-01-11 14:50:10 +01002415 MPI_VALIDATE_RET(X != NULL);
2416 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002417
Gilles Peskine449bd832023-01-11 14:50:10 +01002418 if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
2419 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2420 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002421
Gilles Peskine449bd832023-01-11 14:50:10 +01002422 mbedtls_mpi_init(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00002423
Gilles Peskine449bd832023-01-11 14:50:10 +01002424 n = BITS_TO_LIMBS(nbits);
Paul Bakker5121ce52009-01-03 21:22:43 +00002425
Gilles Peskine449bd832023-01-11 14:50:10 +01002426 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
Janos Follathda31fa12018-09-03 14:45:23 +01002427 /*
2428 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2429 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002430 rounds = ((nbits >= 1300) ? 2 : (nbits >= 850) ? 3 :
2431 (nbits >= 650) ? 4 : (nbits >= 350) ? 8 :
2432 (nbits >= 250) ? 12 : (nbits >= 150) ? 18 : 27);
2433 } else {
Janos Follathda31fa12018-09-03 14:45:23 +01002434 /*
2435 * 2^-100 error probability, number of rounds computed based on HAC,
2436 * fact 4.48
2437 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002438 rounds = ((nbits >= 1450) ? 4 : (nbits >= 1150) ? 5 :
2439 (nbits >= 1000) ? 6 : (nbits >= 850) ? 7 :
2440 (nbits >= 750) ? 8 : (nbits >= 500) ? 13 :
2441 (nbits >= 250) ? 28 : (nbits >= 150) ? 40 : 51);
Janos Follathda31fa12018-09-03 14:45:23 +01002442 }
2443
Gilles Peskine449bd832023-01-11 14:50:10 +01002444 while (1) {
2445 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
Jethro Beekman66689272018-02-14 19:24:10 -08002446 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
Gilles Peskine449bd832023-01-11 14:50:10 +01002447 if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
2448 continue;
2449 }
Jethro Beekman66689272018-02-14 19:24:10 -08002450
2451 k = n * biL;
Gilles Peskine449bd832023-01-11 14:50:10 +01002452 if (k > nbits) {
2453 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
2454 }
Jethro Beekman66689272018-02-14 19:24:10 -08002455 X->p[0] |= 1;
2456
Gilles Peskine449bd832023-01-11 14:50:10 +01002457 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
2458 ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
Jethro Beekman66689272018-02-14 19:24:10 -08002459
Gilles Peskine449bd832023-01-11 14:50:10 +01002460 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002461 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002462 }
2463 } else {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002464 /*
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01002465 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002466 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2467 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002468 */
Jethro Beekman66689272018-02-14 19:24:10 -08002469
2470 X->p[0] |= 2;
2471
Gilles Peskine449bd832023-01-11 14:50:10 +01002472 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
2473 if (r == 0) {
2474 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
2475 } else if (r == 1) {
2476 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
2477 }
Jethro Beekman66689272018-02-14 19:24:10 -08002478
2479 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
Gilles Peskine449bd832023-01-11 14:50:10 +01002480 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
2481 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
Jethro Beekman66689272018-02-14 19:24:10 -08002482
Gilles Peskine449bd832023-01-11 14:50:10 +01002483 while (1) {
Jethro Beekman66689272018-02-14 19:24:10 -08002484 /*
2485 * First, check small factors for X and Y
2486 * before doing Miller-Rabin on any of them
2487 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002488 if ((ret = mpi_check_small_factors(X)) == 0 &&
2489 (ret = mpi_check_small_factors(&Y)) == 0 &&
2490 (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
2491 == 0 &&
2492 (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
2493 == 0) {
Jethro Beekman66689272018-02-14 19:24:10 -08002494 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002495 }
Jethro Beekman66689272018-02-14 19:24:10 -08002496
Gilles Peskine449bd832023-01-11 14:50:10 +01002497 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Jethro Beekman66689272018-02-14 19:24:10 -08002498 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002499 }
Jethro Beekman66689272018-02-14 19:24:10 -08002500
2501 /*
2502 * Next candidates. We want to preserve Y = (X-1) / 2 and
2503 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2504 * so up Y by 6 and X by 12.
