blob: e9fb9ad01345653053f14276392662c1f599becb [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
18 * Copyright (C) 2018, ARM Limited, All Rights Reserved
19 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
32 *
33 * This file is part of mbed TLS (https://tls.mbed.org)
34 */
35
36#ifndef PSA_CRYPTO_VALUES_H
37#define PSA_CRYPTO_VALUES_H
38
39/** \defgroup error Error codes
40 * @{
41 */
42
David Saadab4ecc272019-02-14 13:48:10 +020043/* PSA error codes */
44
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045/** The action was completed successfully. */
46#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010047
48/** An error occurred that does not correspond to any defined
49 * failure cause.
50 *
51 * Implementations may use this error code if none of the other standard
52 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020053#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010054
55/** The requested operation or a parameter is not supported
56 * by this implementation.
57 *
58 * Implementations should return this error code when an enumeration
59 * parameter such as a key type, algorithm, etc. is not recognized.
60 * If a combination of parameters is recognized and identified as
61 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020062#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010063
64/** The requested action is denied by a policy.
65 *
66 * Implementations should return this error code when the parameters
67 * are recognized as valid and supported, and a policy explicitly
68 * denies the requested operation.
69 *
70 * If a subset of the parameters of a function call identify a
71 * forbidden operation, and another subset of the parameters are
72 * not valid or not supported, it is unspecified whether the function
73 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
74 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020075#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010076
77/** An output buffer is too small.
78 *
79 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
80 * description to determine a sufficient buffer size.
81 *
82 * Implementations should preferably return this error code only
83 * in cases when performing the operation with a larger output
84 * buffer would succeed. However implementations may return this
85 * error if a function has invalid or unsupported parameters in addition
86 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020087#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088
David Saadab4ecc272019-02-14 13:48:10 +020089/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010090 *
David Saadab4ecc272019-02-14 13:48:10 +020091 * Implementations should return this error, when attempting
92 * to write an item (like a key) that already exists. */
93#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094
David Saadab4ecc272019-02-14 13:48:10 +020095/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010096 *
David Saadab4ecc272019-02-14 13:48:10 +020097 * Implementations should return this error, if a requested item (like
98 * a key) does not exist. */
99#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100
101/** The requested action cannot be performed in the current state.
102 *
103 * Multipart operations return this error when one of the
104 * functions is called out of sequence. Refer to the function
105 * descriptions for permitted sequencing of functions.
106 *
107 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100108 * that a key either exists or not,
109 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100110 * as applicable.
111 *
112 * Implementations shall not return this error code to indicate that a
113 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
114 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200115#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100116
117/** The parameters passed to the function are invalid.
118 *
119 * Implementations may return this error any time a parameter or
120 * combination of parameters are recognized as invalid.
121 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100122 * Implementations shall not return this error code to indicate that a
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
124 * instead.
125 */
David Saadab4ecc272019-02-14 13:48:10 +0200126#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100127
128/** There is not enough runtime memory.
129 *
130 * If the action is carried out across multiple security realms, this
131 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200132#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100133
134/** There is not enough persistent storage.
135 *
136 * Functions that modify the key storage return this error code if
137 * there is insufficient storage space on the host media. In addition,
138 * many functions that do not otherwise access storage may return this
139 * error code if the implementation requires a mandatory log entry for
140 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200141#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100142
143/** There was a communication failure inside the implementation.
144 *
145 * This can indicate a communication failure between the application
146 * and an external cryptoprocessor or between the cryptoprocessor and
147 * an external volatile or persistent memory. A communication failure
148 * may be transient or permanent depending on the cause.
149 *
150 * \warning If a function returns this error, it is undetermined
151 * whether the requested action has completed or not. Implementations
152 * should return #PSA_SUCCESS on successful completion whenver
153 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
154 * if the requested action was completed successfully in an external
155 * cryptoprocessor but there was a breakdown of communication before
156 * the cryptoprocessor could report the status to the application.
157 */
David Saadab4ecc272019-02-14 13:48:10 +0200158#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100159
160/** There was a storage failure that may have led to data loss.
161 *
162 * This error indicates that some persistent storage is corrupted.
163 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200164 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100165 * between the cryptoprocessor and its external storage (use
166 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
167 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
168 *
169 * Note that a storage failure does not indicate that any data that was
170 * previously read is invalid. However this previously read data may no
171 * longer be readable from storage.
172 *
173 * When a storage failure occurs, it is no longer possible to ensure
174 * the global integrity of the keystore. Depending on the global
175 * integrity guarantees offered by the implementation, access to other
176 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100177 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100178 *
179 * Implementations should only use this error code to report a
180 * permanent storage corruption. However application writers should
181 * keep in mind that transient errors while reading the storage may be
182 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200183#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100184
185/** A hardware failure was detected.
186 *
187 * A hardware failure may be transient or permanent depending on the
188 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200189#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100190
191/** A tampering attempt was detected.
192 *
193 * If an application receives this error code, there is no guarantee
194 * that previously accessed or computed data was correct and remains
195 * confidential. Applications should not perform any security function
196 * and should enter a safe failure state.
197 *
198 * Implementations may return this error code if they detect an invalid
199 * state that cannot happen during normal operation and that indicates
200 * that the implementation's security guarantees no longer hold. Depending
201 * on the implementation architecture and on its security and safety goals,
202 * the implementation may forcibly terminate the application.
