blob: c50b6374278241569fbb82bfa4ae5797b48885d1 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
18 * Copyright (C) 2018, ARM Limited, All Rights Reserved
19 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
32 *
33 * This file is part of mbed TLS (https://tls.mbed.org)
34 */
35
36#ifndef PSA_CRYPTO_VALUES_H
37#define PSA_CRYPTO_VALUES_H
38
39/** \defgroup error Error codes
40 * @{
41 */
42
David Saadab4ecc272019-02-14 13:48:10 +020043/* PSA error codes */
44
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045/** The action was completed successfully. */
46#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010047
48/** An error occurred that does not correspond to any defined
49 * failure cause.
50 *
51 * Implementations may use this error code if none of the other standard
52 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020053#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010054
55/** The requested operation or a parameter is not supported
56 * by this implementation.
57 *
58 * Implementations should return this error code when an enumeration
59 * parameter such as a key type, algorithm, etc. is not recognized.
60 * If a combination of parameters is recognized and identified as
61 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020062#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010063
64/** The requested action is denied by a policy.
65 *
66 * Implementations should return this error code when the parameters
67 * are recognized as valid and supported, and a policy explicitly
68 * denies the requested operation.
69 *
70 * If a subset of the parameters of a function call identify a
71 * forbidden operation, and another subset of the parameters are
72 * not valid or not supported, it is unspecified whether the function
73 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
74 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020075#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010076
77/** An output buffer is too small.
78 *
79 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
80 * description to determine a sufficient buffer size.
81 *
82 * Implementations should preferably return this error code only
83 * in cases when performing the operation with a larger output
84 * buffer would succeed. However implementations may return this
85 * error if a function has invalid or unsupported parameters in addition
86 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020087#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088
David Saadab4ecc272019-02-14 13:48:10 +020089/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010090 *
David Saadab4ecc272019-02-14 13:48:10 +020091 * Implementations should return this error, when attempting
92 * to write an item (like a key) that already exists. */
93#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094
David Saadab4ecc272019-02-14 13:48:10 +020095/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010096 *
David Saadab4ecc272019-02-14 13:48:10 +020097 * Implementations should return this error, if a requested item (like
98 * a key) does not exist. */
99#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100
101/** The requested action cannot be performed in the current state.
102 *
103 * Multipart operations return this error when one of the
104 * functions is called out of sequence. Refer to the function
105 * descriptions for permitted sequencing of functions.
106 *
107 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100108 * that a key either exists or not,
109 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100110 * as applicable.
111 *
112 * Implementations shall not return this error code to indicate that a
113 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
114 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200115#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100116
117/** The parameters passed to the function are invalid.
118 *
119 * Implementations may return this error any time a parameter or
120 * combination of parameters are recognized as invalid.
121 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100122 * Implementations shall not return this error code to indicate that a
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
124 * instead.
125 */
David Saadab4ecc272019-02-14 13:48:10 +0200126#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100127
128/** There is not enough runtime memory.
129 *
130 * If the action is carried out across multiple security realms, this
131 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200132#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100133
134/** There is not enough persistent storage.
135 *
136 * Functions that modify the key storage return this error code if
137 * there is insufficient storage space on the host media. In addition,
138 * many functions that do not otherwise access storage may return this
139 * error code if the implementation requires a mandatory log entry for
140 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200141#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100142
143/** There was a communication failure inside the implementation.
144 *
145 * This can indicate a communication failure between the application
146 * and an external cryptoprocessor or between the cryptoprocessor and
147 * an external volatile or persistent memory. A communication failure
148 * may be transient or permanent depending on the cause.
149 *
150 * \warning If a function returns this error, it is undetermined
151 * whether the requested action has completed or not. Implementations
152 * should return #PSA_SUCCESS on successful completion whenver
153 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
154 * if the requested action was completed successfully in an external
155 * cryptoprocessor but there was a breakdown of communication before
156 * the cryptoprocessor could report the status to the application.
157 */
David Saadab4ecc272019-02-14 13:48:10 +0200158#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100159
160/** There was a storage failure that may have led to data loss.
161 *
162 * This error indicates that some persistent storage is corrupted.
163 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200164 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100165 * between the cryptoprocessor and its external storage (use
166 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
167 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
168 *
169 * Note that a storage failure does not indicate that any data that was
170 * previously read is invalid. However this previously read data may no
171 * longer be readable from storage.
172 *
173 * When a storage failure occurs, it is no longer possible to ensure
174 * the global integrity of the keystore. Depending on the global
175 * integrity guarantees offered by the implementation, access to other
176 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100177 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100178 *
179 * Implementations should only use this error code to report a
180 * permanent storage corruption. However application writers should
181 * keep in mind that transient errors while reading the storage may be
182 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200183#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100184
185/** A hardware failure was detected.
186 *
187 * A hardware failure may be transient or permanent depending on the
188 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200189#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100190
191/** A tampering attempt was detected.
192 *
193 * If an application receives this error code, there is no guarantee
194 * that previously accessed or computed data was correct and remains
195 * confidential. Applications should not perform any security function
196 * and should enter a safe failure state.
197 *
198 * Implementations may return this error code if they detect an invalid
199 * state that cannot happen during normal operation and that indicates
200 * that the implementation's security guarantees no longer hold. Depending
201 * on the implementation architecture and on its security and safety goals,
202 * the implementation may forcibly terminate the application.
