blob: 5b9293293e1c7fc83e4e45c826845796d8b176a0 [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
Janos Follath4614b9a2022-07-21 15:34:47 +010041#include "bignum_core.h"
Chris Jones4c5819c2021-03-03 17:45:34 +000042#include "bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050043#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000044#include "mbedtls/error.h"
Gabor Mezei22c9a6f2021-10-20 12:09:35 +020045#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000046
Dave Rodgman351c71b2021-12-06 17:50:53 +000047#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000048#include <string.h>
49
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000050#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020051
Gilles Peskine449bd832023-01-11 14:50:10 +010052#define MPI_VALIDATE_RET(cond) \
53 MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
54#define MPI_VALIDATE(cond) \
55 MBEDTLS_INTERNAL_VALIDATE(cond)
Gabor Mezei66669142022-08-03 12:52:26 +020056
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050057/* Implementation that should never be optimized out by the compiler */
Gilles Peskine449bd832023-01-11 14:50:10 +010058static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n)
Andres Amaya Garcia6698d2f2018-04-24 08:39:07 -050059{
Gilles Peskine449bd832023-01-11 14:50:10 +010060 mbedtls_platform_zeroize(v, ciL * n);
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050061}
62
Paul Bakker5121ce52009-01-03 21:22:43 +000063/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000064 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000065 */
Gilles Peskine449bd832023-01-11 14:50:10 +010066void mbedtls_mpi_init(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000067{
Gilles Peskine449bd832023-01-11 14:50:10 +010068 MPI_VALIDATE(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +000069
Paul Bakker6c591fa2011-05-05 11:49:20 +000070 X->s = 1;
71 X->n = 0;
72 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000073}
74
75/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000076 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000077 */
Gilles Peskine449bd832023-01-11 14:50:10 +010078void mbedtls_mpi_free(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000079{
Gilles Peskine449bd832023-01-11 14:50:10 +010080 if (X == NULL) {
Paul Bakker6c591fa2011-05-05 11:49:20 +000081 return;
Gilles Peskine449bd832023-01-11 14:50:10 +010082 }
Paul Bakker5121ce52009-01-03 21:22:43 +000083
Gilles Peskine449bd832023-01-11 14:50:10 +010084 if (X->p != NULL) {
85 mbedtls_mpi_zeroize(X->p, X->n);
86 mbedtls_free(X->p);
Paul Bakker5121ce52009-01-03 21:22:43 +000087 }
88
Paul Bakker6c591fa2011-05-05 11:49:20 +000089 X->s = 1;
90 X->n = 0;
91 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000092}
93
94/*
95 * Enlarge to the specified number of limbs
96 */
Gilles Peskine449bd832023-01-11 14:50:10 +010097int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
Paul Bakker5121ce52009-01-03 21:22:43 +000098{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020099 mbedtls_mpi_uint *p;
Gilles Peskine449bd832023-01-11 14:50:10 +0100100 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000101
Gilles Peskine449bd832023-01-11 14:50:10 +0100102 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
103 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
104 }
Paul Bakkerf9688572011-05-05 10:00:45 +0000105
Gilles Peskine449bd832023-01-11 14:50:10 +0100106 if (X->n < nblimbs) {
107 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
108 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
109 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000110
Gilles Peskine449bd832023-01-11 14:50:10 +0100111 if (X->p != NULL) {
112 memcpy(p, X->p, X->n * ciL);
113 mbedtls_mpi_zeroize(X->p, X->n);
114 mbedtls_free(X->p);
Paul Bakker5121ce52009-01-03 21:22:43 +0000115 }
116
Gilles Peskine053022f2023-06-29 19:26:48 +0200117 /* nblimbs fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
118 * fits, and we've checked that nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
119 X->n = (unsigned short) nblimbs;
Paul Bakker5121ce52009-01-03 21:22:43 +0000120 X->p = p;
121 }
122
Gilles Peskine449bd832023-01-11 14:50:10 +0100123 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000124}
125
126/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100127 * Resize down as much as possible,
128 * while keeping at least the specified number of limbs
129 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100130int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100131{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200132 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100133 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100134 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000135
Gilles Peskine449bd832023-01-11 14:50:10 +0100136 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
137 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
138 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100139
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100140 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100141 if (X->n <= nblimbs) {
142 return mbedtls_mpi_grow(X, nblimbs);
143 }
Gilles Peskine322752b2020-01-21 13:59:51 +0100144 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100145
Gilles Peskine449bd832023-01-11 14:50:10 +0100146 for (i = X->n - 1; i > 0; i--) {
147 if (X->p[i] != 0) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100148 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100149 }
150 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100151 i++;
152
Gilles Peskine449bd832023-01-11 14:50:10 +0100153 if (i < nblimbs) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100154 i = nblimbs;
Gilles Peskine449bd832023-01-11 14:50:10 +0100155 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100156
Gilles Peskine449bd832023-01-11 14:50:10 +0100157 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
158 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
159 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100160
Gilles Peskine449bd832023-01-11 14:50:10 +0100161 if (X->p != NULL) {
162 memcpy(p, X->p, i * ciL);
163 mbedtls_mpi_zeroize(X->p, X->n);
164 mbedtls_free(X->p);
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100165 }
166
Gilles Peskine053022f2023-06-29 19:26:48 +0200167 /* i fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
168 * fits, and we've checked that i <= nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
169 X->n = (unsigned short) i;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100170 X->p = p;
171
Gilles Peskine449bd832023-01-11 14:50:10 +0100172 return 0;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100173}
174
Gilles Peskineed32b572021-06-02 22:17:52 +0200175/* Resize X to have exactly n limbs and set it to 0. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100176static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
Gilles Peskineed32b572021-06-02 22:17:52 +0200177{
Gilles Peskine449bd832023-01-11 14:50:10 +0100178 if (limbs == 0) {
179 mbedtls_mpi_free(X);
180 return 0;
181 } else if (X->n == limbs) {
182 memset(X->p, 0, limbs * ciL);
Gilles Peskineed32b572021-06-02 22:17:52 +0200183 X->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100184 return 0;
185 } else {
186 mbedtls_mpi_free(X);
187 return mbedtls_mpi_grow(X, limbs);
Gilles Peskineed32b572021-06-02 22:17:52 +0200188 }
189}
190
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100191/*
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200192 * Copy the contents of Y into X.
193 *
194 * This function is not constant-time. Leading zeros in Y may be removed.
195 *
196 * Ensure that X does not shrink. This is not guaranteed by the public API,
197 * but some code in the bignum module relies on this property, for example
198 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000199 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100200int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000201{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100202 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000203 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100204 MPI_VALIDATE_RET(X != NULL);
205 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000206
Gilles Peskine449bd832023-01-11 14:50:10 +0100207 if (X == Y) {
208 return 0;
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200209 }
210
Gilles Peskine449bd832023-01-11 14:50:10 +0100211 if (Y->n == 0) {
212 if (X->n != 0) {
213 X->s = 1;
214 memset(X->p, 0, X->n * ciL);
215 }
216 return 0;
217 }
218
219 for (i = Y->n - 1; i > 0; i--) {
220 if (Y->p[i] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000221 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100222 }
223 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000224 i++;
225
226 X->s = Y->s;
227
Gilles Peskine449bd832023-01-11 14:50:10 +0100228 if (X->n < i) {
229 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
230 } else {
231 memset(X->p + i, 0, (X->n - i) * ciL);
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100232 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000233
Gilles Peskine449bd832023-01-11 14:50:10 +0100234 memcpy(X->p, Y->p, i * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000235
236cleanup:
237
Gilles Peskine449bd832023-01-11 14:50:10 +0100238 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000239}
240
241/*
242 * Swap the contents of X and Y
243 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100244void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000245{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200246 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100247 MPI_VALIDATE(X != NULL);
248 MPI_VALIDATE(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000249
Gilles Peskine449bd832023-01-11 14:50:10 +0100250 memcpy(&T, X, sizeof(mbedtls_mpi));
251 memcpy(X, Y, sizeof(mbedtls_mpi));
252 memcpy(Y, &T, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +0000253}
254
Gilles Peskine449bd832023-01-11 14:50:10 +0100255static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100256{
Gilles Peskine449bd832023-01-11 14:50:10 +0100257 if (z >= 0) {
258 return z;
259 }
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100260 /* Take care to handle the most negative value (-2^(biL-1)) correctly.
261 * A naive -z would have undefined behavior.
262 * Write this in a way that makes popular compilers happy (GCC, Clang,
263 * MSVC). */
Gilles Peskine449bd832023-01-11 14:50:10 +0100264 return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100265}
266
Paul Bakker5121ce52009-01-03 21:22:43 +0000267/*
268 * Set value from integer
269 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100270int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +0000271{
Janos Follath24eed8d2019-11-22 13:21:35 +0000272 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100273 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000274
Gilles Peskine449bd832023-01-11 14:50:10 +0100275 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
276 memset(X->p, 0, X->n * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000277
Gilles Peskine449bd832023-01-11 14:50:10 +0100278 X->p[0] = mpi_sint_abs(z);
279 X->s = (z < 0) ? -1 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000280
281cleanup:
282
Gilles Peskine449bd832023-01-11 14:50:10 +0100283 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000284}
285
286/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000287 * Get a specific bit
288 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100289int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000290{
Gilles Peskine449bd832023-01-11 14:50:10 +0100291 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000292
Gilles Peskine449bd832023-01-11 14:50:10 +0100293 if (X->n * biL <= pos) {
294 return 0;
295 }
Paul Bakker2f5947e2011-05-18 15:47:11 +0000296
Gilles Peskine449bd832023-01-11 14:50:10 +0100297 return (X->p[pos / biL] >> (pos % biL)) & 0x01;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000298}
299
300/*
301 * Set a bit to a specific value of 0 or 1
302 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100303int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000304{
305 int ret = 0;
306 size_t off = pos / biL;
307 size_t idx = pos % biL;
Gilles Peskine449bd832023-01-11 14:50:10 +0100308 MPI_VALIDATE_RET(X != NULL);
Paul Bakker2f5947e2011-05-18 15:47:11 +0000309
Gilles Peskine449bd832023-01-11 14:50:10 +0100310 if (val != 0 && val != 1) {
311 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000312 }
313
Gilles Peskine449bd832023-01-11 14:50:10 +0100314 if (X->n * biL <= pos) {
315 if (val == 0) {
316 return 0;
317 }
318
319 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
320 }
321
322 X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200323 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000324
325cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200326
Gilles Peskine449bd832023-01-11 14:50:10 +0100327 return ret;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000328}
329
330/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200331 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000332 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100333size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000334{
Paul Bakker23986e52011-04-24 08:57:21 +0000335 size_t i, j, count = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +0100336 MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000337
Gilles Peskine449bd832023-01-11 14:50:10 +0100338 for (i = 0; i < X->n; i++) {
339 for (j = 0; j < biL; j++, count++) {
340 if (((X->p[i] >> j) & 1) != 0) {
341 return count;
342 }
343 }
344 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000345
Gilles Peskine449bd832023-01-11 14:50:10 +0100346 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000347}
348
349/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200350 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000351 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100352size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000353{
Gilles Peskine449bd832023-01-11 14:50:10 +0100354 return mbedtls_mpi_core_bitlen(X->p, X->n);
Paul Bakker5121ce52009-01-03 21:22:43 +0000355}
356
357/*
358 * Return the total size in bytes
359 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100360size_t mbedtls_mpi_size(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000361{
Gilles Peskine449bd832023-01-11 14:50:10 +0100362 return (mbedtls_mpi_bitlen(X) + 7) >> 3;
Paul Bakker5121ce52009-01-03 21:22:43 +0000363}
364
365/*
366 * Convert an ASCII character to digit value
367 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100368static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
Paul Bakker5121ce52009-01-03 21:22:43 +0000369{
370 *d = 255;
371
Gilles Peskine449bd832023-01-11 14:50:10 +0100372 if (c >= 0x30 && c <= 0x39) {
373 *d = c - 0x30;
374 }
375 if (c >= 0x41 && c <= 0x46) {
376 *d = c - 0x37;
377 }
378 if (c >= 0x61 && c <= 0x66) {
379 *d = c - 0x57;
380 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000381
Gilles Peskine449bd832023-01-11 14:50:10 +0100382 if (*d >= (mbedtls_mpi_uint) radix) {
383 return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
384 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000385
Gilles Peskine449bd832023-01-11 14:50:10 +0100386 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000387}
388
389/*
390 * Import from an ASCII string
391 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100392int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
Paul Bakker5121ce52009-01-03 21:22:43 +0000393{
Janos Follath24eed8d2019-11-22 13:21:35 +0000394 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000395 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200396 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200397 mbedtls_mpi_uint d;
398 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100399 MPI_VALIDATE_RET(X != NULL);
400 MPI_VALIDATE_RET(s != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000401
Gilles Peskine449bd832023-01-11 14:50:10 +0100402 if (radix < 2 || radix > 16) {
403 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskine7cba8592021-06-08 18:32:34 +0200404 }
405
Gilles Peskine449bd832023-01-11 14:50:10 +0100406 mbedtls_mpi_init(&T);
407
408 if (s[0] == 0) {
409 mbedtls_mpi_free(X);
410 return 0;
411 }
412
413 if (s[0] == '-') {
Gilles Peskine80f56732021-04-03 18:26:13 +0200414 ++s;
415 sign = -1;
416 }
417
Gilles Peskine449bd832023-01-11 14:50:10 +0100418 slen = strlen(s);
Paul Bakkerff60ee62010-03-16 21:09:09 +0000419
Gilles Peskine449bd832023-01-11 14:50:10 +0100420 if (radix == 16) {
Dave Rodgman68ef1d62023-05-18 20:49:03 +0100421 if (slen > SIZE_MAX >> 2) {
Gilles Peskine449bd832023-01-11 14:50:10 +0100422 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker5121ce52009-01-03 21:22:43 +0000423 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000424
Gilles Peskine449bd832023-01-11 14:50:10 +0100425 n = BITS_TO_LIMBS(slen << 2);
426
427 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
428 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
429
430 for (i = slen, j = 0; i > 0; i--, j++) {
431 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
432 X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
433 }
434 } else {
435 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
436
437 for (i = 0; i < slen; i++) {
438 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
439 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
440 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
Paul Bakker5121ce52009-01-03 21:22:43 +0000441 }
442 }
443
Gilles Peskine449bd832023-01-11 14:50:10 +0100444 if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
Gilles Peskine80f56732021-04-03 18:26:13 +0200445 X->s = -1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100446 }
Gilles Peskine80f56732021-04-03 18:26:13 +0200447
Paul Bakker5121ce52009-01-03 21:22:43 +0000448cleanup:
449
Gilles Peskine449bd832023-01-11 14:50:10 +0100450 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000451
Gilles Peskine449bd832023-01-11 14:50:10 +0100452 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000453}
454
455/*
Ron Eldora16fa292018-11-20 14:07:01 +0200456 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000457 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100458static int mpi_write_hlp(mbedtls_mpi *X, int radix,
459 char **p, const size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000460{
Janos Follath24eed8d2019-11-22 13:21:35 +0000461 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200462 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200463 size_t length = 0;
464 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000465
Gilles Peskine449bd832023-01-11 14:50:10 +0100466 do {
467 if (length >= buflen) {
468 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Ron Eldora16fa292018-11-20 14:07:01 +0200469 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000470
Gilles Peskine449bd832023-01-11 14:50:10 +0100471 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
472 MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
Ron Eldora16fa292018-11-20 14:07:01 +0200473 /*
474 * Write the residue in the current position, as an ASCII character.