203 *
204 * This error code is intended as a last resort when a security breach
205 * is detected and it is unsure whether the keystore data is still
206 * protected. Implementations shall only return this error code
207 * to report an alarm from a tampering detector, to indicate that
208 * the confidentiality of stored data can no longer be guaranteed,
209 * or to indicate that the integrity of previously returned data is now
210 * considered compromised. Implementations shall not use this error code
211 * to indicate a hardware failure that merely makes it impossible to
212 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
213 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
214 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
215 * instead).
216 *
217 * This error indicates an attack against the application. Implementations
218 * shall not return this error code as a consequence of the behavior of
219 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200220#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100221
222/** There is not enough entropy to generate random data needed
223 * for the requested action.
224 *
225 * This error indicates a failure of a hardware random generator.
226 * Application writers should note that this error can be returned not
227 * only by functions whose purpose is to generate random data, such
228 * as key, IV or nonce generation, but also by functions that execute
229 * an algorithm with a randomized result, as well as functions that
230 * use randomization of intermediate computations as a countermeasure
231 * to certain attacks.
232 *
233 * Implementations should avoid returning this error after psa_crypto_init()
234 * has succeeded. Implementations should generate sufficient
235 * entropy during initialization and subsequently use a cryptographically
236 * secure pseudorandom generator (PRNG). However implementations may return
237 * this error at any time if a policy requires the PRNG to be reseeded
238 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200239#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100240
241/** The signature, MAC or hash is incorrect.
242 *
243 * Verification functions return this error if the verification
244 * calculations completed successfully, and the value to be verified
245 * was determined to be incorrect.
246 *
247 * If the value to verify has an invalid size, implementations may return
248 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200249#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100250
251/** The decrypted padding is incorrect.
252 *
253 * \warning In some protocols, when decrypting data, it is essential that
254 * the behavior of the application does not depend on whether the padding
255 * is correct, down to precise timing. Applications should prefer
256 * protocols that use authenticated encryption rather than plain
257 * encryption. If the application must perform a decryption of
258 * unauthenticated data, the application writer should take care not
259 * to reveal whether the padding is invalid.
260 *
261 * Implementations should strive to make valid and invalid padding
262 * as close as possible to indistinguishable to an external observer.
263 * In particular, the timing of a decryption operation should not
264 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200265#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100266
David Saadab4ecc272019-02-14 13:48:10 +0200267/** Return this error when there's insufficient data when attempting
268 * to read from a resource. */
269#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270
271/** The key handle is not valid.
272 */
David Saadab4ecc272019-02-14 13:48:10 +0200273#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100274
275/**@}*/
276
277/** \defgroup crypto_types Key and algorithm types
278 * @{
279 */
280
281/** An invalid key type value.
282 *
283 * Zero is not the encoding of any key type.
284 */
285#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
286
287/** Vendor-defined flag
288 *
289 * Key types defined by this standard will never have the
290 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
291 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
292 * respect the bitwise structure used by standard encodings whenever practical.
293 */
294#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
295
296#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000)
297#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000)
298#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000)
299#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000)
300#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000)
301
302#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000)
303
304/** Whether a key type is vendor-defined. */
305#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
306 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
307
308/** Whether a key type is an unstructured array of bytes.
309 *
310 * This encompasses both symmetric keys and non-key data.
311 */
312#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
313 (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \
314 PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
315
316/** Whether a key type is asymmetric: either a key pair or a public key. */
317#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
318 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
319 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
320 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
321/** Whether a key type is the public part of a key pair. */
322#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
323 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
324/** Whether a key type is a key pair containing a private part and a public
325 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200326#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100327 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
328/** The key pair type corresponding to a public key type.
329 *
330 * You may also pass a key pair type as \p type, it will be left unchanged.
331 *
332 * \param type A public key type or key pair type.
333 *
334 * \return The corresponding key pair type.
335 * If \p type is not a public key or a key pair,
336 * the return value is undefined.
337 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200338#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
340/** The public key type corresponding to a key pair type.
341 *
342 * You may also pass a key pair type as \p type, it will be left unchanged.
343 *
344 * \param type A public key type or key pair type.
345 *
346 * \return The corresponding public key type.
347 * If \p type is not a public key or a key pair,
348 * the return value is undefined.
349 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200350#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100351 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
352
353/** Raw data.
354 *
355 * A "key" of this type cannot be used for any cryptographic operation.
356 * Applications may use this type to store arbitrary data in the keystore. */
357#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001)
358
359/** HMAC key.
360 *
361 * The key policy determines which underlying hash algorithm the key can be
362 * used for.
363 *
364 * HMAC keys should generally have the same size as the underlying hash.
365 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
366 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
367#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000)
368
369/** A secret for key derivation.
370 *
371 * The key policy determines which key derivation algorithm the key
372 * can be used for.
373 */
374#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000)
375
Gilles Peskine737c6be2019-05-21 16:01:06 +0200376/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100377 *
378 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
379 * 32 bytes (AES-256).
380 */
381#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001)
382
383/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
384 *
385 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
386 * 24 bytes (3-key 3DES).
387 *
388 * Note that single DES and 2-key 3DES are weak and strongly
389 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
390 * is weak and deprecated and should only be used in legacy protocols.
391 */
392#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002)
393
Gilles Peskine737c6be2019-05-21 16:01:06 +0200394/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100395 * Camellia block cipher. */
396#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003)
397
398/** Key for the RC4 stream cipher.
