blob: e686a1ba237234dda0a5f989b39dac9635b78df3 [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
Janos Follath4614b9a2022-07-21 15:34:47 +010041#include "bignum_core.h"
Chris Jones4c5819c2021-03-03 17:45:34 +000042#include "bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050043#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000044#include "mbedtls/error.h"
Gabor Mezei22c9a6f2021-10-20 12:09:35 +020045#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000046
Dave Rodgman351c71b2021-12-06 17:50:53 +000047#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000048#include <string.h>
49
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000050#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020051
Gilles Peskine449bd832023-01-11 14:50:10 +010052#define MPI_VALIDATE_RET(cond) \
53 MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
54#define MPI_VALIDATE(cond) \
55 MBEDTLS_INTERNAL_VALIDATE(cond)
Gabor Mezei66669142022-08-03 12:52:26 +020056
Gilles Peskine449bd832023-01-11 14:50:10 +010057#define MPI_SIZE_T_MAX ((size_t) -1) /* SIZE_T_MAX is not standard */
Manuel Pégourié-Gonnard2d708342015-10-05 15:23:11 +010058
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050059/* Implementation that should never be optimized out by the compiler */
Gilles Peskine449bd832023-01-11 14:50:10 +010060static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n)
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050061{
Gilles Peskine449bd832023-01-11 14:50:10 +010062 mbedtls_platform_zeroize(v, ciL * n);
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050063}
64
Paul Bakker5121ce52009-01-03 21:22:43 +000065/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000066 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000067 */
Gilles Peskine449bd832023-01-11 14:50:10 +010068void mbedtls_mpi_init(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000069{
Gilles Peskine449bd832023-01-11 14:50:10 +010070 MPI_VALIDATE(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +000071
Paul Bakker6c591fa2011-05-05 11:49:20 +000072 X->s = 1;
73 X->n = 0;
74 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000075}
76
77/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000078 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000079 */
Gilles Peskine449bd832023-01-11 14:50:10 +010080void mbedtls_mpi_free(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000081{
Gilles Peskine449bd832023-01-11 14:50:10 +010082 if (X == NULL) {
Paul Bakker6c591fa2011-05-05 11:49:20 +000083 return;
Gilles Peskine449bd832023-01-11 14:50:10 +010084 }
Paul Bakker5121ce52009-01-03 21:22:43 +000085
Gilles Peskine449bd832023-01-11 14:50:10 +010086 if (X->p != NULL) {
87 mbedtls_mpi_zeroize(X->p, X->n);
88 mbedtls_free(X->p);
Paul Bakker5121ce52009-01-03 21:22:43 +000089 }
90
Paul Bakker6c591fa2011-05-05 11:49:20 +000091 X->s = 1;
92 X->n = 0;
93 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000094}
95
96/*
97 * Enlarge to the specified number of limbs
98 */
Gilles Peskine449bd832023-01-11 14:50:10 +010099int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
Paul Bakker5121ce52009-01-03 21:22:43 +0000100{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200101 mbedtls_mpi_uint *p;
Gilles Peskine449bd832023-01-11 14:50:10 +0100102 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000103
Gilles Peskine449bd832023-01-11 14:50:10 +0100104 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
105 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
106 }
Paul Bakkerf9688572011-05-05 10:00:45 +0000107
Gilles Peskine449bd832023-01-11 14:50:10 +0100108 if (X->n < nblimbs) {
109 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
110 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
111 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000112
Gilles Peskine449bd832023-01-11 14:50:10 +0100113 if (X->p != NULL) {
114 memcpy(p, X->p, X->n * ciL);
115 mbedtls_mpi_zeroize(X->p, X->n);
116 mbedtls_free(X->p);
Paul Bakker5121ce52009-01-03 21:22:43 +0000117 }
118
119 X->n = nblimbs;
120 X->p = p;
121 }
122
Gilles Peskine449bd832023-01-11 14:50:10 +0100123 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000124}
125
126/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100127 * Resize down as much as possible,
128 * while keeping at least the specified number of limbs
129 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100130int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100131{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200132 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100133 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100134 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000135
Gilles Peskine449bd832023-01-11 14:50:10 +0100136 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
137 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
138 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100139
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100140 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100141 if (X->n <= nblimbs) {
142 return mbedtls_mpi_grow(X, nblimbs);
143 }
Gilles Peskine322752b2020-01-21 13:59:51 +0100144 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100145
Gilles Peskine449bd832023-01-11 14:50:10 +0100146 for (i = X->n - 1; i > 0; i--) {
147 if (X->p[i] != 0) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100148 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100149 }
150 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100151 i++;
152
Gilles Peskine449bd832023-01-11 14:50:10 +0100153 if (i < nblimbs) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100154 i = nblimbs;
Gilles Peskine449bd832023-01-11 14:50:10 +0100155 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100156
Gilles Peskine449bd832023-01-11 14:50:10 +0100157 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
158 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
159 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100160
Gilles Peskine449bd832023-01-11 14:50:10 +0100161 if (X->p != NULL) {
162 memcpy(p, X->p, i * ciL);
163 mbedtls_mpi_zeroize(X->p, X->n);
164 mbedtls_free(X->p);
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100165 }
166
167 X->n = i;
168 X->p = p;
169
Gilles Peskine449bd832023-01-11 14:50:10 +0100170 return 0;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100171}
172
Gilles Peskineed32b572021-06-02 22:17:52 +0200173/* Resize X to have exactly n limbs and set it to 0. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100174static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
Gilles Peskineed32b572021-06-02 22:17:52 +0200175{
Gilles Peskine449bd832023-01-11 14:50:10 +0100176 if (limbs == 0) {
177 mbedtls_mpi_free(X);
178 return 0;
179 } else if (X->n == limbs) {
180 memset(X->p, 0, limbs * ciL);
Gilles Peskineed32b572021-06-02 22:17:52 +0200181 X->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100182 return 0;
183 } else {
184 mbedtls_mpi_free(X);
185 return mbedtls_mpi_grow(X, limbs);
Gilles Peskineed32b572021-06-02 22:17:52 +0200186 }
187}
188
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100189/*
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200190 * Copy the contents of Y into X.
191 *
192 * This function is not constant-time. Leading zeros in Y may be removed.
193 *
194 * Ensure that X does not shrink. This is not guaranteed by the public API,
195 * but some code in the bignum module relies on this property, for example
196 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000197 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100198int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000199{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100200 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000201 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100202 MPI_VALIDATE_RET(X != NULL);
203 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000204
Gilles Peskine449bd832023-01-11 14:50:10 +0100205 if (X == Y) {
206 return 0;
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200207 }
208
Gilles Peskine449bd832023-01-11 14:50:10 +0100209 if (Y->n == 0) {
210 if (X->n != 0) {
211 X->s = 1;
212 memset(X->p, 0, X->n * ciL);
213 }
214 return 0;
215 }
216
217 for (i = Y->n - 1; i > 0; i--) {
218 if (Y->p[i] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000219 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100220 }
221 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000222 i++;
223
224 X->s = Y->s;
225
Gilles Peskine449bd832023-01-11 14:50:10 +0100226 if (X->n < i) {
227 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
228 } else {
229 memset(X->p + i, 0, (X->n - i) * ciL);
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100230 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000231
Gilles Peskine449bd832023-01-11 14:50:10 +0100232 memcpy(X->p, Y->p, i * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000233
234cleanup:
235
Gilles Peskine449bd832023-01-11 14:50:10 +0100236 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000237}
238
239/*
240 * Swap the contents of X and Y
241 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100242void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000243{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200244 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100245 MPI_VALIDATE(X != NULL);
246 MPI_VALIDATE(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000247
Gilles Peskine449bd832023-01-11 14:50:10 +0100248 memcpy(&T, X, sizeof(mbedtls_mpi));
249 memcpy(X, Y, sizeof(mbedtls_mpi));
250 memcpy(Y, &T, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +0000251}
252
Gilles Peskine449bd832023-01-11 14:50:10 +0100253static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100254{
Gilles Peskine449bd832023-01-11 14:50:10 +0100255 if (z >= 0) {
256 return z;
257 }
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100258 /* Take care to handle the most negative value (-2^(biL-1)) correctly.
259 * A naive -z would have undefined behavior.
260 * Write this in a way that makes popular compilers happy (GCC, Clang,
261 * MSVC). */
Gilles Peskine449bd832023-01-11 14:50:10 +0100262 return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100263}
264
Paul Bakker5121ce52009-01-03 21:22:43 +0000265/*
266 * Set value from integer
267 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100268int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +0000269{
Janos Follath24eed8d2019-11-22 13:21:35 +0000270 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100271 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000272
Gilles Peskine449bd832023-01-11 14:50:10 +0100273 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
274 memset(X->p, 0, X->n * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000275
Gilles Peskine449bd832023-01-11 14:50:10 +0100276 X->p[0] = mpi_sint_abs(z);
277 X->s = (z < 0) ? -1 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000278
279cleanup:
280
Gilles Peskine449bd832023-01-11 14:50:10 +0100281 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000282}
283
284/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000285 * Get a specific bit
286 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100287int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000288{
Gilles Peskine449bd832023-01-11 14:50:10 +0100289 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000290
Gilles Peskine449bd832023-01-11 14:50:10 +0100291 if (X->n * biL <= pos) {
292 return 0;
293 }
Paul Bakker2f5947e2011-05-18 15:47:11 +0000294
Gilles Peskine449bd832023-01-11 14:50:10 +0100295 return (X->p[pos / biL] >> (pos % biL)) & 0x01;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000296}
297
298/*
299 * Set a bit to a specific value of 0 or 1
300 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100301int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000302{
303 int ret = 0;
304 size_t off = pos / biL;
305 size_t idx = pos % biL;
Gilles Peskine449bd832023-01-11 14:50:10 +0100306 MPI_VALIDATE_RET(X != NULL);
Paul Bakker2f5947e2011-05-18 15:47:11 +0000307
Gilles Peskine449bd832023-01-11 14:50:10 +0100308 if (val != 0 && val != 1) {
309 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000310 }
311
Gilles Peskine449bd832023-01-11 14:50:10 +0100312 if (X->n * biL <= pos) {
313 if (val == 0) {
314 return 0;
315 }
316
317 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
318 }
319
320 X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200321 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000322
323cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200324
Gilles Peskine449bd832023-01-11 14:50:10 +0100325 return ret;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000326}
327
328/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200329 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000330 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100331size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000332{
Paul Bakker23986e52011-04-24 08:57:21 +0000333 size_t i, j, count = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +0100334 MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000335
Gilles Peskine449bd832023-01-11 14:50:10 +0100336 for (i = 0; i < X->n; i++) {
337 for (j = 0; j < biL; j++, count++) {
338 if (((X->p[i] >> j) & 1) != 0) {
339 return count;
340 }
341 }
342 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000343
Gilles Peskine449bd832023-01-11 14:50:10 +0100344 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000345}
346
347/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200348 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000349 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100350size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000351{
Gilles Peskine449bd832023-01-11 14:50:10 +0100352 return mbedtls_mpi_core_bitlen(X->p, X->n);
Paul Bakker5121ce52009-01-03 21:22:43 +0000353}
354
355/*
356 * Return the total size in bytes
357 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100358size_t mbedtls_mpi_size(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000359{
Gilles Peskine449bd832023-01-11 14:50:10 +0100360 return (mbedtls_mpi_bitlen(X) + 7) >> 3;
Paul Bakker5121ce52009-01-03 21:22:43 +0000361}
362
363/*
364 * Convert an ASCII character to digit value
365 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100366static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
Paul Bakker5121ce52009-01-03 21:22:43 +0000367{
368 *d = 255;
369
Gilles Peskine449bd832023-01-11 14:50:10 +0100370 if (c >= 0x30 && c <= 0x39) {
371 *d = c - 0x30;
372 }
373 if (c >= 0x41 && c <= 0x46) {
374 *d = c - 0x37;
375 }
376 if (c >= 0x61 && c <= 0x66) {
377 *d = c - 0x57;
378 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000379
Gilles Peskine449bd832023-01-11 14:50:10 +0100380 if (*d >= (mbedtls_mpi_uint) radix) {
381 return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
382 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000383
Gilles Peskine449bd832023-01-11 14:50:10 +0100384 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000385}
386
387/*
388 * Import from an ASCII string
389 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100390int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
Paul Bakker5121ce52009-01-03 21:22:43 +0000391{
Janos Follath24eed8d2019-11-22 13:21:35 +0000392 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000393 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200394 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200395 mbedtls_mpi_uint d;
396 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100397 MPI_VALIDATE_RET(X != NULL);
398 MPI_VALIDATE_RET(s != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000399
Gilles Peskine449bd832023-01-11 14:50:10 +0100400 if (radix < 2 || radix > 16) {
401 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskine7cba8592021-06-08 18:32:34 +0200402 }
403
Gilles Peskine449bd832023-01-11 14:50:10 +0100404 mbedtls_mpi_init(&T);
405
406 if (s[0] == 0) {
407 mbedtls_mpi_free(X);
408 return 0;
409 }
410
411 if (s[0] == '-') {
Gilles Peskine80f56732021-04-03 18:26:13 +0200412 ++s;
413 sign = -1;
414 }
415
Gilles Peskine449bd832023-01-11 14:50:10 +0100416 slen = strlen(s);
Paul Bakkerff60ee62010-03-16 21:09:09 +0000417
Gilles Peskine449bd832023-01-11 14:50:10 +0100418 if (radix == 16) {
419 if (slen > MPI_SIZE_T_MAX >> 2) {
420 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker5121ce52009-01-03 21:22:43 +0000421 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000422
Gilles Peskine449bd832023-01-11 14:50:10 +0100423 n = BITS_TO_LIMBS(slen << 2);
424
425 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
426 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
427
428 for (i = slen, j = 0; i > 0; i--, j++) {
429 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
430 X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
431 }
432 } else {
433 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
434
435 for (i = 0; i < slen; i++) {
436 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
437 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
438 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
Paul Bakker5121ce52009-01-03 21:22:43 +0000439 }
440 }
441
Gilles Peskine449bd832023-01-11 14:50:10 +0100442 if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
Gilles Peskine80f56732021-04-03 18:26:13 +0200443 X->s = -1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100444 }
Gilles Peskine80f56732021-04-03 18:26:13 +0200445
Paul Bakker5121ce52009-01-03 21:22:43 +0000446cleanup:
447
Gilles Peskine449bd832023-01-11 14:50:10 +0100448 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000449
Gilles Peskine449bd832023-01-11 14:50:10 +0100450 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000451}
452
453/*
Ron Eldora16fa292018-11-20 14:07:01 +0200454 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000455 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100456static int mpi_write_hlp(mbedtls_mpi *X, int radix,
457 char **p, const size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000458{
Janos Follath24eed8d2019-11-22 13:21:35 +0000459 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200460 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200461 size_t length = 0;
462 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000463
Gilles Peskine449bd832023-01-11 14:50:10 +0100464 do {
465 if (length >= buflen) {
466 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Ron Eldora16fa292018-11-20 14:07:01 +0200467 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000468
Gilles Peskine449bd832023-01-11 14:50:10 +0100469 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
470 MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
Ron Eldora16fa292018-11-20 14:07:01 +0200471 /*
472 * Write the residue in the current position, as an ASCII character.
