blob: 57d065149d8e5f3770db20a5fa5cb168120efa3a [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
18 * Copyright (C) 2018, ARM Limited, All Rights Reserved
19 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
32 *
33 * This file is part of mbed TLS (https://tls.mbed.org)
34 */
35
36#ifndef PSA_CRYPTO_VALUES_H
37#define PSA_CRYPTO_VALUES_H
38
39/** \defgroup error Error codes
40 * @{
41 */
42
David Saadab4ecc272019-02-14 13:48:10 +020043/* PSA error codes */
44
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045/** The action was completed successfully. */
46#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010047
48/** An error occurred that does not correspond to any defined
49 * failure cause.
50 *
51 * Implementations may use this error code if none of the other standard
52 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020053#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010054
55/** The requested operation or a parameter is not supported
56 * by this implementation.
57 *
58 * Implementations should return this error code when an enumeration
59 * parameter such as a key type, algorithm, etc. is not recognized.
60 * If a combination of parameters is recognized and identified as
61 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020062#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010063
64/** The requested action is denied by a policy.
65 *
66 * Implementations should return this error code when the parameters
67 * are recognized as valid and supported, and a policy explicitly
68 * denies the requested operation.
69 *
70 * If a subset of the parameters of a function call identify a
71 * forbidden operation, and another subset of the parameters are
72 * not valid or not supported, it is unspecified whether the function
73 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
74 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020075#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010076
77/** An output buffer is too small.
78 *
79 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
80 * description to determine a sufficient buffer size.
81 *
82 * Implementations should preferably return this error code only
83 * in cases when performing the operation with a larger output
84 * buffer would succeed. However implementations may return this
85 * error if a function has invalid or unsupported parameters in addition
86 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020087#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088
David Saadab4ecc272019-02-14 13:48:10 +020089/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010090 *
David Saadab4ecc272019-02-14 13:48:10 +020091 * Implementations should return this error, when attempting
92 * to write an item (like a key) that already exists. */
93#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094
David Saadab4ecc272019-02-14 13:48:10 +020095/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010096 *
David Saadab4ecc272019-02-14 13:48:10 +020097 * Implementations should return this error, if a requested item (like
98 * a key) does not exist. */
99#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100
101/** The requested action cannot be performed in the current state.
102 *
103 * Multipart operations return this error when one of the
104 * functions is called out of sequence. Refer to the function
105 * descriptions for permitted sequencing of functions.
106 *
107 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100108 * that a key either exists or not,
109 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100110 * as applicable.
111 *
112 * Implementations shall not return this error code to indicate that a
113 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
114 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200115#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100116
117/** The parameters passed to the function are invalid.
118 *
119 * Implementations may return this error any time a parameter or
120 * combination of parameters are recognized as invalid.
121 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100122 * Implementations shall not return this error code to indicate that a
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
124 * instead.
125 */
David Saadab4ecc272019-02-14 13:48:10 +0200126#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100127
128/** There is not enough runtime memory.
129 *
130 * If the action is carried out across multiple security realms, this
131 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200132#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100133
134/** There is not enough persistent storage.
135 *
136 * Functions that modify the key storage return this error code if
137 * there is insufficient storage space on the host media. In addition,
138 * many functions that do not otherwise access storage may return this
139 * error code if the implementation requires a mandatory log entry for
140 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200141#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100142
143/** There was a communication failure inside the implementation.
144 *
145 * This can indicate a communication failure between the application
146 * and an external cryptoprocessor or between the cryptoprocessor and
147 * an external volatile or persistent memory. A communication failure
148 * may be transient or permanent depending on the cause.
149 *
150 * \warning If a function returns this error, it is undetermined
151 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200152 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100153 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
154 * if the requested action was completed successfully in an external
155 * cryptoprocessor but there was a breakdown of communication before
156 * the cryptoprocessor could report the status to the application.
157 */
David Saadab4ecc272019-02-14 13:48:10 +0200158#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100159
160/** There was a storage failure that may have led to data loss.
161 *
162 * This error indicates that some persistent storage is corrupted.
163 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200164 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100165 * between the cryptoprocessor and its external storage (use
166 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
167 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
168 *
169 * Note that a storage failure does not indicate that any data that was
170 * previously read is invalid. However this previously read data may no
171 * longer be readable from storage.
172 *
173 * When a storage failure occurs, it is no longer possible to ensure
174 * the global integrity of the keystore. Depending on the global
175 * integrity guarantees offered by the implementation, access to other
176 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100177 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100178 *
179 * Implementations should only use this error code to report a
180 * permanent storage corruption. However application writers should
181 * keep in mind that transient errors while reading the storage may be
182 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200183#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100184
185/** A hardware failure was detected.
186 *
187 * A hardware failure may be transient or permanent depending on the
188 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200189#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100190
191/** A tampering attempt was detected.
192 *
193 * If an application receives this error code, there is no guarantee
194 * that previously accessed or computed data was correct and remains
195 * confidential. Applications should not perform any security function
196 * and should enter a safe failure state.
197 *
198 * Implementations may return this error code if they detect an invalid
199 * state that cannot happen during normal operation and that indicates
200 * that the implementation's security guarantees no longer hold. Depending
201 * on the implementation architecture and on its security and safety goals,
202 * the implementation may forcibly terminate the application.