399 *
400 * Note that RC4 is weak and deprecated and should only be used in
401 * legacy protocols. */
402#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004)
403
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200404/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
405 *
406 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
407 *
408 * Implementations must support 12-byte nonces, may support 8-byte nonces,
409 * and should reject other sizes.
410 */
411#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x40000005)
412
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100413/** RSA public key. */
414#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000)
415/** RSA key pair (private and public key). */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200416#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x70010000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100417/** Whether a key type is an RSA key (pair or public-only). */
418#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200419 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100420
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100421#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000)
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200422#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x70030000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff)
424/** Elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200425#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
426 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100427/** Elliptic curve public key. */
428#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
429 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
430
431/** Whether a key type is an elliptic curve key (pair or public-only). */
432#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200433 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100434 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100435/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200436#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100437 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200438 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100439/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100440#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
441 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
442 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
443
444/** Extract the curve from an elliptic curve key type. */
445#define PSA_KEY_TYPE_GET_CURVE(type) \
446 ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
447 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
448 0))
449
450/* The encoding of curve identifiers is currently aligned with the
451 * TLS Supported Groups Registry (formerly known as the
452 * TLS EC Named Curve Registry)
453 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
454 * The values are defined by RFC 8422 and RFC 7027. */
455#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001)
456#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002)
457#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003)
458#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004)
459#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005)
460#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006)
461#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007)
462#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008)
463#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009)
464#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a)
465#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b)
466#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c)
467#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d)
468#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e)
469#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f)
470#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010)
471#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011)
472#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012)
473#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013)
474#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014)
475#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015)
476#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016)
477#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017)
478#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018)
479#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019)
480#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a)
481#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b)
482#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c)
Gilles Peskinea9b9cf72019-05-21 19:18:33 +0200483/** Curve25519.
484 *
485 * This is the curve defined in Bernstein et al.,
486 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
487 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
488 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100489#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d)
Gilles Peskinea9b9cf72019-05-21 19:18:33 +0200490/** Curve448
491 *
492 * This is the curve defined in Hamburg,
493 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
494 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
495 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100496#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e)
497
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200498#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x60040000)
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200499#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x70040000)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200500#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x0000ffff)
501/** Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200502#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
503 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200504/** Diffie-Hellman public key. */
505#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
506 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
507
508/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
509#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200510 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200511 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
512/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200513#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200514 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200515 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200516/** Whether a key type is a Diffie-Hellman public key. */
517#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
518 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
519 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
520
521/** Extract the group from a Diffie-Hellman key type. */
522#define PSA_KEY_TYPE_GET_GROUP(type) \
523 ((psa_dh_group_t) (PSA_KEY_TYPE_IS_DH(type) ? \
524 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
525 0))
526
527/* The encoding of group identifiers is currently aligned with the
528 * TLS Supported Groups Registry (formerly known as the
529 * TLS EC Named Curve Registry)
530 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
531 * The values are defined by RFC 7919. */
532#define PSA_DH_GROUP_FFDHE2048 ((psa_dh_group_t) 0x0100)
533#define PSA_DH_GROUP_FFDHE3072 ((psa_dh_group_t) 0x0101)
534#define PSA_DH_GROUP_FFDHE4096 ((psa_dh_group_t) 0x0102)
535#define PSA_DH_GROUP_FFDHE6144 ((psa_dh_group_t) 0x0103)
536#define PSA_DH_GROUP_FFDHE8192 ((psa_dh_group_t) 0x0104)
Jaeden Amero8851c402019-01-11 14:20:03 +0000537
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100538/** The block size of a block cipher.
539 *
540 * \param type A cipher key type (value of type #psa_key_type_t).
541 *
542 * \return The block size for a block cipher, or 1 for a stream cipher.
543 * The return value is undefined if \p type is not a supported
544 * cipher key type.
545 *
546 * \note It is possible to build stream cipher algorithms on top of a block
547 * cipher, for example CTR mode (#PSA_ALG_CTR).
548 * This macro only takes the key type into account, so it cannot be
549 * used to determine the size of the data that #psa_cipher_update()
550 * might buffer for future processing in general.
551 *
552 * \note This macro returns a compile-time constant if its argument is one.
553 *
554 * \warning This macro may evaluate its argument multiple times.
555 */
556#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
557 ( \
558 (type) == PSA_KEY_TYPE_AES ? 16 : \
559 (type) == PSA_KEY_TYPE_DES ? 8 : \
560 (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \
561 (type) == PSA_KEY_TYPE_ARC4 ? 1 : \
562 0)
563
564#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
565#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
566#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
567#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
568#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
569#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
570#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
571#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100572#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
573#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100574
575#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
576 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
577
578/** Whether the specified algorithm is a hash algorithm.
579 *
580 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
581 *
582 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
583 * This macro may return either 0 or 1 if \p alg is not a supported
584 * algorithm identifier.
585 */
586#define PSA_ALG_IS_HASH(alg) \
587 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
588
589/** Whether the specified algorithm is a MAC algorithm.
590 *
591 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
592 *
593 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
594 * This macro may return either 0 or 1 if \p alg is not a supported
595 * algorithm identifier.
596 */
597#define PSA_ALG_IS_MAC(alg) \
598 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
599
600/** Whether the specified algorithm is a symmetric cipher algorithm.
601 *
602 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
603 *
604 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
605 * This macro may return either 0 or 1 if \p alg is not a supported
606 * algorithm identifier.