473 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100474 if (r < 0xA) {
475 *(--p_end) = (char) ('0' + r);
476 } else {
477 *(--p_end) = (char) ('A' + (r - 0xA));
478 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000479
Ron Eldora16fa292018-11-20 14:07:01 +0200480 length++;
Gilles Peskine449bd832023-01-11 14:50:10 +0100481 } while (mbedtls_mpi_cmp_int(X, 0) != 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000482
Gilles Peskine449bd832023-01-11 14:50:10 +0100483 memmove(*p, p_end, length);
Ron Eldora16fa292018-11-20 14:07:01 +0200484 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000485
486cleanup:
487
Gilles Peskine449bd832023-01-11 14:50:10 +0100488 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000489}
490
491/*
492 * Export into an ASCII string
493 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100494int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
495 char *buf, size_t buflen, size_t *olen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000496{
Paul Bakker23986e52011-04-24 08:57:21 +0000497 int ret = 0;
498 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000499 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200500 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100501 MPI_VALIDATE_RET(X != NULL);
502 MPI_VALIDATE_RET(olen != NULL);
503 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000504
Gilles Peskine449bd832023-01-11 14:50:10 +0100505 if (radix < 2 || radix > 16) {
506 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
507 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000508
Gilles Peskine449bd832023-01-11 14:50:10 +0100509 n = mbedtls_mpi_bitlen(X); /* Number of bits necessary to present `n`. */
510 if (radix >= 4) {
511 n >>= 1; /* Number of 4-adic digits necessary to present
Hanno Becker23cfea02019-02-04 09:45:07 +0000512 * `n`. If radix > 4, this might be a strict
513 * overapproximation of the number of
514 * radix-adic digits needed to present `n`. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100515 }
516 if (radix >= 16) {
517 n >>= 1; /* Number of hexadecimal digits necessary to
Hanno Becker23cfea02019-02-04 09:45:07 +0000518 * present `n`. */
519
Gilles Peskine449bd832023-01-11 14:50:10 +0100520 }
Janos Follath80470622019-03-06 13:43:02 +0000521 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000522 n += 1; /* Compensate for the divisions above, which round down `n`
523 * in case it's not even. */
524 n += 1; /* Potential '-'-sign. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100525 n += (n & 1); /* Make n even to have enough space for hexadecimal writing,
Hanno Becker23cfea02019-02-04 09:45:07 +0000526 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000527
Gilles Peskine449bd832023-01-11 14:50:10 +0100528 if (buflen < n) {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100529 *olen = n;
Gilles Peskine449bd832023-01-11 14:50:10 +0100530 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Paul Bakker5121ce52009-01-03 21:22:43 +0000531 }
532
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100533 p = buf;
Gilles Peskine449bd832023-01-11 14:50:10 +0100534 mbedtls_mpi_init(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000535
Gilles Peskine449bd832023-01-11 14:50:10 +0100536 if (X->s == -1) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000537 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000538 buflen--;
539 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000540
Gilles Peskine449bd832023-01-11 14:50:10 +0100541 if (radix == 16) {
Paul Bakker23986e52011-04-24 08:57:21 +0000542 int c;
543 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000544
Gilles Peskine449bd832023-01-11 14:50:10 +0100545 for (i = X->n, k = 0; i > 0; i--) {
546 for (j = ciL; j > 0; j--) {
547 c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000548
Gilles Peskine449bd832023-01-11 14:50:10 +0100549 if (c == 0 && k == 0 && (i + j) != 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000550 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +0100551 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000552
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000553 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000554 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000555 k = 1;
556 }
557 }
Gilles Peskine449bd832023-01-11 14:50:10 +0100558 } else {
559 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000560
Gilles Peskine449bd832023-01-11 14:50:10 +0100561 if (T.s == -1) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000562 T.s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100563 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000564
Gilles Peskine449bd832023-01-11 14:50:10 +0100565 MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
Paul Bakker5121ce52009-01-03 21:22:43 +0000566 }
567
568 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100569 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000570
571cleanup:
572
Gilles Peskine449bd832023-01-11 14:50:10 +0100573 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000574
Gilles Peskine449bd832023-01-11 14:50:10 +0100575 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000576}
577
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200578#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000579/*
580 * Read X from an opened file
581 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100582int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
Paul Bakker5121ce52009-01-03 21:22:43 +0000583{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200584 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000585 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000586 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000587 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000588 * Buffer should have space for (short) label and decimal formatted MPI,
589 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000590 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100591 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
Paul Bakker5121ce52009-01-03 21:22:43 +0000592
Gilles Peskine449bd832023-01-11 14:50:10 +0100593 MPI_VALIDATE_RET(X != NULL);
594 MPI_VALIDATE_RET(fin != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000595
Gilles Peskine449bd832023-01-11 14:50:10 +0100596 if (radix < 2 || radix > 16) {
597 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
598 }
Hanno Becker73d7d792018-12-11 10:35:51 +0000599
Gilles Peskine449bd832023-01-11 14:50:10 +0100600 memset(s, 0, sizeof(s));
601 if (fgets(s, sizeof(s) - 1, fin) == NULL) {
602 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
603 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000604
Gilles Peskine449bd832023-01-11 14:50:10 +0100605 slen = strlen(s);
606 if (slen == sizeof(s) - 2) {
607 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
608 }
Paul Bakkercb37aa52011-11-30 16:00:20 +0000609
Gilles Peskine449bd832023-01-11 14:50:10 +0100610 if (slen > 0 && s[slen - 1] == '\n') {
611 slen--; s[slen] = '\0';
612 }
613 if (slen > 0 && s[slen - 1] == '\r') {
614 slen--; s[slen] = '\0';
615 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000616
617 p = s + slen;
Gilles Peskine449bd832023-01-11 14:50:10 +0100618 while (p-- > s) {
619 if (mpi_get_digit(&d, radix, *p) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000620 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100621 }
622 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000623
Gilles Peskine449bd832023-01-11 14:50:10 +0100624 return mbedtls_mpi_read_string(X, radix, p + 1);
Paul Bakker5121ce52009-01-03 21:22:43 +0000625}
626
627/*
628 * Write X into an opened file (or stdout if fout == NULL)
629 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100630int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
Paul Bakker5121ce52009-01-03 21:22:43 +0000631{
Janos Follath24eed8d2019-11-22 13:21:35 +0000632 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000633 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000634 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000635 * Buffer should have space for (short) label and decimal formatted MPI,
636 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000637 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100638 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
639 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000640
Gilles Peskine449bd832023-01-11 14:50:10 +0100641 if (radix < 2 || radix > 16) {
642 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
643 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000644
Gilles Peskine449bd832023-01-11 14:50:10 +0100645 memset(s, 0, sizeof(s));
Paul Bakker5121ce52009-01-03 21:22:43 +0000646
Gilles Peskine449bd832023-01-11 14:50:10 +0100647 MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
Paul Bakker5121ce52009-01-03 21:22:43 +0000648
Gilles Peskine449bd832023-01-11 14:50:10 +0100649 if (p == NULL) {
650 p = "";
651 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000652
Gilles Peskine449bd832023-01-11 14:50:10 +0100653 plen = strlen(p);
654 slen = strlen(s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000655 s[slen++] = '\r';
656 s[slen++] = '\n';
657
Gilles Peskine449bd832023-01-11 14:50:10 +0100658 if (fout != NULL) {
659 if (fwrite(p, 1, plen, fout) != plen ||
660 fwrite(s, 1, slen, fout) != slen) {
661 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
662 }
663 } else {
664 mbedtls_printf("%s%s", p, s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000665 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000666
667cleanup:
668
Gilles Peskine449bd832023-01-11 14:50:10 +0100669 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000670}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200671#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000672
673/*
Janos Follatha778a942019-02-13 10:28:28 +0000674 * Import X from unsigned binary data, little endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100675 *
676 * This function is guaranteed to return an MPI with exactly the necessary
677 * number of limbs (in particular, it does not skip 0s in the input).
Janos Follatha778a942019-02-13 10:28:28 +0000678 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100679int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
680 const unsigned char *buf, size_t buflen)
Janos Follatha778a942019-02-13 10:28:28 +0000681{
Janos Follath24eed8d2019-11-22 13:21:35 +0000682 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100683 const size_t limbs = CHARS_TO_LIMBS(buflen);
Janos Follatha778a942019-02-13 10:28:28 +0000684
685 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +0100686 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Janos Follatha778a942019-02-13 10:28:28 +0000687
Gilles Peskine449bd832023-01-11 14:50:10 +0100688 MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
Janos Follatha778a942019-02-13 10:28:28 +0000689
690cleanup:
691
Janos Follath171a7ef2019-02-15 16:17:45 +0000692 /*
693 * This function is also used to import keys. However, wiping the buffers
694 * upon failure is not necessary because failure only can happen before any
695 * input is copied.
696 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100697 return ret;
Janos Follatha778a942019-02-13 10:28:28 +0000698}
699
700/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000701 * Import X from unsigned binary data, big endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100702 *
703 * This function is guaranteed to return an MPI with exactly the necessary
704 * number of limbs (in particular, it does not skip 0s in the input).