203 *
204 * This error code is intended as a last resort when a security breach
205 * is detected and it is unsure whether the keystore data is still
206 * protected. Implementations shall only return this error code
207 * to report an alarm from a tampering detector, to indicate that
208 * the confidentiality of stored data can no longer be guaranteed,
209 * or to indicate that the integrity of previously returned data is now
210 * considered compromised. Implementations shall not use this error code
211 * to indicate a hardware failure that merely makes it impossible to
212 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
213 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
214 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
215 * instead).
216 *
217 * This error indicates an attack against the application. Implementations
218 * shall not return this error code as a consequence of the behavior of
219 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200220#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100221
222/** There is not enough entropy to generate random data needed
223 * for the requested action.
224 *
225 * This error indicates a failure of a hardware random generator.
226 * Application writers should note that this error can be returned not
227 * only by functions whose purpose is to generate random data, such
228 * as key, IV or nonce generation, but also by functions that execute
229 * an algorithm with a randomized result, as well as functions that
230 * use randomization of intermediate computations as a countermeasure
231 * to certain attacks.
232 *
233 * Implementations should avoid returning this error after psa_crypto_init()
234 * has succeeded. Implementations should generate sufficient
235 * entropy during initialization and subsequently use a cryptographically
236 * secure pseudorandom generator (PRNG). However implementations may return
237 * this error at any time if a policy requires the PRNG to be reseeded
238 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200239#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100240
241/** The signature, MAC or hash is incorrect.
242 *
243 * Verification functions return this error if the verification
244 * calculations completed successfully, and the value to be verified
245 * was determined to be incorrect.
246 *
247 * If the value to verify has an invalid size, implementations may return
248 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200249#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100250
251/** The decrypted padding is incorrect.
252 *
253 * \warning In some protocols, when decrypting data, it is essential that
254 * the behavior of the application does not depend on whether the padding
255 * is correct, down to precise timing. Applications should prefer
256 * protocols that use authenticated encryption rather than plain
257 * encryption. If the application must perform a decryption of
258 * unauthenticated data, the application writer should take care not
259 * to reveal whether the padding is invalid.
260 *
261 * Implementations should strive to make valid and invalid padding
262 * as close as possible to indistinguishable to an external observer.
263 * In particular, the timing of a decryption operation should not
264 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200265#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100266
David Saadab4ecc272019-02-14 13:48:10 +0200267/** Return this error when there's insufficient data when attempting
268 * to read from a resource. */
269#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270
Andrew Thoelke3c2b8032019-08-22 12:20:12 +0100271/** The key handle is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272 */
David Saadab4ecc272019-02-14 13:48:10 +0200273#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100274
275/**@}*/
276
277/** \defgroup crypto_types Key and algorithm types
278 * @{
279 */
280
281/** An invalid key type value.
282 *
283 * Zero is not the encoding of any key type.
284 */
285#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
286
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100287/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100288 *
289 * Key types defined by this standard will never have the
290 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
291 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
292 * respect the bitwise structure used by standard encodings whenever practical.
293 */
294#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
295
296#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000)
297#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000)
298#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000)
299#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000)
300#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000)
301
302#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000)
303
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100304/** Whether a key type is vendor-defined.
305 *
306 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
307 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100308#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
309 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
310
311/** Whether a key type is an unstructured array of bytes.
312 *
313 * This encompasses both symmetric keys and non-key data.
314 */
315#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
316 (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \
317 PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
318
319/** Whether a key type is asymmetric: either a key pair or a public key. */
320#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
321 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
322 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
323 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
324/** Whether a key type is the public part of a key pair. */
325#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
326 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
327/** Whether a key type is a key pair containing a private part and a public
328 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200329#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100330 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
331/** The key pair type corresponding to a public key type.
332 *
333 * You may also pass a key pair type as \p type, it will be left unchanged.
334 *
335 * \param type A public key type or key pair type.
336 *
337 * \return The corresponding key pair type.
338 * If \p type is not a public key or a key pair,
339 * the return value is undefined.
340 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200341#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100342 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
343/** The public key type corresponding to a key pair type.
344 *
345 * You may also pass a key pair type as \p type, it will be left unchanged.
346 *
347 * \param type A public key type or key pair type.
348 *
349 * \return The corresponding public key type.
350 * If \p type is not a public key or a key pair,
351 * the return value is undefined.
352 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200353#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100354 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
355
356/** Raw data.
357 *
358 * A "key" of this type cannot be used for any cryptographic operation.
359 * Applications may use this type to store arbitrary data in the keystore. */
360#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001)
361
362/** HMAC key.
363 *
364 * The key policy determines which underlying hash algorithm the key can be
365 * used for.
366 *
367 * HMAC keys should generally have the same size as the underlying hash.
368 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
369 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
370#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000)
371
372/** A secret for key derivation.
373 *
374 * The key policy determines which key derivation algorithm the key
375 * can be used for.
376 */
377#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000)
378
Gilles Peskine737c6be2019-05-21 16:01:06 +0200379/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100380 *
381 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
382 * 32 bytes (AES-256).
383 */
384#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001)
385
386/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
387 *
388 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
389 * 24 bytes (3-key 3DES).
390 *
391 * Note that single DES and 2-key 3DES are weak and strongly
392 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
393 * is weak and deprecated and should only be used in legacy protocols.