607 */
608#define PSA_ALG_IS_CIPHER(alg) \
609 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
610
611/** Whether the specified algorithm is an authenticated encryption
612 * with associated data (AEAD) algorithm.
613 *
614 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
615 *
616 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
617 * This macro may return either 0 or 1 if \p alg is not a supported
618 * algorithm identifier.
619 */
620#define PSA_ALG_IS_AEAD(alg) \
621 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
622
623/** Whether the specified algorithm is a public-key signature algorithm.
624 *
625 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
626 *
627 * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise.
628 * This macro may return either 0 or 1 if \p alg is not a supported
629 * algorithm identifier.
630 */
631#define PSA_ALG_IS_SIGN(alg) \
632 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
633
634/** Whether the specified algorithm is a public-key encryption algorithm.
635 *
636 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
637 *
638 * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise.
639 * This macro may return either 0 or 1 if \p alg is not a supported
640 * algorithm identifier.
641 */
642#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
643 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
644
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100645/** Whether the specified algorithm is a key agreement algorithm.
646 *
647 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
648 *
649 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
650 * This macro may return either 0 or 1 if \p alg is not a supported
651 * algorithm identifier.
652 */
653#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100654 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100655
656/** Whether the specified algorithm is a key derivation algorithm.
657 *
658 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
659 *
660 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
661 * This macro may return either 0 or 1 if \p alg is not a supported
662 * algorithm identifier.
663 */
664#define PSA_ALG_IS_KEY_DERIVATION(alg) \
665 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
666
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100667#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100668
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100669#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
670#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
671#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
672#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
673#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
674/** SHA2-224 */
675#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
676/** SHA2-256 */
677#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
678/** SHA2-384 */
679#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
680/** SHA2-512 */
681#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
682/** SHA2-512/224 */
683#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
684/** SHA2-512/256 */
685#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
686/** SHA3-224 */
687#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
688/** SHA3-256 */
689#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
690/** SHA3-384 */
691#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
692/** SHA3-512 */
693#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
694
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100695/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100696 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100697 * This value may be used to form the algorithm usage field of a policy
698 * for a signature algorithm that is parametrized by a hash. The key
699 * may then be used to perform operations using the same signature
700 * algorithm parametrized with any supported hash.
701 *
702 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100703 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100704 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100705 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100706 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
707 * ```
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200708 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN); // or VERIFY
709 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100710 * ```
711 * - Import or generate key material.
712 * - Call psa_asymmetric_sign() or psa_asymmetric_verify(), passing
713 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
714 * call to sign or verify a message may use a different hash.
715 * ```
716 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
717 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
718 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
719 * ```
720 *
721 * This value may not be used to build other algorithms that are
722 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100723 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100724 *
725 * This value may not be used to build an algorithm specification to
726 * perform an operation. It is only valid to build policies.
727 */
728#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
729
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100730#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
731#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
732/** Macro to build an HMAC algorithm.
733 *
734 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
735 *
736 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
737 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
738 *
739 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100740 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100741 * hash algorithm.
742 */
743#define PSA_ALG_HMAC(hash_alg) \
744 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
745
746#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
747 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
748
749/** Whether the specified algorithm is an HMAC algorithm.
750 *
751 * HMAC is a family of MAC algorithms that are based on a hash function.
752 *
753 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
754 *
755 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
756 * This macro may return either 0 or 1 if \p alg is not a supported
757 * algorithm identifier.
758 */
759#define PSA_ALG_IS_HMAC(alg) \
760 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
761 PSA_ALG_HMAC_BASE)
762
763/* In the encoding of a MAC algorithm, the bits corresponding to
764 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
765 * truncated. As an exception, the value 0 means the untruncated algorithm,
766 * whatever its length is. The length is encoded in 6 bits, so it can
767 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
768 * to full length is correctly encoded as 0 and any non-trivial truncation
769 * is correctly encoded as a value between 1 and 63. */
770#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
771#define PSA_MAC_TRUNCATION_OFFSET 8
772
773/** Macro to build a truncated MAC algorithm.
774 *
775 * A truncated MAC algorithm is identical to the corresponding MAC
776 * algorithm except that the MAC value for the truncated algorithm
777 * consists of only the first \p mac_length bytes of the MAC value
778 * for the untruncated algorithm.
779 *
780 * \note This macro may allow constructing algorithm identifiers that
781 * are not valid, either because the specified length is larger
782 * than the untruncated MAC or because the specified length is
783 * smaller than permitted by the implementation.
784 *
785 * \note It is implementation-defined whether a truncated MAC that
786 * is truncated to the same length as the MAC of the untruncated
787 * algorithm is considered identical to the untruncated algorithm
788 * for policy comparison purposes.
789 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200790 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100791 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
792 * is true). This may be a truncated or untruncated
793 * MAC algorithm.
794 * \param mac_length Desired length of the truncated MAC in bytes.
795 * This must be at most the full length of the MAC
796 * and must be at least an implementation-specified
797 * minimum. The implementation-specified minimum
798 * shall not be zero.
799 *
800 * \return The corresponding MAC algorithm with the specified
801 * length.
802 * \return Unspecified if \p alg is not a supported
803 * MAC algorithm or if \p mac_length is too small or
804 * too large for the specified MAC algorithm.
805 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200806#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
807 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100808 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
809
810/** Macro to build the base MAC algorithm corresponding to a truncated
811 * MAC algorithm.