475 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100476 if (r < 0xA) {
477 *(--p_end) = (char) ('0' + r);
478 } else {
479 *(--p_end) = (char) ('A' + (r - 0xA));
480 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000481
Ron Eldora16fa292018-11-20 14:07:01 +0200482 length++;
Gilles Peskine449bd832023-01-11 14:50:10 +0100483 } while (mbedtls_mpi_cmp_int(X, 0) != 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000484
Gilles Peskine449bd832023-01-11 14:50:10 +0100485 memmove(*p, p_end, length);
Ron Eldora16fa292018-11-20 14:07:01 +0200486 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000487
488cleanup:
489
Gilles Peskine449bd832023-01-11 14:50:10 +0100490 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000491}
492
493/*
494 * Export into an ASCII string
495 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100496int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
497 char *buf, size_t buflen, size_t *olen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000498{
Paul Bakker23986e52011-04-24 08:57:21 +0000499 int ret = 0;
500 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000501 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200502 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100503 MPI_VALIDATE_RET(X != NULL);
504 MPI_VALIDATE_RET(olen != NULL);
505 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000506
Gilles Peskine449bd832023-01-11 14:50:10 +0100507 if (radix < 2 || radix > 16) {
508 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
509 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000510
Gilles Peskine449bd832023-01-11 14:50:10 +0100511 n = mbedtls_mpi_bitlen(X); /* Number of bits necessary to present `n`. */
512 if (radix >= 4) {
513 n >>= 1; /* Number of 4-adic digits necessary to present
Hanno Becker23cfea02019-02-04 09:45:07 +0000514 * `n`. If radix > 4, this might be a strict
515 * overapproximation of the number of
516 * radix-adic digits needed to present `n`. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100517 }
518 if (radix >= 16) {
519 n >>= 1; /* Number of hexadecimal digits necessary to
Hanno Becker23cfea02019-02-04 09:45:07 +0000520 * present `n`. */
521
Gilles Peskine449bd832023-01-11 14:50:10 +0100522 }
Janos Follath80470622019-03-06 13:43:02 +0000523 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000524 n += 1; /* Compensate for the divisions above, which round down `n`
525 * in case it's not even. */
526 n += 1; /* Potential '-'-sign. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100527 n += (n & 1); /* Make n even to have enough space for hexadecimal writing,
Hanno Becker23cfea02019-02-04 09:45:07 +0000528 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000529
Gilles Peskine449bd832023-01-11 14:50:10 +0100530 if (buflen < n) {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100531 *olen = n;
Gilles Peskine449bd832023-01-11 14:50:10 +0100532 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Paul Bakker5121ce52009-01-03 21:22:43 +0000533 }
534
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100535 p = buf;
Gilles Peskine449bd832023-01-11 14:50:10 +0100536 mbedtls_mpi_init(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000537
Gilles Peskine449bd832023-01-11 14:50:10 +0100538 if (X->s == -1) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000539 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000540 buflen--;
541 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000542
Gilles Peskine449bd832023-01-11 14:50:10 +0100543 if (radix == 16) {
Paul Bakker23986e52011-04-24 08:57:21 +0000544 int c;
545 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000546
Gilles Peskine449bd832023-01-11 14:50:10 +0100547 for (i = X->n, k = 0; i > 0; i--) {
548 for (j = ciL; j > 0; j--) {
549 c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000550
Gilles Peskine449bd832023-01-11 14:50:10 +0100551 if (c == 0 && k == 0 && (i + j) != 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000552 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +0100553 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000554
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000555 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000556 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000557 k = 1;
558 }
559 }
Gilles Peskine449bd832023-01-11 14:50:10 +0100560 } else {
561 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000562
Gilles Peskine449bd832023-01-11 14:50:10 +0100563 if (T.s == -1) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000564 T.s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100565 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000566
Gilles Peskine449bd832023-01-11 14:50:10 +0100567 MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
Paul Bakker5121ce52009-01-03 21:22:43 +0000568 }
569
570 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100571 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000572
573cleanup:
574
Gilles Peskine449bd832023-01-11 14:50:10 +0100575 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000576
Gilles Peskine449bd832023-01-11 14:50:10 +0100577 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000578}
579
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200580#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000581/*
582 * Read X from an opened file
583 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100584int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
Paul Bakker5121ce52009-01-03 21:22:43 +0000585{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200586 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000587 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000588 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000589 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000590 * Buffer should have space for (short) label and decimal formatted MPI,
591 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000592 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100593 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
Paul Bakker5121ce52009-01-03 21:22:43 +0000594
Gilles Peskine449bd832023-01-11 14:50:10 +0100595 MPI_VALIDATE_RET(X != NULL);
596 MPI_VALIDATE_RET(fin != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000597
Gilles Peskine449bd832023-01-11 14:50:10 +0100598 if (radix < 2 || radix > 16) {
599 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
600 }
Hanno Becker73d7d792018-12-11 10:35:51 +0000601
Gilles Peskine449bd832023-01-11 14:50:10 +0100602 memset(s, 0, sizeof(s));
603 if (fgets(s, sizeof(s) - 1, fin) == NULL) {
604 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
605 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000606
Gilles Peskine449bd832023-01-11 14:50:10 +0100607 slen = strlen(s);
608 if (slen == sizeof(s) - 2) {
609 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
610 }
Paul Bakkercb37aa52011-11-30 16:00:20 +0000611
Gilles Peskine449bd832023-01-11 14:50:10 +0100612 if (slen > 0 && s[slen - 1] == '\n') {
613 slen--; s[slen] = '\0';
614 }
615 if (slen > 0 && s[slen - 1] == '\r') {
616 slen--; s[slen] = '\0';
617 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000618
619 p = s + slen;
Gilles Peskine449bd832023-01-11 14:50:10 +0100620 while (p-- > s) {
621 if (mpi_get_digit(&d, radix, *p) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000622 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100623 }
624 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000625
Gilles Peskine449bd832023-01-11 14:50:10 +0100626 return mbedtls_mpi_read_string(X, radix, p + 1);
Paul Bakker5121ce52009-01-03 21:22:43 +0000627}
628
629/*
630 * Write X into an opened file (or stdout if fout == NULL)
631 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100632int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
Paul Bakker5121ce52009-01-03 21:22:43 +0000633{
Janos Follath24eed8d2019-11-22 13:21:35 +0000634 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000635 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000636 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000637 * Buffer should have space for (short) label and decimal formatted MPI,
638 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000639 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100640 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
641 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000642
Gilles Peskine449bd832023-01-11 14:50:10 +0100643 if (radix < 2 || radix > 16) {
644 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
645 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000646
Gilles Peskine449bd832023-01-11 14:50:10 +0100647 memset(s, 0, sizeof(s));
Paul Bakker5121ce52009-01-03 21:22:43 +0000648
Gilles Peskine449bd832023-01-11 14:50:10 +0100649 MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
Paul Bakker5121ce52009-01-03 21:22:43 +0000650
Gilles Peskine449bd832023-01-11 14:50:10 +0100651 if (p == NULL) {
652 p = "";
653 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000654
Gilles Peskine449bd832023-01-11 14:50:10 +0100655 plen = strlen(p);
656 slen = strlen(s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000657 s[slen++] = '\r';
658 s[slen++] = '\n';
659
Gilles Peskine449bd832023-01-11 14:50:10 +0100660 if (fout != NULL) {
661 if (fwrite(p, 1, plen, fout) != plen ||
662 fwrite(s, 1, slen, fout) != slen) {
663 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
664 }
665 } else {
666 mbedtls_printf("%s%s", p, s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000667 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000668
669cleanup:
670
Gilles Peskine449bd832023-01-11 14:50:10 +0100671 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000672}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200673#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000674
675/*
Janos Follatha778a942019-02-13 10:28:28 +0000676 * Import X from unsigned binary data, little endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100677 *
678 * This function is guaranteed to return an MPI with exactly the necessary
679 * number of limbs (in particular, it does not skip 0s in the input).
Janos Follatha778a942019-02-13 10:28:28 +0000680 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100681int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
682 const unsigned char *buf, size_t buflen)
Janos Follatha778a942019-02-13 10:28:28 +0000683{
Janos Follath24eed8d2019-11-22 13:21:35 +0000684 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100685 const size_t limbs = CHARS_TO_LIMBS(buflen);
Janos Follatha778a942019-02-13 10:28:28 +0000686
687 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +0100688 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Janos Follatha778a942019-02-13 10:28:28 +0000689
Gilles Peskine449bd832023-01-11 14:50:10 +0100690 MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
Janos Follatha778a942019-02-13 10:28:28 +0000691
692cleanup:
693
Janos Follath171a7ef2019-02-15 16:17:45 +0000694 /*
695 * This function is also used to import keys. However, wiping the buffers
696 * upon failure is not necessary because failure only can happen before any
697 * input is copied.
