blob: 823d04450163be9ece4aa2801b41a5fb5e600774 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
18 * Copyright (C) 2018, ARM Limited, All Rights Reserved
19 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
32 *
33 * This file is part of mbed TLS (https://tls.mbed.org)
34 */
35
36#ifndef PSA_CRYPTO_VALUES_H
37#define PSA_CRYPTO_VALUES_H
38
39/** \defgroup error Error codes
40 * @{
41 */
42
David Saadab4ecc272019-02-14 13:48:10 +020043/* PSA error codes */
44
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045/** The action was completed successfully. */
46#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010047
48/** An error occurred that does not correspond to any defined
49 * failure cause.
50 *
51 * Implementations may use this error code if none of the other standard
52 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020053#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010054
55/** The requested operation or a parameter is not supported
56 * by this implementation.
57 *
58 * Implementations should return this error code when an enumeration
59 * parameter such as a key type, algorithm, etc. is not recognized.
60 * If a combination of parameters is recognized and identified as
61 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020062#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010063
64/** The requested action is denied by a policy.
65 *
66 * Implementations should return this error code when the parameters
67 * are recognized as valid and supported, and a policy explicitly
68 * denies the requested operation.
69 *
70 * If a subset of the parameters of a function call identify a
71 * forbidden operation, and another subset of the parameters are
72 * not valid or not supported, it is unspecified whether the function
73 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
74 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020075#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010076
77/** An output buffer is too small.
78 *
79 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
80 * description to determine a sufficient buffer size.
81 *
82 * Implementations should preferably return this error code only
83 * in cases when performing the operation with a larger output
84 * buffer would succeed. However implementations may return this
85 * error if a function has invalid or unsupported parameters in addition
86 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020087#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088
David Saadab4ecc272019-02-14 13:48:10 +020089/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010090 *
David Saadab4ecc272019-02-14 13:48:10 +020091 * Implementations should return this error, when attempting
92 * to write an item (like a key) that already exists. */
93#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094
David Saadab4ecc272019-02-14 13:48:10 +020095/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010096 *
David Saadab4ecc272019-02-14 13:48:10 +020097 * Implementations should return this error, if a requested item (like
98 * a key) does not exist. */
99#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100
101/** The requested action cannot be performed in the current state.
102 *
103 * Multipart operations return this error when one of the
104 * functions is called out of sequence. Refer to the function
105 * descriptions for permitted sequencing of functions.
106 *
107 * Implementations shall not return this error code to indicate
108 * that a key slot is occupied when it needs to be free or vice versa,
David Saadab4ecc272019-02-14 13:48:10 +0200109 * but shall return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100110 * as applicable. */
David Saadab4ecc272019-02-14 13:48:10 +0200111#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100112
113/** The parameters passed to the function are invalid.
114 *
115 * Implementations may return this error any time a parameter or
116 * combination of parameters are recognized as invalid.
117 *
118 * Implementations shall not return this error code to indicate
119 * that a key slot is occupied when it needs to be free or vice versa,
David Saadab4ecc272019-02-14 13:48:10 +0200120 * but shall return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100121 * as applicable.
122 *
123 * Implementation shall not return this error code to indicate that a
124 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
125 * instead.
126 */
David Saadab4ecc272019-02-14 13:48:10 +0200127#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100128
129/** There is not enough runtime memory.
130 *
131 * If the action is carried out across multiple security realms, this
132 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200133#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100134
135/** There is not enough persistent storage.
136 *
137 * Functions that modify the key storage return this error code if
138 * there is insufficient storage space on the host media. In addition,
139 * many functions that do not otherwise access storage may return this
140 * error code if the implementation requires a mandatory log entry for
141 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200142#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100143
144/** There was a communication failure inside the implementation.
145 *
146 * This can indicate a communication failure between the application
147 * and an external cryptoprocessor or between the cryptoprocessor and
148 * an external volatile or persistent memory. A communication failure
149 * may be transient or permanent depending on the cause.
150 *
151 * \warning If a function returns this error, it is undetermined
152 * whether the requested action has completed or not. Implementations
153 * should return #PSA_SUCCESS on successful completion whenver
154 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
155 * if the requested action was completed successfully in an external
156 * cryptoprocessor but there was a breakdown of communication before
157 * the cryptoprocessor could report the status to the application.
158 */
David Saadab4ecc272019-02-14 13:48:10 +0200159#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100160
161/** There was a storage failure that may have led to data loss.
162 *
163 * This error indicates that some persistent storage is corrupted.
164 * It should not be used for a corruption of volatile memory
165 * (use #PSA_ERROR_TAMPERING_DETECTED), for a communication error
166 * between the cryptoprocessor and its external storage (use
167 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
168 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
169 *
170 * Note that a storage failure does not indicate that any data that was
171 * previously read is invalid. However this previously read data may no
172 * longer be readable from storage.
173 *
174 * When a storage failure occurs, it is no longer possible to ensure
175 * the global integrity of the keystore. Depending on the global
176 * integrity guarantees offered by the implementation, access to other
177 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100178 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100179 *
180 * Implementations should only use this error code to report a
181 * permanent storage corruption. However application writers should
182 * keep in mind that transient errors while reading the storage may be
183 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200184#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100185
186/** A hardware failure was detected.
187 *
188 * A hardware failure may be transient or permanent depending on the
189 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200190#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100191
192/** A tampering attempt was detected.
193 *
194 * If an application receives this error code, there is no guarantee
195 * that previously accessed or computed data was correct and remains
196 * confidential. Applications should not perform any security function
197 * and should enter a safe failure state.