203 *
204 * This error code is intended as a last resort when a security breach
205 * is detected and it is unsure whether the keystore data is still
206 * protected. Implementations shall only return this error code
207 * to report an alarm from a tampering detector, to indicate that
208 * the confidentiality of stored data can no longer be guaranteed,
209 * or to indicate that the integrity of previously returned data is now
210 * considered compromised. Implementations shall not use this error code
211 * to indicate a hardware failure that merely makes it impossible to
212 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
213 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
214 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
215 * instead).
216 *
217 * This error indicates an attack against the application. Implementations
218 * shall not return this error code as a consequence of the behavior of
219 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200220#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100221
222/** There is not enough entropy to generate random data needed
223 * for the requested action.
224 *
225 * This error indicates a failure of a hardware random generator.
226 * Application writers should note that this error can be returned not
227 * only by functions whose purpose is to generate random data, such
228 * as key, IV or nonce generation, but also by functions that execute
229 * an algorithm with a randomized result, as well as functions that
230 * use randomization of intermediate computations as a countermeasure
231 * to certain attacks.
232 *
233 * Implementations should avoid returning this error after psa_crypto_init()
234 * has succeeded. Implementations should generate sufficient
235 * entropy during initialization and subsequently use a cryptographically
236 * secure pseudorandom generator (PRNG). However implementations may return
237 * this error at any time if a policy requires the PRNG to be reseeded
238 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200239#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100240
241/** The signature, MAC or hash is incorrect.
242 *
243 * Verification functions return this error if the verification
244 * calculations completed successfully, and the value to be verified
245 * was determined to be incorrect.
246 *
247 * If the value to verify has an invalid size, implementations may return
248 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200249#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100250
251/** The decrypted padding is incorrect.
252 *
253 * \warning In some protocols, when decrypting data, it is essential that
254 * the behavior of the application does not depend on whether the padding
255 * is correct, down to precise timing. Applications should prefer
256 * protocols that use authenticated encryption rather than plain
257 * encryption. If the application must perform a decryption of
258 * unauthenticated data, the application writer should take care not
259 * to reveal whether the padding is invalid.
260 *
261 * Implementations should strive to make valid and invalid padding
262 * as close as possible to indistinguishable to an external observer.
263 * In particular, the timing of a decryption operation should not
264 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200265#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100266
David Saadab4ecc272019-02-14 13:48:10 +0200267/** Return this error when there's insufficient data when attempting
268 * to read from a resource. */
269#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270
271/** The key handle is not valid.
272 */
David Saadab4ecc272019-02-14 13:48:10 +0200273#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100274
275/**@}*/
276
277/** \defgroup crypto_types Key and algorithm types
278 * @{
279 */
280
281/** An invalid key type value.
282 *
283 * Zero is not the encoding of any key type.
284 */
285#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
286
287/** Vendor-defined flag
288 *
289 * Key types defined by this standard will never have the
290 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
291 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
292 * respect the bitwise structure used by standard encodings whenever practical.
293 */
294#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
295
296#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000)
297#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000)
298#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000)
299#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000)
300#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000)
301
302#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000)
303
304/** Whether a key type is vendor-defined. */
305#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
306 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
307
308/** Whether a key type is an unstructured array of bytes.
309 *
310 * This encompasses both symmetric keys and non-key data.
311 */
312#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
313 (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \
314 PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
315
316/** Whether a key type is asymmetric: either a key pair or a public key. */
317#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
318 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
319 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
320 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
321/** Whether a key type is the public part of a key pair. */
322#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
323 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
324/** Whether a key type is a key pair containing a private part and a public
325 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200326#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100327 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
328/** The key pair type corresponding to a public key type.
329 *
330 * You may also pass a key pair type as \p type, it will be left unchanged.
331 *
332 * \param type A public key type or key pair type.
333 *
334 * \return The corresponding key pair type.
335 * If \p type is not a public key or a key pair,
336 * the return value is undefined.
337 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200338#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
340/** The public key type corresponding to a key pair type.
341 *
342 * You may also pass a key pair type as \p type, it will be left unchanged.
343 *
344 * \param type A public key type or key pair type.
345 *
346 * \return The corresponding public key type.
347 * If \p type is not a public key or a key pair,
348 * the return value is undefined.
349 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200350#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100351 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
352
353/** Raw data.
354 *
355 * A "key" of this type cannot be used for any cryptographic operation.
356 * Applications may use this type to store arbitrary data in the keystore. */
357#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001)
358
359/** HMAC key.
360 *
361 * The key policy determines which underlying hash algorithm the key can be
362 * used for.
363 *
364 * HMAC keys should generally have the same size as the underlying hash.
365 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
366 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
367#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000)
368
369/** A secret for key derivation.
370 *
371 * The key policy determines which key derivation algorithm the key
372 * can be used for.
373 */
374#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000)
375
376/** Key for an cipher, AEAD or MAC algorithm based on the AES block cipher.
377 *
378 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
379 * 32 bytes (AES-256).
380 */
381#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001)
382
383/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
384 *
385 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
386 * 24 bytes (3-key 3DES).
387 *
388 * Note that single DES and 2-key 3DES are weak and strongly
389 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
390 * is weak and deprecated and should only be used in legacy protocols.
391 */
392#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002)
393
394/** Key for an cipher, AEAD or MAC algorithm based on the
395 * Camellia block cipher. */
396#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003)
397
398/** Key for the RC4 stream cipher.