394 */
395#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002)
396
Gilles Peskine737c6be2019-05-21 16:01:06 +0200397/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100398 * Camellia block cipher. */
399#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003)
400
401/** Key for the RC4 stream cipher.
402 *
403 * Note that RC4 is weak and deprecated and should only be used in
404 * legacy protocols. */
405#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004)
406
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200407/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
408 *
409 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
410 *
411 * Implementations must support 12-byte nonces, may support 8-byte nonces,
412 * and should reject other sizes.
413 */
414#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x40000005)
415
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100416/** RSA public key. */
417#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000)
418/** RSA key pair (private and public key). */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200419#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x70010000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100420/** Whether a key type is an RSA key (pair or public-only). */
421#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200422 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100424#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000)
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200425#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x70030000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100426#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff)
427/** Elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200428#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
429 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100430/** Elliptic curve public key. */
431#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
432 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
433
434/** Whether a key type is an elliptic curve key (pair or public-only). */
435#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200436 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100437 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100438/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200439#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100440 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200441 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100442/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100443#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
444 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
445 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
446
447/** Extract the curve from an elliptic curve key type. */
448#define PSA_KEY_TYPE_GET_CURVE(type) \
449 ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
450 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
451 0))
452
453/* The encoding of curve identifiers is currently aligned with the
454 * TLS Supported Groups Registry (formerly known as the
455 * TLS EC Named Curve Registry)
456 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
457 * The values are defined by RFC 8422 and RFC 7027. */
458#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001)
459#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002)
460#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003)
461#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004)
462#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005)
463#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006)
464#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007)
465#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008)
466#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009)
467#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a)
468#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b)
469#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c)
470#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d)
471#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e)
472#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f)
473#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010)
474#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011)
475#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012)
476#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013)
477#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014)
478#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015)
479#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016)
480#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017)
481#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018)
482#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019)
483#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a)
484#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b)
485#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c)
Gilles Peskinea9b9cf72019-05-21 19:18:33 +0200486/** Curve25519.
487 *
488 * This is the curve defined in Bernstein et al.,
489 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
490 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
491 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100492#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d)
Gilles Peskinea9b9cf72019-05-21 19:18:33 +0200493/** Curve448
494 *
495 * This is the curve defined in Hamburg,
496 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
497 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
498 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100499#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e)
500
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200501#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x60040000)
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200502#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x70040000)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200503#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x0000ffff)
504/** Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200505#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
506 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200507/** Diffie-Hellman public key. */
508#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
509 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
510
511/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
512#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200513 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200514 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
515/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200516#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200517 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200518 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200519/** Whether a key type is a Diffie-Hellman public key. */
520#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
521 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
522 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
523
524/** Extract the group from a Diffie-Hellman key type. */
525#define PSA_KEY_TYPE_GET_GROUP(type) \
526 ((psa_dh_group_t) (PSA_KEY_TYPE_IS_DH(type) ? \
527 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
528 0))
529
530/* The encoding of group identifiers is currently aligned with the
531 * TLS Supported Groups Registry (formerly known as the
532 * TLS EC Named Curve Registry)
533 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
534 * The values are defined by RFC 7919. */
535#define PSA_DH_GROUP_FFDHE2048 ((psa_dh_group_t) 0x0100)
536#define PSA_DH_GROUP_FFDHE3072 ((psa_dh_group_t) 0x0101)
537#define PSA_DH_GROUP_FFDHE4096 ((psa_dh_group_t) 0x0102)
538#define PSA_DH_GROUP_FFDHE6144 ((psa_dh_group_t) 0x0103)
539#define PSA_DH_GROUP_FFDHE8192 ((psa_dh_group_t) 0x0104)
Jaeden Amero8851c402019-01-11 14:20:03 +0000540
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100541/** The block size of a block cipher.
542 *
543 * \param type A cipher key type (value of type #psa_key_type_t).
544 *
545 * \return The block size for a block cipher, or 1 for a stream cipher.
546 * The return value is undefined if \p type is not a supported
547 * cipher key type.
548 *
549 * \note It is possible to build stream cipher algorithms on top of a block
550 * cipher, for example CTR mode (#PSA_ALG_CTR).
551 * This macro only takes the key type into account, so it cannot be
552 * used to determine the size of the data that #psa_cipher_update()
553 * might buffer for future processing in general.
554 *
555 * \note This macro returns a compile-time constant if its argument is one.
556 *
557 * \warning This macro may evaluate its argument multiple times.
558 */
559#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
560 ( \
561 (type) == PSA_KEY_TYPE_AES ? 16 : \
562 (type) == PSA_KEY_TYPE_DES ? 8 : \
563 (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \
564 (type) == PSA_KEY_TYPE_ARC4 ? 1 : \
565 0)
566
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100567/** Vendor-defined algorithm flag.
568 *
569 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
570 * bit set. Vendors who define additional algorithms must use an encoding with
571 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
572 * used by standard encodings whenever practical.
573 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100574#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100575
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100576#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
577#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
578#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
579#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
580#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
581#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
582#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100583#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
584#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100585
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100586/** Whether an algorithm is vendor-defined.
587 *
588 * See also #PSA_ALG_VENDOR_FLAG.
589 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100590#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
591 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
592
593/** Whether the specified algorithm is a hash algorithm.