198 *
199 * Implementations may return this error code if they detect an invalid
200 * state that cannot happen during normal operation and that indicates
201 * that the implementation's security guarantees no longer hold. Depending
202 * on the implementation architecture and on its security and safety goals,
203 * the implementation may forcibly terminate the application.
204 *
205 * This error code is intended as a last resort when a security breach
206 * is detected and it is unsure whether the keystore data is still
207 * protected. Implementations shall only return this error code
208 * to report an alarm from a tampering detector, to indicate that
209 * the confidentiality of stored data can no longer be guaranteed,
210 * or to indicate that the integrity of previously returned data is now
211 * considered compromised. Implementations shall not use this error code
212 * to indicate a hardware failure that merely makes it impossible to
213 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
214 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
215 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
216 * instead).
217 *
218 * This error indicates an attack against the application. Implementations
219 * shall not return this error code as a consequence of the behavior of
220 * the application itself. */
David Saadab4ecc272019-02-14 13:48:10 +0200221#define PSA_ERROR_TAMPERING_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100222
223/** There is not enough entropy to generate random data needed
224 * for the requested action.
225 *
226 * This error indicates a failure of a hardware random generator.
227 * Application writers should note that this error can be returned not
228 * only by functions whose purpose is to generate random data, such
229 * as key, IV or nonce generation, but also by functions that execute
230 * an algorithm with a randomized result, as well as functions that
231 * use randomization of intermediate computations as a countermeasure
232 * to certain attacks.
233 *
234 * Implementations should avoid returning this error after psa_crypto_init()
235 * has succeeded. Implementations should generate sufficient
236 * entropy during initialization and subsequently use a cryptographically
237 * secure pseudorandom generator (PRNG). However implementations may return
238 * this error at any time if a policy requires the PRNG to be reseeded
239 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200240#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100241
242/** The signature, MAC or hash is incorrect.
243 *
244 * Verification functions return this error if the verification
245 * calculations completed successfully, and the value to be verified
246 * was determined to be incorrect.
247 *
248 * If the value to verify has an invalid size, implementations may return
249 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200250#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100251
252/** The decrypted padding is incorrect.
253 *
254 * \warning In some protocols, when decrypting data, it is essential that
255 * the behavior of the application does not depend on whether the padding
256 * is correct, down to precise timing. Applications should prefer
257 * protocols that use authenticated encryption rather than plain
258 * encryption. If the application must perform a decryption of
259 * unauthenticated data, the application writer should take care not
260 * to reveal whether the padding is invalid.
261 *
262 * Implementations should strive to make valid and invalid padding
263 * as close as possible to indistinguishable to an external observer.
264 * In particular, the timing of a decryption operation should not
265 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200266#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100267
David Saadab4ecc272019-02-14 13:48:10 +0200268/** Return this error when there's insufficient data when attempting
269 * to read from a resource. */
270#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100271
272/** The key handle is not valid.
273 */
David Saadab4ecc272019-02-14 13:48:10 +0200274#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100275
276/**@}*/
277
278/** \defgroup crypto_types Key and algorithm types
279 * @{
280 */
281
282/** An invalid key type value.
283 *
284 * Zero is not the encoding of any key type.
285 */
286#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
287
288/** Vendor-defined flag
289 *
290 * Key types defined by this standard will never have the
291 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
292 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
293 * respect the bitwise structure used by standard encodings whenever practical.
294 */
295#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
296
297#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000)
298#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000)
299#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000)
300#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000)
301#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000)
302
303#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000)
304
305/** Whether a key type is vendor-defined. */
306#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
307 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
308
309/** Whether a key type is an unstructured array of bytes.
310 *
311 * This encompasses both symmetric keys and non-key data.
312 */
313#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
314 (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \
315 PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
316
317/** Whether a key type is asymmetric: either a key pair or a public key. */
318#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
319 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
320 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
321 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
322/** Whether a key type is the public part of a key pair. */
323#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
324 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
325/** Whether a key type is a key pair containing a private part and a public
326 * part. */
327#define PSA_KEY_TYPE_IS_KEYPAIR(type) \
328 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
329/** The key pair type corresponding to a public key type.
330 *
331 * You may also pass a key pair type as \p type, it will be left unchanged.
332 *
333 * \param type A public key type or key pair type.
334 *
335 * \return The corresponding key pair type.
336 * If \p type is not a public key or a key pair,
337 * the return value is undefined.
338 */
339#define PSA_KEY_TYPE_KEYPAIR_OF_PUBLIC_KEY(type) \
340 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
341/** The public key type corresponding to a key pair type.
342 *
343 * You may also pass a key pair type as \p type, it will be left unchanged.
344 *
345 * \param type A public key type or key pair type.
346 *
347 * \return The corresponding public key type.
348 * If \p type is not a public key or a key pair,
349 * the return value is undefined.
350 */
351#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) \
352 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
353
354/** Raw data.
355 *
356 * A "key" of this type cannot be used for any cryptographic operation.
357 * Applications may use this type to store arbitrary data in the keystore. */
358#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001)
359
360/** HMAC key.
361 *
362 * The key policy determines which underlying hash algorithm the key can be
363 * used for.
364 *
365 * HMAC keys should generally have the same size as the underlying hash.
366 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
367 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
368#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000)
369
370/** A secret for key derivation.
371 *
372 * The key policy determines which key derivation algorithm the key
373 * can be used for.
374 */
375#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000)
376
377/** Key for an cipher, AEAD or MAC algorithm based on the AES block cipher.
378 *
379 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
380 * 32 bytes (AES-256).
381 */
382#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001)
383
384/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
385 *
386 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
387 * 24 bytes (3-key 3DES).