698 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100699 return ret;
Janos Follatha778a942019-02-13 10:28:28 +0000700}
701
702/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000703 * Import X from unsigned binary data, big endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100704 *
705 * This function is guaranteed to return an MPI with exactly the necessary
706 * number of limbs (in particular, it does not skip 0s in the input).
Paul Bakker5121ce52009-01-03 21:22:43 +0000707 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100708int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000709{
Janos Follath24eed8d2019-11-22 13:21:35 +0000710 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100711 const size_t limbs = CHARS_TO_LIMBS(buflen);
Paul Bakker5121ce52009-01-03 21:22:43 +0000712
Gilles Peskine449bd832023-01-11 14:50:10 +0100713 MPI_VALIDATE_RET(X != NULL);
714 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000715
Hanno Becker073c1992017-10-17 15:17:27 +0100716 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +0100717 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Paul Bakker5121ce52009-01-03 21:22:43 +0000718
Gilles Peskine449bd832023-01-11 14:50:10 +0100719 MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
Paul Bakker5121ce52009-01-03 21:22:43 +0000720
721cleanup:
722
Janos Follath171a7ef2019-02-15 16:17:45 +0000723 /*
724 * This function is also used to import keys. However, wiping the buffers
725 * upon failure is not necessary because failure only can happen before any
726 * input is copied.
727 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100728 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000729}
730
731/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000732 * Export X into unsigned binary data, little endian
733 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100734int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
735 unsigned char *buf, size_t buflen)
Janos Follathe344d0f2019-02-19 16:17:40 +0000736{
Gilles Peskine449bd832023-01-11 14:50:10 +0100737 return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
Janos Follathe344d0f2019-02-19 16:17:40 +0000738}
739
740/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000741 * Export X into unsigned binary data, big endian
742 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100743int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
744 unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000745{
Gilles Peskine449bd832023-01-11 14:50:10 +0100746 return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
Paul Bakker5121ce52009-01-03 21:22:43 +0000747}
748
749/*
750 * Left-shift: X <<= count
751 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100752int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000753{
Janos Follath24eed8d2019-11-22 13:21:35 +0000754 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Minos Galanakis0144b352023-05-02 14:02:32 +0100755 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100756 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000757
Gilles Peskine449bd832023-01-11 14:50:10 +0100758 i = mbedtls_mpi_bitlen(X) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000759
Gilles Peskine449bd832023-01-11 14:50:10 +0100760 if (X->n * biL < i) {
761 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
762 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000763
764 ret = 0;
765
Minos Galanakis0144b352023-05-02 14:02:32 +0100766 mbedtls_mpi_core_shift_l(X->p, X->n, count);
Paul Bakker5121ce52009-01-03 21:22:43 +0000767cleanup:
768
Gilles Peskine449bd832023-01-11 14:50:10 +0100769 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000770}
771
772/*
773 * Right-shift: X >>= count
774 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100775int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000776{
Gilles Peskine449bd832023-01-11 14:50:10 +0100777 MPI_VALIDATE_RET(X != NULL);
778 if (X->n != 0) {
779 mbedtls_mpi_core_shift_r(X->p, X->n, count);
780 }
781 return 0;
Gilles Peskine66414202022-09-21 15:36:16 +0200782}
783
Paul Bakker5121ce52009-01-03 21:22:43 +0000784/*
785 * Compare unsigned values
786 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100787int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000788{
Paul Bakker23986e52011-04-24 08:57:21 +0000789 size_t i, j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100790 MPI_VALIDATE_RET(X != NULL);
791 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000792
Gilles Peskine449bd832023-01-11 14:50:10 +0100793 for (i = X->n; i > 0; i--) {
794 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000795 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100796 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000797 }
798
Gilles Peskine449bd832023-01-11 14:50:10 +0100799 for (j = Y->n; j > 0; j--) {
800 if (Y->p[j - 1] != 0) {
801 break;
802 }
803 }
804
805 if (i == 0 && j == 0) {
806 return 0;
807 }
808
809 if (i > j) {
810 return 1;
811 }
812 if (j > i) {
813 return -1;
814 }
815
816 for (; i > 0; i--) {
817 if (X->p[i - 1] > Y->p[i - 1]) {
818 return 1;
819 }
820 if (X->p[i - 1] < Y->p[i - 1]) {
821 return -1;
822 }
823 }
824
825 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000826}
827
828/*
829 * Compare signed values
830 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100831int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000832{
Paul Bakker23986e52011-04-24 08:57:21 +0000833 size_t i, j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100834 MPI_VALIDATE_RET(X != NULL);
835 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000836
Gilles Peskine449bd832023-01-11 14:50:10 +0100837 for (i = X->n; i > 0; i--) {
838 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000839 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100840 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000841 }
842
Gilles Peskine449bd832023-01-11 14:50:10 +0100843 for (j = Y->n; j > 0; j--) {
844 if (Y->p[j - 1] != 0) {
845 break;
846 }
847 }
848
849 if (i == 0 && j == 0) {
850 return 0;
851 }
852
853 if (i > j) {
854 return X->s;
855 }
856 if (j > i) {
857 return -Y->s;
858 }
859
860 if (X->s > 0 && Y->s < 0) {
861 return 1;
862 }
863 if (Y->s > 0 && X->s < 0) {
864 return -1;
865 }
866
867 for (; i > 0; i--) {
868 if (X->p[i - 1] > Y->p[i - 1]) {
869 return X->s;
870 }
871 if (X->p[i - 1] < Y->p[i - 1]) {
872 return -X->s;
873 }
874 }
875
876 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000877}
878
Janos Follathee6abce2019-09-05 14:47:19 +0100879/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000880 * Compare signed values
881 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100882int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +0000883{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200884 mbedtls_mpi Y;
885 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +0100886 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000887
Gilles Peskine449bd832023-01-11 14:50:10 +0100888 *p = mpi_sint_abs(z);
889 Y.s = (z < 0) ? -1 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000890 Y.n = 1;
891 Y.p = p;
892
Gilles Peskine449bd832023-01-11 14:50:10 +0100893 return mbedtls_mpi_cmp_mpi(X, &Y);
Paul Bakker5121ce52009-01-03 21:22:43 +0000894}
895
896/*
897 * Unsigned addition: X = |A| + |B| (HAC 14.7)
898 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100899int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +0000900{
Janos Follath24eed8d2019-11-22 13:21:35 +0000901 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100902 size_t j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100903 MPI_VALIDATE_RET(X != NULL);
904 MPI_VALIDATE_RET(A != NULL);
905 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000906
Gilles Peskine449bd832023-01-11 14:50:10 +0100907 if (X == B) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200908 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +0000909 }
910
Gilles Peskine449bd832023-01-11 14:50:10 +0100911 if (X != A) {
912 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
913 }
Paul Bakker9af723c2014-05-01 13:03:14 +0200914
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000915 /*
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100916 * X must always be positive as a result of unsigned additions.
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000917 */
918 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000919
Gilles Peskine449bd832023-01-11 14:50:10 +0100920 for (j = B->n; j > 0; j--) {
921 if (B->p[j - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000922 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100923 }
924 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000925
Gilles Peskinedb14a9d2022-11-15 22:59:00 +0100926 /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
927 * and B is 0 (of any size). */
Gilles Peskine449bd832023-01-11 14:50:10 +0100928 if (j == 0) {
929 return 0;
930 }
Gilles Peskinedb14a9d2022-11-15 22:59:00 +0100931
Gilles Peskine449bd832023-01-11 14:50:10 +0100932 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
Paul Bakker5121ce52009-01-03 21:22:43 +0000933
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100934 /* j is the number of non-zero limbs of B. Add those to X. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000935
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100936 mbedtls_mpi_uint *p = X->p;
937
Gilles Peskine449bd832023-01-11 14:50:10 +0100938 mbedtls_mpi_uint c = mbedtls_mpi_core_add(p, p, B->p, j);
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100939
940 p += j;
941
942 /* Now propagate any carry */
Paul Bakker5121ce52009-01-03 21:22:43 +0000943
Gilles Peskine449bd832023-01-11 14:50:10 +0100944 while (c != 0) {
945 if (j >= X->n) {
946 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100947 p = X->p + j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000948 }
949
Gilles Peskine449bd832023-01-11 14:50:10 +0100950 *p += c; c = (*p < c); j++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +0000951 }
952
953cleanup:
954
Gilles Peskine449bd832023-01-11 14:50:10 +0100955 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000956}
957
Paul Bakker5121ce52009-01-03 21:22:43 +0000958/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200959 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +0000960 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100961int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +0000962{
Janos Follath24eed8d2019-11-22 13:21:35 +0000963 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000964 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200965 mbedtls_mpi_uint carry;
Gilles Peskine449bd832023-01-11 14:50:10 +0100966 MPI_VALIDATE_RET(X != NULL);
967 MPI_VALIDATE_RET(A != NULL);
968 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000969
Gilles Peskine449bd832023-01-11 14:50:10 +0100970 for (n = B->n; n > 0; n--) {
971 if (B->p[n - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000972 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100973 }
974 }
975 if (n > A->n) {
Gilles Peskinec8a91772021-01-27 22:30:43 +0100976 /* B >= (2^ciL)^n > A */
977 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
978 goto cleanup;
979 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000980
Gilles Peskine449bd832023-01-11 14:50:10 +0100981 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200982
983 /* Set the high limbs of X to match A. Don't touch the lower limbs
984 * because X might be aliased to B, and we must not overwrite the
985 * significant digits of B. */
Aaron M. Uckoaf67d2c2023-01-17 11:52:22 -0500986 if (A->n > n && A != X) {
Gilles Peskine449bd832023-01-11 14:50:10 +0100987 memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
988 }
989 if (X->n > A->n) {
990 memset(X->p + A->n, 0, (X->n - A->n) * ciL);
991 }
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200992
Gilles Peskine449bd832023-01-11 14:50:10 +0100993 carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
994 if (carry != 0) {
Tom Cosgrove452c99c2022-08-25 10:07:07 +0100995 /* Propagate the carry through the rest of X. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100996 carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
Tom Cosgrove452c99c2022-08-25 10:07:07 +0100997
998 /* If we have further carry/borrow, the result is negative. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100999 if (carry != 0) {
Gilles Peskine89b41302020-07-23 01:16:46 +02001000 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1001 goto cleanup;
1002 }
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001003 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001004
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001005 /* X should always be positive as a result of unsigned subtractions. */
1006 X->s = 1;
1007
Paul Bakker5121ce52009-01-03 21:22:43 +00001008cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001009 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001010}
1011
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001012/* Common function for signed addition and subtraction.
1013 * Calculate A + B * flip_B where flip_B is 1 or -1.