2505 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002506 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 12));
2507 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
Paul Bakker5121ce52009-01-03 21:22:43 +00002508 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002509 }
2510 }
2511
2512cleanup:
2513
Gilles Peskine449bd832023-01-11 14:50:10 +01002514 mbedtls_mpi_free(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00002515
Gilles Peskine449bd832023-01-11 14:50:10 +01002516 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002517}
2518
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002519#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002520
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002521#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002522
Paul Bakker23986e52011-04-24 08:57:21 +00002523#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002524
2525static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2526{
2527 { 693, 609, 21 },
2528 { 1764, 868, 28 },
2529 { 768454923, 542167814, 1 }
2530};
2531
Paul Bakker5121ce52009-01-03 21:22:43 +00002532/*
2533 * Checkup routine
2534 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002535int mbedtls_mpi_self_test(int verbose)
Paul Bakker5121ce52009-01-03 21:22:43 +00002536{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002537 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002538 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002539
Gilles Peskine449bd832023-01-11 14:50:10 +01002540 mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
2541 mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00002542
Gilles Peskine449bd832023-01-11 14:50:10 +01002543 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
2544 "EFE021C2645FD1DC586E69184AF4A31E" \
2545 "D5F53E93B5F123FA41680867BA110131" \
2546 "944FE7952E2517337780CB0DB80E61AA" \
2547 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002548
Gilles Peskine449bd832023-01-11 14:50:10 +01002549 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
2550 "B2E7EFD37075B9F03FF989C7C5051C20" \
2551 "34D2A323810251127E7BF8625A4F49A5" \
2552 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2553 "5B5C25763222FEFCCFC38B832366C29E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002554
Gilles Peskine449bd832023-01-11 14:50:10 +01002555 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
2556 "0066A198186C18C10B2F5ED9B522752A" \
2557 "9830B69916E535C8F047518A889A43A5" \
2558 "94B6BED27A168D31D4A52F88925AA8F5"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002559
Gilles Peskine449bd832023-01-11 14:50:10 +01002560 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002561
Gilles Peskine449bd832023-01-11 14:50:10 +01002562 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2563 "602AB7ECA597A3D6B56FF9829A5E8B85" \
2564 "9E857EA95A03512E2BAE7391688D264A" \
2565 "A5663B0341DB9CCFD2C4C5F421FEC814" \
2566 "8001B72E848A38CAE1C65F78E56ABDEF" \
2567 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2568 "ECF677152EF804370C1A305CAF3B5BF1" \
2569 "30879B56C61DE584A0F53A2447A51E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002570
Gilles Peskine449bd832023-01-11 14:50:10 +01002571 if (verbose != 0) {
2572 mbedtls_printf(" MPI test #1 (mul_mpi): ");
2573 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002574
Gilles Peskine449bd832023-01-11 14:50:10 +01002575 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2576 if (verbose != 0) {
2577 mbedtls_printf("failed\n");
2578 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002579
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002580 ret = 1;
2581 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002582 }
2583
Gilles Peskine449bd832023-01-11 14:50:10 +01002584 if (verbose != 0) {
2585 mbedtls_printf("passed\n");
2586 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002587
Gilles Peskine449bd832023-01-11 14:50:10 +01002588 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002589
Gilles Peskine449bd832023-01-11 14:50:10 +01002590 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2591 "256567336059E52CAE22925474705F39A94"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002592
Gilles Peskine449bd832023-01-11 14:50:10 +01002593 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
2594 "6613F26162223DF488E9CD48CC132C7A" \
2595 "0AC93C701B001B092E4E5B9F73BCD27B" \
2596 "9EE50D0657C77F374E903CDFA4C642"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002597
Gilles Peskine449bd832023-01-11 14:50:10 +01002598 if (verbose != 0) {
2599 mbedtls_printf(" MPI test #2 (div_mpi): ");
2600 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002601
Gilles Peskine449bd832023-01-11 14:50:10 +01002602 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