812 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200813 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100814 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
815 * is true). This may be a truncated or untruncated
816 * MAC algorithm.
817 *
818 * \return The corresponding base MAC algorithm.
819 * \return Unspecified if \p alg is not a supported
820 * MAC algorithm.
821 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200822#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
823 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100824
825/** Length to which a MAC algorithm is truncated.
826 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200827 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100828 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
829 * is true).
830 *
831 * \return Length of the truncated MAC in bytes.
832 * \return 0 if \p alg is a non-truncated MAC algorithm.
833 * \return Unspecified if \p alg is not a supported
834 * MAC algorithm.
835 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200836#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
837 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100838
839#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
840#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
841#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
842#define PSA_ALG_GMAC ((psa_algorithm_t)0x02c00003)
843
844/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
845 *
846 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
847 *
848 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
849 * This macro may return either 0 or 1 if \p alg is not a supported
850 * algorithm identifier.
851 */
852#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
853 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
854 PSA_ALG_CIPHER_MAC_BASE)
855
856#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
857#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
858
859/** Whether the specified algorithm is a stream cipher.
860 *
861 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
862 * by applying a bitwise-xor with a stream of bytes that is generated
863 * from a key.
864 *
865 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
866 *
867 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
868 * This macro may return either 0 or 1 if \p alg is not a supported
869 * algorithm identifier or if it is not a symmetric cipher algorithm.
870 */
871#define PSA_ALG_IS_STREAM_CIPHER(alg) \
872 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
873 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
874
875/** The ARC4 stream cipher algorithm.
876 */
877#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
878
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200879/** The ChaCha20 stream cipher.
880 *
881 * ChaCha20 is defined in RFC 7539.
882 *
883 * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv()
884 * must be 12.
885 *
886 * The initial block counter is always 0.
887 *
888 */
889#define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005)
890
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100891/** The CTR stream cipher mode.
892 *
893 * CTR is a stream cipher which is built from a block cipher.
894 * The underlying block cipher is determined by the key type.
895 * For example, to use AES-128-CTR, use this algorithm with
896 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
897 */
898#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
899
900#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
901
902#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
903
904/** The XTS cipher mode.
905 *
906 * XTS is a cipher mode which is built from a block cipher. It requires at
907 * least one full block of input, but beyond this minimum the input
908 * does not need to be a whole number of blocks.
909 */
910#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
911
912/** The CBC block cipher chaining mode, with no padding.
913 *
914 * The underlying block cipher is determined by the key type.
915 *
916 * This symmetric cipher mode can only be used with messages whose lengths
917 * are whole number of blocks for the chosen block cipher.
918 */
919#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
920
921/** The CBC block cipher chaining mode with PKCS#7 padding.
922 *
923 * The underlying block cipher is determined by the key type.
924 *
925 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
926 */
927#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
928
Gilles Peskine679693e2019-05-06 15:10:16 +0200929#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
930
931/** Whether the specified algorithm is an AEAD mode on a block cipher.
932 *
933 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
934 *
935 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
936 * a block cipher, 0 otherwise.
937 * This macro may return either 0 or 1 if \p alg is not a supported
938 * algorithm identifier.
939 */
940#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
941 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
942 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
943
Gilles Peskine9153ec02019-02-15 13:02:02 +0100944/** The CCM authenticated encryption algorithm.
945 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200946#define PSA_ALG_CCM ((psa_algorithm_t)0x06401001)
Gilles Peskine9153ec02019-02-15 13:02:02 +0100947
948/** The GCM authenticated encryption algorithm.
949 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200950#define PSA_ALG_GCM ((psa_algorithm_t)0x06401002)
951
952/** The Chacha20-Poly1305 AEAD algorithm.
953 *
954 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200955 *
956 * Implementations must support 12-byte nonces, may support 8-byte nonces,
957 * and should reject other sizes.
958 *
959 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +0200960 */
961#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100962
963/* In the encoding of a AEAD algorithm, the bits corresponding to
964 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
965 * The constants for default lengths follow this encoding.
966 */
967#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
968#define PSA_AEAD_TAG_LENGTH_OFFSET 8
969
970/** Macro to build a shortened AEAD algorithm.
971 *
972 * A shortened AEAD algorithm is similar to the corresponding AEAD
973 * algorithm, but has an authentication tag that consists of fewer bytes.
974 * Depending on the algorithm, the tag length may affect the calculation
975 * of the ciphertext.
976 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200977 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100978 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
979 * is true).
980 * \param tag_length Desired length of the authentication tag in bytes.
981 *
982 * \return The corresponding AEAD algorithm with the specified
983 * length.
984 * \return Unspecified if \p alg is not a supported
985 * AEAD algorithm or if \p tag_length is not valid
986 * for the specified AEAD algorithm.
987 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200988#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
989 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100990 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
991 PSA_ALG_AEAD_TAG_LENGTH_MASK))
992
993/** Calculate the corresponding AEAD algorithm with the default tag length.
994 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200995 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
996 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100997 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200998 * \return The corresponding AEAD algorithm with the default
999 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001000 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001001#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001002 ( \
Gilles Peskine434899f2018-10-19 11:30:26 +02001003 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_CCM) \
1004 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_GCM) \
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001005 PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001006 0)
Gilles Peskine434899f2018-10-19 11:30:26 +02001007#define PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(aead_alg, ref) \
1008 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001009 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
1010 ref :
1011
1012#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
1013/** RSA PKCS#1 v1.5 signature with hashing.