388 *
389 * Note that single DES and 2-key 3DES are weak and strongly
390 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
391 * is weak and deprecated and should only be used in legacy protocols.
392 */
393#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002)
394
395/** Key for an cipher, AEAD or MAC algorithm based on the
396 * Camellia block cipher. */
397#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003)
398
399/** Key for the RC4 stream cipher.
400 *
401 * Note that RC4 is weak and deprecated and should only be used in
402 * legacy protocols. */
403#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004)
404
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200405/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
406 *
407 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
408 *
409 * Implementations must support 12-byte nonces, may support 8-byte nonces,
410 * and should reject other sizes.
411 */
412#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x40000005)
413
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100414/** RSA public key. */
415#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000)
416/** RSA key pair (private and public key). */
417#define PSA_KEY_TYPE_RSA_KEYPAIR ((psa_key_type_t)0x70010000)
418/** Whether a key type is an RSA key (pair or public-only). */
419#define PSA_KEY_TYPE_IS_RSA(type) \
420 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
421
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100422#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000)
423#define PSA_KEY_TYPE_ECC_KEYPAIR_BASE ((psa_key_type_t)0x70030000)
424#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff)
425/** Elliptic curve key pair. */
426#define PSA_KEY_TYPE_ECC_KEYPAIR(curve) \
427 (PSA_KEY_TYPE_ECC_KEYPAIR_BASE | (curve))
428/** Elliptic curve public key. */
429#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
430 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
431
432/** Whether a key type is an elliptic curve key (pair or public-only). */
433#define PSA_KEY_TYPE_IS_ECC(type) \
434 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) & \
435 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100436/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100437#define PSA_KEY_TYPE_IS_ECC_KEYPAIR(type) \
438 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
439 PSA_KEY_TYPE_ECC_KEYPAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100440/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100441#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
442 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
443 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
444
445/** Extract the curve from an elliptic curve key type. */
446#define PSA_KEY_TYPE_GET_CURVE(type) \
447 ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
448 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
449 0))
450
451/* The encoding of curve identifiers is currently aligned with the
452 * TLS Supported Groups Registry (formerly known as the
453 * TLS EC Named Curve Registry)
454 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
455 * The values are defined by RFC 8422 and RFC 7027. */
456#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001)
457#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002)
458#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003)
459#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004)
460#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005)
461#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006)
462#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007)
463#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008)
464#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009)
465#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a)
466#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b)
467#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c)
468#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d)
469#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e)
470#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f)
471#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010)
472#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011)
473#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012)
474#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013)
475#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014)
476#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015)
477#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016)
478#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017)
479#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018)
480#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019)
481#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a)
482#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b)
483#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c)
484#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d)
485#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e)
486
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200487#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x60040000)
488#define PSA_KEY_TYPE_DH_KEYPAIR_BASE ((psa_key_type_t)0x70040000)
489#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x0000ffff)
490/** Diffie-Hellman key pair. */
491#define PSA_KEY_TYPE_DH_KEYPAIR(group) \
492 (PSA_KEY_TYPE_DH_KEYPAIR_BASE | (group))
493/** Diffie-Hellman public key. */
494#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
495 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
496
497/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
498#define PSA_KEY_TYPE_IS_DH(type) \
499 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) & \
500 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
501/** Whether a key type is a Diffie-Hellman key pair. */
502#define PSA_KEY_TYPE_IS_DH_KEYPAIR(type) \
503 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
504 PSA_KEY_TYPE_DH_KEYPAIR_BASE)
505/** Whether a key type is a Diffie-Hellman public key. */
506#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
507 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
508 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
509
510/** Extract the group from a Diffie-Hellman key type. */
511#define PSA_KEY_TYPE_GET_GROUP(type) \
512 ((psa_dh_group_t) (PSA_KEY_TYPE_IS_DH(type) ? \
513 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
514 0))
515
516/* The encoding of group identifiers is currently aligned with the
517 * TLS Supported Groups Registry (formerly known as the
518 * TLS EC Named Curve Registry)
519 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
520 * The values are defined by RFC 7919. */
521#define PSA_DH_GROUP_FFDHE2048 ((psa_dh_group_t) 0x0100)
522#define PSA_DH_GROUP_FFDHE3072 ((psa_dh_group_t) 0x0101)
523#define PSA_DH_GROUP_FFDHE4096 ((psa_dh_group_t) 0x0102)
524#define PSA_DH_GROUP_FFDHE6144 ((psa_dh_group_t) 0x0103)
525#define PSA_DH_GROUP_FFDHE8192 ((psa_dh_group_t) 0x0104)
Jaeden Amero8851c402019-01-11 14:20:03 +0000526
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100527/** The block size of a block cipher.
528 *
529 * \param type A cipher key type (value of type #psa_key_type_t).
530 *
531 * \return The block size for a block cipher, or 1 for a stream cipher.
532 * The return value is undefined if \p type is not a supported
533 * cipher key type.
534 *
535 * \note It is possible to build stream cipher algorithms on top of a block
536 * cipher, for example CTR mode (#PSA_ALG_CTR).
537 * This macro only takes the key type into account, so it cannot be
538 * used to determine the size of the data that #psa_cipher_update()
539 * might buffer for future processing in general.
540 *
541 * \note This macro returns a compile-time constant if its argument is one.
542 *
543 * \warning This macro may evaluate its argument multiple times.
544 */
545#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
546 ( \
547 (type) == PSA_KEY_TYPE_AES ? 16 : \
548 (type) == PSA_KEY_TYPE_DES ? 8 : \
549 (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \
550 (type) == PSA_KEY_TYPE_ARC4 ? 1 : \
551 0)
552
553#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
554#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
555#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
556#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
557#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
558#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
559#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
560#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100561#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
562#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100563
564#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
565 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
566
567/** Whether the specified algorithm is a hash algorithm.