Paul Bakker5121ce52009-01-03 21:22:43 +00001014 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001015static int add_sub_mpi(mbedtls_mpi *X,
1016 const mbedtls_mpi *A, const mbedtls_mpi *B,
1017 int flip_B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001018{
Hanno Becker73d7d792018-12-11 10:35:51 +00001019 int ret, s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001020 MPI_VALIDATE_RET(X != NULL);
1021 MPI_VALIDATE_RET(A != NULL);
1022 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001023
Hanno Becker73d7d792018-12-11 10:35:51 +00001024 s = A->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001025 if (A->s * B->s * flip_B < 0) {
1026 int cmp = mbedtls_mpi_cmp_abs(A, B);
1027 if (cmp >= 0) {
1028 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
Gilles Peskine4a768dd2022-11-09 22:02:16 +01001029 /* If |A| = |B|, the result is 0 and we must set the sign bit
1030 * to +1 regardless of which of A or B was negative. Otherwise,
1031 * since |A| > |B|, the sign is the sign of A. */
1032 X->s = cmp == 0 ? 1 : s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001033 } else {
1034 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
Gilles Peskine4a768dd2022-11-09 22:02:16 +01001035 /* Since |A| < |B|, the sign is the opposite of A. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001036 X->s = -s;
1037 }
Gilles Peskine449bd832023-01-11 14:50:10 +01001038 } else {
1039 MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001040 X->s = s;
1041 }
1042
1043cleanup:
1044
Gilles Peskine449bd832023-01-11 14:50:10 +01001045 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001046}
1047
1048/*
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001049 * Signed addition: X = A + B
1050 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001051int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001052{
Gilles Peskine449bd832023-01-11 14:50:10 +01001053 return add_sub_mpi(X, A, B, 1);
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001054}
1055
1056/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001057 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001058 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001059int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001060{
Gilles Peskine449bd832023-01-11 14:50:10 +01001061 return add_sub_mpi(X, A, B, -1);
Paul Bakker5121ce52009-01-03 21:22:43 +00001062}
1063
1064/*
1065 * Signed addition: X = A + b
1066 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001067int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001068{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001069 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001070 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001071 MPI_VALIDATE_RET(X != NULL);
1072 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001073
Gilles Peskine449bd832023-01-11 14:50:10 +01001074 p[0] = mpi_sint_abs(b);
1075 B.s = (b < 0) ? -1 : 1;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001076 B.n = 1;
1077 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001078
Gilles Peskine449bd832023-01-11 14:50:10 +01001079 return mbedtls_mpi_add_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001080}
1081
1082/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001083 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001084 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001085int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001086{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001087 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001088 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001089 MPI_VALIDATE_RET(X != NULL);
1090 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001091
Gilles Peskine449bd832023-01-11 14:50:10 +01001092 p[0] = mpi_sint_abs(b);
1093 B.s = (b < 0) ? -1 : 1;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001094 B.n = 1;
1095 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001096
Gilles Peskine449bd832023-01-11 14:50:10 +01001097 return mbedtls_mpi_sub_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001098}
1099
Paul Bakker5121ce52009-01-03 21:22:43 +00001100/*
1101 * Baseline multiplication: X = A * B (HAC 14.12)
1102 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001103int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001104{
Janos Follath24eed8d2019-11-22 13:21:35 +00001105 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker1772e052022-04-13 06:51:40 +01001106 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001107 mbedtls_mpi TA, TB;
Hanno Beckerda763de2022-04-13 06:50:02 +01001108 int result_is_zero = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001109 MPI_VALIDATE_RET(X != NULL);
1110 MPI_VALIDATE_RET(A != NULL);
1111 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001112
Tom Cosgrove6af26f32022-08-24 16:40:55 +01001113 mbedtls_mpi_init(&TA);
1114 mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00001115
Gilles Peskine449bd832023-01-11 14:50:10 +01001116 if (X == A) {
1117 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
1118 }
1119 if (X == B) {
1120 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
1121 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001122
Gilles Peskine449bd832023-01-11 14:50:10 +01001123 for (i = A->n; i > 0; i--) {
1124 if (A->p[i - 1] != 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001125 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001126 }
1127 }
1128 if (i == 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001129 result_is_zero = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001130 }
Hanno Beckerda763de2022-04-13 06:50:02 +01001131
Gilles Peskine449bd832023-01-11 14:50:10 +01001132 for (j = B->n; j > 0; j--) {
1133 if (B->p[j - 1] != 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001134 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001135 }
1136 }
1137 if (j == 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001138 result_is_zero = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001139 }
Hanno Beckerda763de2022-04-13 06:50:02 +01001140
Gilles Peskine449bd832023-01-11 14:50:10 +01001141 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
1142 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
Paul Bakker5121ce52009-01-03 21:22:43 +00001143
Tom Cosgrove6af26f32022-08-24 16:40:55 +01001144 mbedtls_mpi_core_mul(X->p, A->p, i, B->p, j);
Paul Bakker5121ce52009-01-03 21:22:43 +00001145
Hanno Beckerda763de2022-04-13 06:50:02 +01001146 /* If the result is 0, we don't shortcut the operation, which reduces
1147 * but does not eliminate side channels leaking the zero-ness. We do
1148 * need to take care to set the sign bit properly since the library does
1149 * not fully support an MPI object with a value of 0 and s == -1. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001150 if (result_is_zero) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001151 X->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001152 } else {
Hanno Beckerda763de2022-04-13 06:50:02 +01001153 X->s = A->s * B->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001154 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001155
1156cleanup:
1157
Gilles Peskine449bd832023-01-11 14:50:10 +01001158 mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
Paul Bakker5121ce52009-01-03 21:22:43 +00001159
Gilles Peskine449bd832023-01-11 14:50:10 +01001160 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001161}
1162
1163/*
1164 * Baseline multiplication: X = A * b
1165 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001166int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001167{
Gilles Peskine449bd832023-01-11 14:50:10 +01001168 MPI_VALIDATE_RET(X != NULL);
1169 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001170
Hanno Becker35771312022-04-14 11:52:11 +01001171 size_t n = A->n;
Gilles Peskine449bd832023-01-11 14:50:10 +01001172 while (n > 0 && A->p[n - 1] == 0) {
Hanno Becker35771312022-04-14 11:52:11 +01001173 --n;
Gilles Peskine449bd832023-01-11 14:50:10 +01001174 }
Hanno Becker35771312022-04-14 11:52:11 +01001175
Hanno Becker74a11a32022-04-06 06:27:00 +01001176 /* The general method below doesn't work if b==0. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001177 if (b == 0 || n == 0) {
1178 return mbedtls_mpi_lset(X, 0);
1179 }
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001180
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001181 /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001182 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001183 /* In general, A * b requires 1 limb more than b. If
1184 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1185 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001186 * copy() will take care of the growth if needed. However, experimentally,
1187 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001188 * calls to calloc() in ECP code, presumably because it reuses the
1189 * same mpi for a while and this way the mpi is more likely to directly
Hanno Becker9137b9c2022-04-12 10:51:54 +01001190 * grow to its final size.
1191 *
1192 * Note that calculating A*b as 0 + A*b doesn't work as-is because
1193 * A,X can be the same. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001194 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
1195 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1196 mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001197
1198cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001199 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001200}
1201
1202/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001203 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1204 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001205 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001206static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
1207 mbedtls_mpi_uint u0,
1208 mbedtls_mpi_uint d,
1209 mbedtls_mpi_uint *r)
Simon Butcher15b15d12015-11-26 19:35:03 +00001210{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001211#if defined(MBEDTLS_HAVE_UDBL)
1212 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001213#else
Simon Butcher9803d072016-01-03 00:24:34 +00001214 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
Gilles Peskine449bd832023-01-11 14:50:10 +01001215 const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001216 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1217 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001218 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001219#endif
1220
Simon Butcher15b15d12015-11-26 19:35:03 +00001221 /*
1222 * Check for overflow
1223 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001224 if (0 == d || u1 >= d) {
1225 if (r != NULL) {
1226 *r = ~(mbedtls_mpi_uint) 0u;
1227 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001228
Gilles Peskine449bd832023-01-11 14:50:10 +01001229 return ~(mbedtls_mpi_uint) 0u;
Simon Butcher15b15d12015-11-26 19:35:03 +00001230 }
1231
1232#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001233 dividend = (mbedtls_t_udbl) u1 << biL;
1234 dividend |= (mbedtls_t_udbl) u0;
1235 quotient = dividend / d;
Gilles Peskine449bd832023-01-11 14:50:10 +01001236 if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
1237 quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
1238 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001239
Gilles Peskine449bd832023-01-11 14:50:10 +01001240 if (r != NULL) {
1241 *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
1242 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001243
1244 return (mbedtls_mpi_uint) quotient;
1245#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001246
1247 /*
1248 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1249 * Vol. 2 - Seminumerical Algorithms, Knuth
1250 */
1251
1252 /*
1253 * Normalize the divisor, d, and dividend, u0, u1
1254 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001255 s = mbedtls_mpi_core_clz(d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001256 d = d << s;
1257
1258 u1 = u1 << s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001259 u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
Simon Butcher15b15d12015-11-26 19:35:03 +00001260 u0 = u0 << s;
1261
1262 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001263 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001264
1265 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001266 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001267
1268 /*
1269 * Find the first quotient and remainder
1270 */
1271 q1 = u1 / d1;
1272 r0 = u1 - d1 * q1;
1273
Gilles Peskine449bd832023-01-11 14:50:10 +01001274 while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001275 q1 -= 1;
1276 r0 += d1;
1277
Gilles Peskine449bd832023-01-11 14:50:10 +01001278 if (r0 >= radix) {
1279 break;
1280 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001281 }
1282
Gilles Peskine449bd832023-01-11 14:50:10 +01001283 rAX = (u1 * radix) + (u0_msw - q1 * d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001284 q0 = rAX / d1;
1285 r0 = rAX - q0 * d1;
1286
Gilles Peskine449bd832023-01-11 14:50:10 +01001287 while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001288 q0 -= 1;
1289 r0 += d1;
1290
Gilles Peskine449bd832023-01-11 14:50:10 +01001291 if (r0 >= radix) {
1292 break;
1293 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001294 }
1295
Gilles Peskine449bd832023-01-11 14:50:10 +01001296 if (r != NULL) {
1297 *r = (rAX * radix + u0_lsw - q0 * d) >> s;
1298 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001299
1300 quotient = q1 * radix + q0;
1301
1302 return quotient;
1303#endif
1304}
1305
1306/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001307 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001308 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001309int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1310 const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001311{
Janos Follath24eed8d2019-11-22 13:21:35 +00001312 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001313 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001314 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001315 mbedtls_mpi_uint TP2[3];
Gilles Peskine449bd832023-01-11 14:50:10 +01001316 MPI_VALIDATE_RET(A != NULL);
1317 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001318
Gilles Peskine449bd832023-01-11 14:50:10 +01001319 if (mbedtls_mpi_cmp_int(B, 0) == 0) {
1320 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1321 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001322
Gilles Peskine449bd832023-01-11 14:50:10 +01001323 mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
1324 mbedtls_mpi_init(&T1);
Alexander Kd19a1932019-11-01 18:20:42 +03001325 /*
1326 * Avoid dynamic memory allocations for constant-size T2.
1327 *
1328 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1329 * so nobody increase the size of the MPI and we're safe to use an on-stack
1330 * buffer.