1014 *
1015 * This is the signature scheme defined by RFC 8017
1016 * (PKCS#1: RSA Cryptography Specifications) under the name
1017 * RSASSA-PKCS1-v1_5.
1018 *
1019 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1020 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001021 * This includes #PSA_ALG_ANY_HASH
1022 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001023 *
1024 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001025 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001026 * hash algorithm.
1027 */
1028#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1029 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1030/** Raw PKCS#1 v1.5 signature.
1031 *
1032 * The input to this algorithm is the DigestInfo structure used by
1033 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1034 * steps 3&ndash;6.
1035 */
1036#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1037#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1038 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1039
1040#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
1041/** RSA PSS signature with hashing.
1042 *
1043 * This is the signature scheme defined by RFC 8017
1044 * (PKCS#1: RSA Cryptography Specifications) under the name
1045 * RSASSA-PSS, with the message generation function MGF1, and with
1046 * a salt length equal to the length of the hash. The specified
1047 * hash algorithm is used to hash the input message, to create the
1048 * salted hash, and for the mask generation.
1049 *
1050 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1051 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001052 * This includes #PSA_ALG_ANY_HASH
1053 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001054 *
1055 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001056 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001057 * hash algorithm.
1058 */
1059#define PSA_ALG_RSA_PSS(hash_alg) \
1060 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1061#define PSA_ALG_IS_RSA_PSS(alg) \
1062 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1063
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001064#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1065/** ECDSA signature with hashing.
1066 *
1067 * This is the ECDSA signature scheme defined by ANSI X9.62,
1068 * with a random per-message secret number (*k*).
1069 *
1070 * The representation of the signature as a byte string consists of
1071 * the concatentation of the signature values *r* and *s*. Each of
1072 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1073 * of the base point of the curve in octets. Each value is represented
1074 * in big-endian order (most significant octet first).
1075 *
1076 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1077 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001078 * This includes #PSA_ALG_ANY_HASH
1079 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001080 *
1081 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001082 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001083 * hash algorithm.
1084 */
1085#define PSA_ALG_ECDSA(hash_alg) \
1086 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1087/** ECDSA signature without hashing.
1088 *
1089 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1090 * without specifying a hash algorithm. This algorithm may only be
1091 * used to sign or verify a sequence of bytes that should be an
1092 * already-calculated hash. Note that the input is padded with
1093 * zeros on the left or truncated on the left as required to fit
1094 * the curve size.
1095 */
1096#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1097#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1098/** Deterministic ECDSA signature with hashing.
1099 *
1100 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1101 *
1102 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1103 *
1104 * Note that when this algorithm is used for verification, signatures
1105 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1106 * same private key are accepted. In other words,
1107 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1108 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1109 *
1110 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1111 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001112 * This includes #PSA_ALG_ANY_HASH
1113 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001114 *
1115 * \return The corresponding deterministic ECDSA signature
1116 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001117 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001118 * hash algorithm.
1119 */
1120#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1121 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1122#define PSA_ALG_IS_ECDSA(alg) \
1123 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
1124 PSA_ALG_ECDSA_BASE)
1125#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
1126 (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
1127#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1128 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1129#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1130 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1131
Gilles Peskined35b4892019-01-14 16:02:15 +01001132/** Whether the specified algorithm is a hash-and-sign algorithm.
1133 *
1134 * Hash-and-sign algorithms are public-key signature algorithms structured
1135 * in two parts: first the calculation of a hash in a way that does not
1136 * depend on the key, then the calculation of a signature from the
1137 * hash value and the key.
1138 *
1139 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1140 *
1141 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1142 * This macro may return either 0 or 1 if \p alg is not a supported
1143 * algorithm identifier.
1144 */
1145#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1146 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskinee38ab1a2019-05-16 13:51:50 +02001147 PSA_ALG_IS_ECDSA(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001148
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001149/** Get the hash used by a hash-and-sign signature algorithm.
1150 *
1151 * A hash-and-sign algorithm is a signature algorithm which is
1152 * composed of two phases: first a hashing phase which does not use
1153 * the key and produces a hash of the input message, then a signing
1154 * phase which only uses the hash and the key and not the message
1155 * itself.
1156 *
1157 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1158 * #PSA_ALG_IS_SIGN(\p alg) is true).
1159 *
1160 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1161 * algorithm.
1162 * \return 0 if \p alg is a signature algorithm that does not
1163 * follow the hash-and-sign structure.
1164 * \return Unspecified if \p alg is not a signature algorithm or
1165 * if it is not supported by the implementation.
1166 */
1167#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001168 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001169 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1170 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1171 0)
1172
1173/** RSA PKCS#1 v1.5 encryption.
1174 */
1175#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1176
1177#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1178/** RSA OAEP encryption.
1179 *
1180 * This is the encryption scheme defined by RFC 8017
1181 * (PKCS#1: RSA Cryptography Specifications) under the name
1182 * RSAES-OAEP, with the message generation function MGF1.
1183 *
1184 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1185 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1186 * for MGF1.
1187 *
1188 * \return The corresponding RSA OAEP signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001189 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001190 * hash algorithm.