568 *
569 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
570 *
571 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
572 * This macro may return either 0 or 1 if \p alg is not a supported
573 * algorithm identifier.
574 */
575#define PSA_ALG_IS_HASH(alg) \
576 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
577
578/** Whether the specified algorithm is a MAC algorithm.
579 *
580 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
581 *
582 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
583 * This macro may return either 0 or 1 if \p alg is not a supported
584 * algorithm identifier.
585 */
586#define PSA_ALG_IS_MAC(alg) \
587 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
588
589/** Whether the specified algorithm is a symmetric cipher algorithm.
590 *
591 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
592 *
593 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
594 * This macro may return either 0 or 1 if \p alg is not a supported
595 * algorithm identifier.
596 */
597#define PSA_ALG_IS_CIPHER(alg) \
598 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
599
600/** Whether the specified algorithm is an authenticated encryption
601 * with associated data (AEAD) algorithm.
602 *
603 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
604 *
605 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
606 * This macro may return either 0 or 1 if \p alg is not a supported
607 * algorithm identifier.
608 */
609#define PSA_ALG_IS_AEAD(alg) \
610 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
611
612/** Whether the specified algorithm is a public-key signature algorithm.
613 *
614 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
615 *
616 * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise.
617 * This macro may return either 0 or 1 if \p alg is not a supported
618 * algorithm identifier.
619 */
620#define PSA_ALG_IS_SIGN(alg) \
621 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
622
623/** Whether the specified algorithm is a public-key encryption algorithm.
624 *
625 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
626 *
627 * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise.
628 * This macro may return either 0 or 1 if \p alg is not a supported
629 * algorithm identifier.
630 */
631#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
632 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
633
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100634/** Whether the specified algorithm is a key agreement algorithm.
635 *
636 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
637 *
638 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
639 * This macro may return either 0 or 1 if \p alg is not a supported
640 * algorithm identifier.
641 */
642#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100643 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100644
645/** Whether the specified algorithm is a key derivation algorithm.
646 *
647 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
648 *
649 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
650 * This macro may return either 0 or 1 if \p alg is not a supported
651 * algorithm identifier.
652 */
653#define PSA_ALG_IS_KEY_DERIVATION(alg) \
654 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
655
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100656#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100657
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100658#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
659#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
660#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
661#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
662#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
663/** SHA2-224 */
664#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
665/** SHA2-256 */
666#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
667/** SHA2-384 */
668#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
669/** SHA2-512 */
670#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
671/** SHA2-512/224 */
672#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
673/** SHA2-512/256 */
674#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
675/** SHA3-224 */
676#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
677/** SHA3-256 */
678#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
679/** SHA3-384 */
680#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
681/** SHA3-512 */
682#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
683
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100684/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100685 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100686 * This value may be used to form the algorithm usage field of a policy
687 * for a signature algorithm that is parametrized by a hash. The key
688 * may then be used to perform operations using the same signature
689 * algorithm parametrized with any supported hash.
690 *
691 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100692 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
693 * - #PSA_ALG_DSA, #PSA_ALG_DETERMINISTIC_DSA,
694 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100695 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100696 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
697 * ```
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200698 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN); // or VERIFY
699 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100700 * ```
701 * - Import or generate key material.
702 * - Call psa_asymmetric_sign() or psa_asymmetric_verify(), passing
703 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
704 * call to sign or verify a message may use a different hash.
705 * ```
706 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
707 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
708 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
709 * ```
710 *
711 * This value may not be used to build other algorithms that are
712 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100713 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100714 *
715 * This value may not be used to build an algorithm specification to
716 * perform an operation. It is only valid to build policies.
717 */
718#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
719
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100720#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
721#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
722/** Macro to build an HMAC algorithm.
723 *
724 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
725 *
726 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
727 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
728 *
729 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100730 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100731 * hash algorithm.
732 */
733#define PSA_ALG_HMAC(hash_alg) \
734 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
735
736#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
737 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
738
739/** Whether the specified algorithm is an HMAC algorithm.
740 *
741 * HMAC is a family of MAC algorithms that are based on a hash function.
742 *
743 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
744 *
745 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
746 * This macro may return either 0 or 1 if \p alg is not a supported
747 * algorithm identifier.
748 */
749#define PSA_ALG_IS_HMAC(alg) \
750 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
751 PSA_ALG_HMAC_BASE)
752
753/* In the encoding of a MAC algorithm, the bits corresponding to
754 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
755 * truncated. As an exception, the value 0 means the untruncated algorithm,
756 * whatever its length is. The length is encoded in 6 bits, so it can
757 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
758 * to full length is correctly encoded as 0 and any non-trivial truncation
759 * is correctly encoded as a value between 1 and 63. */
760#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
761#define PSA_MAC_TRUNCATION_OFFSET 8
762
763/** Macro to build a truncated MAC algorithm.
764 *
765 * A truncated MAC algorithm is identical to the corresponding MAC
766 * algorithm except that the MAC value for the truncated algorithm
767 * consists of only the first \p mac_length bytes of the MAC value
768 * for the untruncated algorithm.
769 *
770 * \note This macro may allow constructing algorithm identifiers that
771 * are not valid, either because the specified length is larger
772 * than the untruncated MAC or because the specified length is
773 * smaller than permitted by the implementation.