399 *
400 * Note that RC4 is weak and deprecated and should only be used in
401 * legacy protocols. */
402#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004)
403
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200404/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
405 *
406 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
407 *
408 * Implementations must support 12-byte nonces, may support 8-byte nonces,
409 * and should reject other sizes.
410 */
411#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x40000005)
412
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100413/** RSA public key. */
414#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000)
415/** RSA key pair (private and public key). */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200416#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x70010000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100417/** Whether a key type is an RSA key (pair or public-only). */
418#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200419 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100420
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100421#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000)
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200422#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x70030000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff)
424/** Elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200425#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
426 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100427/** Elliptic curve public key. */
428#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
429 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
430
431/** Whether a key type is an elliptic curve key (pair or public-only). */
432#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200433 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100434 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100435/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200436#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100437 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200438 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100439/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100440#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
441 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
442 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
443
444/** Extract the curve from an elliptic curve key type. */
445#define PSA_KEY_TYPE_GET_CURVE(type) \
446 ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
447 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
448 0))
449
450/* The encoding of curve identifiers is currently aligned with the
451 * TLS Supported Groups Registry (formerly known as the
452 * TLS EC Named Curve Registry)
453 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
454 * The values are defined by RFC 8422 and RFC 7027. */
455#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001)
456#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002)
457#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003)
458#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004)
459#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005)
460#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006)
461#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007)
462#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008)
463#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009)
464#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a)
465#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b)
466#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c)
467#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d)
468#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e)
469#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f)
470#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010)
471#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011)
472#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012)
473#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013)
474#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014)
475#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015)
476#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016)
477#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017)
478#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018)
479#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019)
480#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a)
481#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b)
482#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c)
483#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d)
484#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e)
485
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200486#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x60040000)
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200487#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x70040000)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200488#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x0000ffff)
489/** Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200490#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
491 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200492/** Diffie-Hellman public key. */
493#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
494 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
495
496/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
497#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200498 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200499 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
500/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200501#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200502 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200503 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200504/** Whether a key type is a Diffie-Hellman public key. */
505#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
506 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
507 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
508
509/** Extract the group from a Diffie-Hellman key type. */
510#define PSA_KEY_TYPE_GET_GROUP(type) \
511 ((psa_dh_group_t) (PSA_KEY_TYPE_IS_DH(type) ? \
512 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
513 0))
514
515/* The encoding of group identifiers is currently aligned with the
516 * TLS Supported Groups Registry (formerly known as the
517 * TLS EC Named Curve Registry)
518 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
519 * The values are defined by RFC 7919. */
520#define PSA_DH_GROUP_FFDHE2048 ((psa_dh_group_t) 0x0100)
521#define PSA_DH_GROUP_FFDHE3072 ((psa_dh_group_t) 0x0101)
522#define PSA_DH_GROUP_FFDHE4096 ((psa_dh_group_t) 0x0102)
523#define PSA_DH_GROUP_FFDHE6144 ((psa_dh_group_t) 0x0103)
524#define PSA_DH_GROUP_FFDHE8192 ((psa_dh_group_t) 0x0104)
Jaeden Amero8851c402019-01-11 14:20:03 +0000525
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100526/** The block size of a block cipher.
527 *
528 * \param type A cipher key type (value of type #psa_key_type_t).
529 *
530 * \return The block size for a block cipher, or 1 for a stream cipher.
531 * The return value is undefined if \p type is not a supported
532 * cipher key type.
533 *
534 * \note It is possible to build stream cipher algorithms on top of a block
535 * cipher, for example CTR mode (#PSA_ALG_CTR).
536 * This macro only takes the key type into account, so it cannot be
537 * used to determine the size of the data that #psa_cipher_update()
538 * might buffer for future processing in general.
539 *
540 * \note This macro returns a compile-time constant if its argument is one.
541 *
542 * \warning This macro may evaluate its argument multiple times.
543 */
544#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
545 ( \
546 (type) == PSA_KEY_TYPE_AES ? 16 : \
547 (type) == PSA_KEY_TYPE_DES ? 8 : \
548 (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \
549 (type) == PSA_KEY_TYPE_ARC4 ? 1 : \
550 0)
551
552#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
553#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
554#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
555#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
556#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
557#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
558#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
559#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100560#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
561#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100562
563#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
564 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
565
566/** Whether the specified algorithm is a hash algorithm.
567 *
568 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
569 *
570 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
571 * This macro may return either 0 or 1 if \p alg is not a supported
572 * algorithm identifier.
573 */
574#define PSA_ALG_IS_HASH(alg) \
575 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
576
577/** Whether the specified algorithm is a MAC algorithm.
578 *
579 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
580 *
581 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
582 * This macro may return either 0 or 1 if \p alg is not a supported
583 * algorithm identifier.
584 */
585#define PSA_ALG_IS_MAC(alg) \
586 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
587
588/** Whether the specified algorithm is a symmetric cipher algorithm.
589 *
590 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
591 *
592 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
593 * This macro may return either 0 or 1 if \p alg is not a supported
594 * algorithm identifier.
595 */
596#define PSA_ALG_IS_CIPHER(alg) \
597 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
598
599/** Whether the specified algorithm is an authenticated encryption
600 * with associated data (AEAD) algorithm.