1331 */
Alexander K35d6d462019-10-31 14:46:45 +03001332 T2.s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001333 T2.n = sizeof(TP2) / sizeof(*TP2);
Alexander Kd19a1932019-11-01 18:20:42 +03001334 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001335
Gilles Peskine449bd832023-01-11 14:50:10 +01001336 if (mbedtls_mpi_cmp_abs(A, B) < 0) {
1337 if (Q != NULL) {
1338 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
1339 }
1340 if (R != NULL) {
1341 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
1342 }
1343 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001344 }
1345
Gilles Peskine449bd832023-01-11 14:50:10 +01001346 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
1347 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001348 X.s = Y.s = 1;
1349
Gilles Peskine449bd832023-01-11 14:50:10 +01001350 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
1351 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z, 0));
1352 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001353
Gilles Peskine449bd832023-01-11 14:50:10 +01001354 k = mbedtls_mpi_bitlen(&Y) % biL;
1355 if (k < biL - 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001356 k = biL - 1 - k;
Gilles Peskine449bd832023-01-11 14:50:10 +01001357 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
1358 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
1359 } else {
1360 k = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001361 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001362
1363 n = X.n - 1;
1364 t = Y.n - 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001365 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001366
Gilles Peskine449bd832023-01-11 14:50:10 +01001367 while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001368 Z.p[n - t]++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001369 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
Paul Bakker5121ce52009-01-03 21:22:43 +00001370 }
Gilles Peskine449bd832023-01-11 14:50:10 +01001371 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001372
Gilles Peskine449bd832023-01-11 14:50:10 +01001373 for (i = n; i > t; i--) {
1374 if (X.p[i] >= Y.p[t]) {
1375 Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
1376 } else {
1377 Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
1378 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001379 }
1380
Gilles Peskine449bd832023-01-11 14:50:10 +01001381 T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
1382 T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
Alexander K35d6d462019-10-31 14:46:45 +03001383 T2.p[2] = X.p[i];
1384
Paul Bakker5121ce52009-01-03 21:22:43 +00001385 Z.p[i - t - 1]++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001386 do {
Paul Bakker5121ce52009-01-03 21:22:43 +00001387 Z.p[i - t - 1]--;
1388
Gilles Peskine449bd832023-01-11 14:50:10 +01001389 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
1390 T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001391 T1.p[1] = Y.p[t];
Gilles Peskine449bd832023-01-11 14:50:10 +01001392 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
1393 } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00001394
Gilles Peskine449bd832023-01-11 14:50:10 +01001395 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
1396 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1397 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001398
Gilles Peskine449bd832023-01-11 14:50:10 +01001399 if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
1400 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
1401 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1402 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001403 Z.p[i - t - 1]--;
1404 }
1405 }
1406
Gilles Peskine449bd832023-01-11 14:50:10 +01001407 if (Q != NULL) {
1408 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
Paul Bakker5121ce52009-01-03 21:22:43 +00001409 Q->s = A->s * B->s;
1410 }
1411
Gilles Peskine449bd832023-01-11 14:50:10 +01001412 if (R != NULL) {
1413 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
Paul Bakkerf02c5642012-11-13 10:25:21 +00001414 X.s = A->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001415 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
Paul Bakker5121ce52009-01-03 21:22:43 +00001416
Gilles Peskine449bd832023-01-11 14:50:10 +01001417 if (mbedtls_mpi_cmp_int(R, 0) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001418 R->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001419 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001420 }
1421
1422cleanup:
1423
Gilles Peskine449bd832023-01-11 14:50:10 +01001424 mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
1425 mbedtls_mpi_free(&T1);
1426 mbedtls_platform_zeroize(TP2, sizeof(TP2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001427
Gilles Peskine449bd832023-01-11 14:50:10 +01001428 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001429}
1430
1431/*
1432 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001433 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001434int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
1435 const mbedtls_mpi *A,
1436 mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001437{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001438 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001439 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001440 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001441
Gilles Peskine449bd832023-01-11 14:50:10 +01001442 p[0] = mpi_sint_abs(b);
1443 B.s = (b < 0) ? -1 : 1;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001444 B.n = 1;
1445 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001446
Gilles Peskine449bd832023-01-11 14:50:10 +01001447 return mbedtls_mpi_div_mpi(Q, R, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001448}
1449
1450/*
1451 * Modulo: R = A mod B
1452 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001453int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001454{
Janos Follath24eed8d2019-11-22 13:21:35 +00001455 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +01001456 MPI_VALIDATE_RET(R != NULL);
1457 MPI_VALIDATE_RET(A != NULL);
1458 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001459
Gilles Peskine449bd832023-01-11 14:50:10 +01001460 if (mbedtls_mpi_cmp_int(B, 0) < 0) {
1461 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1462 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001463
Gilles Peskine449bd832023-01-11 14:50:10 +01001464 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001465
Gilles Peskine449bd832023-01-11 14:50:10 +01001466 while (mbedtls_mpi_cmp_int(R, 0) < 0) {
1467 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
1468 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001469
Gilles Peskine449bd832023-01-11 14:50:10 +01001470 while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
1471 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
1472 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001473
1474cleanup:
1475
Gilles Peskine449bd832023-01-11 14:50:10 +01001476 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001477}
1478
1479/*
1480 * Modulo: r = A mod b
1481 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001482int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001483{
Paul Bakker23986e52011-04-24 08:57:21 +00001484 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001485 mbedtls_mpi_uint x, y, z;
Gilles Peskine449bd832023-01-11 14:50:10 +01001486 MPI_VALIDATE_RET(r != NULL);
1487 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001488
Gilles Peskine449bd832023-01-11 14:50:10 +01001489 if (b == 0) {
1490 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1491 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001492
Gilles Peskine449bd832023-01-11 14:50:10 +01001493 if (b < 0) {
1494 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1495 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001496
1497 /*
1498 * handle trivial cases
1499 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001500 if (b == 1 || A->n == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001501 *r = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001502 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001503 }
1504
Gilles Peskine449bd832023-01-11 14:50:10 +01001505 if (b == 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001506 *r = A->p[0] & 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001507 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001508 }
1509
1510 /*
1511 * general case
1512 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001513 for (i = A->n, y = 0; i > 0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +00001514 x = A->p[i - 1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001515 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001516 z = y / b;
1517 y -= z * b;
1518
1519 x <<= biH;
Gilles Peskine449bd832023-01-11 14:50:10 +01001520 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001521 z = y / b;
1522 y -= z * b;
1523 }
1524
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001525 /*
1526 * If A is negative, then the current y represents a negative value.
1527 * Flipping it to the positive side.
1528 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001529 if (A->s < 0 && y != 0) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001530 y = b - y;
Gilles Peskine449bd832023-01-11 14:50:10 +01001531 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001532
Paul Bakker5121ce52009-01-03 21:22:43 +00001533 *r = y;
1534
Gilles Peskine449bd832023-01-11 14:50:10 +01001535 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001536}
1537
Gilles Peskine449bd832023-01-11 14:50:10 +01001538static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00001539{
Gilles Peskine449bd832023-01-11 14:50:10 +01001540 *mm = mbedtls_mpi_core_montmul_init(N->p);
Paul Bakker5121ce52009-01-03 21:22:43 +00001541}
1542
Tom Cosgrove93842842022-08-05 16:59:43 +01001543/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1544 *
1545 * \param[in,out] A One of the numbers to multiply.
1546 * It must have at least as many limbs as N
1547 * (A->n >= N->n), and any limbs beyond n are ignored.
1548 * On successful completion, A contains the result of
1549 * the multiplication A * B * R^-1 mod N where
1550 * R = (2^ciL)^n.
1551 * \param[in] B One of the numbers to multiply.
1552 * It must be nonzero and must not have more limbs than N
1553 * (B->n <= N->n).
Tom Cosgrove40d22942022-08-17 06:42:44 +01001554 * \param[in] N The modulus. \p N must be odd.
Tom Cosgrove93842842022-08-05 16:59:43 +01001555 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1556 * This is -N^-1 mod 2^ciL.
1557 * \param[in,out] T A bignum for temporary storage.
1558 * It must be at least twice the limb size of N plus 1
1559 * (T->n >= 2 * N->n + 1).
1560 * Its initial content is unused and
1561 * its final content is indeterminate.
Tom Cosgrove5dd97e62022-08-30 14:31:49 +01001562 * It does not get reallocated.
Tom Cosgrove93842842022-08-05 16:59:43 +01001563 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001564static void mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B,
1565 const mbedtls_mpi *N, mbedtls_mpi_uint mm,
1566 mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00001567{
Gilles Peskine449bd832023-01-11 14:50:10 +01001568 mbedtls_mpi_core_montmul(A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p);
Paul Bakker5121ce52009-01-03 21:22:43 +00001569}
1570
1571/*
1572 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001573 *
Tom Cosgrove93842842022-08-05 16:59:43 +01001574 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001575 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001576static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N,
1577 mbedtls_mpi_uint mm, mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00001578{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001579 mbedtls_mpi_uint z = 1;
1580 mbedtls_mpi U;
Gilles Peskine053022f2023-06-29 19:26:48 +02001581 U.n = 1;
1582 U.s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001583 U.p = &z;
1584
Gilles Peskine449bd832023-01-11 14:50:10 +01001585 mpi_montmul(A, &U, N, mm, T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001586}
1587
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001588/**
1589 * Select an MPI from a table without leaking the index.
1590 *
1591 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1592 * reads the entire table in order to avoid leaking the value of idx to an
1593 * attacker able to observe memory access patterns.
1594 *
1595 * \param[out] R Where to write the selected MPI.
1596 * \param[in] T The table to read from.
1597 * \param[in] T_size The number of elements in the table.
1598 * \param[in] idx The index of the element to select;
1599 * this must satisfy 0 <= idx < T_size.
1600 *
1601 * \return \c 0 on success, or a negative error code.
1602 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001603static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx)
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001604{
1605 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1606
Gilles Peskine449bd832023-01-11 14:50:10 +01001607 for (size_t i = 0; i < T_size; i++) {
1608 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i],
1609 (unsigned char) mbedtls_ct_size_bool_eq(i,
1610 idx)));
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001611 }
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001612
1613cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001614 return ret;
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001615}
1616
Paul Bakker5121ce52009-01-03 21:22:43 +00001617/*
1618 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1619 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001620int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
1621 const mbedtls_mpi *E, const mbedtls_mpi *N,
1622 mbedtls_mpi *prec_RR)
Paul Bakker5121ce52009-01-03 21:22:43 +00001623{
Janos Follath24eed8d2019-11-22 13:21:35 +00001624 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath74601202022-11-21 15:54:20 +00001625 size_t window_bitsize;
Paul Bakker23986e52011-04-24 08:57:21 +00001626 size_t i, j, nblimbs;
1627 size_t bufsize, nbits;
Paul Elliott1748de12023-02-13 15:35:35 +00001628 size_t exponent_bits_in_window = 0;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001629 mbedtls_mpi_uint ei, mm, state;
Gilles Peskine449bd832023-01-11 14:50:10 +01001630 mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00001631 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00001632
Gilles Peskine449bd832023-01-11 14:50:10 +01001633 MPI_VALIDATE_RET(X != NULL);
1634 MPI_VALIDATE_RET(A != NULL);
1635 MPI_VALIDATE_RET(E != NULL);
1636 MPI_VALIDATE_RET(N != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00001637
Gilles Peskine449bd832023-01-11 14:50:10 +01001638 if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
1639 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1640 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001641
Gilles Peskine449bd832023-01-11 14:50:10 +01001642 if (mbedtls_mpi_cmp_int(E, 0) < 0) {
1643 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1644 }
Paul Bakkerf6198c12012-05-16 08:02:29 +00001645
Gilles Peskine449bd832023-01-11 14:50:10 +01001646 if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
1647 mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
1648 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1649 }
Chris Jones9246d042020-11-25 15:12:39 +00001650
Paul Bakkerf6198c12012-05-16 08:02:29 +00001651 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001652 * Init temps and window size
1653 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001654 mpi_montg_init(&mm, N);
1655 mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T);
1656 mbedtls_mpi_init(&Apos);
1657 mbedtls_mpi_init(&WW);
1658 memset(W, 0, sizeof(W));
Paul Bakker5121ce52009-01-03 21:22:43 +00001659
Gilles Peskine449bd832023-01-11 14:50:10 +01001660 i = mbedtls_mpi_bitlen(E);
Paul Bakker5121ce52009-01-03 21:22:43 +00001661
Gilles Peskine449bd832023-01-11 14:50:10 +01001662 window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 :
1663 (i > 79) ? 4 : (i > 23) ? 3 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001664
Gilles Peskine449bd832023-01-11 14:50:10 +01001665#if (MBEDTLS_MPI_WINDOW_SIZE < 6)
1666 if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) {
Janos Follath7fa11b82022-11-21 14:48:02 +00001667 window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
Gilles Peskine449bd832023-01-11 14:50:10 +01001668 }
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001669#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00001670
Janos Follathc8d66d52022-11-22 10:47:10 +00001671 const size_t w_table_used_size = (size_t) 1 << window_bitsize;
Janos Follath06000952022-11-22 10:18:06 +00001672
Paul Bakker5121ce52009-01-03 21:22:43 +00001673 /*
Janos Follathbe54ca72022-11-21 16:14:54 +00001674 * This function is not constant-trace: its memory accesses depend on the
1675 * exponent value. To defend against timing attacks, callers (such as RSA
1676 * and DHM) should use exponent blinding. However this is not enough if the
1677 * adversary can find the exponent in a single trace, so this function
1678 * takes extra precautions against adversaries who can observe memory
1679 * access patterns.
Janos Follathf08b40e2022-11-11 15:56:38 +00001680 *
Janos Follathbe54ca72022-11-21 16:14:54 +00001681 * This function performs a series of multiplications by table elements and
1682 * squarings, and we want the prevent the adversary from finding out which
1683 * table element was used, and from distinguishing between multiplications
1684 * and squarings. Firstly, when multiplying by an element of the window
1685 * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
1686 * squarings as having a different memory access patterns from other
1687 * multiplications. So secondly, we put the accumulator X in the table as
1688 * well, and also do a constant-trace table lookup to multiply by X.
1689 *
1690 * This way, all multiplications take the form of a lookup-and-multiply.
1691 * The number of lookup-and-multiply operations inside each iteration of
1692 * the main loop still depends on the bits of the exponent, but since the
1693 * other operations in the loop don't have an easily recognizable memory
1694 * trace, an adversary is unlikely to be able to observe the exact
1695 * patterns.
1696 *
1697 * An adversary may still be able to recover the exponent if they can
1698 * observe both memory accesses and branches. However, branch prediction
1699 * exploitation typically requires many traces of execution over the same
1700 * data, which is defeated by randomized blinding.