774 *
775 * \note It is implementation-defined whether a truncated MAC that
776 * is truncated to the same length as the MAC of the untruncated
777 * algorithm is considered identical to the untruncated algorithm
778 * for policy comparison purposes.
779 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200780 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100781 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
782 * is true). This may be a truncated or untruncated
783 * MAC algorithm.
784 * \param mac_length Desired length of the truncated MAC in bytes.
785 * This must be at most the full length of the MAC
786 * and must be at least an implementation-specified
787 * minimum. The implementation-specified minimum
788 * shall not be zero.
789 *
790 * \return The corresponding MAC algorithm with the specified
791 * length.
792 * \return Unspecified if \p alg is not a supported
793 * MAC algorithm or if \p mac_length is too small or
794 * too large for the specified MAC algorithm.
795 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200796#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
797 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100798 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
799
800/** Macro to build the base MAC algorithm corresponding to a truncated
801 * MAC algorithm.
802 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200803 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100804 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
805 * is true). This may be a truncated or untruncated
806 * MAC algorithm.
807 *
808 * \return The corresponding base MAC algorithm.
809 * \return Unspecified if \p alg is not a supported
810 * MAC algorithm.
811 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200812#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
813 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100814
815/** Length to which a MAC algorithm is truncated.
816 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200817 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100818 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
819 * is true).
820 *
821 * \return Length of the truncated MAC in bytes.
822 * \return 0 if \p alg is a non-truncated MAC algorithm.
823 * \return Unspecified if \p alg is not a supported
824 * MAC algorithm.
825 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200826#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
827 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100828
829#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
830#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
831#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
832#define PSA_ALG_GMAC ((psa_algorithm_t)0x02c00003)
833
834/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
835 *
836 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
837 *
838 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
839 * This macro may return either 0 or 1 if \p alg is not a supported
840 * algorithm identifier.
841 */
842#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
843 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
844 PSA_ALG_CIPHER_MAC_BASE)
845
846#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
847#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
848
849/** Whether the specified algorithm is a stream cipher.
850 *
851 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
852 * by applying a bitwise-xor with a stream of bytes that is generated
853 * from a key.
854 *
855 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
856 *
857 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
858 * This macro may return either 0 or 1 if \p alg is not a supported
859 * algorithm identifier or if it is not a symmetric cipher algorithm.
860 */
861#define PSA_ALG_IS_STREAM_CIPHER(alg) \
862 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
863 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
864
865/** The ARC4 stream cipher algorithm.
866 */
867#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
868
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200869/** The ChaCha20 stream cipher.
870 *
871 * ChaCha20 is defined in RFC 7539.
872 *
873 * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv()
874 * must be 12.
875 *
876 * The initial block counter is always 0.
877 *
878 */
879#define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005)
880
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100881/** The CTR stream cipher mode.
882 *
883 * CTR is a stream cipher which is built from a block cipher.
884 * The underlying block cipher is determined by the key type.
885 * For example, to use AES-128-CTR, use this algorithm with
886 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
887 */
888#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
889
890#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
891
892#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
893
894/** The XTS cipher mode.
895 *
896 * XTS is a cipher mode which is built from a block cipher. It requires at
897 * least one full block of input, but beyond this minimum the input
898 * does not need to be a whole number of blocks.
899 */
900#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
901
902/** The CBC block cipher chaining mode, with no padding.
903 *
904 * The underlying block cipher is determined by the key type.
905 *
906 * This symmetric cipher mode can only be used with messages whose lengths
907 * are whole number of blocks for the chosen block cipher.
908 */
909#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
910
911/** The CBC block cipher chaining mode with PKCS#7 padding.
912 *
913 * The underlying block cipher is determined by the key type.
914 *
915 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
916 */
917#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
918
Gilles Peskine679693e2019-05-06 15:10:16 +0200919#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
920
921/** Whether the specified algorithm is an AEAD mode on a block cipher.
922 *
923 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
924 *
925 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
926 * a block cipher, 0 otherwise.
927 * This macro may return either 0 or 1 if \p alg is not a supported
928 * algorithm identifier.
929 */
930#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
931 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
932 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
933
Gilles Peskine9153ec02019-02-15 13:02:02 +0100934/** The CCM authenticated encryption algorithm.
935 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200936#define PSA_ALG_CCM ((psa_algorithm_t)0x06401001)
Gilles Peskine9153ec02019-02-15 13:02:02 +0100937
938/** The GCM authenticated encryption algorithm.
939 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200940#define PSA_ALG_GCM ((psa_algorithm_t)0x06401002)
941
942/** The Chacha20-Poly1305 AEAD algorithm.
943 *
944 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200945 *
946 * Implementations must support 12-byte nonces, may support 8-byte nonces,
947 * and should reject other sizes.
948 *
949 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +0200950 */
951#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100952
953/* In the encoding of a AEAD algorithm, the bits corresponding to
954 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
955 * The constants for default lengths follow this encoding.
956 */
957#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
958#define PSA_AEAD_TAG_LENGTH_OFFSET 8
959
960/** Macro to build a shortened AEAD algorithm.
961 *
962 * A shortened AEAD algorithm is similar to the corresponding AEAD
963 * algorithm, but has an authentication tag that consists of fewer bytes.
964 * Depending on the algorithm, the tag length may affect the calculation
965 * of the ciphertext.
966 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200967 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100968 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
969 * is true).
970 * \param tag_length Desired length of the authentication tag in bytes.
971 *
972 * \return The corresponding AEAD algorithm with the specified
973 * length.
974 * \return Unspecified if \p alg is not a supported
975 * AEAD algorithm or if \p tag_length is not valid
976 * for the specified AEAD algorithm.