601 *
602 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
603 *
604 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
605 * This macro may return either 0 or 1 if \p alg is not a supported
606 * algorithm identifier.
607 */
608#define PSA_ALG_IS_AEAD(alg) \
609 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
610
611/** Whether the specified algorithm is a public-key signature algorithm.
612 *
613 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
614 *
615 * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise.
616 * This macro may return either 0 or 1 if \p alg is not a supported
617 * algorithm identifier.
618 */
619#define PSA_ALG_IS_SIGN(alg) \
620 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
621
622/** Whether the specified algorithm is a public-key encryption algorithm.
623 *
624 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
625 *
626 * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise.
627 * This macro may return either 0 or 1 if \p alg is not a supported
628 * algorithm identifier.
629 */
630#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
631 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
632
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100633/** Whether the specified algorithm is a key agreement algorithm.
634 *
635 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
636 *
637 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
638 * This macro may return either 0 or 1 if \p alg is not a supported
639 * algorithm identifier.
640 */
641#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100642 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100643
644/** Whether the specified algorithm is a key derivation algorithm.
645 *
646 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
647 *
648 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
649 * This macro may return either 0 or 1 if \p alg is not a supported
650 * algorithm identifier.
651 */
652#define PSA_ALG_IS_KEY_DERIVATION(alg) \
653 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
654
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100655#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100656
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100657#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
658#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
659#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
660#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
661#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
662/** SHA2-224 */
663#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
664/** SHA2-256 */
665#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
666/** SHA2-384 */
667#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
668/** SHA2-512 */
669#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
670/** SHA2-512/224 */
671#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
672/** SHA2-512/256 */
673#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
674/** SHA3-224 */
675#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
676/** SHA3-256 */
677#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
678/** SHA3-384 */
679#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
680/** SHA3-512 */
681#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
682
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100683/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100684 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100685 * This value may be used to form the algorithm usage field of a policy
686 * for a signature algorithm that is parametrized by a hash. The key
687 * may then be used to perform operations using the same signature
688 * algorithm parametrized with any supported hash.
689 *
690 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100691 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100692 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100693 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100694 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
695 * ```
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200696 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN); // or VERIFY
697 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100698 * ```
699 * - Import or generate key material.
700 * - Call psa_asymmetric_sign() or psa_asymmetric_verify(), passing
701 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
702 * call to sign or verify a message may use a different hash.
703 * ```
704 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
705 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
706 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
707 * ```
708 *
709 * This value may not be used to build other algorithms that are
710 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100711 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100712 *
713 * This value may not be used to build an algorithm specification to
714 * perform an operation. It is only valid to build policies.
715 */
716#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
717
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100718#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
719#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
720/** Macro to build an HMAC algorithm.
721 *
722 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
723 *
724 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
725 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
726 *
727 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100728 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100729 * hash algorithm.
730 */
731#define PSA_ALG_HMAC(hash_alg) \
732 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
733
734#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
735 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
736
737/** Whether the specified algorithm is an HMAC algorithm.
738 *
739 * HMAC is a family of MAC algorithms that are based on a hash function.
740 *
741 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
742 *
743 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
744 * This macro may return either 0 or 1 if \p alg is not a supported
745 * algorithm identifier.
746 */
747#define PSA_ALG_IS_HMAC(alg) \
748 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
749 PSA_ALG_HMAC_BASE)
750
751/* In the encoding of a MAC algorithm, the bits corresponding to
752 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
753 * truncated. As an exception, the value 0 means the untruncated algorithm,
754 * whatever its length is. The length is encoded in 6 bits, so it can
755 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
756 * to full length is correctly encoded as 0 and any non-trivial truncation
757 * is correctly encoded as a value between 1 and 63. */
758#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
759#define PSA_MAC_TRUNCATION_OFFSET 8
760
761/** Macro to build a truncated MAC algorithm.
762 *
763 * A truncated MAC algorithm is identical to the corresponding MAC
764 * algorithm except that the MAC value for the truncated algorithm
765 * consists of only the first \p mac_length bytes of the MAC value
766 * for the untruncated algorithm.
767 *
768 * \note This macro may allow constructing algorithm identifiers that
769 * are not valid, either because the specified length is larger
770 * than the untruncated MAC or because the specified length is
771 * smaller than permitted by the implementation.
772 *
773 * \note It is implementation-defined whether a truncated MAC that
774 * is truncated to the same length as the MAC of the untruncated
775 * algorithm is considered identical to the untruncated algorithm
776 * for policy comparison purposes.
777 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200778 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100779 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
780 * is true). This may be a truncated or untruncated
781 * MAC algorithm.
782 * \param mac_length Desired length of the truncated MAC in bytes.
783 * This must be at most the full length of the MAC
784 * and must be at least an implementation-specified
785 * minimum. The implementation-specified minimum
786 * shall not be zero.
787 *
788 * \return The corresponding MAC algorithm with the specified
789 * length.
790 * \return Unspecified if \p alg is not a supported
791 * MAC algorithm or if \p mac_length is too small or
792 * too large for the specified MAC algorithm.
793 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200794#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
795 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100796 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
797
798/** Macro to build the base MAC algorithm corresponding to a truncated
799 * MAC algorithm.
800 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200801 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100802 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
803 * is true). This may be a truncated or untruncated
804 * MAC algorithm.
805 *
806 * \return The corresponding base MAC algorithm.