594 *
595 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
596 *
597 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
598 * This macro may return either 0 or 1 if \p alg is not a supported
599 * algorithm identifier.
600 */
601#define PSA_ALG_IS_HASH(alg) \
602 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
603
604/** Whether the specified algorithm is a MAC algorithm.
605 *
606 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
607 *
608 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
609 * This macro may return either 0 or 1 if \p alg is not a supported
610 * algorithm identifier.
611 */
612#define PSA_ALG_IS_MAC(alg) \
613 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
614
615/** Whether the specified algorithm is a symmetric cipher algorithm.
616 *
617 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
618 *
619 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
620 * This macro may return either 0 or 1 if \p alg is not a supported
621 * algorithm identifier.
622 */
623#define PSA_ALG_IS_CIPHER(alg) \
624 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
625
626/** Whether the specified algorithm is an authenticated encryption
627 * with associated data (AEAD) algorithm.
628 *
629 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
630 *
631 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
632 * This macro may return either 0 or 1 if \p alg is not a supported
633 * algorithm identifier.
634 */
635#define PSA_ALG_IS_AEAD(alg) \
636 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
637
638/** Whether the specified algorithm is a public-key signature algorithm.
639 *
640 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
641 *
642 * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise.
643 * This macro may return either 0 or 1 if \p alg is not a supported
644 * algorithm identifier.
645 */
646#define PSA_ALG_IS_SIGN(alg) \
647 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
648
649/** Whether the specified algorithm is a public-key encryption algorithm.
650 *
651 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
652 *
653 * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise.
654 * This macro may return either 0 or 1 if \p alg is not a supported
655 * algorithm identifier.
656 */
657#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
658 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
659
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100660/** Whether the specified algorithm is a key agreement algorithm.
661 *
662 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
663 *
664 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
665 * This macro may return either 0 or 1 if \p alg is not a supported
666 * algorithm identifier.
667 */
668#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100669 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100670
671/** Whether the specified algorithm is a key derivation algorithm.
672 *
673 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
674 *
675 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
676 * This macro may return either 0 or 1 if \p alg is not a supported
677 * algorithm identifier.
678 */
679#define PSA_ALG_IS_KEY_DERIVATION(alg) \
680 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
681
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100682#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100683
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100684#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
685#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
686#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
687#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
688#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
689/** SHA2-224 */
690#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
691/** SHA2-256 */
692#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
693/** SHA2-384 */
694#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
695/** SHA2-512 */
696#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
697/** SHA2-512/224 */
698#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
699/** SHA2-512/256 */
700#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
701/** SHA3-224 */
702#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
703/** SHA3-256 */
704#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
705/** SHA3-384 */
706#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
707/** SHA3-512 */
708#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
709
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100710/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100711 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100712 * This value may be used to form the algorithm usage field of a policy
713 * for a signature algorithm that is parametrized by a hash. The key
714 * may then be used to perform operations using the same signature
715 * algorithm parametrized with any supported hash.
716 *
717 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100718 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100719 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100720 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100721 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
722 * ```
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200723 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN); // or VERIFY
724 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100725 * ```
726 * - Import or generate key material.
727 * - Call psa_asymmetric_sign() or psa_asymmetric_verify(), passing
728 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
729 * call to sign or verify a message may use a different hash.
730 * ```
731 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
732 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
733 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
734 * ```
735 *
736 * This value may not be used to build other algorithms that are
737 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100738 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100739 *
740 * This value may not be used to build an algorithm specification to
741 * perform an operation. It is only valid to build policies.
742 */
743#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
744
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100745#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
746#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
747/** Macro to build an HMAC algorithm.
748 *
749 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
750 *
751 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
752 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
753 *
754 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100755 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100756 * hash algorithm.
757 */
758#define PSA_ALG_HMAC(hash_alg) \
759 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
760
761#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
762 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
763
764/** Whether the specified algorithm is an HMAC algorithm.
765 *
766 * HMAC is a family of MAC algorithms that are based on a hash function.
767 *
768 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
769 *
770 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
771 * This macro may return either 0 or 1 if \p alg is not a supported
772 * algorithm identifier.
773 */
774#define PSA_ALG_IS_HMAC(alg) \
775 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
776 PSA_ALG_HMAC_BASE)
777
778/* In the encoding of a MAC algorithm, the bits corresponding to
779 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
780 * truncated. As an exception, the value 0 means the untruncated algorithm,
781 * whatever its length is. The length is encoded in 6 bits, so it can
782 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
783 * to full length is correctly encoded as 0 and any non-trivial truncation
784 * is correctly encoded as a value between 1 and 63. */
785#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
786#define PSA_MAC_TRUNCATION_OFFSET 8
787
788/** Macro to build a truncated MAC algorithm.
789 *
790 * A truncated MAC algorithm is identical to the corresponding MAC
791 * algorithm except that the MAC value for the truncated algorithm
792 * consists of only the first \p mac_length bytes of the MAC value
793 * for the untruncated algorithm.
794 *
795 * \note This macro may allow constructing algorithm identifiers that
796 * are not valid, either because the specified length is larger
797 * than the untruncated MAC or because the specified length is
798 * smaller than permitted by the implementation.