977 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200978#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
979 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100980 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
981 PSA_ALG_AEAD_TAG_LENGTH_MASK))
982
983/** Calculate the corresponding AEAD algorithm with the default tag length.
984 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200985 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
986 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100987 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200988 * \return The corresponding AEAD algorithm with the default
989 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100990 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200991#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100992 ( \
Gilles Peskine434899f2018-10-19 11:30:26 +0200993 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_CCM) \
994 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_GCM) \
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200995 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100996 0)
Gilles Peskine434899f2018-10-19 11:30:26 +0200997#define PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, ref) \
998 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100999 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
1000 ref :
1001
1002#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
1003/** RSA PKCS#1 v1.5 signature with hashing.
1004 *
1005 * This is the signature scheme defined by RFC 8017
1006 * (PKCS#1: RSA Cryptography Specifications) under the name
1007 * RSASSA-PKCS1-v1_5.
1008 *
1009 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1010 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001011 * This includes #PSA_ALG_ANY_HASH
1012 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001013 *
1014 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001015 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001016 * hash algorithm.
1017 */
1018#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1019 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1020/** Raw PKCS#1 v1.5 signature.
1021 *
1022 * The input to this algorithm is the DigestInfo structure used by
1023 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1024 * steps 3&ndash;6.
1025 */
1026#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1027#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1028 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1029
1030#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
1031/** RSA PSS signature with hashing.
1032 *
1033 * This is the signature scheme defined by RFC 8017
1034 * (PKCS#1: RSA Cryptography Specifications) under the name
1035 * RSASSA-PSS, with the message generation function MGF1, and with
1036 * a salt length equal to the length of the hash. The specified
1037 * hash algorithm is used to hash the input message, to create the
1038 * salted hash, and for the mask generation.
1039 *
1040 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1041 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001042 * This includes #PSA_ALG_ANY_HASH
1043 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001044 *
1045 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001046 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001047 * hash algorithm.
1048 */
1049#define PSA_ALG_RSA_PSS(hash_alg) \
1050 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1051#define PSA_ALG_IS_RSA_PSS(alg) \
1052 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1053
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001054#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1055/** ECDSA signature with hashing.
1056 *
1057 * This is the ECDSA signature scheme defined by ANSI X9.62,
1058 * with a random per-message secret number (*k*).
1059 *
1060 * The representation of the signature as a byte string consists of
1061 * the concatentation of the signature values *r* and *s*. Each of
1062 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1063 * of the base point of the curve in octets. Each value is represented
1064 * in big-endian order (most significant octet first).
1065 *
1066 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1067 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001068 * This includes #PSA_ALG_ANY_HASH
1069 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001070 *
1071 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001072 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001073 * hash algorithm.
1074 */
1075#define PSA_ALG_ECDSA(hash_alg) \
1076 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1077/** ECDSA signature without hashing.
1078 *
1079 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1080 * without specifying a hash algorithm. This algorithm may only be
1081 * used to sign or verify a sequence of bytes that should be an
1082 * already-calculated hash. Note that the input is padded with
1083 * zeros on the left or truncated on the left as required to fit
1084 * the curve size.
1085 */
1086#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1087#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1088/** Deterministic ECDSA signature with hashing.
1089 *
1090 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1091 *
1092 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1093 *
1094 * Note that when this algorithm is used for verification, signatures
1095 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1096 * same private key are accepted. In other words,
1097 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1098 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1099 *
1100 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1101 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001102 * This includes #PSA_ALG_ANY_HASH
1103 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001104 *
1105 * \return The corresponding deterministic ECDSA signature
1106 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001107 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001108 * hash algorithm.
1109 */
1110#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1111 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1112#define PSA_ALG_IS_ECDSA(alg) \
1113 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
1114 PSA_ALG_ECDSA_BASE)
1115#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
1116 (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
1117#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1118 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1119#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1120 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1121
Gilles Peskined35b4892019-01-14 16:02:15 +01001122/** Whether the specified algorithm is a hash-and-sign algorithm.
1123 *
1124 * Hash-and-sign algorithms are public-key signature algorithms structured
1125 * in two parts: first the calculation of a hash in a way that does not
1126 * depend on the key, then the calculation of a signature from the
1127 * hash value and the key.
1128 *
1129 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1130 *
1131 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1132 * This macro may return either 0 or 1 if \p alg is not a supported
1133 * algorithm identifier.
1134 */
1135#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1136 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskinee38ab1a2019-05-16 13:51:50 +02001137 PSA_ALG_IS_ECDSA(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001138
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001139/** Get the hash used by a hash-and-sign signature algorithm.
1140 *
1141 * A hash-and-sign algorithm is a signature algorithm which is
1142 * composed of two phases: first a hashing phase which does not use
1143 * the key and produces a hash of the input message, then a signing
1144 * phase which only uses the hash and the key and not the message
1145 * itself.
1146 *
1147 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1148 * #PSA_ALG_IS_SIGN(\p alg) is true).
1149 *
1150 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1151 * algorithm.
1152 * \return 0 if \p alg is a signature algorithm that does not
1153 * follow the hash-and-sign structure.
1154 * \return Unspecified if \p alg is not a signature algorithm or
1155 * if it is not supported by the implementation.
1156 */
1157#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001158 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001159 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1160 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1161 0)
1162
1163/** RSA PKCS#1 v1.5 encryption.
1164 */
1165#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1166
1167#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1168/** RSA OAEP encryption.
1169 *
1170 * This is the encryption scheme defined by RFC 8017
1171 * (PKCS#1: RSA Cryptography Specifications) under the name
1172 * RSAES-OAEP, with the message generation function MGF1.