2603 mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
2604 if (verbose != 0) {
2605 mbedtls_printf("failed\n");
2606 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002607
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002608 ret = 1;
2609 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002610 }
2611
Gilles Peskine449bd832023-01-11 14:50:10 +01002612 if (verbose != 0) {
2613 mbedtls_printf("passed\n");
2614 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002615
Gilles Peskine449bd832023-01-11 14:50:10 +01002616 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
Paul Bakker5121ce52009-01-03 21:22:43 +00002617
Gilles Peskine449bd832023-01-11 14:50:10 +01002618 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2619 "36E139AEA55215609D2816998ED020BB" \
2620 "BD96C37890F65171D948E9BC7CBAA4D9" \
2621 "325D24D6A3C12710F10A09FA08AB87"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002622
Gilles Peskine449bd832023-01-11 14:50:10 +01002623 if (verbose != 0) {
2624 mbedtls_printf(" MPI test #3 (exp_mod): ");
2625 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002626
Gilles Peskine449bd832023-01-11 14:50:10 +01002627 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2628 if (verbose != 0) {
2629 mbedtls_printf("failed\n");
2630 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002631
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002632 ret = 1;
2633 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002634 }
2635
Gilles Peskine449bd832023-01-11 14:50:10 +01002636 if (verbose != 0) {
2637 mbedtls_printf("passed\n");
2638 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002639
Gilles Peskine449bd832023-01-11 14:50:10 +01002640 MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002641
Gilles Peskine449bd832023-01-11 14:50:10 +01002642 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2643 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2644 "C3DBA76456363A10869622EAC2DD84EC" \
2645 "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002646
Gilles Peskine449bd832023-01-11 14:50:10 +01002647 if (verbose != 0) {
2648 mbedtls_printf(" MPI test #4 (inv_mod): ");
2649 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002650
Gilles Peskine449bd832023-01-11 14:50:10 +01002651 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2652 if (verbose != 0) {
2653 mbedtls_printf("failed\n");
2654 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002655
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002656 ret = 1;
2657 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002658 }
2659
Gilles Peskine449bd832023-01-11 14:50:10 +01002660 if (verbose != 0) {
2661 mbedtls_printf("passed\n");
2662 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002663
Gilles Peskine449bd832023-01-11 14:50:10 +01002664 if (verbose != 0) {
2665 mbedtls_printf(" MPI test #5 (simple gcd): ");
2666 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002667
Gilles Peskine449bd832023-01-11 14:50:10 +01002668 for (i = 0; i < GCD_PAIR_COUNT; i++) {
2669 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
2670 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002671
Gilles Peskine449bd832023-01-11 14:50:10 +01002672 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002673
Gilles Peskine449bd832023-01-11 14:50:10 +01002674 if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
2675 if (verbose != 0) {
2676 mbedtls_printf("failed at %d\n", i);
2677 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002678
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002679 ret = 1;
2680 goto cleanup;
2681 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002682 }
2683
Gilles Peskine449bd832023-01-11 14:50:10 +01002684 if (verbose != 0) {
2685 mbedtls_printf("passed\n");
2686 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002687
Paul Bakker5121ce52009-01-03 21:22:43 +00002688cleanup:
2689
Gilles Peskine449bd832023-01-11 14:50:10 +01002690 if (ret != 0 && verbose != 0) {
2691 mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
2692 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002693
Gilles Peskine449bd832023-01-11 14:50:10 +01002694 mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
2695 mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00002696
Gilles Peskine449bd832023-01-11 14:50:10 +01002697 if (verbose != 0) {
2698 mbedtls_printf("\n");
2699 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002700
Gilles Peskine449bd832023-01-11 14:50:10 +01002701 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002702}
2703
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002704#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00002705
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002706#endif /* MBEDTLS_BIGNUM_C */