807 * \return Unspecified if \p alg is not a supported
808 * MAC algorithm.
809 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200810#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
811 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100812
813/** Length to which a MAC algorithm is truncated.
814 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200815 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100816 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
817 * is true).
818 *
819 * \return Length of the truncated MAC in bytes.
820 * \return 0 if \p alg is a non-truncated MAC algorithm.
821 * \return Unspecified if \p alg is not a supported
822 * MAC algorithm.
823 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200824#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
825 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100826
827#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
828#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
829#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
830#define PSA_ALG_GMAC ((psa_algorithm_t)0x02c00003)
831
832/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
833 *
834 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
835 *
836 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
837 * This macro may return either 0 or 1 if \p alg is not a supported
838 * algorithm identifier.
839 */
840#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
841 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
842 PSA_ALG_CIPHER_MAC_BASE)
843
844#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
845#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
846
847/** Whether the specified algorithm is a stream cipher.
848 *
849 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
850 * by applying a bitwise-xor with a stream of bytes that is generated
851 * from a key.
852 *
853 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
854 *
855 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
856 * This macro may return either 0 or 1 if \p alg is not a supported
857 * algorithm identifier or if it is not a symmetric cipher algorithm.
858 */
859#define PSA_ALG_IS_STREAM_CIPHER(alg) \
860 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
861 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
862
863/** The ARC4 stream cipher algorithm.
864 */
865#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
866
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200867/** The ChaCha20 stream cipher.
868 *
869 * ChaCha20 is defined in RFC 7539.
870 *
871 * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv()
872 * must be 12.
873 *
874 * The initial block counter is always 0.
875 *
876 */
877#define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005)
878
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100879/** The CTR stream cipher mode.
880 *
881 * CTR is a stream cipher which is built from a block cipher.
882 * The underlying block cipher is determined by the key type.
883 * For example, to use AES-128-CTR, use this algorithm with
884 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
885 */
886#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
887
888#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
889
890#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
891
892/** The XTS cipher mode.
893 *
894 * XTS is a cipher mode which is built from a block cipher. It requires at
895 * least one full block of input, but beyond this minimum the input
896 * does not need to be a whole number of blocks.
897 */
898#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
899
900/** The CBC block cipher chaining mode, with no padding.
901 *
902 * The underlying block cipher is determined by the key type.
903 *
904 * This symmetric cipher mode can only be used with messages whose lengths
905 * are whole number of blocks for the chosen block cipher.
906 */
907#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
908
909/** The CBC block cipher chaining mode with PKCS#7 padding.
910 *
911 * The underlying block cipher is determined by the key type.
912 *
913 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
914 */
915#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
916
Gilles Peskine679693e2019-05-06 15:10:16 +0200917#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
918
919/** Whether the specified algorithm is an AEAD mode on a block cipher.
920 *
921 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
922 *
923 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
924 * a block cipher, 0 otherwise.
925 * This macro may return either 0 or 1 if \p alg is not a supported
926 * algorithm identifier.
927 */
928#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
929 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
930 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
931
Gilles Peskine9153ec02019-02-15 13:02:02 +0100932/** The CCM authenticated encryption algorithm.
933 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200934#define PSA_ALG_CCM ((psa_algorithm_t)0x06401001)
Gilles Peskine9153ec02019-02-15 13:02:02 +0100935
936/** The GCM authenticated encryption algorithm.
937 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200938#define PSA_ALG_GCM ((psa_algorithm_t)0x06401002)
939
940/** The Chacha20-Poly1305 AEAD algorithm.
941 *
942 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200943 *
944 * Implementations must support 12-byte nonces, may support 8-byte nonces,
945 * and should reject other sizes.
946 *
947 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +0200948 */
949#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100950
951/* In the encoding of a AEAD algorithm, the bits corresponding to
952 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
953 * The constants for default lengths follow this encoding.
954 */
955#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
956#define PSA_AEAD_TAG_LENGTH_OFFSET 8
957
958/** Macro to build a shortened AEAD algorithm.
959 *
960 * A shortened AEAD algorithm is similar to the corresponding AEAD
961 * algorithm, but has an authentication tag that consists of fewer bytes.
962 * Depending on the algorithm, the tag length may affect the calculation
963 * of the ciphertext.
964 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200965 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100966 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
967 * is true).
968 * \param tag_length Desired length of the authentication tag in bytes.
969 *
970 * \return The corresponding AEAD algorithm with the specified
971 * length.
972 * \return Unspecified if \p alg is not a supported
973 * AEAD algorithm or if \p tag_length is not valid
974 * for the specified AEAD algorithm.
975 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200976#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
977 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100978 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
979 PSA_ALG_AEAD_TAG_LENGTH_MASK))
980
981/** Calculate the corresponding AEAD algorithm with the default tag length.
982 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200983 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
984 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100985 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200986 * \return The corresponding AEAD algorithm with the default
987 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100988 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200989#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100990 ( \
Gilles Peskine434899f2018-10-19 11:30:26 +0200991 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_CCM) \
992 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_GCM) \
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200993 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100994 0)
Gilles Peskine434899f2018-10-19 11:30:26 +0200995#define PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, ref) \
996 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100997 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
998 ref :
999
1000#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
1001/** RSA PKCS#1 v1.5 signature with hashing.
1002 *
1003 * This is the signature scheme defined by RFC 8017
1004 * (PKCS#1: RSA Cryptography Specifications) under the name
1005 * RSASSA-PKCS1-v1_5.