1173 *
1174 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1175 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1176 * for MGF1.
1177 *
1178 * \return The corresponding RSA OAEP signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001179 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001180 * hash algorithm.
1181 */
1182#define PSA_ALG_RSA_OAEP(hash_alg) \
1183 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1184#define PSA_ALG_IS_RSA_OAEP(alg) \
1185 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1186#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1187 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1188 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1189 0)
1190
Gilles Peskine6843c292019-01-18 16:44:49 +01001191#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001192/** Macro to build an HKDF algorithm.
1193 *
1194 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1195 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001196 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001197 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001198 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001199 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1200 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1201 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1202 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001203 * starting to generate output.
1204 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001205 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1206 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1207 *
1208 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001209 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001210 * hash algorithm.
1211 */
1212#define PSA_ALG_HKDF(hash_alg) \
1213 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1214/** Whether the specified algorithm is an HKDF algorithm.
1215 *
1216 * HKDF is a family of key derivation algorithms that are based on a hash
1217 * function and the HMAC construction.
1218 *
1219 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1220 *
1221 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1222 * This macro may return either 0 or 1 if \c alg is not a supported
1223 * key derivation algorithm identifier.
1224 */
1225#define PSA_ALG_IS_HKDF(alg) \
1226 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1227#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1228 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1229
Gilles Peskine6843c292019-01-18 16:44:49 +01001230#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001231/** Macro to build a TLS-1.2 PRF algorithm.
1232 *
1233 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1234 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1235 * used with either SHA-256 or SHA-384.
1236 *
1237 * For the application to TLS-1.2, the salt and label arguments passed
1238 * to psa_key_derivation() are what's called 'seed' and 'label' in RFC 5246,
1239 * respectively. For example, for TLS key expansion, the salt is the
1240 * concatenation of ServerHello.Random + ClientHello.Random,
1241 * while the label is "key expansion".
1242 *
1243 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1244 * TLS 1.2 PRF using HMAC-SHA-256.
1245 *
1246 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1247 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1248 *
1249 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001250 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001251 * hash algorithm.
1252 */
1253#define PSA_ALG_TLS12_PRF(hash_alg) \
1254 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1255
1256/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1257 *
1258 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1259 *
1260 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1261 * This macro may return either 0 or 1 if \c alg is not a supported
1262 * key derivation algorithm identifier.
1263 */
1264#define PSA_ALG_IS_TLS12_PRF(alg) \
1265 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1266#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1267 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1268
Gilles Peskine6843c292019-01-18 16:44:49 +01001269#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001270/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1271 *
1272 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1273 * from the PreSharedKey (PSK) through the application of padding
1274 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1275 * The latter is based on HMAC and can be used with either SHA-256
1276 * or SHA-384.
1277 *
1278 * For the application to TLS-1.2, the salt passed to psa_key_derivation()
1279 * (and forwarded to the TLS-1.2 PRF) is the concatenation of the
1280 * ClientHello.Random + ServerHello.Random, while the label is "master secret"
1281 * or "extended master secret".
1282 *
1283 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1284 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1285 *
1286 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1287 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1288 *
1289 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001290 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001291 * hash algorithm.
1292 */
1293#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1294 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1295
1296/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1297 *
1298 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1299 *
1300 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1301 * This macro may return either 0 or 1 if \c alg is not a supported
1302 * key derivation algorithm identifier.
1303 */
1304#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1305 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1306#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1307 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1308
Gilles Peskinea52460c2019-04-12 00:11:21 +02001309#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff)
1310#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001311
Gilles Peskine6843c292019-01-18 16:44:49 +01001312/** Macro to build a combined algorithm that chains a key agreement with
1313 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001314 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001315 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1316 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1317 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1318 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001319 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001320 * \return The corresponding key agreement and derivation
1321 * algorithm.
1322 * \return Unspecified if \p ka_alg is not a supported
1323 * key agreement algorithm or \p kdf_alg is not a
1324 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001325 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001326#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1327 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001328
1329#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1330 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1331
Gilles Peskine6843c292019-01-18 16:44:49 +01001332#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1333 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001334
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001335/** Whether the specified algorithm is a raw key agreement algorithm.
1336 *
1337 * A raw key agreement algorithm is one that does not specify
1338 * a key derivation function.
1339 * Usually, raw key agreement algorithms are constructed directly with
1340 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
1341 * constructed with PSA_ALG_KEY_AGREEMENT().
1342 *
1343 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1344 *
1345 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1346 * This macro may return either 0 or 1 if \p alg is not a supported
1347 * algorithm identifier.
1348 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001349#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001350 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1351 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001352
1353#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1354 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1355
1356/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001357 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001358 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001359 * `g^{ab}` in big-endian format.
1360 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1361 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001362 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001363#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1364
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001365/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1366 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001367 * This includes the raw finite field Diffie-Hellman algorithm as well as
1368 * finite-field Diffie-Hellman followed by any supporter key derivation
1369 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001370 *
1371 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1372 *
1373 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1374 * This macro may return either 0 or 1 if \c alg is not a supported
1375 * key agreement algorithm identifier.
1376 */
1377#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001378 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001379
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001380/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1381 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001382 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001383 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1384 * `m` is the bit size associated with the curve, i.e. the bit size of the
1385 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1386 * the byte containing the most significant bit of the shared secret
1387 * is padded with zero bits. The byte order is either little-endian
1388 * or big-endian depending on the curve type.
1389 *
1390 * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`),
1391 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1392 * in little-endian byte order.
1393 * The bit size is 448 for Curve448 and 255 for Curve25519.