Paul Bakker5121ce52009-01-03 21:22:43 +0000705 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100706int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000707{
Janos Follath24eed8d2019-11-22 13:21:35 +0000708 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100709 const size_t limbs = CHARS_TO_LIMBS(buflen);
Paul Bakker5121ce52009-01-03 21:22:43 +0000710
Gilles Peskine449bd832023-01-11 14:50:10 +0100711 MPI_VALIDATE_RET(X != NULL);
712 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000713
Hanno Becker073c1992017-10-17 15:17:27 +0100714 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +0100715 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Paul Bakker5121ce52009-01-03 21:22:43 +0000716
Gilles Peskine449bd832023-01-11 14:50:10 +0100717 MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
Paul Bakker5121ce52009-01-03 21:22:43 +0000718
719cleanup:
720
Janos Follath171a7ef2019-02-15 16:17:45 +0000721 /*
722 * This function is also used to import keys. However, wiping the buffers
723 * upon failure is not necessary because failure only can happen before any
724 * input is copied.
725 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100726 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000727}
728
729/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000730 * Export X into unsigned binary data, little endian
731 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100732int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
733 unsigned char *buf, size_t buflen)
Janos Follathe344d0f2019-02-19 16:17:40 +0000734{
Gilles Peskine449bd832023-01-11 14:50:10 +0100735 return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
Janos Follathe344d0f2019-02-19 16:17:40 +0000736}
737
738/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000739 * Export X into unsigned binary data, big endian
740 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100741int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
742 unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000743{
Gilles Peskine449bd832023-01-11 14:50:10 +0100744 return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
Paul Bakker5121ce52009-01-03 21:22:43 +0000745}
746
747/*
748 * Left-shift: X <<= count
749 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100750int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000751{
Janos Follath24eed8d2019-11-22 13:21:35 +0000752 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Minos Galanakis0144b352023-05-02 14:02:32 +0100753 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100754 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000755
Gilles Peskine449bd832023-01-11 14:50:10 +0100756 i = mbedtls_mpi_bitlen(X) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000757
Gilles Peskine449bd832023-01-11 14:50:10 +0100758 if (X->n * biL < i) {
759 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
760 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000761
762 ret = 0;
763
Minos Galanakis0144b352023-05-02 14:02:32 +0100764 mbedtls_mpi_core_shift_l(X->p, X->n, count);
Paul Bakker5121ce52009-01-03 21:22:43 +0000765cleanup:
766
Gilles Peskine449bd832023-01-11 14:50:10 +0100767 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000768}
769
770/*
771 * Right-shift: X >>= count
772 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100773int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000774{
Gilles Peskine449bd832023-01-11 14:50:10 +0100775 MPI_VALIDATE_RET(X != NULL);
776 if (X->n != 0) {
777 mbedtls_mpi_core_shift_r(X->p, X->n, count);
778 }
779 return 0;
Gilles Peskine66414202022-09-21 15:36:16 +0200780}
781
Paul Bakker5121ce52009-01-03 21:22:43 +0000782/*
783 * Compare unsigned values
784 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100785int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000786{
Paul Bakker23986e52011-04-24 08:57:21 +0000787 size_t i, j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100788 MPI_VALIDATE_RET(X != NULL);
789 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000790
Gilles Peskine449bd832023-01-11 14:50:10 +0100791 for (i = X->n; i > 0; i--) {
792 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000793 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100794 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000795 }
796
Gilles Peskine449bd832023-01-11 14:50:10 +0100797 for (j = Y->n; j > 0; j--) {
798 if (Y->p[j - 1] != 0) {
799 break;
800 }
801 }
802
803 if (i == 0 && j == 0) {
804 return 0;
805 }
806
807 if (i > j) {
808 return 1;
809 }
810 if (j > i) {
811 return -1;
812 }
813
814 for (; i > 0; i--) {
815 if (X->p[i - 1] > Y->p[i - 1]) {
816 return 1;
817 }
818 if (X->p[i - 1] < Y->p[i - 1]) {
819 return -1;
820 }
821 }
822
823 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000824}
825
826/*
827 * Compare signed values
828 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100829int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000830{
Paul Bakker23986e52011-04-24 08:57:21 +0000831 size_t i, j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100832 MPI_VALIDATE_RET(X != NULL);
833 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000834
Gilles Peskine449bd832023-01-11 14:50:10 +0100835 for (i = X->n; i > 0; i--) {
836 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000837 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100838 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000839 }
840
Gilles Peskine449bd832023-01-11 14:50:10 +0100841 for (j = Y->n; j > 0; j--) {
842 if (Y->p[j - 1] != 0) {
843 break;
844 }
845 }
846
847 if (i == 0 && j == 0) {
848 return 0;
849 }
850
851 if (i > j) {
852 return X->s;
853 }
854 if (j > i) {
855 return -Y->s;
856 }
857
858 if (X->s > 0 && Y->s < 0) {
859 return 1;
860 }
861 if (Y->s > 0 && X->s < 0) {
862 return -1;
863 }
864
865 for (; i > 0; i--) {
866 if (X->p[i - 1] > Y->p[i - 1]) {
867 return X->s;
868 }
869 if (X->p[i - 1] < Y->p[i - 1]) {
870 return -X->s;
871 }
872 }
873
874 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000875}
876
Janos Follathee6abce2019-09-05 14:47:19 +0100877/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000878 * Compare signed values
879 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100880int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +0000881{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200882 mbedtls_mpi Y;
883 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +0100884 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000885
Gilles Peskine449bd832023-01-11 14:50:10 +0100886 *p = mpi_sint_abs(z);
887 Y.s = (z < 0) ? -1 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000888 Y.n = 1;
889 Y.p = p;
890
Gilles Peskine449bd832023-01-11 14:50:10 +0100891 return mbedtls_mpi_cmp_mpi(X, &Y);
Paul Bakker5121ce52009-01-03 21:22:43 +0000892}
893
894/*
895 * Unsigned addition: X = |A| + |B| (HAC 14.7)
896 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100897int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +0000898{
Janos Follath24eed8d2019-11-22 13:21:35 +0000899 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100900 size_t j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100901 MPI_VALIDATE_RET(X != NULL);
902 MPI_VALIDATE_RET(A != NULL);
903 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000904
Gilles Peskine449bd832023-01-11 14:50:10 +0100905 if (X == B) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200906 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +0000907 }
908
Gilles Peskine449bd832023-01-11 14:50:10 +0100909 if (X != A) {
910 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
911 }
Paul Bakker9af723c2014-05-01 13:03:14 +0200912
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000913 /*
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100914 * X must always be positive as a result of unsigned additions.
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000915 */
916 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000917
Gilles Peskine449bd832023-01-11 14:50:10 +0100918 for (j = B->n; j > 0; j--) {
919 if (B->p[j - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000920 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100921 }
922 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000923
Gilles Peskinedb14a9d2022-11-15 22:59:00 +0100924 /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
925 * and B is 0 (of any size). */
Gilles Peskine449bd832023-01-11 14:50:10 +0100926 if (j == 0) {
927 return 0;
928 }
Gilles Peskinedb14a9d2022-11-15 22:59:00 +0100929
Gilles Peskine449bd832023-01-11 14:50:10 +0100930 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
Paul Bakker5121ce52009-01-03 21:22:43 +0000931
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100932 /* j is the number of non-zero limbs of B. Add those to X. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000933
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100934 mbedtls_mpi_uint *p = X->p;
935
Gilles Peskine449bd832023-01-11 14:50:10 +0100936 mbedtls_mpi_uint c = mbedtls_mpi_core_add(p, p, B->p, j);
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100937
938 p += j;
939
940 /* Now propagate any carry */
Paul Bakker5121ce52009-01-03 21:22:43 +0000941
Gilles Peskine449bd832023-01-11 14:50:10 +0100942 while (c != 0) {
943 if (j >= X->n) {
944 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100945 p = X->p + j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000946 }
947
Gilles Peskine449bd832023-01-11 14:50:10 +0100948 *p += c; c = (*p < c); j++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +0000949 }
950
951cleanup:
952
Gilles Peskine449bd832023-01-11 14:50:10 +0100953 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000954}
955
Paul Bakker5121ce52009-01-03 21:22:43 +0000956/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200957 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +0000958 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100959int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +0000960{
Janos Follath24eed8d2019-11-22 13:21:35 +0000961 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000962 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200963 mbedtls_mpi_uint carry;
Gilles Peskine449bd832023-01-11 14:50:10 +0100964 MPI_VALIDATE_RET(X != NULL);
965 MPI_VALIDATE_RET(A != NULL);
966 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000967
Gilles Peskine449bd832023-01-11 14:50:10 +0100968 for (n = B->n; n > 0; n--) {
969 if (B->p[n - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000970 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100971 }
972 }
973 if (n > A->n) {
Gilles Peskinec8a91772021-01-27 22:30:43 +0100974 /* B >= (2^ciL)^n > A */
975 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
976 goto cleanup;
977 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000978
Gilles Peskine449bd832023-01-11 14:50:10 +0100979 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200980
981 /* Set the high limbs of X to match A. Don't touch the lower limbs
982 * because X might be aliased to B, and we must not overwrite the
983 * significant digits of B. */
Aaron M. Uckoaf67d2c2023-01-17 11:52:22 -0500984 if (A->n > n && A != X) {
Gilles Peskine449bd832023-01-11 14:50:10 +0100985 memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
986 }
987 if (X->n > A->n) {
988 memset(X->p + A->n, 0, (X->n - A->n) * ciL);
989 }
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200990
Gilles Peskine449bd832023-01-11 14:50:10 +0100991 carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
992 if (carry != 0) {
Tom Cosgrove452c99c2022-08-25 10:07:07 +0100993 /* Propagate the carry through the rest of X. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100994 carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
Tom Cosgrove452c99c2022-08-25 10:07:07 +0100995
996 /* If we have further carry/borrow, the result is negative. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100997 if (carry != 0) {
Gilles Peskine89b41302020-07-23 01:16:46 +0200998 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
999 goto cleanup;
1000 }
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001001 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001002
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001003 /* X should always be positive as a result of unsigned subtractions. */
1004 X->s = 1;
1005
Paul Bakker5121ce52009-01-03 21:22:43 +00001006cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001007 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001008}
1009
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001010/* Common function for signed addition and subtraction.
1011 * Calculate A + B * flip_B where flip_B is 1 or -1.