Janos Follath84461482022-11-21 14:31:22 +00001701 *
1702 * To achieve this, we make a copy of X and we use the table entry in each
1703 * calculation from this point on.
Janos Follath8e7d6a02022-10-04 13:27:40 +01001704 */
Janos Follathc8d66d52022-11-22 10:47:10 +00001705 const size_t x_index = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001706 mbedtls_mpi_init(&W[x_index]);
1707 mbedtls_mpi_copy(&W[x_index], X);
Janos Follath84461482022-11-21 14:31:22 +00001708
Paul Bakker5121ce52009-01-03 21:22:43 +00001709 j = N->n + 1;
Tom Cosgrove93842842022-08-05 16:59:43 +01001710 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
Paul Bakker5121ce52009-01-03 21:22:43 +00001711 * and mpi_montred() calls later. Here we ensure that W[1] and X are
1712 * large enough, and later we'll grow other W[i] to the same length.
1713 * They must not be shrunk midway through this function!
1714 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001715 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j));
1716 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], j));
1717 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001718
1719 /*
Paul Bakker50546922012-05-19 08:40:49 +00001720 * Compensate for negative A (and correct at the end)
1721 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001722 neg = (A->s == -1);
1723 if (neg) {
1724 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));
Paul Bakker50546922012-05-19 08:40:49 +00001725 Apos.s = 1;
1726 A = &Apos;
1727 }
1728
1729 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001730 * If 1st call, pre-compute R^2 mod N
1731 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001732 if (prec_RR == NULL || prec_RR->p == NULL) {
1733 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1));
1734 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL));
1735 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00001736
Gilles Peskine449bd832023-01-11 14:50:10 +01001737 if (prec_RR != NULL) {
1738 memcpy(prec_RR, &RR, sizeof(mbedtls_mpi));
1739 }
1740 } else {
1741 memcpy(&RR, prec_RR, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +00001742 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001743
1744 /*
1745 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1746 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001747 if (mbedtls_mpi_cmp_mpi(A, N) >= 0) {
1748 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001749 /* This should be a no-op because W[1] is already that large before
1750 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
Tom Cosgrove93842842022-08-05 16:59:43 +01001751 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001752 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1));
1753 } else {
1754 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001755 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001756
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001757 /* Note that this is safe because W[1] always has at least N->n limbs
1758 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001759 mpi_montmul(&W[1], &RR, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001760
1761 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001762 * W[x_index] = R^2 * R^-1 mod N = R mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001763 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001764 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR));
1765 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001766
Janos Follathc8d66d52022-11-22 10:47:10 +00001767
Gilles Peskine449bd832023-01-11 14:50:10 +01001768 if (window_bitsize > 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001769 /*
Janos Follath74601202022-11-21 15:54:20 +00001770 * W[i] = W[1] ^ i
1771 *
1772 * The first bit of the sliding window is always 1 and therefore we
1773 * only need to store the second half of the table.
Janos Follathc8d66d52022-11-22 10:47:10 +00001774 *
1775 * (There are two special elements in the table: W[0] for the
1776 * accumulator/result and W[1] for A in Montgomery form. Both of these
1777 * are already set at this point.)
Paul Bakker5121ce52009-01-03 21:22:43 +00001778 */
Janos Follath74601202022-11-21 15:54:20 +00001779 j = w_table_used_size / 2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001780
Gilles Peskine449bd832023-01-11 14:50:10 +01001781 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));
1782 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00001783
Gilles Peskine449bd832023-01-11 14:50:10 +01001784 for (i = 0; i < window_bitsize - 1; i++) {
1785 mpi_montmul(&W[j], &W[j], N, mm, &T);
1786 }
Paul Bakker0d7702c2013-10-29 16:18:35 +01001787
Paul Bakker5121ce52009-01-03 21:22:43 +00001788 /*
1789 * W[i] = W[i - 1] * W[1]
1790 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001791 for (i = j + 1; i < w_table_used_size; i++) {
1792 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));
1793 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00001794
Gilles Peskine449bd832023-01-11 14:50:10 +01001795 mpi_montmul(&W[i], &W[1], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001796 }
1797 }
1798
1799 nblimbs = E->n;
1800 bufsize = 0;
1801 nbits = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001802 state = 0;
1803
Gilles Peskine449bd832023-01-11 14:50:10 +01001804 while (1) {
1805 if (bufsize == 0) {
1806 if (nblimbs == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001807 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001808 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001809
Paul Bakker0d7702c2013-10-29 16:18:35 +01001810 nblimbs--;
1811
Gilles Peskine449bd832023-01-11 14:50:10 +01001812 bufsize = sizeof(mbedtls_mpi_uint) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00001813 }
1814
1815 bufsize--;
1816
1817 ei = (E->p[nblimbs] >> bufsize) & 1;
1818
1819 /*
1820 * skip leading 0s
1821 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001822 if (ei == 0 && state == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001823 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +01001824 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001825
Gilles Peskine449bd832023-01-11 14:50:10 +01001826 if (ei == 0 && state == 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001827 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001828 * out of window, square W[x_index]
Paul Bakker5121ce52009-01-03 21:22:43 +00001829 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001830 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1831 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001832 continue;
1833 }
1834
1835 /*
1836 * add ei to current window
1837 */
1838 state = 2;
1839
1840 nbits++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001841 exponent_bits_in_window |= (ei << (window_bitsize - nbits));
Paul Bakker5121ce52009-01-03 21:22:43 +00001842
Gilles Peskine449bd832023-01-11 14:50:10 +01001843 if (nbits == window_bitsize) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001844 /*
Janos Follath7fa11b82022-11-21 14:48:02 +00001845 * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001846 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001847 for (i = 0; i < window_bitsize; i++) {
1848 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1849 x_index));
1850 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follathb764ee12022-10-04 14:00:09 +01001851 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001852
1853 /*
Janos Follath7fa11b82022-11-21 14:48:02 +00001854 * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001855 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001856 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1857 exponent_bits_in_window));
1858 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001859
1860 state--;
1861 nbits = 0;
Janos Follath7fa11b82022-11-21 14:48:02 +00001862 exponent_bits_in_window = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001863 }
1864 }
1865
1866 /*
1867 * process the remaining bits
1868 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001869 for (i = 0; i < nbits; i++) {
1870 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1871 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001872
Janos Follath7fa11b82022-11-21 14:48:02 +00001873 exponent_bits_in_window <<= 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001874
Gilles Peskine449bd832023-01-11 14:50:10 +01001875 if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) {
1876 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1));
1877 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follathb764ee12022-10-04 14:00:09 +01001878 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001879 }
1880
1881 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001882 * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001883 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001884 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001885
Gilles Peskine449bd832023-01-11 14:50:10 +01001886 if (neg && E->n != 0 && (E->p[0] & 1) != 0) {
Janos Follath8e7d6a02022-10-04 13:27:40 +01001887 W[x_index].s = -1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001888 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index]));
Paul Bakkerf6198c12012-05-16 08:02:29 +00001889 }
1890
Janos Follath8e7d6a02022-10-04 13:27:40 +01001891 /*
1892 * Load the result in the output variable.
1893 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001894 mbedtls_mpi_copy(X, &W[x_index]);
Janos Follath8e7d6a02022-10-04 13:27:40 +01001895
Paul Bakker5121ce52009-01-03 21:22:43 +00001896cleanup:
1897
Janos Follathb2c2fca2022-11-21 15:05:31 +00001898 /* The first bit of the sliding window is always 1 and therefore the first
1899 * half of the table was unused. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001900 for (i = w_table_used_size/2; i < w_table_used_size; i++) {
1901 mbedtls_mpi_free(&W[i]);
1902 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001903
Gilles Peskine449bd832023-01-11 14:50:10 +01001904 mbedtls_mpi_free(&W[x_index]);
1905 mbedtls_mpi_free(&W[1]);
1906 mbedtls_mpi_free(&T);
1907 mbedtls_mpi_free(&Apos);
1908 mbedtls_mpi_free(&WW);
Paul Bakker6c591fa2011-05-05 11:49:20 +00001909
Gilles Peskine449bd832023-01-11 14:50:10 +01001910 if (prec_RR == NULL || prec_RR->p == NULL) {
1911 mbedtls_mpi_free(&RR);
1912 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001913
Gilles Peskine449bd832023-01-11 14:50:10 +01001914 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001915}
1916
Paul Bakker5121ce52009-01-03 21:22:43 +00001917/*
1918 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
1919 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001920int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001921{
Janos Follath24eed8d2019-11-22 13:21:35 +00001922 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001923 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03001924 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00001925
Gilles Peskine449bd832023-01-11 14:50:10 +01001926 MPI_VALIDATE_RET(G != NULL);
1927 MPI_VALIDATE_RET(A != NULL);
1928 MPI_VALIDATE_RET(B != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00001929
Gilles Peskine449bd832023-01-11 14:50:10 +01001930 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00001931
Gilles Peskine449bd832023-01-11 14:50:10 +01001932 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
1933 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001934
Gilles Peskine449bd832023-01-11 14:50:10 +01001935 lz = mbedtls_mpi_lsb(&TA);
1936 lzt = mbedtls_mpi_lsb(&TB);
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001937
Gilles Peskine27253bc2021-06-09 13:26:43 +02001938 /* The loop below gives the correct result when A==0 but not when B==0.
1939 * So have a special case for B==0. Leverage the fact that we just
1940 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1941 * slightly more efficient than cmp_int(). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001942 if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
1943 ret = mbedtls_mpi_copy(G, A);
Gilles Peskine27253bc2021-06-09 13:26:43 +02001944 goto cleanup;
1945 }
1946
Gilles Peskine449bd832023-01-11 14:50:10 +01001947 if (lzt < lz) {
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001948 lz = lzt;
Gilles Peskine449bd832023-01-11 14:50:10 +01001949 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001950
Paul Bakker5121ce52009-01-03 21:22:43 +00001951 TA.s = TB.s = 1;
1952
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001953 /* We mostly follow the procedure described in HAC 14.54, but with some
1954 * minor differences:
1955 * - Sequences of multiplications or divisions by 2 are grouped into a
1956 * single shift operation.
Gilles Peskineb09c7ee2021-06-21 18:58:39 +02001957 * - The procedure in HAC assumes that 0 < TB <= TA.
1958 * - The condition TB <= TA is not actually necessary for correctness.
1959 * TA and TB have symmetric roles except for the loop termination
1960 * condition, and the shifts at the beginning of the loop body
1961 * remove any significance from the ordering of TA vs TB before
1962 * the shifts.
1963 * - If TA = 0, the loop goes through 0 iterations and the result is
1964 * correctly TB.
1965 * - The case TB = 0 was short-circuited above.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001966 *
1967 * For the correctness proof below, decompose the original values of
1968 * A and B as
1969 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
1970 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
1971 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
1972 * and gcd(A',B') is odd or 0.
1973 *
1974 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
1975 * The code maintains the following invariant:
1976 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine4df3f1f2021-06-15 22:09:39 +02001977 */
1978
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001979 /* Proof that the loop terminates:
1980 * At each iteration, either the right-shift by 1 is made on a nonzero
1981 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
1982 * by at least 1, or the right-shift by 1 is made on zero and then
1983 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
1984 * since in that case TB is calculated from TB-TA with the condition TB>TA).
1985 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001986 while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001987 /* Divisions by 2 preserve the invariant (I). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001988 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
1989 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001990
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001991 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
1992 * TA-TB is even so the division by 2 has an integer result.
1993 * Invariant (I) is preserved since any odd divisor of both TA and TB
1994 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001995 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001996 * divides TA.
1997 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001998 if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
1999 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
2000 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
2001 } else {
2002 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
2003 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002004 }
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002005 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00002006 }
2007
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002008 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2009 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2010 * - If there was at least one loop iteration, then one of TA or TB is odd,
2011 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2012 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2013 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskine4d3fd362021-06-21 11:40:38 +02002014 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002015 */
2016
Gilles Peskine449bd832023-01-11 14:50:10 +01002017 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
2018 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
Paul Bakker5121ce52009-01-03 21:22:43 +00002019
2020cleanup:
2021
Gilles Peskine449bd832023-01-11 14:50:10 +01002022 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00002023
Gilles Peskine449bd832023-01-11 14:50:10 +01002024 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002025}
2026
Paul Bakker33dc46b2014-04-30 16:11:39 +02002027/*
2028 * Fill X with size bytes of random.