1191 */
1192#define PSA_ALG_RSA_OAEP(hash_alg) \
1193 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1194#define PSA_ALG_IS_RSA_OAEP(alg) \
1195 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1196#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1197 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1198 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1199 0)
1200
Gilles Peskine6843c292019-01-18 16:44:49 +01001201#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001202/** Macro to build an HKDF algorithm.
1203 *
1204 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1205 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001206 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001207 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001208 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001209 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1210 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1211 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1212 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001213 * starting to generate output.
1214 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001215 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1216 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1217 *
1218 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001219 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001220 * hash algorithm.
1221 */
1222#define PSA_ALG_HKDF(hash_alg) \
1223 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1224/** Whether the specified algorithm is an HKDF algorithm.
1225 *
1226 * HKDF is a family of key derivation algorithms that are based on a hash
1227 * function and the HMAC construction.
1228 *
1229 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1230 *
1231 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1232 * This macro may return either 0 or 1 if \c alg is not a supported
1233 * key derivation algorithm identifier.
1234 */
1235#define PSA_ALG_IS_HKDF(alg) \
1236 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1237#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1238 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1239
Gilles Peskine6843c292019-01-18 16:44:49 +01001240#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001241/** Macro to build a TLS-1.2 PRF algorithm.
1242 *
1243 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1244 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1245 * used with either SHA-256 or SHA-384.
1246 *
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001247 * This key derivation algorithm uses the following inputs:
1248 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1249 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
1250 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
1251 *
1252 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001253 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001254 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001255 *
1256 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1257 * TLS 1.2 PRF using HMAC-SHA-256.
1258 *
1259 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1260 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1261 *
1262 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001263 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001264 * hash algorithm.
1265 */
1266#define PSA_ALG_TLS12_PRF(hash_alg) \
1267 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1268
1269/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1270 *
1271 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1272 *
1273 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1274 * This macro may return either 0 or 1 if \c alg is not a supported
1275 * key derivation algorithm identifier.
1276 */
1277#define PSA_ALG_IS_TLS12_PRF(alg) \
1278 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1279#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1280 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1281
Gilles Peskine6843c292019-01-18 16:44:49 +01001282#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001283/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1284 *
1285 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1286 * from the PreSharedKey (PSK) through the application of padding
1287 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1288 * The latter is based on HMAC and can be used with either SHA-256
1289 * or SHA-384.
1290 *
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001291 * This key derivation algorithm uses the following inputs:
1292 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1293 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
1294 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
1295 *
1296 * For the application to TLS-1.2, the seed (which is
1297 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1298 * ClientHello.Random + ServerHello.Random,
1299 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001300 *
1301 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1302 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1303 *
1304 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1305 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1306 *
1307 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001308 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001309 * hash algorithm.
1310 */
1311#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1312 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1313
1314/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1315 *
1316 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1317 *
1318 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1319 * This macro may return either 0 or 1 if \c alg is not a supported
1320 * key derivation algorithm identifier.
1321 */
1322#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1323 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1324#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1325 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1326
Gilles Peskinea52460c2019-04-12 00:11:21 +02001327#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff)
1328#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001329
Gilles Peskine6843c292019-01-18 16:44:49 +01001330/** Macro to build a combined algorithm that chains a key agreement with
1331 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001332 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001333 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1334 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1335 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1336 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001337 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001338 * \return The corresponding key agreement and derivation
1339 * algorithm.
1340 * \return Unspecified if \p ka_alg is not a supported
1341 * key agreement algorithm or \p kdf_alg is not a
1342 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001343 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001344#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1345 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001346
1347#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1348 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1349
Gilles Peskine6843c292019-01-18 16:44:49 +01001350#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1351 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001352
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001353/** Whether the specified algorithm is a raw key agreement algorithm.
1354 *
1355 * A raw key agreement algorithm is one that does not specify
1356 * a key derivation function.
1357 * Usually, raw key agreement algorithms are constructed directly with
1358 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
1359 * constructed with PSA_ALG_KEY_AGREEMENT().
1360 *
1361 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1362 *
1363 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1364 * This macro may return either 0 or 1 if \p alg is not a supported
1365 * algorithm identifier.
1366 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001367#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001368 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1369 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001370
1371#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1372 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1373
1374/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001375 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001376 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001377 * `g^{ab}` in big-endian format.
1378 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1379 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001380 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001381#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1382
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001383/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1384 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001385 * This includes the raw finite field Diffie-Hellman algorithm as well as
1386 * finite-field Diffie-Hellman followed by any supporter key derivation
1387 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001388 *
1389 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1390 *
1391 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1392 * This macro may return either 0 or 1 if \c alg is not a supported
1393 * key agreement algorithm identifier.
1394 */
1395#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001396 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001397
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001398/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1399 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001400 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001401 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1402 * `m` is the bit size associated with the curve, i.e. the bit size of the
1403 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1404 * the byte containing the most significant bit of the shared secret
1405 * is padded with zero bits. The byte order is either little-endian
1406 * or big-endian depending on the curve type.
1407 *
1408 * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`),
1409 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1410 * in little-endian byte order.
1411 * The bit size is 448 for Curve448 and 255 for Curve25519.
1412 * - For Weierstrass curves over prime fields (curve types
1413 * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`),
1414 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1415 * in big-endian byte order.
1416 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1417 * - For Weierstrass curves over binary fields (curve types
1418 * `PSA_ECC_CURVE_SECTXXX`),
1419 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1420 * in big-endian byte order.
1421 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001422 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001423#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1424
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001425/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1426 * algorithm.