Paul Bakker5121ce52009-01-03 21:22:43 +00001012 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001013static int add_sub_mpi(mbedtls_mpi *X,
1014 const mbedtls_mpi *A, const mbedtls_mpi *B,
1015 int flip_B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001016{
Hanno Becker73d7d792018-12-11 10:35:51 +00001017 int ret, s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001018 MPI_VALIDATE_RET(X != NULL);
1019 MPI_VALIDATE_RET(A != NULL);
1020 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001021
Hanno Becker73d7d792018-12-11 10:35:51 +00001022 s = A->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001023 if (A->s * B->s * flip_B < 0) {
1024 int cmp = mbedtls_mpi_cmp_abs(A, B);
1025 if (cmp >= 0) {
1026 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
Gilles Peskine4a768dd2022-11-09 22:02:16 +01001027 /* If |A| = |B|, the result is 0 and we must set the sign bit
1028 * to +1 regardless of which of A or B was negative. Otherwise,
1029 * since |A| > |B|, the sign is the sign of A. */
1030 X->s = cmp == 0 ? 1 : s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001031 } else {
1032 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
Gilles Peskine4a768dd2022-11-09 22:02:16 +01001033 /* Since |A| < |B|, the sign is the opposite of A. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001034 X->s = -s;
1035 }
Gilles Peskine449bd832023-01-11 14:50:10 +01001036 } else {
1037 MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001038 X->s = s;
1039 }
1040
1041cleanup:
1042
Gilles Peskine449bd832023-01-11 14:50:10 +01001043 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001044}
1045
1046/*
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001047 * Signed addition: X = A + B
1048 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001049int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001050{
Gilles Peskine449bd832023-01-11 14:50:10 +01001051 return add_sub_mpi(X, A, B, 1);
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001052}
1053
1054/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001055 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001056 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001057int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001058{
Gilles Peskine449bd832023-01-11 14:50:10 +01001059 return add_sub_mpi(X, A, B, -1);
Paul Bakker5121ce52009-01-03 21:22:43 +00001060}
1061
1062/*
1063 * Signed addition: X = A + b
1064 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001065int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001066{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001067 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001068 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001069 MPI_VALIDATE_RET(X != NULL);
1070 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001071
Gilles Peskine449bd832023-01-11 14:50:10 +01001072 p[0] = mpi_sint_abs(b);
1073 B.s = (b < 0) ? -1 : 1;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001074 B.n = 1;
1075 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001076
Gilles Peskine449bd832023-01-11 14:50:10 +01001077 return mbedtls_mpi_add_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001078}
1079
1080/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001081 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001082 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001083int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001084{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001085 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001086 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001087 MPI_VALIDATE_RET(X != NULL);
1088 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001089
Gilles Peskine449bd832023-01-11 14:50:10 +01001090 p[0] = mpi_sint_abs(b);
1091 B.s = (b < 0) ? -1 : 1;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001092 B.n = 1;
1093 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001094
Gilles Peskine449bd832023-01-11 14:50:10 +01001095 return mbedtls_mpi_sub_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001096}
1097
Paul Bakker5121ce52009-01-03 21:22:43 +00001098/*
1099 * Baseline multiplication: X = A * B (HAC 14.12)
1100 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001101int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001102{
Janos Follath24eed8d2019-11-22 13:21:35 +00001103 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker1772e052022-04-13 06:51:40 +01001104 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001105 mbedtls_mpi TA, TB;
Hanno Beckerda763de2022-04-13 06:50:02 +01001106 int result_is_zero = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001107 MPI_VALIDATE_RET(X != NULL);
1108 MPI_VALIDATE_RET(A != NULL);
1109 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001110
Tom Cosgrove6af26f32022-08-24 16:40:55 +01001111 mbedtls_mpi_init(&TA);
1112 mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00001113
Gilles Peskine449bd832023-01-11 14:50:10 +01001114 if (X == A) {
1115 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
1116 }
1117 if (X == B) {
1118 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
1119 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001120
Gilles Peskine449bd832023-01-11 14:50:10 +01001121 for (i = A->n; i > 0; i--) {
1122 if (A->p[i - 1] != 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001123 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001124 }
1125 }
1126 if (i == 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001127 result_is_zero = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001128 }
Hanno Beckerda763de2022-04-13 06:50:02 +01001129
Gilles Peskine449bd832023-01-11 14:50:10 +01001130 for (j = B->n; j > 0; j--) {
1131 if (B->p[j - 1] != 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001132 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001133 }
1134 }
1135 if (j == 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001136 result_is_zero = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001137 }
Hanno Beckerda763de2022-04-13 06:50:02 +01001138
Gilles Peskine449bd832023-01-11 14:50:10 +01001139 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
1140 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
Paul Bakker5121ce52009-01-03 21:22:43 +00001141
Tom Cosgrove6af26f32022-08-24 16:40:55 +01001142 mbedtls_mpi_core_mul(X->p, A->p, i, B->p, j);
Paul Bakker5121ce52009-01-03 21:22:43 +00001143
Hanno Beckerda763de2022-04-13 06:50:02 +01001144 /* If the result is 0, we don't shortcut the operation, which reduces
1145 * but does not eliminate side channels leaking the zero-ness. We do
1146 * need to take care to set the sign bit properly since the library does
1147 * not fully support an MPI object with a value of 0 and s == -1. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001148 if (result_is_zero) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001149 X->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001150 } else {
Hanno Beckerda763de2022-04-13 06:50:02 +01001151 X->s = A->s * B->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001152 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001153
1154cleanup:
1155
Gilles Peskine449bd832023-01-11 14:50:10 +01001156 mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
Paul Bakker5121ce52009-01-03 21:22:43 +00001157
Gilles Peskine449bd832023-01-11 14:50:10 +01001158 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001159}
1160
1161/*
1162 * Baseline multiplication: X = A * b
1163 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001164int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001165{
Gilles Peskine449bd832023-01-11 14:50:10 +01001166 MPI_VALIDATE_RET(X != NULL);
1167 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001168
Hanno Becker35771312022-04-14 11:52:11 +01001169 size_t n = A->n;
Gilles Peskine449bd832023-01-11 14:50:10 +01001170 while (n > 0 && A->p[n - 1] == 0) {
Hanno Becker35771312022-04-14 11:52:11 +01001171 --n;
Gilles Peskine449bd832023-01-11 14:50:10 +01001172 }
Hanno Becker35771312022-04-14 11:52:11 +01001173
Hanno Becker74a11a32022-04-06 06:27:00 +01001174 /* The general method below doesn't work if b==0. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001175 if (b == 0 || n == 0) {
1176 return mbedtls_mpi_lset(X, 0);
1177 }
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001178
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001179 /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001180 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001181 /* In general, A * b requires 1 limb more than b. If
1182 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1183 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001184 * copy() will take care of the growth if needed. However, experimentally,
1185 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001186 * calls to calloc() in ECP code, presumably because it reuses the
1187 * same mpi for a while and this way the mpi is more likely to directly
Hanno Becker9137b9c2022-04-12 10:51:54 +01001188 * grow to its final size.
1189 *
1190 * Note that calculating A*b as 0 + A*b doesn't work as-is because
1191 * A,X can be the same. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001192 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
1193 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1194 mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001195
1196cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001197 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001198}
1199
1200/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001201 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1202 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001203 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001204static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
1205 mbedtls_mpi_uint u0,
1206 mbedtls_mpi_uint d,
1207 mbedtls_mpi_uint *r)
Simon Butcher15b15d12015-11-26 19:35:03 +00001208{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001209#if defined(MBEDTLS_HAVE_UDBL)
1210 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001211#else
Simon Butcher9803d072016-01-03 00:24:34 +00001212 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
Gilles Peskine449bd832023-01-11 14:50:10 +01001213 const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001214 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1215 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001216 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001217#endif
1218
Simon Butcher15b15d12015-11-26 19:35:03 +00001219 /*
1220 * Check for overflow
1221 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001222 if (0 == d || u1 >= d) {
1223 if (r != NULL) {
1224 *r = ~(mbedtls_mpi_uint) 0u;
1225 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001226
Gilles Peskine449bd832023-01-11 14:50:10 +01001227 return ~(mbedtls_mpi_uint) 0u;
Simon Butcher15b15d12015-11-26 19:35:03 +00001228 }
1229
1230#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001231 dividend = (mbedtls_t_udbl) u1 << biL;
1232 dividend |= (mbedtls_t_udbl) u0;
1233 quotient = dividend / d;
Gilles Peskine449bd832023-01-11 14:50:10 +01001234 if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
1235 quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
1236 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001237
Gilles Peskine449bd832023-01-11 14:50:10 +01001238 if (r != NULL) {
1239 *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
1240 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001241
1242 return (mbedtls_mpi_uint) quotient;
1243#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001244
1245 /*
1246 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1247 * Vol. 2 - Seminumerical Algorithms, Knuth
1248 */
1249
1250 /*
1251 * Normalize the divisor, d, and dividend, u0, u1
1252 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001253 s = mbedtls_mpi_core_clz(d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001254 d = d << s;
1255
1256 u1 = u1 << s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001257 u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
Simon Butcher15b15d12015-11-26 19:35:03 +00001258 u0 = u0 << s;
1259
1260 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001261 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001262
1263 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001264 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001265
1266 /*
1267 * Find the first quotient and remainder
1268 */
1269 q1 = u1 / d1;
1270 r0 = u1 - d1 * q1;
1271
Gilles Peskine449bd832023-01-11 14:50:10 +01001272 while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001273 q1 -= 1;
1274 r0 += d1;
1275
Gilles Peskine449bd832023-01-11 14:50:10 +01001276 if (r0 >= radix) {
1277 break;
1278 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001279 }
1280
Gilles Peskine449bd832023-01-11 14:50:10 +01001281 rAX = (u1 * radix) + (u0_msw - q1 * d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001282 q0 = rAX / d1;
1283 r0 = rAX - q0 * d1;
1284
Gilles Peskine449bd832023-01-11 14:50:10 +01001285 while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001286 q0 -= 1;
1287 r0 += d1;
1288
Gilles Peskine449bd832023-01-11 14:50:10 +01001289 if (r0 >= radix) {
1290 break;
1291 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001292 }
1293
Gilles Peskine449bd832023-01-11 14:50:10 +01001294 if (r != NULL) {
1295 *r = (rAX * radix + u0_lsw - q0 * d) >> s;
1296 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001297
1298 quotient = q1 * radix + q0;
1299
1300 return quotient;
1301#endif
1302}
1303
1304/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001305 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001306 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001307int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1308 const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001309{
Janos Follath24eed8d2019-11-22 13:21:35 +00001310 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001311 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001312 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001313 mbedtls_mpi_uint TP2[3];
Gilles Peskine449bd832023-01-11 14:50:10 +01001314 MPI_VALIDATE_RET(A != NULL);
1315 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001316
Gilles Peskine449bd832023-01-11 14:50:10 +01001317 if (mbedtls_mpi_cmp_int(B, 0) == 0) {
1318 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1319 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001320
Gilles Peskine449bd832023-01-11 14:50:10 +01001321 mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
1322 mbedtls_mpi_init(&T1);
Alexander Kd19a1932019-11-01 18:20:42 +03001323 /*
1324 * Avoid dynamic memory allocations for constant-size T2.
1325 *
1326 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1327 * so nobody increase the size of the MPI and we're safe to use an on-stack
1328 * buffer.