Gilles Peskine22cdd0c2022-10-27 20:15:13 +02002029 * The bytes returned from the RNG are used in a specific order which
2030 * is suitable for deterministic ECDSA (see the specification of
2031 * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
Paul Bakker33dc46b2014-04-30 16:11:39 +02002032 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002033int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
2034 int (*f_rng)(void *, unsigned char *, size_t),
2035 void *p_rng)
Paul Bakker287781a2011-03-26 13:18:49 +00002036{
Janos Follath24eed8d2019-11-22 13:21:35 +00002037 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +01002038 const size_t limbs = CHARS_TO_LIMBS(size);
Hanno Beckerda1655a2017-10-18 14:21:44 +01002039
Gilles Peskine449bd832023-01-11 14:50:10 +01002040 MPI_VALIDATE_RET(X != NULL);
2041 MPI_VALIDATE_RET(f_rng != NULL);
Paul Bakker33dc46b2014-04-30 16:11:39 +02002042
Hanno Beckerda1655a2017-10-18 14:21:44 +01002043 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +01002044 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
2045 if (size == 0) {
2046 return 0;
2047 }
Paul Bakker287781a2011-03-26 13:18:49 +00002048
Gilles Peskine449bd832023-01-11 14:50:10 +01002049 ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
Paul Bakker287781a2011-03-26 13:18:49 +00002050
2051cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002052 return ret;
Paul Bakker287781a2011-03-26 13:18:49 +00002053}
2054
Gilles Peskine449bd832023-01-11 14:50:10 +01002055int mbedtls_mpi_random(mbedtls_mpi *X,
2056 mbedtls_mpi_sint min,
2057 const mbedtls_mpi *N,
2058 int (*f_rng)(void *, unsigned char *, size_t),
2059 void *p_rng)
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002060{
Gilles Peskine449bd832023-01-11 14:50:10 +01002061 if (min < 0) {
2062 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2063 }
2064 if (mbedtls_mpi_cmp_int(N, min) <= 0) {
2065 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2066 }
Gilles Peskine1e918f42021-03-29 22:14:51 +02002067
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002068 /* Ensure that target MPI has exactly the same number of limbs
2069 * as the upper bound, even if the upper bound has leading zeros.
Gilles Peskine6b7ce962022-12-15 15:04:33 +01002070 * This is necessary for mbedtls_mpi_core_random. */
Gilles Peskine449bd832023-01-11 14:50:10 +01002071 int ret = mbedtls_mpi_resize_clear(X, N->n);
2072 if (ret != 0) {
2073 return ret;
2074 }
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002075
Gilles Peskine449bd832023-01-11 14:50:10 +01002076 return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002077}
2078
Paul Bakker5121ce52009-01-03 21:22:43 +00002079/*
2080 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2081 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002082int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00002083{
Janos Follath24eed8d2019-11-22 13:21:35 +00002084 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002085 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Gilles Peskine449bd832023-01-11 14:50:10 +01002086 MPI_VALIDATE_RET(X != NULL);
2087 MPI_VALIDATE_RET(A != NULL);
2088 MPI_VALIDATE_RET(N != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00002089
Gilles Peskine449bd832023-01-11 14:50:10 +01002090 if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
2091 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2092 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002093
Gilles Peskine449bd832023-01-11 14:50:10 +01002094 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
2095 mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
2096 mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002097
Gilles Peskine449bd832023-01-11 14:50:10 +01002098 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002099
Gilles Peskine449bd832023-01-11 14:50:10 +01002100 if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002101 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002102 goto cleanup;
2103 }
2104
Gilles Peskine449bd832023-01-11 14:50:10 +01002105 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
2106 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
2107 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
2108 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002109
Gilles Peskine449bd832023-01-11 14:50:10 +01002110 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
2111 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
2112 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
2113 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002114
Gilles Peskine449bd832023-01-11 14:50:10 +01002115 do {
2116 while ((TU.p[0] & 1) == 0) {
2117 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002118
Gilles Peskine449bd832023-01-11 14:50:10 +01002119 if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
2120 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
2121 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002122 }
2123
Gilles Peskine449bd832023-01-11 14:50:10 +01002124 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
2125 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002126 }
2127
Gilles Peskine449bd832023-01-11 14:50:10 +01002128 while ((TV.p[0] & 1) == 0) {
2129 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002130
Gilles Peskine449bd832023-01-11 14:50:10 +01002131 if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
2132 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
2133 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002134 }
2135
Gilles Peskine449bd832023-01-11 14:50:10 +01002136 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
2137 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002138 }
2139
Gilles Peskine449bd832023-01-11 14:50:10 +01002140 if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
2141 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
2142 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
2143 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
2144 } else {
2145 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
2146 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
2147 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
Paul Bakker5121ce52009-01-03 21:22:43 +00002148 }
Gilles Peskine449bd832023-01-11 14:50:10 +01002149 } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
2150
2151 while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
2152 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002153 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002154
Gilles Peskine449bd832023-01-11 14:50:10 +01002155 while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
2156 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
2157 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002158
Gilles Peskine449bd832023-01-11 14:50:10 +01002159 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002160
2161cleanup:
2162
Gilles Peskine449bd832023-01-11 14:50:10 +01002163 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
2164 mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
2165 mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002166
Gilles Peskine449bd832023-01-11 14:50:10 +01002167 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002168}
2169
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002170#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002171
Paul Bakker5121ce52009-01-03 21:22:43 +00002172static const int small_prime[] =
2173{
Gilles Peskine449bd832023-01-11 14:50:10 +01002174 3, 5, 7, 11, 13, 17, 19, 23,
2175 29, 31, 37, 41, 43, 47, 53, 59,
2176 61, 67, 71, 73, 79, 83, 89, 97,
2177 101, 103, 107, 109, 113, 127, 131, 137,
2178 139, 149, 151, 157, 163, 167, 173, 179,
2179 181, 191, 193, 197, 199, 211, 223, 227,
2180 229, 233, 239, 241, 251, 257, 263, 269,
2181 271, 277, 281, 283, 293, 307, 311, 313,
2182 317, 331, 337, 347, 349, 353, 359, 367,
2183 373, 379, 383, 389, 397, 401, 409, 419,
2184 421, 431, 433, 439, 443, 449, 457, 461,
2185 463, 467, 479, 487, 491, 499, 503, 509,
2186 521, 523, 541, 547, 557, 563, 569, 571,
2187 577, 587, 593, 599, 601, 607, 613, 617,
2188 619, 631, 641, 643, 647, 653, 659, 661,
2189 673, 677, 683, 691, 701, 709, 719, 727,
2190 733, 739, 743, 751, 757, 761, 769, 773,
2191 787, 797, 809, 811, 821, 823, 827, 829,
2192 839, 853, 857, 859, 863, 877, 881, 883,
2193 887, 907, 911, 919, 929, 937, 941, 947,
2194 953, 967, 971, 977, 983, 991, 997, -103
Paul Bakker5121ce52009-01-03 21:22:43 +00002195};
2196
2197/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002198 * Small divisors test (X must be positive)
2199 *
2200 * Return values:
2201 * 0: no small factor (possible prime, more tests needed)
2202 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002203 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002204 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002205 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002206static int mpi_check_small_factors(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +00002207{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002208 int ret = 0;
2209 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002210 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002211
Gilles Peskine449bd832023-01-11 14:50:10 +01002212 if ((X->p[0] & 1) == 0) {
2213 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2214 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002215
Gilles Peskine449bd832023-01-11 14:50:10 +01002216 for (i = 0; small_prime[i] > 0; i++) {
2217 if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) {
2218 return 1;
2219 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002220
Gilles Peskine449bd832023-01-11 14:50:10 +01002221 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i]));
Paul Bakker5121ce52009-01-03 21:22:43 +00002222
Gilles Peskine449bd832023-01-11 14:50:10 +01002223 if (r == 0) {
2224 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2225 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002226 }
2227
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002228cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002229 return ret;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002230}
2231
2232/*
2233 * Miller-Rabin pseudo-primality test (HAC 4.24)
2234 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002235static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
2236 int (*f_rng)(void *, unsigned char *, size_t),
2237 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002238{
Pascal Junodb99183d2015-03-11 16:49:45 +01002239 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002240 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002241 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002242
Gilles Peskine449bd832023-01-11 14:50:10 +01002243 MPI_VALIDATE_RET(X != NULL);
2244 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002245
Gilles Peskine449bd832023-01-11 14:50:10 +01002246 mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
2247 mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
2248 mbedtls_mpi_init(&RR);
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002249
Paul Bakker5121ce52009-01-03 21:22:43 +00002250 /*
2251 * W = |X| - 1
2252 * R = W >> lsb( W )
2253 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002254 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
2255 s = mbedtls_mpi_lsb(&W);
2256 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
2257 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
Paul Bakker5121ce52009-01-03 21:22:43 +00002258
Gilles Peskine449bd832023-01-11 14:50:10 +01002259 for (i = 0; i < rounds; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002260 /*
2261 * pick a random A, 1 < A < |X| - 1
2262 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002263 count = 0;
2264 do {
Gilles Peskine449bd832023-01-11 14:50:10 +01002265 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
Pascal Junodb99183d2015-03-11 16:49:45 +01002266
Gilles Peskine449bd832023-01-11 14:50:10 +01002267 j = mbedtls_mpi_bitlen(&A);
2268 k = mbedtls_mpi_bitlen(&W);
Pascal Junodb99183d2015-03-11 16:49:45 +01002269 if (j > k) {
Gilles Peskine449bd832023-01-11 14:50:10 +01002270 A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002271 }
2272
2273 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002274 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2275 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002276 }
2277
Gilles Peskine449bd832023-01-11 14:50:10 +01002278 } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
2279 mbedtls_mpi_cmp_int(&A, 1) <= 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00002280
2281 /*
2282 * A = A^R mod |X|
2283 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002284 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
Paul Bakker5121ce52009-01-03 21:22:43 +00002285
Gilles Peskine449bd832023-01-11 14:50:10 +01002286 if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
2287 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002288 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +01002289 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002290
2291 j = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01002292 while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002293 /*
2294 * A = A * A mod |X|
2295 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002296 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
2297 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
Paul Bakker5121ce52009-01-03 21:22:43 +00002298
Gilles Peskine449bd832023-01-11 14:50:10 +01002299 if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002300 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01002301 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002302
2303 j++;
2304 }
2305
2306 /*
2307 * not prime if A != |X| - 1 or A == 1
2308 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002309 if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
2310 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002311 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002312 break;
2313 }
2314 }
2315
2316cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002317 mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
2318 mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
2319 mbedtls_mpi_free(&RR);
Paul Bakker5121ce52009-01-03 21:22:43 +00002320
Gilles Peskine449bd832023-01-11 14:50:10 +01002321 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002322}
2323
2324/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002325 * Pseudo-primality test: small factors, then Miller-Rabin
2326 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002327int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
2328 int (*f_rng)(void *, unsigned char *, size_t),
2329 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002330{
Janos Follath24eed8d2019-11-22 13:21:35 +00002331 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002332 mbedtls_mpi XX;
Gilles Peskine449bd832023-01-11 14:50:10 +01002333 MPI_VALIDATE_RET(X != NULL);
2334 MPI_VALIDATE_RET(f_rng != NULL);
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002335
2336 XX.s = 1;
2337 XX.n = X->n;
2338 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002339
Gilles Peskine449bd832023-01-11 14:50:10 +01002340 if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
2341 mbedtls_mpi_cmp_int(&XX, 1) == 0) {
2342 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002343 }
2344
Gilles Peskine449bd832023-01-11 14:50:10 +01002345 if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
2346 return 0;
2347 }
2348
2349 if ((ret = mpi_check_small_factors(&XX)) != 0) {