1427 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001428 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1429 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1430 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001431 *
1432 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1433 *
1434 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1435 * 0 otherwise.
1436 * This macro may return either 0 or 1 if \c alg is not a supported
1437 * key agreement algorithm identifier.
1438 */
1439#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001440 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001441
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001442/** Whether the specified algorithm encoding is a wildcard.
1443 *
1444 * Wildcard values may only be used to set the usage algorithm field in
1445 * a policy, not to perform an operation.
1446 *
1447 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1448 *
1449 * \return 1 if \c alg is a wildcard algorithm encoding.
1450 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1451 * an operation).
1452 * \return This macro may return either 0 or 1 if \c alg is not a supported
1453 * algorithm identifier.
1454 */
1455#define PSA_ALG_IS_WILDCARD(alg) \
1456 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1457 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1458 (alg) == PSA_ALG_ANY_HASH)
1459
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001460/**@}*/
1461
1462/** \defgroup key_lifetimes Key lifetimes
1463 * @{
1464 */
1465
1466/** A volatile key only exists as long as the handle to it is not closed.
1467 * The key material is guaranteed to be erased on a power reset.
1468 */
1469#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1470
1471/** The default storage area for persistent keys.
1472 *
1473 * A persistent key remains in storage until it is explicitly destroyed or
1474 * until the corresponding storage area is wiped. This specification does
1475 * not define any mechanism to wipe a storage area, but implementations may
1476 * provide their own mechanism (for example to perform a factory reset,
1477 * to prepare for device refurbishment, or to uninstall an application).
1478 *
1479 * This lifetime value is the default storage area for the calling
1480 * application. Implementations may offer other storage areas designated
1481 * by other lifetime values as implementation-specific extensions.
1482 */
1483#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1484
Gilles Peskine4a231b82019-05-06 18:56:14 +02001485/** The minimum value for a key identifier chosen by the application.
1486 */
Gilles Peskinef9fbc382019-05-15 18:42:09 +02001487#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001488/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001489 */
1490#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001491/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001492 */
1493#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001494/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001495 */
1496#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
1497
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001498/**@}*/
1499
1500/** \defgroup policy Key policies
1501 * @{
1502 */
1503
1504/** Whether the key may be exported.
1505 *
1506 * A public key or the public part of a key pair may always be exported
1507 * regardless of the value of this permission flag.
1508 *
1509 * If a key does not have export permission, implementations shall not
1510 * allow the key to be exported in plain form from the cryptoprocessor,
1511 * whether through psa_export_key() or through a proprietary interface.
1512 * The key may however be exportable in a wrapped form, i.e. in a form
1513 * where it is encrypted by another key.
1514 */
1515#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1516
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001517/** Whether the key may be copied.
1518 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001519 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001520 * with the same policy or a more restrictive policy.
1521 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001522 * For lifetimes for which the key is located in a secure element which
1523 * enforce the non-exportability of keys, copying a key outside the secure
1524 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1525 * Copying the key inside the secure element is permitted with just
1526 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1527 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001528 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1529 * is sufficient to permit the copy.
1530 */
1531#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1532
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001533/** Whether the key may be used to encrypt a message.
1534 *
1535 * This flag allows the key to be used for a symmetric encryption operation,
1536 * for an AEAD encryption-and-authentication operation,
1537 * or for an asymmetric encryption operation,
1538 * if otherwise permitted by the key's type and policy.
1539 *
1540 * For a key pair, this concerns the public key.
1541 */
1542#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1543
1544/** Whether the key may be used to decrypt a message.
1545 *
1546 * This flag allows the key to be used for a symmetric decryption operation,
1547 * for an AEAD decryption-and-verification operation,
1548 * or for an asymmetric decryption operation,
1549 * if otherwise permitted by the key's type and policy.
1550 *
1551 * For a key pair, this concerns the private key.
1552 */
1553#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1554
1555/** Whether the key may be used to sign a message.
1556 *
1557 * This flag allows the key to be used for a MAC calculation operation
1558 * or for an asymmetric signature operation,
1559 * if otherwise permitted by the key's type and policy.
1560 *
1561 * For a key pair, this concerns the private key.
1562 */
1563#define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400)
1564
1565/** Whether the key may be used to verify a message signature.
1566 *
1567 * This flag allows the key to be used for a MAC verification operation
1568 * or for an asymmetric signature verification operation,
1569 * if otherwise permitted by by the key's type and policy.
1570 *
1571 * For a key pair, this concerns the public key.
1572 */
1573#define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800)
1574
1575/** Whether the key may be used to derive other keys.
1576 */
1577#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1578
1579/**@}*/
1580
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001581/** \defgroup derivation Key derivation
1582 * @{
1583 */
1584
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001585/** A secret input for key derivation.
1586 *
1587 * This must be a key of type #PSA_KEY_TYPE_DERIVE.
1588 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001589#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001590
1591/** A label for key derivation.
1592 *
1593 * This must be a direct input.
1594 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001595#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001596
1597/** A salt for key derivation.
1598 *
1599 * This must be a direct input.
1600 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001601#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001602
1603/** An information string for key derivation.
1604 *
1605 * This must be a direct input.
1606 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001607#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001608
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001609/** A seed for key derivation.
1610 *
1611 * This must be a direct input.
1612 */
1613#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
1614
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001615/**@}*/
1616
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001617#endif /* PSA_CRYPTO_VALUES_H */