1329 */
Alexander K35d6d462019-10-31 14:46:45 +03001330 T2.s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001331 T2.n = sizeof(TP2) / sizeof(*TP2);
Alexander Kd19a1932019-11-01 18:20:42 +03001332 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001333
Gilles Peskine449bd832023-01-11 14:50:10 +01001334 if (mbedtls_mpi_cmp_abs(A, B) < 0) {
1335 if (Q != NULL) {
1336 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
1337 }
1338 if (R != NULL) {
1339 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
1340 }
1341 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001342 }
1343
Gilles Peskine449bd832023-01-11 14:50:10 +01001344 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
1345 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001346 X.s = Y.s = 1;
1347
Gilles Peskine449bd832023-01-11 14:50:10 +01001348 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
1349 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z, 0));
1350 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001351
Gilles Peskine449bd832023-01-11 14:50:10 +01001352 k = mbedtls_mpi_bitlen(&Y) % biL;
1353 if (k < biL - 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001354 k = biL - 1 - k;
Gilles Peskine449bd832023-01-11 14:50:10 +01001355 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
1356 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
1357 } else {
1358 k = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001359 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001360
1361 n = X.n - 1;
1362 t = Y.n - 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001363 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001364
Gilles Peskine449bd832023-01-11 14:50:10 +01001365 while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001366 Z.p[n - t]++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001367 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
Paul Bakker5121ce52009-01-03 21:22:43 +00001368 }
Gilles Peskine449bd832023-01-11 14:50:10 +01001369 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001370
Gilles Peskine449bd832023-01-11 14:50:10 +01001371 for (i = n; i > t; i--) {
1372 if (X.p[i] >= Y.p[t]) {
1373 Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
1374 } else {
1375 Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
1376 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001377 }
1378
Gilles Peskine449bd832023-01-11 14:50:10 +01001379 T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
1380 T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
Alexander K35d6d462019-10-31 14:46:45 +03001381 T2.p[2] = X.p[i];
1382
Paul Bakker5121ce52009-01-03 21:22:43 +00001383 Z.p[i - t - 1]++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001384 do {
Paul Bakker5121ce52009-01-03 21:22:43 +00001385 Z.p[i - t - 1]--;
1386
Gilles Peskine449bd832023-01-11 14:50:10 +01001387 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
1388 T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001389 T1.p[1] = Y.p[t];
Gilles Peskine449bd832023-01-11 14:50:10 +01001390 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
1391 } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00001392
Gilles Peskine449bd832023-01-11 14:50:10 +01001393 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
1394 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1395 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001396
Gilles Peskine449bd832023-01-11 14:50:10 +01001397 if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
1398 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
1399 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1400 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001401 Z.p[i - t - 1]--;
1402 }
1403 }
1404
Gilles Peskine449bd832023-01-11 14:50:10 +01001405 if (Q != NULL) {
1406 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
Paul Bakker5121ce52009-01-03 21:22:43 +00001407 Q->s = A->s * B->s;
1408 }
1409
Gilles Peskine449bd832023-01-11 14:50:10 +01001410 if (R != NULL) {
1411 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
Paul Bakkerf02c5642012-11-13 10:25:21 +00001412 X.s = A->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001413 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
Paul Bakker5121ce52009-01-03 21:22:43 +00001414
Gilles Peskine449bd832023-01-11 14:50:10 +01001415 if (mbedtls_mpi_cmp_int(R, 0) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001416 R->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001417 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001418 }
1419
1420cleanup:
1421
Gilles Peskine449bd832023-01-11 14:50:10 +01001422 mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
1423 mbedtls_mpi_free(&T1);
1424 mbedtls_platform_zeroize(TP2, sizeof(TP2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001425
Gilles Peskine449bd832023-01-11 14:50:10 +01001426 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001427}
1428
1429/*
1430 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001431 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001432int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
1433 const mbedtls_mpi *A,
1434 mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001435{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001436 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001437 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001438 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001439
Gilles Peskine449bd832023-01-11 14:50:10 +01001440 p[0] = mpi_sint_abs(b);
1441 B.s = (b < 0) ? -1 : 1;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001442 B.n = 1;
1443 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001444
Gilles Peskine449bd832023-01-11 14:50:10 +01001445 return mbedtls_mpi_div_mpi(Q, R, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001446}
1447
1448/*
1449 * Modulo: R = A mod B
1450 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001451int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001452{
Janos Follath24eed8d2019-11-22 13:21:35 +00001453 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +01001454 MPI_VALIDATE_RET(R != NULL);
1455 MPI_VALIDATE_RET(A != NULL);
1456 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001457
Gilles Peskine449bd832023-01-11 14:50:10 +01001458 if (mbedtls_mpi_cmp_int(B, 0) < 0) {
1459 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1460 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001461
Gilles Peskine449bd832023-01-11 14:50:10 +01001462 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001463
Gilles Peskine449bd832023-01-11 14:50:10 +01001464 while (mbedtls_mpi_cmp_int(R, 0) < 0) {
1465 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
1466 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001467
Gilles Peskine449bd832023-01-11 14:50:10 +01001468 while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
1469 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
1470 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001471
1472cleanup:
1473
Gilles Peskine449bd832023-01-11 14:50:10 +01001474 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001475}
1476
1477/*
1478 * Modulo: r = A mod b
1479 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001480int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001481{
Paul Bakker23986e52011-04-24 08:57:21 +00001482 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001483 mbedtls_mpi_uint x, y, z;
Gilles Peskine449bd832023-01-11 14:50:10 +01001484 MPI_VALIDATE_RET(r != NULL);
1485 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001486
Gilles Peskine449bd832023-01-11 14:50:10 +01001487 if (b == 0) {
1488 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1489 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001490
Gilles Peskine449bd832023-01-11 14:50:10 +01001491 if (b < 0) {
1492 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1493 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001494
1495 /*
1496 * handle trivial cases
1497 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001498 if (b == 1 || A->n == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001499 *r = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001500 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001501 }
1502
Gilles Peskine449bd832023-01-11 14:50:10 +01001503 if (b == 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001504 *r = A->p[0] & 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001505 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001506 }
1507
1508 /*
1509 * general case
1510 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001511 for (i = A->n, y = 0; i > 0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +00001512 x = A->p[i - 1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001513 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001514 z = y / b;
1515 y -= z * b;
1516
1517 x <<= biH;
Gilles Peskine449bd832023-01-11 14:50:10 +01001518 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001519 z = y / b;
1520 y -= z * b;
1521 }
1522
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001523 /*
1524 * If A is negative, then the current y represents a negative value.
1525 * Flipping it to the positive side.
1526 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001527 if (A->s < 0 && y != 0) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001528 y = b - y;
Gilles Peskine449bd832023-01-11 14:50:10 +01001529 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001530
Paul Bakker5121ce52009-01-03 21:22:43 +00001531 *r = y;
1532
Gilles Peskine449bd832023-01-11 14:50:10 +01001533 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001534}
1535
Gilles Peskine449bd832023-01-11 14:50:10 +01001536static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00001537{
Gilles Peskine449bd832023-01-11 14:50:10 +01001538 *mm = mbedtls_mpi_core_montmul_init(N->p);
Paul Bakker5121ce52009-01-03 21:22:43 +00001539}
1540
Tom Cosgrove93842842022-08-05 16:59:43 +01001541/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1542 *
1543 * \param[in,out] A One of the numbers to multiply.
1544 * It must have at least as many limbs as N
1545 * (A->n >= N->n), and any limbs beyond n are ignored.
1546 * On successful completion, A contains the result of
1547 * the multiplication A * B * R^-1 mod N where
1548 * R = (2^ciL)^n.
1549 * \param[in] B One of the numbers to multiply.
1550 * It must be nonzero and must not have more limbs than N
1551 * (B->n <= N->n).
Tom Cosgrove40d22942022-08-17 06:42:44 +01001552 * \param[in] N The modulus. \p N must be odd.
Tom Cosgrove93842842022-08-05 16:59:43 +01001553 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1554 * This is -N^-1 mod 2^ciL.
1555 * \param[in,out] T A bignum for temporary storage.
1556 * It must be at least twice the limb size of N plus 1
1557 * (T->n >= 2 * N->n + 1).
1558 * Its initial content is unused and
1559 * its final content is indeterminate.
Tom Cosgrove5dd97e62022-08-30 14:31:49 +01001560 * It does not get reallocated.
Tom Cosgrove93842842022-08-05 16:59:43 +01001561 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001562static void mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B,
1563 const mbedtls_mpi *N, mbedtls_mpi_uint mm,
1564 mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00001565{
Gilles Peskine449bd832023-01-11 14:50:10 +01001566 mbedtls_mpi_core_montmul(A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p);
Paul Bakker5121ce52009-01-03 21:22:43 +00001567}
1568
1569/*
1570 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001571 *
Tom Cosgrove93842842022-08-05 16:59:43 +01001572 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001573 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001574static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N,
1575 mbedtls_mpi_uint mm, mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00001576{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001577 mbedtls_mpi_uint z = 1;
1578 mbedtls_mpi U;
Paul Bakker5121ce52009-01-03 21:22:43 +00001579
Paul Bakker8ddb6452013-02-27 14:56:33 +01001580 U.n = U.s = (int) z;
Paul Bakker5121ce52009-01-03 21:22:43 +00001581 U.p = &z;
1582
Gilles Peskine449bd832023-01-11 14:50:10 +01001583 mpi_montmul(A, &U, N, mm, T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001584}
1585
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001586/**
1587 * Select an MPI from a table without leaking the index.
1588 *
1589 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1590 * reads the entire table in order to avoid leaking the value of idx to an
1591 * attacker able to observe memory access patterns.
1592 *
1593 * \param[out] R Where to write the selected MPI.
1594 * \param[in] T The table to read from.
1595 * \param[in] T_size The number of elements in the table.
1596 * \param[in] idx The index of the element to select;
1597 * this must satisfy 0 <= idx < T_size.
1598 *
1599 * \return \c 0 on success, or a negative error code.
1600 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001601static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx)
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001602{
1603 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1604
Gilles Peskine449bd832023-01-11 14:50:10 +01001605 for (size_t i = 0; i < T_size; i++) {
1606 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i],
1607 (unsigned char) mbedtls_ct_size_bool_eq(i,
1608 idx)));
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001609 }
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001610
1611cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001612 return ret;
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001613}
1614
Paul Bakker5121ce52009-01-03 21:22:43 +00001615/*
1616 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1617 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001618int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
1619 const mbedtls_mpi *E, const mbedtls_mpi *N,
1620 mbedtls_mpi *prec_RR)
Paul Bakker5121ce52009-01-03 21:22:43 +00001621{
Janos Follath24eed8d2019-11-22 13:21:35 +00001622 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath74601202022-11-21 15:54:20 +00001623 size_t window_bitsize;
Paul Bakker23986e52011-04-24 08:57:21 +00001624 size_t i, j, nblimbs;
1625 size_t bufsize, nbits;
Paul Elliott1748de12023-02-13 15:35:35 +00001626 size_t exponent_bits_in_window = 0;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001627 mbedtls_mpi_uint ei, mm, state;
Gilles Peskine449bd832023-01-11 14:50:10 +01001628 mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00001629 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00001630
Gilles Peskine449bd832023-01-11 14:50:10 +01001631 MPI_VALIDATE_RET(X != NULL);
1632 MPI_VALIDATE_RET(A != NULL);
1633 MPI_VALIDATE_RET(E != NULL);
1634 MPI_VALIDATE_RET(N != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00001635
Gilles Peskine449bd832023-01-11 14:50:10 +01001636 if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
1637 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1638 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001639
Gilles Peskine449bd832023-01-11 14:50:10 +01001640 if (mbedtls_mpi_cmp_int(E, 0) < 0) {
1641 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1642 }
Paul Bakkerf6198c12012-05-16 08:02:29 +00001643
Gilles Peskine449bd832023-01-11 14:50:10 +01001644 if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
1645 mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
1646 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1647 }
Chris Jones9246d042020-11-25 15:12:39 +00001648
Paul Bakkerf6198c12012-05-16 08:02:29 +00001649 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001650 * Init temps and window size
1651 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001652 mpi_montg_init(&mm, N);
1653 mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T);
1654 mbedtls_mpi_init(&Apos);
1655 mbedtls_mpi_init(&WW);
1656 memset(W, 0, sizeof(W));
Paul Bakker5121ce52009-01-03 21:22:43 +00001657
Gilles Peskine449bd832023-01-11 14:50:10 +01001658 i = mbedtls_mpi_bitlen(E);
Paul Bakker5121ce52009-01-03 21:22:43 +00001659
Gilles Peskine449bd832023-01-11 14:50:10 +01001660 window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 :
1661 (i > 79) ? 4 : (i > 23) ? 3 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001662
Gilles Peskine449bd832023-01-11 14:50:10 +01001663#if (MBEDTLS_MPI_WINDOW_SIZE < 6)
1664 if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) {
Janos Follath7fa11b82022-11-21 14:48:02 +00001665 window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
Gilles Peskine449bd832023-01-11 14:50:10 +01001666 }
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001667#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00001668
Janos Follathc8d66d52022-11-22 10:47:10 +00001669 const size_t w_table_used_size = (size_t) 1 << window_bitsize;
Janos Follath06000952022-11-22 10:18:06 +00001670
Paul Bakker5121ce52009-01-03 21:22:43 +00001671 /*
Janos Follathbe54ca72022-11-21 16:14:54 +00001672 * This function is not constant-trace: its memory accesses depend on the
1673 * exponent value. To defend against timing attacks, callers (such as RSA
1674 * and DHM) should use exponent blinding. However this is not enough if the
1675 * adversary can find the exponent in a single trace, so this function
1676 * takes extra precautions against adversaries who can observe memory
1677 * access patterns.
Janos Follathf08b40e2022-11-11 15:56:38 +00001678 *
Janos Follathbe54ca72022-11-21 16:14:54 +00001679 * This function performs a series of multiplications by table elements and
1680 * squarings, and we want the prevent the adversary from finding out which
1681 * table element was used, and from distinguishing between multiplications
1682 * and squarings. Firstly, when multiplying by an element of the window
1683 * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
1684 * squarings as having a different memory access patterns from other
1685 * multiplications. So secondly, we put the accumulator X in the table as
1686 * well, and also do a constant-trace table lookup to multiply by X.
1687 *
1688 * This way, all multiplications take the form of a lookup-and-multiply.
1689 * The number of lookup-and-multiply operations inside each iteration of
1690 * the main loop still depends on the bits of the exponent, but since the
1691 * other operations in the loop don't have an easily recognizable memory
1692 * trace, an adversary is unlikely to be able to observe the exact
1693 * patterns.
1694 *
1695 * An adversary may still be able to recover the exponent if they can
1696 * observe both memory accesses and branches. However, branch prediction
1697 * exploitation typically requires many traces of execution over the same
1698 * data, which is defeated by randomized blinding.