1006 *
1007 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1008 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001009 * This includes #PSA_ALG_ANY_HASH
1010 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001011 *
1012 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001013 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001014 * hash algorithm.
1015 */
1016#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1017 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1018/** Raw PKCS#1 v1.5 signature.
1019 *
1020 * The input to this algorithm is the DigestInfo structure used by
1021 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1022 * steps 3&ndash;6.
1023 */
1024#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1025#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1026 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1027
1028#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
1029/** RSA PSS signature with hashing.
1030 *
1031 * This is the signature scheme defined by RFC 8017
1032 * (PKCS#1: RSA Cryptography Specifications) under the name
1033 * RSASSA-PSS, with the message generation function MGF1, and with
1034 * a salt length equal to the length of the hash. The specified
1035 * hash algorithm is used to hash the input message, to create the
1036 * salted hash, and for the mask generation.
1037 *
1038 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1039 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001040 * This includes #PSA_ALG_ANY_HASH
1041 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001042 *
1043 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001044 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001045 * hash algorithm.
1046 */
1047#define PSA_ALG_RSA_PSS(hash_alg) \
1048 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1049#define PSA_ALG_IS_RSA_PSS(alg) \
1050 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1051
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001052#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1053/** ECDSA signature with hashing.
1054 *
1055 * This is the ECDSA signature scheme defined by ANSI X9.62,
1056 * with a random per-message secret number (*k*).
1057 *
1058 * The representation of the signature as a byte string consists of
1059 * the concatentation of the signature values *r* and *s*. Each of
1060 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1061 * of the base point of the curve in octets. Each value is represented
1062 * in big-endian order (most significant octet first).
1063 *
1064 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1065 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001066 * This includes #PSA_ALG_ANY_HASH
1067 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001068 *
1069 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001070 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001071 * hash algorithm.
1072 */
1073#define PSA_ALG_ECDSA(hash_alg) \
1074 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1075/** ECDSA signature without hashing.
1076 *
1077 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1078 * without specifying a hash algorithm. This algorithm may only be
1079 * used to sign or verify a sequence of bytes that should be an
1080 * already-calculated hash. Note that the input is padded with
1081 * zeros on the left or truncated on the left as required to fit
1082 * the curve size.
1083 */
1084#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1085#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1086/** Deterministic ECDSA signature with hashing.
1087 *
1088 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1089 *
1090 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1091 *
1092 * Note that when this algorithm is used for verification, signatures
1093 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1094 * same private key are accepted. In other words,
1095 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1096 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1097 *
1098 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1099 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001100 * This includes #PSA_ALG_ANY_HASH
1101 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001102 *
1103 * \return The corresponding deterministic ECDSA signature
1104 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001105 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001106 * hash algorithm.
1107 */
1108#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1109 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1110#define PSA_ALG_IS_ECDSA(alg) \
1111 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
1112 PSA_ALG_ECDSA_BASE)
1113#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
1114 (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
1115#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1116 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1117#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1118 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1119
Gilles Peskined35b4892019-01-14 16:02:15 +01001120/** Whether the specified algorithm is a hash-and-sign algorithm.
1121 *
1122 * Hash-and-sign algorithms are public-key signature algorithms structured
1123 * in two parts: first the calculation of a hash in a way that does not
1124 * depend on the key, then the calculation of a signature from the
1125 * hash value and the key.
1126 *
1127 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1128 *
1129 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1130 * This macro may return either 0 or 1 if \p alg is not a supported
1131 * algorithm identifier.
1132 */
1133#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1134 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskinee38ab1a2019-05-16 13:51:50 +02001135 PSA_ALG_IS_ECDSA(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001136
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001137/** Get the hash used by a hash-and-sign signature algorithm.
1138 *
1139 * A hash-and-sign algorithm is a signature algorithm which is
1140 * composed of two phases: first a hashing phase which does not use
1141 * the key and produces a hash of the input message, then a signing
1142 * phase which only uses the hash and the key and not the message
1143 * itself.
1144 *
1145 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1146 * #PSA_ALG_IS_SIGN(\p alg) is true).
1147 *
1148 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1149 * algorithm.
1150 * \return 0 if \p alg is a signature algorithm that does not
1151 * follow the hash-and-sign structure.
1152 * \return Unspecified if \p alg is not a signature algorithm or
1153 * if it is not supported by the implementation.
1154 */
1155#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001156 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001157 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1158 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1159 0)
1160
1161/** RSA PKCS#1 v1.5 encryption.
1162 */
1163#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1164
1165#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1166/** RSA OAEP encryption.
1167 *
1168 * This is the encryption scheme defined by RFC 8017
1169 * (PKCS#1: RSA Cryptography Specifications) under the name
1170 * RSAES-OAEP, with the message generation function MGF1.
1171 *
1172 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1173 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1174 * for MGF1.
1175 *
1176 * \return The corresponding RSA OAEP signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001177 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001178 * hash algorithm.
1179 */
1180#define PSA_ALG_RSA_OAEP(hash_alg) \
1181 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1182#define PSA_ALG_IS_RSA_OAEP(alg) \
1183 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1184#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1185 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1186 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1187 0)
1188
Gilles Peskine6843c292019-01-18 16:44:49 +01001189#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001190/** Macro to build an HKDF algorithm.