2350 if (ret == 1) {
2351 return 0;
2352 }
2353
2354 return ret;
2355 }
2356
2357 return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
Janos Follathf301d232018-08-14 13:34:01 +01002358}
2359
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002360/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002361 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002362 *
Janos Follathf301d232018-08-14 13:34:01 +01002363 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2364 * be either 1024 bits or 1536 bits long, and flags must contain
2365 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002366 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002367int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
2368 int (*f_rng)(void *, unsigned char *, size_t),
2369 void *p_rng)
Paul Bakker5121ce52009-01-03 21:22:43 +00002370{
Jethro Beekman66689272018-02-14 19:24:10 -08002371#ifdef MBEDTLS_HAVE_INT64
2372// ceil(2^63.5)
2373#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2374#else
2375// ceil(2^31.5)
2376#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2377#endif
2378 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002379 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002380 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002381 mbedtls_mpi_uint r;
2382 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002383
Gilles Peskine449bd832023-01-11 14:50:10 +01002384 MPI_VALIDATE_RET(X != NULL);
2385 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002386
Gilles Peskine449bd832023-01-11 14:50:10 +01002387 if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
2388 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2389 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002390
Gilles Peskine449bd832023-01-11 14:50:10 +01002391 mbedtls_mpi_init(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00002392
Gilles Peskine449bd832023-01-11 14:50:10 +01002393 n = BITS_TO_LIMBS(nbits);
Paul Bakker5121ce52009-01-03 21:22:43 +00002394
Gilles Peskine449bd832023-01-11 14:50:10 +01002395 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
Janos Follathda31fa12018-09-03 14:45:23 +01002396 /*
2397 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2398 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002399 rounds = ((nbits >= 1300) ? 2 : (nbits >= 850) ? 3 :
2400 (nbits >= 650) ? 4 : (nbits >= 350) ? 8 :
2401 (nbits >= 250) ? 12 : (nbits >= 150) ? 18 : 27);
2402 } else {
Janos Follathda31fa12018-09-03 14:45:23 +01002403 /*
2404 * 2^-100 error probability, number of rounds computed based on HAC,
2405 * fact 4.48
2406 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002407 rounds = ((nbits >= 1450) ? 4 : (nbits >= 1150) ? 5 :
2408 (nbits >= 1000) ? 6 : (nbits >= 850) ? 7 :
2409 (nbits >= 750) ? 8 : (nbits >= 500) ? 13 :
2410 (nbits >= 250) ? 28 : (nbits >= 150) ? 40 : 51);
Janos Follathda31fa12018-09-03 14:45:23 +01002411 }
2412
Gilles Peskine449bd832023-01-11 14:50:10 +01002413 while (1) {
2414 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
Jethro Beekman66689272018-02-14 19:24:10 -08002415 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
Gilles Peskine449bd832023-01-11 14:50:10 +01002416 if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
2417 continue;
2418 }
Jethro Beekman66689272018-02-14 19:24:10 -08002419
2420 k = n * biL;
Gilles Peskine449bd832023-01-11 14:50:10 +01002421 if (k > nbits) {
2422 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
2423 }
Jethro Beekman66689272018-02-14 19:24:10 -08002424 X->p[0] |= 1;
2425
Gilles Peskine449bd832023-01-11 14:50:10 +01002426 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
2427 ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
Jethro Beekman66689272018-02-14 19:24:10 -08002428
Gilles Peskine449bd832023-01-11 14:50:10 +01002429 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002430 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002431 }
2432 } else {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002433 /*
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01002434 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002435 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2436 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002437 */
Jethro Beekman66689272018-02-14 19:24:10 -08002438
2439 X->p[0] |= 2;
2440
Gilles Peskine449bd832023-01-11 14:50:10 +01002441 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
2442 if (r == 0) {
2443 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
2444 } else if (r == 1) {
2445 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
2446 }
Jethro Beekman66689272018-02-14 19:24:10 -08002447
2448 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
Gilles Peskine449bd832023-01-11 14:50:10 +01002449 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
2450 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
Jethro Beekman66689272018-02-14 19:24:10 -08002451
Gilles Peskine449bd832023-01-11 14:50:10 +01002452 while (1) {
Jethro Beekman66689272018-02-14 19:24:10 -08002453 /*
2454 * First, check small factors for X and Y
2455 * before doing Miller-Rabin on any of them
2456 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002457 if ((ret = mpi_check_small_factors(X)) == 0 &&
2458 (ret = mpi_check_small_factors(&Y)) == 0 &&
2459 (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
2460 == 0 &&
2461 (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
2462 == 0) {
Jethro Beekman66689272018-02-14 19:24:10 -08002463 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002464 }
Jethro Beekman66689272018-02-14 19:24:10 -08002465
Gilles Peskine449bd832023-01-11 14:50:10 +01002466 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Jethro Beekman66689272018-02-14 19:24:10 -08002467 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002468 }
Jethro Beekman66689272018-02-14 19:24:10 -08002469
2470 /*
2471 * Next candidates. We want to preserve Y = (X-1) / 2 and
2472 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2473 * so up Y by 6 and X by 12.
2474 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002475 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 12));
2476 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
Paul Bakker5121ce52009-01-03 21:22:43 +00002477 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002478 }
2479 }
2480
2481cleanup:
2482
Gilles Peskine449bd832023-01-11 14:50:10 +01002483 mbedtls_mpi_free(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00002484
Gilles Peskine449bd832023-01-11 14:50:10 +01002485 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002486}
2487
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002488#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002489
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002490#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002491
Paul Bakker23986e52011-04-24 08:57:21 +00002492#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002493
2494static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2495{
2496 { 693, 609, 21 },
2497 { 1764, 868, 28 },
2498 { 768454923, 542167814, 1 }
2499};
2500
Paul Bakker5121ce52009-01-03 21:22:43 +00002501/*
2502 * Checkup routine
2503 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002504int mbedtls_mpi_self_test(int verbose)
Paul Bakker5121ce52009-01-03 21:22:43 +00002505{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002506 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002507 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002508
Gilles Peskine449bd832023-01-11 14:50:10 +01002509 mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
2510 mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00002511
Gilles Peskine449bd832023-01-11 14:50:10 +01002512 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
2513 "EFE021C2645FD1DC586E69184AF4A31E" \
2514 "D5F53E93B5F123FA41680867BA110131" \
2515 "944FE7952E2517337780CB0DB80E61AA" \
2516 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002517
Gilles Peskine449bd832023-01-11 14:50:10 +01002518 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
2519 "B2E7EFD37075B9F03FF989C7C5051C20" \
2520 "34D2A323810251127E7BF8625A4F49A5" \
2521 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2522 "5B5C25763222FEFCCFC38B832366C29E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002523
Gilles Peskine449bd832023-01-11 14:50:10 +01002524 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
2525 "0066A198186C18C10B2F5ED9B522752A" \
2526 "9830B69916E535C8F047518A889A43A5" \
2527 "94B6BED27A168D31D4A52F88925AA8F5"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002528
Gilles Peskine449bd832023-01-11 14:50:10 +01002529 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002530
Gilles Peskine449bd832023-01-11 14:50:10 +01002531 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2532 "602AB7ECA597A3D6B56FF9829A5E8B85" \
2533 "9E857EA95A03512E2BAE7391688D264A" \
2534 "A5663B0341DB9CCFD2C4C5F421FEC814" \
2535 "8001B72E848A38CAE1C65F78E56ABDEF" \
2536 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2537 "ECF677152EF804370C1A305CAF3B5BF1" \
2538 "30879B56C61DE584A0F53A2447A51E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002539
Gilles Peskine449bd832023-01-11 14:50:10 +01002540 if (verbose != 0) {
2541 mbedtls_printf(" MPI test #1 (mul_mpi): ");
2542 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002543
Gilles Peskine449bd832023-01-11 14:50:10 +01002544 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2545 if (verbose != 0) {
2546 mbedtls_printf("failed\n");
2547 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002548
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002549 ret = 1;
2550 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002551 }
2552
Gilles Peskine449bd832023-01-11 14:50:10 +01002553 if (verbose != 0) {
2554 mbedtls_printf("passed\n");
2555 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002556
Gilles Peskine449bd832023-01-11 14:50:10 +01002557 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002558
Gilles Peskine449bd832023-01-11 14:50:10 +01002559 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2560 "256567336059E52CAE22925474705F39A94"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002561
Gilles Peskine449bd832023-01-11 14:50:10 +01002562 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
2563 "6613F26162223DF488E9CD48CC132C7A" \
2564 "0AC93C701B001B092E4E5B9F73BCD27B" \
2565 "9EE50D0657C77F374E903CDFA4C642"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002566
Gilles Peskine449bd832023-01-11 14:50:10 +01002567 if (verbose != 0) {
2568 mbedtls_printf(" MPI test #2 (div_mpi): ");
2569 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002570
Gilles Peskine449bd832023-01-11 14:50:10 +01002571 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
2572 mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
2573 if (verbose != 0) {
2574 mbedtls_printf("failed\n");
2575 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002576
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002577 ret = 1;
2578 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002579 }
2580
Gilles Peskine449bd832023-01-11 14:50:10 +01002581 if (verbose != 0) {
2582 mbedtls_printf("passed\n");
2583 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002584
Gilles Peskine449bd832023-01-11 14:50:10 +01002585 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
Paul Bakker5121ce52009-01-03 21:22:43 +00002586
Gilles Peskine449bd832023-01-11 14:50:10 +01002587 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2588 "36E139AEA55215609D2816998ED020BB" \
2589 "BD96C37890F65171D948E9BC7CBAA4D9" \
2590 "325D24D6A3C12710F10A09FA08AB87"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002591
Gilles Peskine449bd832023-01-11 14:50:10 +01002592 if (verbose != 0) {
2593 mbedtls_printf(" MPI test #3 (exp_mod): ");
2594 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002595
Gilles Peskine449bd832023-01-11 14:50:10 +01002596 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2597 if (verbose != 0) {
2598 mbedtls_printf("failed\n");
2599 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002600
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002601 ret = 1;
2602 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002603 }
2604
Gilles Peskine449bd832023-01-11 14:50:10 +01002605 if (verbose != 0) {
2606 mbedtls_printf("passed\n");
2607 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002608
Gilles Peskine449bd832023-01-11 14:50:10 +01002609 MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002610
Gilles Peskine449bd832023-01-11 14:50:10 +01002611 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2612 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2613 "C3DBA76456363A10869622EAC2DD84EC" \
2614 "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002615
Gilles Peskine449bd832023-01-11 14:50:10 +01002616 if (verbose != 0) {
2617 mbedtls_printf(" MPI test #4 (inv_mod): ");
2618 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002619
Gilles Peskine449bd832023-01-11 14:50:10 +01002620 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2621 if (verbose != 0) {
2622 mbedtls_printf("failed\n");
2623 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002624
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002625 ret = 1;
2626 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002627 }
2628
Gilles Peskine449bd832023-01-11 14:50:10 +01002629 if (verbose != 0) {
2630 mbedtls_printf("passed\n");
2631 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002632
Gilles Peskine449bd832023-01-11 14:50:10 +01002633 if (verbose != 0) {
2634 mbedtls_printf(" MPI test #5 (simple gcd): ");
2635 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002636
Gilles Peskine449bd832023-01-11 14:50:10 +01002637 for (i = 0; i < GCD_PAIR_COUNT; i++) {
2638 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
2639 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002640
Gilles Peskine449bd832023-01-11 14:50:10 +01002641 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002642
Gilles Peskine449bd832023-01-11 14:50:10 +01002643 if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
2644 if (verbose != 0) {
2645 mbedtls_printf("failed at %d\n", i);
2646 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002647
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002648 ret = 1;
2649 goto cleanup;
2650 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002651 }
2652
Gilles Peskine449bd832023-01-11 14:50:10 +01002653 if (verbose != 0) {
2654 mbedtls_printf("passed\n");
2655 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002656
Paul Bakker5121ce52009-01-03 21:22:43 +00002657cleanup:
2658
Gilles Peskine449bd832023-01-11 14:50:10 +01002659 if (ret != 0 && verbose != 0) {
2660 mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
2661 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002662
Gilles Peskine449bd832023-01-11 14:50:10 +01002663 mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
2664 mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00002665
Gilles Peskine449bd832023-01-11 14:50:10 +01002666 if (verbose != 0) {
2667 mbedtls_printf("\n");
2668 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002669
Gilles Peskine449bd832023-01-11 14:50:10 +01002670 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002671}
2672
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002673#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00002674
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002675#endif /* MBEDTLS_BIGNUM_C */