Janos Follath84461482022-11-21 14:31:22 +00001699 *
1700 * To achieve this, we make a copy of X and we use the table entry in each
1701 * calculation from this point on.
Janos Follath8e7d6a02022-10-04 13:27:40 +01001702 */
Janos Follathc8d66d52022-11-22 10:47:10 +00001703 const size_t x_index = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001704 mbedtls_mpi_init(&W[x_index]);
1705 mbedtls_mpi_copy(&W[x_index], X);
Janos Follath84461482022-11-21 14:31:22 +00001706
Paul Bakker5121ce52009-01-03 21:22:43 +00001707 j = N->n + 1;
Tom Cosgrove93842842022-08-05 16:59:43 +01001708 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
Paul Bakker5121ce52009-01-03 21:22:43 +00001709 * and mpi_montred() calls later. Here we ensure that W[1] and X are
1710 * large enough, and later we'll grow other W[i] to the same length.
1711 * They must not be shrunk midway through this function!
1712 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001713 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j));
1714 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], j));
1715 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001716
1717 /*
Paul Bakker50546922012-05-19 08:40:49 +00001718 * Compensate for negative A (and correct at the end)
1719 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001720 neg = (A->s == -1);
1721 if (neg) {
1722 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));
Paul Bakker50546922012-05-19 08:40:49 +00001723 Apos.s = 1;
1724 A = &Apos;
1725 }
1726
1727 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001728 * If 1st call, pre-compute R^2 mod N
1729 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001730 if (prec_RR == NULL || prec_RR->p == NULL) {
1731 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1));
1732 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL));
1733 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00001734
Gilles Peskine449bd832023-01-11 14:50:10 +01001735 if (prec_RR != NULL) {
1736 memcpy(prec_RR, &RR, sizeof(mbedtls_mpi));
1737 }
1738 } else {
1739 memcpy(&RR, prec_RR, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +00001740 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001741
1742 /*
1743 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1744 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001745 if (mbedtls_mpi_cmp_mpi(A, N) >= 0) {
1746 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001747 /* This should be a no-op because W[1] is already that large before
1748 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
Tom Cosgrove93842842022-08-05 16:59:43 +01001749 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001750 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1));
1751 } else {
1752 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001753 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001754
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001755 /* Note that this is safe because W[1] always has at least N->n limbs
1756 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001757 mpi_montmul(&W[1], &RR, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001758
1759 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001760 * W[x_index] = R^2 * R^-1 mod N = R mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001761 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001762 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR));
1763 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001764
Janos Follathc8d66d52022-11-22 10:47:10 +00001765
Gilles Peskine449bd832023-01-11 14:50:10 +01001766 if (window_bitsize > 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001767 /*
Janos Follath74601202022-11-21 15:54:20 +00001768 * W[i] = W[1] ^ i
1769 *
1770 * The first bit of the sliding window is always 1 and therefore we
1771 * only need to store the second half of the table.
Janos Follathc8d66d52022-11-22 10:47:10 +00001772 *
1773 * (There are two special elements in the table: W[0] for the
1774 * accumulator/result and W[1] for A in Montgomery form. Both of these
1775 * are already set at this point.)
Paul Bakker5121ce52009-01-03 21:22:43 +00001776 */
Janos Follath74601202022-11-21 15:54:20 +00001777 j = w_table_used_size / 2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001778
Gilles Peskine449bd832023-01-11 14:50:10 +01001779 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));
1780 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00001781
Gilles Peskine449bd832023-01-11 14:50:10 +01001782 for (i = 0; i < window_bitsize - 1; i++) {
1783 mpi_montmul(&W[j], &W[j], N, mm, &T);
1784 }
Paul Bakker0d7702c2013-10-29 16:18:35 +01001785
Paul Bakker5121ce52009-01-03 21:22:43 +00001786 /*
1787 * W[i] = W[i - 1] * W[1]
1788 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001789 for (i = j + 1; i < w_table_used_size; i++) {
1790 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));
1791 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00001792
Gilles Peskine449bd832023-01-11 14:50:10 +01001793 mpi_montmul(&W[i], &W[1], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001794 }
1795 }
1796
1797 nblimbs = E->n;
1798 bufsize = 0;
1799 nbits = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001800 state = 0;
1801
Gilles Peskine449bd832023-01-11 14:50:10 +01001802 while (1) {
1803 if (bufsize == 0) {
1804 if (nblimbs == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001805 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001806 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001807
Paul Bakker0d7702c2013-10-29 16:18:35 +01001808 nblimbs--;
1809
Gilles Peskine449bd832023-01-11 14:50:10 +01001810 bufsize = sizeof(mbedtls_mpi_uint) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00001811 }
1812
1813 bufsize--;
1814
1815 ei = (E->p[nblimbs] >> bufsize) & 1;
1816
1817 /*
1818 * skip leading 0s
1819 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001820 if (ei == 0 && state == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001821 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +01001822 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001823
Gilles Peskine449bd832023-01-11 14:50:10 +01001824 if (ei == 0 && state == 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001825 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001826 * out of window, square W[x_index]
Paul Bakker5121ce52009-01-03 21:22:43 +00001827 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001828 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1829 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001830 continue;
1831 }
1832
1833 /*
1834 * add ei to current window
1835 */
1836 state = 2;
1837
1838 nbits++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001839 exponent_bits_in_window |= (ei << (window_bitsize - nbits));
Paul Bakker5121ce52009-01-03 21:22:43 +00001840
Gilles Peskine449bd832023-01-11 14:50:10 +01001841 if (nbits == window_bitsize) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001842 /*
Janos Follath7fa11b82022-11-21 14:48:02 +00001843 * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001844 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001845 for (i = 0; i < window_bitsize; i++) {
1846 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1847 x_index));
1848 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follathb764ee12022-10-04 14:00:09 +01001849 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001850
1851 /*
Janos Follath7fa11b82022-11-21 14:48:02 +00001852 * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001853 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001854 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1855 exponent_bits_in_window));
1856 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001857
1858 state--;
1859 nbits = 0;
Janos Follath7fa11b82022-11-21 14:48:02 +00001860 exponent_bits_in_window = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001861 }
1862 }
1863
1864 /*
1865 * process the remaining bits
1866 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001867 for (i = 0; i < nbits; i++) {
1868 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1869 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001870
Janos Follath7fa11b82022-11-21 14:48:02 +00001871 exponent_bits_in_window <<= 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001872
Gilles Peskine449bd832023-01-11 14:50:10 +01001873 if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) {
1874 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1));
1875 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follathb764ee12022-10-04 14:00:09 +01001876 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001877 }
1878
1879 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001880 * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001881 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001882 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001883
Gilles Peskine449bd832023-01-11 14:50:10 +01001884 if (neg && E->n != 0 && (E->p[0] & 1) != 0) {
Janos Follath8e7d6a02022-10-04 13:27:40 +01001885 W[x_index].s = -1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001886 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index]));
Paul Bakkerf6198c12012-05-16 08:02:29 +00001887 }
1888
Janos Follath8e7d6a02022-10-04 13:27:40 +01001889 /*
1890 * Load the result in the output variable.
1891 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001892 mbedtls_mpi_copy(X, &W[x_index]);
Janos Follath8e7d6a02022-10-04 13:27:40 +01001893
Paul Bakker5121ce52009-01-03 21:22:43 +00001894cleanup:
1895
Janos Follathb2c2fca2022-11-21 15:05:31 +00001896 /* The first bit of the sliding window is always 1 and therefore the first
1897 * half of the table was unused. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001898 for (i = w_table_used_size/2; i < w_table_used_size; i++) {
1899 mbedtls_mpi_free(&W[i]);
1900 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001901
Gilles Peskine449bd832023-01-11 14:50:10 +01001902 mbedtls_mpi_free(&W[x_index]);
1903 mbedtls_mpi_free(&W[1]);
1904 mbedtls_mpi_free(&T);
1905 mbedtls_mpi_free(&Apos);
1906 mbedtls_mpi_free(&WW);
Paul Bakker6c591fa2011-05-05 11:49:20 +00001907
Gilles Peskine449bd832023-01-11 14:50:10 +01001908 if (prec_RR == NULL || prec_RR->p == NULL) {
1909 mbedtls_mpi_free(&RR);
1910 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001911
Gilles Peskine449bd832023-01-11 14:50:10 +01001912 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001913}
1914
Paul Bakker5121ce52009-01-03 21:22:43 +00001915/*
1916 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
1917 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001918int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001919{
Janos Follath24eed8d2019-11-22 13:21:35 +00001920 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001921 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03001922 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00001923
Gilles Peskine449bd832023-01-11 14:50:10 +01001924 MPI_VALIDATE_RET(G != NULL);
1925 MPI_VALIDATE_RET(A != NULL);
1926 MPI_VALIDATE_RET(B != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00001927
Gilles Peskine449bd832023-01-11 14:50:10 +01001928 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00001929
Gilles Peskine449bd832023-01-11 14:50:10 +01001930 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
1931 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001932
Gilles Peskine449bd832023-01-11 14:50:10 +01001933 lz = mbedtls_mpi_lsb(&TA);
1934 lzt = mbedtls_mpi_lsb(&TB);
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001935
Gilles Peskine27253bc2021-06-09 13:26:43 +02001936 /* The loop below gives the correct result when A==0 but not when B==0.
1937 * So have a special case for B==0. Leverage the fact that we just
1938 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1939 * slightly more efficient than cmp_int(). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001940 if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
1941 ret = mbedtls_mpi_copy(G, A);
Gilles Peskine27253bc2021-06-09 13:26:43 +02001942 goto cleanup;
1943 }
1944
Gilles Peskine449bd832023-01-11 14:50:10 +01001945 if (lzt < lz) {
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001946 lz = lzt;
Gilles Peskine449bd832023-01-11 14:50:10 +01001947 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001948
Paul Bakker5121ce52009-01-03 21:22:43 +00001949 TA.s = TB.s = 1;
1950
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001951 /* We mostly follow the procedure described in HAC 14.54, but with some
1952 * minor differences:
1953 * - Sequences of multiplications or divisions by 2 are grouped into a
1954 * single shift operation.
Gilles Peskineb09c7ee2021-06-21 18:58:39 +02001955 * - The procedure in HAC assumes that 0 < TB <= TA.
1956 * - The condition TB <= TA is not actually necessary for correctness.
1957 * TA and TB have symmetric roles except for the loop termination
1958 * condition, and the shifts at the beginning of the loop body
1959 * remove any significance from the ordering of TA vs TB before
1960 * the shifts.
1961 * - If TA = 0, the loop goes through 0 iterations and the result is
1962 * correctly TB.
1963 * - The case TB = 0 was short-circuited above.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001964 *
1965 * For the correctness proof below, decompose the original values of
1966 * A and B as
1967 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
1968 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
1969 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
1970 * and gcd(A',B') is odd or 0.
1971 *
1972 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
1973 * The code maintains the following invariant:
1974 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine4df3f1f2021-06-15 22:09:39 +02001975 */
1976
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001977 /* Proof that the loop terminates:
1978 * At each iteration, either the right-shift by 1 is made on a nonzero
1979 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
1980 * by at least 1, or the right-shift by 1 is made on zero and then
1981 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
1982 * since in that case TB is calculated from TB-TA with the condition TB>TA).
1983 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001984 while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001985 /* Divisions by 2 preserve the invariant (I). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001986 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
1987 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001988
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001989 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
1990 * TA-TB is even so the division by 2 has an integer result.
1991 * Invariant (I) is preserved since any odd divisor of both TA and TB
1992 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001993 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001994 * divides TA.
1995 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001996 if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
1997 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
1998 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
1999 } else {
2000 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
2001 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002002 }
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002003 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00002004 }
2005
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002006 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2007 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2008 * - If there was at least one loop iteration, then one of TA or TB is odd,
2009 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2010 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2011 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskine4d3fd362021-06-21 11:40:38 +02002012 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002013 */
2014
Gilles Peskine449bd832023-01-11 14:50:10 +01002015 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
2016 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
Paul Bakker5121ce52009-01-03 21:22:43 +00002017
2018cleanup:
2019
Gilles Peskine449bd832023-01-11 14:50:10 +01002020 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00002021
Gilles Peskine449bd832023-01-11 14:50:10 +01002022 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002023}
2024
Paul Bakker33dc46b2014-04-30 16:11:39 +02002025/*
2026 * Fill X with size bytes of random.