1394 * - For Weierstrass curves over prime fields (curve types
1395 * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`),
1396 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1397 * in big-endian byte order.
1398 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1399 * - For Weierstrass curves over binary fields (curve types
1400 * `PSA_ECC_CURVE_SECTXXX`),
1401 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1402 * in big-endian byte order.
1403 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001404 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001405#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1406
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001407/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1408 * algorithm.
1409 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001410 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1411 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1412 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001413 *
1414 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1415 *
1416 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1417 * 0 otherwise.
1418 * This macro may return either 0 or 1 if \c alg is not a supported
1419 * key agreement algorithm identifier.
1420 */
1421#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001422 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001423
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001424/** Whether the specified algorithm encoding is a wildcard.
1425 *
1426 * Wildcard values may only be used to set the usage algorithm field in
1427 * a policy, not to perform an operation.
1428 *
1429 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1430 *
1431 * \return 1 if \c alg is a wildcard algorithm encoding.
1432 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1433 * an operation).
1434 * \return This macro may return either 0 or 1 if \c alg is not a supported
1435 * algorithm identifier.
1436 */
1437#define PSA_ALG_IS_WILDCARD(alg) \
1438 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1439 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1440 (alg) == PSA_ALG_ANY_HASH)
1441
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001442/**@}*/
1443
1444/** \defgroup key_lifetimes Key lifetimes
1445 * @{
1446 */
1447
1448/** A volatile key only exists as long as the handle to it is not closed.
1449 * The key material is guaranteed to be erased on a power reset.
1450 */
1451#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1452
1453/** The default storage area for persistent keys.
1454 *
1455 * A persistent key remains in storage until it is explicitly destroyed or
1456 * until the corresponding storage area is wiped. This specification does
1457 * not define any mechanism to wipe a storage area, but implementations may
1458 * provide their own mechanism (for example to perform a factory reset,
1459 * to prepare for device refurbishment, or to uninstall an application).
1460 *
1461 * This lifetime value is the default storage area for the calling
1462 * application. Implementations may offer other storage areas designated
1463 * by other lifetime values as implementation-specific extensions.
1464 */
1465#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1466
Gilles Peskine4a231b82019-05-06 18:56:14 +02001467/** The minimum value for a key identifier chosen by the application.
1468 */
Gilles Peskinef9fbc382019-05-15 18:42:09 +02001469#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001470/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001471 */
1472#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001473/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001474 */
1475#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001476/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001477 */
1478#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
1479
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001480/**@}*/
1481
1482/** \defgroup policy Key policies
1483 * @{
1484 */
1485
1486/** Whether the key may be exported.
1487 *
1488 * A public key or the public part of a key pair may always be exported
1489 * regardless of the value of this permission flag.
1490 *
1491 * If a key does not have export permission, implementations shall not
1492 * allow the key to be exported in plain form from the cryptoprocessor,
1493 * whether through psa_export_key() or through a proprietary interface.
1494 * The key may however be exportable in a wrapped form, i.e. in a form
1495 * where it is encrypted by another key.
1496 */
1497#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1498
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001499/** Whether the key may be copied.
1500 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001501 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001502 * with the same policy or a more restrictive policy.
1503 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001504 * For lifetimes for which the key is located in a secure element which
1505 * enforce the non-exportability of keys, copying a key outside the secure
1506 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1507 * Copying the key inside the secure element is permitted with just
1508 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1509 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001510 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1511 * is sufficient to permit the copy.
1512 */
1513#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1514
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001515/** Whether the key may be used to encrypt a message.
1516 *
1517 * This flag allows the key to be used for a symmetric encryption operation,
1518 * for an AEAD encryption-and-authentication operation,
1519 * or for an asymmetric encryption operation,
1520 * if otherwise permitted by the key's type and policy.
1521 *
1522 * For a key pair, this concerns the public key.
1523 */
1524#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1525
1526/** Whether the key may be used to decrypt a message.
1527 *
1528 * This flag allows the key to be used for a symmetric decryption operation,
1529 * for an AEAD decryption-and-verification operation,
1530 * or for an asymmetric decryption operation,
1531 * if otherwise permitted by the key's type and policy.
1532 *
1533 * For a key pair, this concerns the private key.
1534 */
1535#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1536
1537/** Whether the key may be used to sign a message.
1538 *
1539 * This flag allows the key to be used for a MAC calculation operation
1540 * or for an asymmetric signature operation,
1541 * if otherwise permitted by the key's type and policy.
1542 *
1543 * For a key pair, this concerns the private key.
1544 */
1545#define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400)
1546
1547/** Whether the key may be used to verify a message signature.
1548 *
1549 * This flag allows the key to be used for a MAC verification operation
1550 * or for an asymmetric signature verification operation,
1551 * if otherwise permitted by by the key's type and policy.
1552 *
1553 * For a key pair, this concerns the public key.
1554 */
1555#define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800)
1556
1557/** Whether the key may be used to derive other keys.
1558 */
1559#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1560
1561/**@}*/
1562
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001563/** \defgroup derivation Key derivation
1564 * @{
1565 */
1566
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001567/** A secret input for key derivation.
1568 *
1569 * This must be a key of type #PSA_KEY_TYPE_DERIVE.
1570 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001571#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001572
1573/** A label for key derivation.
1574 *
1575 * This must be a direct input.
1576 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001577#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001578
1579/** A salt for key derivation.
1580 *
1581 * This must be a direct input.
1582 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001583#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001584
1585/** An information string for key derivation.
1586 *
1587 * This must be a direct input.
1588 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001589#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001590
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001591/**@}*/
1592
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001593#endif /* PSA_CRYPTO_VALUES_H */