799 *
800 * \note It is implementation-defined whether a truncated MAC that
801 * is truncated to the same length as the MAC of the untruncated
802 * algorithm is considered identical to the untruncated algorithm
803 * for policy comparison purposes.
804 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200805 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100806 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
807 * is true). This may be a truncated or untruncated
808 * MAC algorithm.
809 * \param mac_length Desired length of the truncated MAC in bytes.
810 * This must be at most the full length of the MAC
811 * and must be at least an implementation-specified
812 * minimum. The implementation-specified minimum
813 * shall not be zero.
814 *
815 * \return The corresponding MAC algorithm with the specified
816 * length.
817 * \return Unspecified if \p alg is not a supported
818 * MAC algorithm or if \p mac_length is too small or
819 * too large for the specified MAC algorithm.
820 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200821#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
822 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100823 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
824
825/** Macro to build the base MAC algorithm corresponding to a truncated
826 * MAC algorithm.
827 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200828 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100829 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
830 * is true). This may be a truncated or untruncated
831 * MAC algorithm.
832 *
833 * \return The corresponding base MAC algorithm.
834 * \return Unspecified if \p alg is not a supported
835 * MAC algorithm.
836 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200837#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
838 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100839
840/** Length to which a MAC algorithm is truncated.
841 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200842 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100843 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
844 * is true).
845 *
846 * \return Length of the truncated MAC in bytes.
847 * \return 0 if \p alg is a non-truncated MAC algorithm.
848 * \return Unspecified if \p alg is not a supported
849 * MAC algorithm.
850 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200851#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
852 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100853
854#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100855/** The CBC-MAC construction over a block cipher
856 *
857 * \warning CBC-MAC is insecure in many cases.
858 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
859 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100860#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100861/** The CMAC construction over a block cipher */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100862#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100863
864/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
865 *
866 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
867 *
868 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
869 * This macro may return either 0 or 1 if \p alg is not a supported
870 * algorithm identifier.
871 */
872#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
873 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
874 PSA_ALG_CIPHER_MAC_BASE)
875
876#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
877#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
878
879/** Whether the specified algorithm is a stream cipher.
880 *
881 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
882 * by applying a bitwise-xor with a stream of bytes that is generated
883 * from a key.
884 *
885 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
886 *
887 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
888 * This macro may return either 0 or 1 if \p alg is not a supported
889 * algorithm identifier or if it is not a symmetric cipher algorithm.
890 */
891#define PSA_ALG_IS_STREAM_CIPHER(alg) \
892 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
893 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
894
895/** The ARC4 stream cipher algorithm.
896 */
897#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
898
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200899/** The ChaCha20 stream cipher.
900 *
901 * ChaCha20 is defined in RFC 7539.
902 *
903 * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv()
904 * must be 12.
905 *
906 * The initial block counter is always 0.
907 *
908 */
909#define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005)
910
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100911/** The CTR stream cipher mode.
912 *
913 * CTR is a stream cipher which is built from a block cipher.
914 * The underlying block cipher is determined by the key type.
915 * For example, to use AES-128-CTR, use this algorithm with
916 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
917 */
918#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
919
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100920/** The CFB stream cipher mode.
921 *
922 * The underlying block cipher is determined by the key type.
923 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100924#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
925
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100926/** The OFB stream cipher mode.
927 *
928 * The underlying block cipher is determined by the key type.
929 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100930#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
931
932/** The XTS cipher mode.
933 *
934 * XTS is a cipher mode which is built from a block cipher. It requires at
935 * least one full block of input, but beyond this minimum the input
936 * does not need to be a whole number of blocks.
937 */
938#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
939
940/** The CBC block cipher chaining mode, with no padding.
941 *
942 * The underlying block cipher is determined by the key type.
943 *
944 * This symmetric cipher mode can only be used with messages whose lengths
945 * are whole number of blocks for the chosen block cipher.
946 */
947#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
948
949/** The CBC block cipher chaining mode with PKCS#7 padding.
950 *
951 * The underlying block cipher is determined by the key type.
952 *
953 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
954 */
955#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
956
Gilles Peskine679693e2019-05-06 15:10:16 +0200957#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
958
959/** Whether the specified algorithm is an AEAD mode on a block cipher.
960 *
961 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
962 *
963 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
964 * a block cipher, 0 otherwise.
965 * This macro may return either 0 or 1 if \p alg is not a supported
966 * algorithm identifier.
967 */
968#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
969 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
970 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
971
Gilles Peskine9153ec02019-02-15 13:02:02 +0100972/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100973 *
974 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +0100975 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200976#define PSA_ALG_CCM ((psa_algorithm_t)0x06401001)
Gilles Peskine9153ec02019-02-15 13:02:02 +0100977
978/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100979 *
980 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +0100981 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200982#define PSA_ALG_GCM ((psa_algorithm_t)0x06401002)
983
984/** The Chacha20-Poly1305 AEAD algorithm.
985 *
986 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200987 *
988 * Implementations must support 12-byte nonces, may support 8-byte nonces,
989 * and should reject other sizes.
990 *
991 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +0200992 */
993#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100994
995/* In the encoding of a AEAD algorithm, the bits corresponding to
996 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
997 * The constants for default lengths follow this encoding.
998 */
999#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
1000#define PSA_AEAD_TAG_LENGTH_OFFSET 8
1001
1002/** Macro to build a shortened AEAD algorithm.