1191 *
1192 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1193 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001194 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001195 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001196 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001197 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1198 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1199 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1200 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001201 * starting to generate output.
1202 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001203 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1204 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1205 *
1206 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001207 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001208 * hash algorithm.
1209 */
1210#define PSA_ALG_HKDF(hash_alg) \
1211 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1212/** Whether the specified algorithm is an HKDF algorithm.
1213 *
1214 * HKDF is a family of key derivation algorithms that are based on a hash
1215 * function and the HMAC construction.
1216 *
1217 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1218 *
1219 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1220 * This macro may return either 0 or 1 if \c alg is not a supported
1221 * key derivation algorithm identifier.
1222 */
1223#define PSA_ALG_IS_HKDF(alg) \
1224 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1225#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1226 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1227
Gilles Peskine6843c292019-01-18 16:44:49 +01001228#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001229/** Macro to build a TLS-1.2 PRF algorithm.
1230 *
1231 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1232 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1233 * used with either SHA-256 or SHA-384.
1234 *
1235 * For the application to TLS-1.2, the salt and label arguments passed
1236 * to psa_key_derivation() are what's called 'seed' and 'label' in RFC 5246,
1237 * respectively. For example, for TLS key expansion, the salt is the
1238 * concatenation of ServerHello.Random + ClientHello.Random,
1239 * while the label is "key expansion".
1240 *
1241 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1242 * TLS 1.2 PRF using HMAC-SHA-256.
1243 *
1244 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1245 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1246 *
1247 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001248 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001249 * hash algorithm.
1250 */
1251#define PSA_ALG_TLS12_PRF(hash_alg) \
1252 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1253
1254/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1255 *
1256 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1257 *
1258 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1259 * This macro may return either 0 or 1 if \c alg is not a supported
1260 * key derivation algorithm identifier.
1261 */
1262#define PSA_ALG_IS_TLS12_PRF(alg) \
1263 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1264#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1265 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1266
Gilles Peskine6843c292019-01-18 16:44:49 +01001267#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001268/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1269 *
1270 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1271 * from the PreSharedKey (PSK) through the application of padding
1272 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1273 * The latter is based on HMAC and can be used with either SHA-256
1274 * or SHA-384.
1275 *
1276 * For the application to TLS-1.2, the salt passed to psa_key_derivation()
1277 * (and forwarded to the TLS-1.2 PRF) is the concatenation of the
1278 * ClientHello.Random + ServerHello.Random, while the label is "master secret"
1279 * or "extended master secret".
1280 *
1281 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1282 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1283 *
1284 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1285 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1286 *
1287 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001288 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001289 * hash algorithm.
1290 */
1291#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1292 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1293
1294/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1295 *
1296 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1297 *
1298 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1299 * This macro may return either 0 or 1 if \c alg is not a supported
1300 * key derivation algorithm identifier.
1301 */
1302#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1303 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1304#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1305 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1306
Gilles Peskinea52460c2019-04-12 00:11:21 +02001307#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff)
1308#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001309
Gilles Peskine6843c292019-01-18 16:44:49 +01001310/** Macro to build a combined algorithm that chains a key agreement with
1311 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001312 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001313 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1314 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1315 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1316 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001317 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001318 * \return The corresponding key agreement and derivation
1319 * algorithm.
1320 * \return Unspecified if \p ka_alg is not a supported
1321 * key agreement algorithm or \p kdf_alg is not a
1322 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001323 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001324#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1325 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001326
1327#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1328 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1329
Gilles Peskine6843c292019-01-18 16:44:49 +01001330#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1331 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001332
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001333/** Whether the specified algorithm is a raw key agreement algorithm.
1334 *
1335 * A raw key agreement algorithm is one that does not specify
1336 * a key derivation function.
1337 * Usually, raw key agreement algorithms are constructed directly with
1338 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
1339 * constructed with PSA_ALG_KEY_AGREEMENT().
1340 *
1341 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1342 *
1343 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1344 * This macro may return either 0 or 1 if \p alg is not a supported
1345 * algorithm identifier.
1346 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001347#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001348 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1349 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001350
1351#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1352 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1353
1354/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001355 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001356 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001357 * `g^{ab}` in big-endian format.
1358 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1359 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001360 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001361#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1362
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001363/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1364 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001365 * This includes the raw finite field Diffie-Hellman algorithm as well as
1366 * finite-field Diffie-Hellman followed by any supporter key derivation
1367 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001368 *
1369 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1370 *
1371 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1372 * This macro may return either 0 or 1 if \c alg is not a supported
1373 * key agreement algorithm identifier.
1374 */
1375#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001376 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001377
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001378/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1379 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001380 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001381 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1382 * `m` is the bit size associated with the curve, i.e. the bit size of the
1383 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1384 * the byte containing the most significant bit of the shared secret
1385 * is padded with zero bits. The byte order is either little-endian
1386 * or big-endian depending on the curve type.
1387 *
1388 * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`),
1389 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1390 * in little-endian byte order.
1391 * The bit size is 448 for Curve448 and 255 for Curve25519.
1392 * - For Weierstrass curves over prime fields (curve types
1393 * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`),
1394 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1395 * in big-endian byte order.
1396 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1397 * - For Weierstrass curves over binary fields (curve types
1398 * `PSA_ECC_CURVE_SECTXXX`),
1399 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1400 * in big-endian byte order.