Gilles Peskine22cdd0c2022-10-27 20:15:13 +02002027 * The bytes returned from the RNG are used in a specific order which
2028 * is suitable for deterministic ECDSA (see the specification of
2029 * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
Paul Bakker33dc46b2014-04-30 16:11:39 +02002030 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002031int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
2032 int (*f_rng)(void *, unsigned char *, size_t),
2033 void *p_rng)
Paul Bakker287781a2011-03-26 13:18:49 +00002034{
Janos Follath24eed8d2019-11-22 13:21:35 +00002035 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +01002036 const size_t limbs = CHARS_TO_LIMBS(size);
Hanno Beckerda1655a2017-10-18 14:21:44 +01002037
Gilles Peskine449bd832023-01-11 14:50:10 +01002038 MPI_VALIDATE_RET(X != NULL);
2039 MPI_VALIDATE_RET(f_rng != NULL);
Paul Bakker33dc46b2014-04-30 16:11:39 +02002040
Hanno Beckerda1655a2017-10-18 14:21:44 +01002041 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +01002042 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
2043 if (size == 0) {
2044 return 0;
2045 }
Paul Bakker287781a2011-03-26 13:18:49 +00002046
Gilles Peskine449bd832023-01-11 14:50:10 +01002047 ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
Paul Bakker287781a2011-03-26 13:18:49 +00002048
2049cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002050 return ret;
Paul Bakker287781a2011-03-26 13:18:49 +00002051}
2052
Gilles Peskine449bd832023-01-11 14:50:10 +01002053int mbedtls_mpi_random(mbedtls_mpi *X,
2054 mbedtls_mpi_sint min,
2055 const mbedtls_mpi *N,
2056 int (*f_rng)(void *, unsigned char *, size_t),
2057 void *p_rng)
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002058{
Gilles Peskine449bd832023-01-11 14:50:10 +01002059 if (min < 0) {
2060 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2061 }
2062 if (mbedtls_mpi_cmp_int(N, min) <= 0) {
2063 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2064 }
Gilles Peskine1e918f42021-03-29 22:14:51 +02002065
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002066 /* Ensure that target MPI has exactly the same number of limbs
2067 * as the upper bound, even if the upper bound has leading zeros.
Gilles Peskine6b7ce962022-12-15 15:04:33 +01002068 * This is necessary for mbedtls_mpi_core_random. */
Gilles Peskine449bd832023-01-11 14:50:10 +01002069 int ret = mbedtls_mpi_resize_clear(X, N->n);
2070 if (ret != 0) {
2071 return ret;
2072 }
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002073
Gilles Peskine449bd832023-01-11 14:50:10 +01002074 return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002075}
2076
Paul Bakker5121ce52009-01-03 21:22:43 +00002077/*
2078 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2079 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002080int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00002081{
Janos Follath24eed8d2019-11-22 13:21:35 +00002082 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002083 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Gilles Peskine449bd832023-01-11 14:50:10 +01002084 MPI_VALIDATE_RET(X != NULL);
2085 MPI_VALIDATE_RET(A != NULL);
2086 MPI_VALIDATE_RET(N != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00002087
Gilles Peskine449bd832023-01-11 14:50:10 +01002088 if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
2089 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2090 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002091
Gilles Peskine449bd832023-01-11 14:50:10 +01002092 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
2093 mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
2094 mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002095
Gilles Peskine449bd832023-01-11 14:50:10 +01002096 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002097
Gilles Peskine449bd832023-01-11 14:50:10 +01002098 if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002099 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002100 goto cleanup;
2101 }
2102
Gilles Peskine449bd832023-01-11 14:50:10 +01002103 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
2104 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
2105 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
2106 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002107
Gilles Peskine449bd832023-01-11 14:50:10 +01002108 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
2109 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
2110 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
2111 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002112
Gilles Peskine449bd832023-01-11 14:50:10 +01002113 do {
2114 while ((TU.p[0] & 1) == 0) {
2115 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002116
Gilles Peskine449bd832023-01-11 14:50:10 +01002117 if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
2118 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
2119 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002120 }
2121
Gilles Peskine449bd832023-01-11 14:50:10 +01002122 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
2123 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002124 }
2125
Gilles Peskine449bd832023-01-11 14:50:10 +01002126 while ((TV.p[0] & 1) == 0) {
2127 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002128
Gilles Peskine449bd832023-01-11 14:50:10 +01002129 if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
2130 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
2131 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002132 }
2133
Gilles Peskine449bd832023-01-11 14:50:10 +01002134 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
2135 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002136 }
2137
Gilles Peskine449bd832023-01-11 14:50:10 +01002138 if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
2139 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
2140 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
2141 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
2142 } else {
2143 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
2144 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
2145 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
Paul Bakker5121ce52009-01-03 21:22:43 +00002146 }
Gilles Peskine449bd832023-01-11 14:50:10 +01002147 } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
2148
2149 while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
2150 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002151 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002152
Gilles Peskine449bd832023-01-11 14:50:10 +01002153 while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
2154 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
2155 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002156
Gilles Peskine449bd832023-01-11 14:50:10 +01002157 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002158
2159cleanup:
2160
Gilles Peskine449bd832023-01-11 14:50:10 +01002161 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
2162 mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
2163 mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002164
Gilles Peskine449bd832023-01-11 14:50:10 +01002165 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002166}
2167
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002168#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002169
Paul Bakker5121ce52009-01-03 21:22:43 +00002170static const int small_prime[] =
2171{
Gilles Peskine449bd832023-01-11 14:50:10 +01002172 3, 5, 7, 11, 13, 17, 19, 23,
2173 29, 31, 37, 41, 43, 47, 53, 59,
2174 61, 67, 71, 73, 79, 83, 89, 97,
2175 101, 103, 107, 109, 113, 127, 131, 137,
2176 139, 149, 151, 157, 163, 167, 173, 179,
2177 181, 191, 193, 197, 199, 211, 223, 227,
2178 229, 233, 239, 241, 251, 257, 263, 269,
2179 271, 277, 281, 283, 293, 307, 311, 313,
2180 317, 331, 337, 347, 349, 353, 359, 367,
2181 373, 379, 383, 389, 397, 401, 409, 419,
2182 421, 431, 433, 439, 443, 449, 457, 461,
2183 463, 467, 479, 487, 491, 499, 503, 509,
2184 521, 523, 541, 547, 557, 563, 569, 571,
2185 577, 587, 593, 599, 601, 607, 613, 617,
2186 619, 631, 641, 643, 647, 653, 659, 661,
2187 673, 677, 683, 691, 701, 709, 719, 727,
2188 733, 739, 743, 751, 757, 761, 769, 773,
2189 787, 797, 809, 811, 821, 823, 827, 829,
2190 839, 853, 857, 859, 863, 877, 881, 883,
2191 887, 907, 911, 919, 929, 937, 941, 947,
2192 953, 967, 971, 977, 983, 991, 997, -103
Paul Bakker5121ce52009-01-03 21:22:43 +00002193};
2194
2195/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002196 * Small divisors test (X must be positive)
2197 *
2198 * Return values:
2199 * 0: no small factor (possible prime, more tests needed)
2200 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002201 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002202 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002203 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002204static int mpi_check_small_factors(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +00002205{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002206 int ret = 0;
2207 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002208 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002209
Gilles Peskine449bd832023-01-11 14:50:10 +01002210 if ((X->p[0] & 1) == 0) {
2211 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2212 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002213
Gilles Peskine449bd832023-01-11 14:50:10 +01002214 for (i = 0; small_prime[i] > 0; i++) {
2215 if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) {
2216 return 1;
2217 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002218
Gilles Peskine449bd832023-01-11 14:50:10 +01002219 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i]));
Paul Bakker5121ce52009-01-03 21:22:43 +00002220
Gilles Peskine449bd832023-01-11 14:50:10 +01002221 if (r == 0) {
2222 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2223 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002224 }
2225
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002226cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002227 return ret;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002228}
2229
2230/*
2231 * Miller-Rabin pseudo-primality test (HAC 4.24)
2232 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002233static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
2234 int (*f_rng)(void *, unsigned char *, size_t),
2235 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002236{
Pascal Junodb99183d2015-03-11 16:49:45 +01002237 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002238 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002239 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002240
Gilles Peskine449bd832023-01-11 14:50:10 +01002241 MPI_VALIDATE_RET(X != NULL);
2242 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002243
Gilles Peskine449bd832023-01-11 14:50:10 +01002244 mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
2245 mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
2246 mbedtls_mpi_init(&RR);
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002247
Paul Bakker5121ce52009-01-03 21:22:43 +00002248 /*
2249 * W = |X| - 1
2250 * R = W >> lsb( W )
2251 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002252 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
2253 s = mbedtls_mpi_lsb(&W);
2254 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
2255 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
Paul Bakker5121ce52009-01-03 21:22:43 +00002256
Gilles Peskine449bd832023-01-11 14:50:10 +01002257 for (i = 0; i < rounds; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002258 /*
2259 * pick a random A, 1 < A < |X| - 1
2260 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002261 count = 0;
2262 do {
Gilles Peskine449bd832023-01-11 14:50:10 +01002263 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
Pascal Junodb99183d2015-03-11 16:49:45 +01002264
Gilles Peskine449bd832023-01-11 14:50:10 +01002265 j = mbedtls_mpi_bitlen(&A);
2266 k = mbedtls_mpi_bitlen(&W);
Pascal Junodb99183d2015-03-11 16:49:45 +01002267 if (j > k) {
Gilles Peskine449bd832023-01-11 14:50:10 +01002268 A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002269 }
2270
2271 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002272 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2273 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002274 }
2275
Gilles Peskine449bd832023-01-11 14:50:10 +01002276 } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
2277 mbedtls_mpi_cmp_int(&A, 1) <= 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00002278
2279 /*
2280 * A = A^R mod |X|
2281 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002282 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
Paul Bakker5121ce52009-01-03 21:22:43 +00002283
Gilles Peskine449bd832023-01-11 14:50:10 +01002284 if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
2285 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002286 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +01002287 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002288
2289 j = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01002290 while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002291 /*
2292 * A = A * A mod |X|
2293 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002294 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
2295 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
Paul Bakker5121ce52009-01-03 21:22:43 +00002296
Gilles Peskine449bd832023-01-11 14:50:10 +01002297 if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002298 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01002299 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002300
2301 j++;
2302 }
2303
2304 /*
2305 * not prime if A != |X| - 1 or A == 1
2306 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002307 if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
2308 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002309 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002310 break;
2311 }
2312 }
2313
2314cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002315 mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
2316 mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
2317 mbedtls_mpi_free(&RR);
Paul Bakker5121ce52009-01-03 21:22:43 +00002318
Gilles Peskine449bd832023-01-11 14:50:10 +01002319 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002320}
2321
2322/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002323 * Pseudo-primality test: small factors, then Miller-Rabin
2324 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002325int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
2326 int (*f_rng)(void *, unsigned char *, size_t),
2327 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002328{
Janos Follath24eed8d2019-11-22 13:21:35 +00002329 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002330 mbedtls_mpi XX;
Gilles Peskine449bd832023-01-11 14:50:10 +01002331 MPI_VALIDATE_RET(X != NULL);
2332 MPI_VALIDATE_RET(f_rng != NULL);
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002333
2334 XX.s = 1;
2335 XX.n = X->n;
2336 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002337
Gilles Peskine449bd832023-01-11 14:50:10 +01002338 if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
2339 mbedtls_mpi_cmp_int(&XX, 1) == 0) {
2340 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002341 }
2342
Gilles Peskine449bd832023-01-11 14:50:10 +01002343 if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
2344 return 0;
2345 }
2346
2347 if ((ret = mpi_check_small_factors(&XX)) != 0) {