1003 *
1004 * A shortened AEAD algorithm is similar to the corresponding AEAD
1005 * algorithm, but has an authentication tag that consists of fewer bytes.
1006 * Depending on the algorithm, the tag length may affect the calculation
1007 * of the ciphertext.
1008 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001009 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001010 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
1011 * is true).
1012 * \param tag_length Desired length of the authentication tag in bytes.
1013 *
1014 * \return The corresponding AEAD algorithm with the specified
1015 * length.
1016 * \return Unspecified if \p alg is not a supported
1017 * AEAD algorithm or if \p tag_length is not valid
1018 * for the specified AEAD algorithm.
1019 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001020#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
1021 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001022 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1023 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1024
1025/** Calculate the corresponding AEAD algorithm with the default tag length.
1026 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001027 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
1028 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001029 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001030 * \return The corresponding AEAD algorithm with the default
1031 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001032 */
Unknowne2e19952019-08-21 03:33:04 -04001033#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
1034 ( \
1035 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CCM) \
1036 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_GCM) \
1037 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001038 0)
Unknowne2e19952019-08-21 03:33:04 -04001039#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, ref) \
1040 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
1041 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001042 ref :
1043
1044#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
1045/** RSA PKCS#1 v1.5 signature with hashing.
1046 *
1047 * This is the signature scheme defined by RFC 8017
1048 * (PKCS#1: RSA Cryptography Specifications) under the name
1049 * RSASSA-PKCS1-v1_5.
1050 *
1051 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1052 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001053 * This includes #PSA_ALG_ANY_HASH
1054 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001055 *
1056 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001057 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001058 * hash algorithm.
1059 */
1060#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1061 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1062/** Raw PKCS#1 v1.5 signature.
1063 *
1064 * The input to this algorithm is the DigestInfo structure used by
1065 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1066 * steps 3&ndash;6.
1067 */
1068#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1069#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1070 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1071
1072#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
1073/** RSA PSS signature with hashing.
1074 *
1075 * This is the signature scheme defined by RFC 8017
1076 * (PKCS#1: RSA Cryptography Specifications) under the name
1077 * RSASSA-PSS, with the message generation function MGF1, and with
1078 * a salt length equal to the length of the hash. The specified
1079 * hash algorithm is used to hash the input message, to create the
1080 * salted hash, and for the mask generation.
1081 *
1082 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1083 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001084 * This includes #PSA_ALG_ANY_HASH
1085 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001086 *
1087 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001088 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001089 * hash algorithm.
1090 */
1091#define PSA_ALG_RSA_PSS(hash_alg) \
1092 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1093#define PSA_ALG_IS_RSA_PSS(alg) \
1094 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1095
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001096#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1097/** ECDSA signature with hashing.
1098 *
1099 * This is the ECDSA signature scheme defined by ANSI X9.62,
1100 * with a random per-message secret number (*k*).
1101 *
1102 * The representation of the signature as a byte string consists of
1103 * the concatentation of the signature values *r* and *s*. Each of
1104 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1105 * of the base point of the curve in octets. Each value is represented
1106 * in big-endian order (most significant octet first).
1107 *
1108 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1109 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001110 * This includes #PSA_ALG_ANY_HASH
1111 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001112 *
1113 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001114 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001115 * hash algorithm.
1116 */
1117#define PSA_ALG_ECDSA(hash_alg) \
1118 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1119/** ECDSA signature without hashing.
1120 *
1121 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1122 * without specifying a hash algorithm. This algorithm may only be
1123 * used to sign or verify a sequence of bytes that should be an
1124 * already-calculated hash. Note that the input is padded with
1125 * zeros on the left or truncated on the left as required to fit
1126 * the curve size.
1127 */
1128#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1129#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1130/** Deterministic ECDSA signature with hashing.
1131 *
1132 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1133 *
1134 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1135 *
1136 * Note that when this algorithm is used for verification, signatures
1137 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1138 * same private key are accepted. In other words,
1139 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1140 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1141 *
1142 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1143 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001144 * This includes #PSA_ALG_ANY_HASH
1145 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001146 *
1147 * \return The corresponding deterministic ECDSA signature
1148 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001149 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001150 * hash algorithm.
1151 */
1152#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1153 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1154#define PSA_ALG_IS_ECDSA(alg) \
1155 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
1156 PSA_ALG_ECDSA_BASE)
1157#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
1158 (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
1159#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1160 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1161#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1162 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1163
Gilles Peskined35b4892019-01-14 16:02:15 +01001164/** Whether the specified algorithm is a hash-and-sign algorithm.
1165 *
1166 * Hash-and-sign algorithms are public-key signature algorithms structured
1167 * in two parts: first the calculation of a hash in a way that does not
1168 * depend on the key, then the calculation of a signature from the
1169 * hash value and the key.
1170 *
1171 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1172 *
1173 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1174 * This macro may return either 0 or 1 if \p alg is not a supported
1175 * algorithm identifier.
1176 */
1177#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1178 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskinee38ab1a2019-05-16 13:51:50 +02001179 PSA_ALG_IS_ECDSA(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001180
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001181/** Get the hash used by a hash-and-sign signature algorithm.