1401 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001402 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001403#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1404
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001405/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1406 * algorithm.
1407 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001408 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1409 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1410 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001411 *
1412 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1413 *
1414 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1415 * 0 otherwise.
1416 * This macro may return either 0 or 1 if \c alg is not a supported
1417 * key agreement algorithm identifier.
1418 */
1419#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001420 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001421
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001422/** Whether the specified algorithm encoding is a wildcard.
1423 *
1424 * Wildcard values may only be used to set the usage algorithm field in
1425 * a policy, not to perform an operation.
1426 *
1427 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1428 *
1429 * \return 1 if \c alg is a wildcard algorithm encoding.
1430 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1431 * an operation).
1432 * \return This macro may return either 0 or 1 if \c alg is not a supported
1433 * algorithm identifier.
1434 */
1435#define PSA_ALG_IS_WILDCARD(alg) \
1436 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1437 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1438 (alg) == PSA_ALG_ANY_HASH)
1439
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001440/**@}*/
1441
1442/** \defgroup key_lifetimes Key lifetimes
1443 * @{
1444 */
1445
1446/** A volatile key only exists as long as the handle to it is not closed.
1447 * The key material is guaranteed to be erased on a power reset.
1448 */
1449#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1450
1451/** The default storage area for persistent keys.
1452 *
1453 * A persistent key remains in storage until it is explicitly destroyed or
1454 * until the corresponding storage area is wiped. This specification does
1455 * not define any mechanism to wipe a storage area, but implementations may
1456 * provide their own mechanism (for example to perform a factory reset,
1457 * to prepare for device refurbishment, or to uninstall an application).
1458 *
1459 * This lifetime value is the default storage area for the calling
1460 * application. Implementations may offer other storage areas designated
1461 * by other lifetime values as implementation-specific extensions.
1462 */
1463#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1464
Gilles Peskine4a231b82019-05-06 18:56:14 +02001465/** The minimum value for a key identifier chosen by the application.
1466 */
Gilles Peskinef9fbc382019-05-15 18:42:09 +02001467#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001468/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001469 */
1470#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001471/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001472 */
1473#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001474/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001475 */
1476#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
1477
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001478/**@}*/
1479
1480/** \defgroup policy Key policies
1481 * @{
1482 */
1483
1484/** Whether the key may be exported.
1485 *
1486 * A public key or the public part of a key pair may always be exported
1487 * regardless of the value of this permission flag.
1488 *
1489 * If a key does not have export permission, implementations shall not
1490 * allow the key to be exported in plain form from the cryptoprocessor,
1491 * whether through psa_export_key() or through a proprietary interface.
1492 * The key may however be exportable in a wrapped form, i.e. in a form
1493 * where it is encrypted by another key.
1494 */
1495#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1496
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001497/** Whether the key may be copied.
1498 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001499 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001500 * with the same policy or a more restrictive policy.
1501 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001502 * For lifetimes for which the key is located in a secure element which
1503 * enforce the non-exportability of keys, copying a key outside the secure
1504 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1505 * Copying the key inside the secure element is permitted with just
1506 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1507 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001508 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1509 * is sufficient to permit the copy.
1510 */
1511#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1512
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001513/** Whether the key may be used to encrypt a message.
1514 *
1515 * This flag allows the key to be used for a symmetric encryption operation,
1516 * for an AEAD encryption-and-authentication operation,
1517 * or for an asymmetric encryption operation,
1518 * if otherwise permitted by the key's type and policy.
1519 *
1520 * For a key pair, this concerns the public key.
1521 */
1522#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1523
1524/** Whether the key may be used to decrypt a message.
1525 *
1526 * This flag allows the key to be used for a symmetric decryption operation,
1527 * for an AEAD decryption-and-verification operation,
1528 * or for an asymmetric decryption operation,
1529 * if otherwise permitted by the key's type and policy.
1530 *
1531 * For a key pair, this concerns the private key.
1532 */
1533#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1534
1535/** Whether the key may be used to sign a message.
1536 *
1537 * This flag allows the key to be used for a MAC calculation operation
1538 * or for an asymmetric signature operation,
1539 * if otherwise permitted by the key's type and policy.
1540 *
1541 * For a key pair, this concerns the private key.
1542 */
1543#define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400)
1544
1545/** Whether the key may be used to verify a message signature.
1546 *
1547 * This flag allows the key to be used for a MAC verification operation
1548 * or for an asymmetric signature verification operation,
1549 * if otherwise permitted by by the key's type and policy.
1550 *
1551 * For a key pair, this concerns the public key.
1552 */
1553#define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800)
1554
1555/** Whether the key may be used to derive other keys.
1556 */
1557#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1558
1559/**@}*/
1560
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001561/** \defgroup derivation Key derivation
1562 * @{
1563 */
1564
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001565/** A secret input for key derivation.
1566 *
1567 * This must be a key of type #PSA_KEY_TYPE_DERIVE.
1568 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001569#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001570
1571/** A label for key derivation.
1572 *
1573 * This must be a direct input.
1574 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001575#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001576
1577/** A salt for key derivation.
1578 *
1579 * This must be a direct input.
1580 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001581#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001582
1583/** An information string for key derivation.
1584 *
1585 * This must be a direct input.
1586 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001587#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001588
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001589/**@}*/
1590
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001591#endif /* PSA_CRYPTO_VALUES_H */