2348 if (ret == 1) {
2349 return 0;
2350 }
2351
2352 return ret;
2353 }
2354
2355 return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
Janos Follathf301d232018-08-14 13:34:01 +01002356}
2357
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002358/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002359 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002360 *
Janos Follathf301d232018-08-14 13:34:01 +01002361 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2362 * be either 1024 bits or 1536 bits long, and flags must contain
2363 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002364 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002365int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
2366 int (*f_rng)(void *, unsigned char *, size_t),
2367 void *p_rng)
Paul Bakker5121ce52009-01-03 21:22:43 +00002368{
Jethro Beekman66689272018-02-14 19:24:10 -08002369#ifdef MBEDTLS_HAVE_INT64
2370// ceil(2^63.5)
2371#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2372#else
2373// ceil(2^31.5)
2374#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2375#endif
2376 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002377 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002378 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002379 mbedtls_mpi_uint r;
2380 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002381
Gilles Peskine449bd832023-01-11 14:50:10 +01002382 MPI_VALIDATE_RET(X != NULL);
2383 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002384
Gilles Peskine449bd832023-01-11 14:50:10 +01002385 if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
2386 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2387 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002388
Gilles Peskine449bd832023-01-11 14:50:10 +01002389 mbedtls_mpi_init(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00002390
Gilles Peskine449bd832023-01-11 14:50:10 +01002391 n = BITS_TO_LIMBS(nbits);
Paul Bakker5121ce52009-01-03 21:22:43 +00002392
Gilles Peskine449bd832023-01-11 14:50:10 +01002393 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
Janos Follathda31fa12018-09-03 14:45:23 +01002394 /*
2395 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2396 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002397 rounds = ((nbits >= 1300) ? 2 : (nbits >= 850) ? 3 :
2398 (nbits >= 650) ? 4 : (nbits >= 350) ? 8 :
2399 (nbits >= 250) ? 12 : (nbits >= 150) ? 18 : 27);
2400 } else {
Janos Follathda31fa12018-09-03 14:45:23 +01002401 /*
2402 * 2^-100 error probability, number of rounds computed based on HAC,
2403 * fact 4.48
2404 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002405 rounds = ((nbits >= 1450) ? 4 : (nbits >= 1150) ? 5 :
2406 (nbits >= 1000) ? 6 : (nbits >= 850) ? 7 :
2407 (nbits >= 750) ? 8 : (nbits >= 500) ? 13 :
2408 (nbits >= 250) ? 28 : (nbits >= 150) ? 40 : 51);
Janos Follathda31fa12018-09-03 14:45:23 +01002409 }
2410
Gilles Peskine449bd832023-01-11 14:50:10 +01002411 while (1) {
2412 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
Jethro Beekman66689272018-02-14 19:24:10 -08002413 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
Gilles Peskine449bd832023-01-11 14:50:10 +01002414 if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
2415 continue;
2416 }
Jethro Beekman66689272018-02-14 19:24:10 -08002417
2418 k = n * biL;
Gilles Peskine449bd832023-01-11 14:50:10 +01002419 if (k > nbits) {
2420 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
2421 }
Jethro Beekman66689272018-02-14 19:24:10 -08002422 X->p[0] |= 1;
2423
Gilles Peskine449bd832023-01-11 14:50:10 +01002424 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
2425 ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
Jethro Beekman66689272018-02-14 19:24:10 -08002426
Gilles Peskine449bd832023-01-11 14:50:10 +01002427 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002428 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002429 }
2430 } else {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002431 /*
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01002432 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002433 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2434 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002435 */
Jethro Beekman66689272018-02-14 19:24:10 -08002436
2437 X->p[0] |= 2;
2438
Gilles Peskine449bd832023-01-11 14:50:10 +01002439 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
2440 if (r == 0) {
2441 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
2442 } else if (r == 1) {
2443 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
2444 }
Jethro Beekman66689272018-02-14 19:24:10 -08002445
2446 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
Gilles Peskine449bd832023-01-11 14:50:10 +01002447 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
2448 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
Jethro Beekman66689272018-02-14 19:24:10 -08002449
Gilles Peskine449bd832023-01-11 14:50:10 +01002450 while (1) {
Jethro Beekman66689272018-02-14 19:24:10 -08002451 /*
2452 * First, check small factors for X and Y
2453 * before doing Miller-Rabin on any of them
2454 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002455 if ((ret = mpi_check_small_factors(X)) == 0 &&
2456 (ret = mpi_check_small_factors(&Y)) == 0 &&
2457 (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
2458 == 0 &&
2459 (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
2460 == 0) {
Jethro Beekman66689272018-02-14 19:24:10 -08002461 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002462 }
Jethro Beekman66689272018-02-14 19:24:10 -08002463
Gilles Peskine449bd832023-01-11 14:50:10 +01002464 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Jethro Beekman66689272018-02-14 19:24:10 -08002465 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002466 }
Jethro Beekman66689272018-02-14 19:24:10 -08002467
2468 /*
2469 * Next candidates. We want to preserve Y = (X-1) / 2 and
2470 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2471 * so up Y by 6 and X by 12.
2472 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002473 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 12));
2474 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
Paul Bakker5121ce52009-01-03 21:22:43 +00002475 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002476 }
2477 }
2478
2479cleanup:
2480
Gilles Peskine449bd832023-01-11 14:50:10 +01002481 mbedtls_mpi_free(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00002482
Gilles Peskine449bd832023-01-11 14:50:10 +01002483 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002484}
2485
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002486#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002487
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002488#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002489
Paul Bakker23986e52011-04-24 08:57:21 +00002490#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002491
2492static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2493{
2494 { 693, 609, 21 },
2495 { 1764, 868, 28 },
2496 { 768454923, 542167814, 1 }
2497};
2498
Paul Bakker5121ce52009-01-03 21:22:43 +00002499/*
2500 * Checkup routine
2501 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002502int mbedtls_mpi_self_test(int verbose)
Paul Bakker5121ce52009-01-03 21:22:43 +00002503{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002504 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002505 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002506
Gilles Peskine449bd832023-01-11 14:50:10 +01002507 mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
2508 mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00002509
Gilles Peskine449bd832023-01-11 14:50:10 +01002510 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
2511 "EFE021C2645FD1DC586E69184AF4A31E" \
2512 "D5F53E93B5F123FA41680867BA110131" \
2513 "944FE7952E2517337780CB0DB80E61AA" \
2514 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002515
Gilles Peskine449bd832023-01-11 14:50:10 +01002516 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
2517 "B2E7EFD37075B9F03FF989C7C5051C20" \
2518 "34D2A323810251127E7BF8625A4F49A5" \
2519 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2520 "5B5C25763222FEFCCFC38B832366C29E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002521
Gilles Peskine449bd832023-01-11 14:50:10 +01002522 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
2523 "0066A198186C18C10B2F5ED9B522752A" \
2524 "9830B69916E535C8F047518A889A43A5" \
2525 "94B6BED27A168D31D4A52F88925AA8F5"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002526
Gilles Peskine449bd832023-01-11 14:50:10 +01002527 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002528
Gilles Peskine449bd832023-01-11 14:50:10 +01002529 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2530 "602AB7ECA597A3D6B56FF9829A5E8B85" \
2531 "9E857EA95A03512E2BAE7391688D264A" \
2532 "A5663B0341DB9CCFD2C4C5F421FEC814" \
2533 "8001B72E848A38CAE1C65F78E56ABDEF" \
2534 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2535 "ECF677152EF804370C1A305CAF3B5BF1" \
2536 "30879B56C61DE584A0F53A2447A51E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002537
Gilles Peskine449bd832023-01-11 14:50:10 +01002538 if (verbose != 0) {
2539 mbedtls_printf(" MPI test #1 (mul_mpi): ");
2540 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002541
Gilles Peskine449bd832023-01-11 14:50:10 +01002542 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2543 if (verbose != 0) {
2544 mbedtls_printf("failed\n");
2545 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002546
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002547 ret = 1;
2548 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002549 }
2550
Gilles Peskine449bd832023-01-11 14:50:10 +01002551 if (verbose != 0) {
2552 mbedtls_printf("passed\n");
2553 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002554
Gilles Peskine449bd832023-01-11 14:50:10 +01002555 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002556
Gilles Peskine449bd832023-01-11 14:50:10 +01002557 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2558 "256567336059E52CAE22925474705F39A94"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002559
Gilles Peskine449bd832023-01-11 14:50:10 +01002560 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
2561 "6613F26162223DF488E9CD48CC132C7A" \
2562 "0AC93C701B001B092E4E5B9F73BCD27B" \
2563 "9EE50D0657C77F374E903CDFA4C642"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002564
Gilles Peskine449bd832023-01-11 14:50:10 +01002565 if (verbose != 0) {
2566 mbedtls_printf(" MPI test #2 (div_mpi): ");
2567 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002568
Gilles Peskine449bd832023-01-11 14:50:10 +01002569 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
2570 mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
2571 if (verbose != 0) {
2572 mbedtls_printf("failed\n");
2573 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002574
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002575 ret = 1;
2576 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002577 }
2578
Gilles Peskine449bd832023-01-11 14:50:10 +01002579 if (verbose != 0) {
2580 mbedtls_printf("passed\n");
2581 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002582
Gilles Peskine449bd832023-01-11 14:50:10 +01002583 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
Paul Bakker5121ce52009-01-03 21:22:43 +00002584
Gilles Peskine449bd832023-01-11 14:50:10 +01002585 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2586 "36E139AEA55215609D2816998ED020BB" \
2587 "BD96C37890F65171D948E9BC7CBAA4D9" \
2588 "325D24D6A3C12710F10A09FA08AB87"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002589
Gilles Peskine449bd832023-01-11 14:50:10 +01002590 if (verbose != 0) {
2591 mbedtls_printf(" MPI test #3 (exp_mod): ");
2592 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002593
Gilles Peskine449bd832023-01-11 14:50:10 +01002594 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2595 if (verbose != 0) {
2596 mbedtls_printf("failed\n");
2597 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002598
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002599 ret = 1;
2600 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002601 }
2602
Gilles Peskine449bd832023-01-11 14:50:10 +01002603 if (verbose != 0) {
2604 mbedtls_printf("passed\n");
2605 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002606
Gilles Peskine449bd832023-01-11 14:50:10 +01002607 MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002608
Gilles Peskine449bd832023-01-11 14:50:10 +01002609 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2610 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2611 "C3DBA76456363A10869622EAC2DD84EC" \
2612 "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002613
Gilles Peskine449bd832023-01-11 14:50:10 +01002614 if (verbose != 0) {
2615 mbedtls_printf(" MPI test #4 (inv_mod): ");
2616 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002617
Gilles Peskine449bd832023-01-11 14:50:10 +01002618 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2619 if (verbose != 0) {
2620 mbedtls_printf("failed\n");
2621 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002622
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002623 ret = 1;
2624 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002625 }
2626
Gilles Peskine449bd832023-01-11 14:50:10 +01002627 if (verbose != 0) {
2628 mbedtls_printf("passed\n");
2629 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002630
Gilles Peskine449bd832023-01-11 14:50:10 +01002631 if (verbose != 0) {
2632 mbedtls_printf(" MPI test #5 (simple gcd): ");
2633 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002634
Gilles Peskine449bd832023-01-11 14:50:10 +01002635 for (i = 0; i < GCD_PAIR_COUNT; i++) {
2636 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
2637 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002638
Gilles Peskine449bd832023-01-11 14:50:10 +01002639 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002640
Gilles Peskine449bd832023-01-11 14:50:10 +01002641 if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
2642 if (verbose != 0) {
2643 mbedtls_printf("failed at %d\n", i);
2644 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002645
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002646 ret = 1;
2647 goto cleanup;
2648 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002649 }
2650
Gilles Peskine449bd832023-01-11 14:50:10 +01002651 if (verbose != 0) {
2652 mbedtls_printf("passed\n");
2653 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002654
Paul Bakker5121ce52009-01-03 21:22:43 +00002655cleanup:
2656
Gilles Peskine449bd832023-01-11 14:50:10 +01002657 if (ret != 0 && verbose != 0) {
2658 mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
2659 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002660
Gilles Peskine449bd832023-01-11 14:50:10 +01002661 mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
2662 mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00002663
Gilles Peskine449bd832023-01-11 14:50:10 +01002664 if (verbose != 0) {
2665 mbedtls_printf("\n");
2666 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002667
Gilles Peskine449bd832023-01-11 14:50:10 +01002668 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002669}
2670
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002671#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00002672
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002673#endif /* MBEDTLS_BIGNUM_C */