1182 *
1183 * A hash-and-sign algorithm is a signature algorithm which is
1184 * composed of two phases: first a hashing phase which does not use
1185 * the key and produces a hash of the input message, then a signing
1186 * phase which only uses the hash and the key and not the message
1187 * itself.
1188 *
1189 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1190 * #PSA_ALG_IS_SIGN(\p alg) is true).
1191 *
1192 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1193 * algorithm.
1194 * \return 0 if \p alg is a signature algorithm that does not
1195 * follow the hash-and-sign structure.
1196 * \return Unspecified if \p alg is not a signature algorithm or
1197 * if it is not supported by the implementation.
1198 */
1199#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001200 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001201 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1202 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1203 0)
1204
1205/** RSA PKCS#1 v1.5 encryption.
1206 */
1207#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1208
1209#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1210/** RSA OAEP encryption.
1211 *
1212 * This is the encryption scheme defined by RFC 8017
1213 * (PKCS#1: RSA Cryptography Specifications) under the name
1214 * RSAES-OAEP, with the message generation function MGF1.
1215 *
1216 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1217 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1218 * for MGF1.
1219 *
1220 * \return The corresponding RSA OAEP signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001221 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001222 * hash algorithm.
1223 */
1224#define PSA_ALG_RSA_OAEP(hash_alg) \
1225 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1226#define PSA_ALG_IS_RSA_OAEP(alg) \
1227 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1228#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1229 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1230 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1231 0)
1232
Gilles Peskine6843c292019-01-18 16:44:49 +01001233#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001234/** Macro to build an HKDF algorithm.
1235 *
1236 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1237 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001238 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001239 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001240 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001241 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1242 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1243 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1244 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001245 * starting to generate output.
1246 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001247 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1248 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1249 *
1250 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001251 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001252 * hash algorithm.
1253 */
1254#define PSA_ALG_HKDF(hash_alg) \
1255 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1256/** Whether the specified algorithm is an HKDF algorithm.
1257 *
1258 * HKDF is a family of key derivation algorithms that are based on a hash
1259 * function and the HMAC construction.
1260 *
1261 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1262 *
1263 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1264 * This macro may return either 0 or 1 if \c alg is not a supported
1265 * key derivation algorithm identifier.
1266 */
1267#define PSA_ALG_IS_HKDF(alg) \
1268 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1269#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1270 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1271
Gilles Peskine6843c292019-01-18 16:44:49 +01001272#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001273/** Macro to build a TLS-1.2 PRF algorithm.
1274 *
1275 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1276 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1277 * used with either SHA-256 or SHA-384.
1278 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001279 * This key derivation algorithm uses the following inputs, which must be
1280 * passed in the order given here:
1281 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001282 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1283 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001284 *
1285 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001286 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001287 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001288 *
1289 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1290 * TLS 1.2 PRF using HMAC-SHA-256.
1291 *
1292 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1293 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1294 *
1295 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001296 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001297 * hash algorithm.
1298 */
1299#define PSA_ALG_TLS12_PRF(hash_alg) \
1300 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1301
1302/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1303 *
1304 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1305 *
1306 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1307 * This macro may return either 0 or 1 if \c alg is not a supported
1308 * key derivation algorithm identifier.
1309 */
1310#define PSA_ALG_IS_TLS12_PRF(alg) \
1311 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1312#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1313 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1314
Gilles Peskine6843c292019-01-18 16:44:49 +01001315#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001316/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1317 *
1318 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1319 * from the PreSharedKey (PSK) through the application of padding
1320 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1321 * The latter is based on HMAC and can be used with either SHA-256
1322 * or SHA-384.
1323 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001324 * This key derivation algorithm uses the following inputs, which must be
1325 * passed in the order given here:
1326 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001327 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1328 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001329 *
1330 * For the application to TLS-1.2, the seed (which is
1331 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1332 * ClientHello.Random + ServerHello.Random,
1333 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001334 *
1335 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1336 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1337 *
1338 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1339 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1340 *
1341 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001342 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001343 * hash algorithm.
1344 */
1345#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1346 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1347
1348/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1349 *
1350 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1351 *
1352 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1353 * This macro may return either 0 or 1 if \c alg is not a supported
1354 * key derivation algorithm identifier.
1355 */
1356#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1357 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1358#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1359 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1360
Gilles Peskinea52460c2019-04-12 00:11:21 +02001361#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff)
1362#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001363
Gilles Peskine6843c292019-01-18 16:44:49 +01001364/** Macro to build a combined algorithm that chains a key agreement with
1365 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001366 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001367 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1368 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1369 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1370 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001371 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001372 * \return The corresponding key agreement and derivation
1373 * algorithm.
1374 * \return Unspecified if \p ka_alg is not a supported
1375 * key agreement algorithm or \p kdf_alg is not a
1376 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001377 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001378#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1379 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001380
1381#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1382 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1383
Gilles Peskine6843c292019-01-18 16:44:49 +01001384#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1385 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001386
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001387/** Whether the specified algorithm is a raw key agreement algorithm.
1388 *
1389 * A raw key agreement algorithm is one that does not specify
1390 * a key derivation function.
1391 * Usually, raw key agreement algorithms are constructed directly with
1392 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
1393 * constructed with PSA_ALG_KEY_AGREEMENT().
1394 *
1395 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1396 *
1397 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1398 * This macro may return either 0 or 1 if \p alg is not a supported
1399 * algorithm identifier.
1400 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001401#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001402 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1403 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001404
1405#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1406 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1407
1408/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001409 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001410 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001411 * `g^{ab}` in big-endian format.
1412 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1413 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001414 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001415#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1416
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001417/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1418 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001419 * This includes the raw finite field Diffie-Hellman algorithm as well as
1420 * finite-field Diffie-Hellman followed by any supporter key derivation
1421 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001422 *
1423 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1424 *
1425 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1426 * This macro may return either 0 or 1 if \c alg is not a supported
1427 * key agreement algorithm identifier.
1428 */
1429#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001430 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001431
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001432/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1433 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001434 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001435 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1436 * `m` is the bit size associated with the curve, i.e. the bit size of the
1437 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1438 * the byte containing the most significant bit of the shared secret
1439 * is padded with zero bits. The byte order is either little-endian
1440 * or big-endian depending on the curve type.
1441 *
1442 * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`),
1443 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1444 * in little-endian byte order.
1445 * The bit size is 448 for Curve448 and 255 for Curve25519.
1446 * - For Weierstrass curves over prime fields (curve types
1447 * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`),
1448 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1449 * in big-endian byte order.
1450 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1451 * - For Weierstrass curves over binary fields (curve types
1452 * `PSA_ECC_CURVE_SECTXXX`),
1453 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1454 * in big-endian byte order.
1455 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001456 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001457#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1458
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001459/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1460 * algorithm.
1461 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001462 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1463 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1464 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001465 *
1466 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1467 *
1468 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1469 * 0 otherwise.
1470 * This macro may return either 0 or 1 if \c alg is not a supported
1471 * key agreement algorithm identifier.
1472 */
1473#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001474 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001475
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001476/** Whether the specified algorithm encoding is a wildcard.
1477 *
1478 * Wildcard values may only be used to set the usage algorithm field in
1479 * a policy, not to perform an operation.
1480 *
1481 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1482 *
1483 * \return 1 if \c alg is a wildcard algorithm encoding.
1484 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1485 * an operation).
1486 * \return This macro may return either 0 or 1 if \c alg is not a supported
1487 * algorithm identifier.
1488 */
1489#define PSA_ALG_IS_WILDCARD(alg) \
1490 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1491 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1492 (alg) == PSA_ALG_ANY_HASH)
1493
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001494/**@}*/
1495
1496/** \defgroup key_lifetimes Key lifetimes
1497 * @{
1498 */
1499
1500/** A volatile key only exists as long as the handle to it is not closed.
1501 * The key material is guaranteed to be erased on a power reset.
1502 */
1503#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1504
1505/** The default storage area for persistent keys.
1506 *
1507 * A persistent key remains in storage until it is explicitly destroyed or
1508 * until the corresponding storage area is wiped. This specification does
1509 * not define any mechanism to wipe a storage area, but implementations may
1510 * provide their own mechanism (for example to perform a factory reset,
1511 * to prepare for device refurbishment, or to uninstall an application).
1512 *
1513 * This lifetime value is the default storage area for the calling
1514 * application. Implementations may offer other storage areas designated
1515 * by other lifetime values as implementation-specific extensions.
1516 */
1517#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1518
Gilles Peskine4a231b82019-05-06 18:56:14 +02001519/** The minimum value for a key identifier chosen by the application.
1520 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001521#define PSA_KEY_ID_USER_MIN ((psa_app_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001522/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001523 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001524#define PSA_KEY_ID_USER_MAX ((psa_app_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001525/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001526 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001527#define PSA_KEY_ID_VENDOR_MIN ((psa_app_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001528/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001529 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001530#define PSA_KEY_ID_VENDOR_MAX ((psa_app_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02001531
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001532/**@}*/
1533
1534/** \defgroup policy Key policies
1535 * @{
1536 */
1537
1538/** Whether the key may be exported.
1539 *
1540 * A public key or the public part of a key pair may always be exported
1541 * regardless of the value of this permission flag.
1542 *
1543 * If a key does not have export permission, implementations shall not
1544 * allow the key to be exported in plain form from the cryptoprocessor,
1545 * whether through psa_export_key() or through a proprietary interface.
1546 * The key may however be exportable in a wrapped form, i.e. in a form
1547 * where it is encrypted by another key.
1548 */
1549#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1550
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001551/** Whether the key may be copied.
1552 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001553 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001554 * with the same policy or a more restrictive policy.
1555 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001556 * For lifetimes for which the key is located in a secure element which
1557 * enforce the non-exportability of keys, copying a key outside the secure
1558 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1559 * Copying the key inside the secure element is permitted with just
1560 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1561 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001562 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1563 * is sufficient to permit the copy.
1564 */
1565#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1566
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001567/** Whether the key may be used to encrypt a message.
1568 *
1569 * This flag allows the key to be used for a symmetric encryption operation,
1570 * for an AEAD encryption-and-authentication operation,
1571 * or for an asymmetric encryption operation,
1572 * if otherwise permitted by the key's type and policy.
1573 *
1574 * For a key pair, this concerns the public key.
1575 */
1576#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1577
1578/** Whether the key may be used to decrypt a message.
1579 *
1580 * This flag allows the key to be used for a symmetric decryption operation,
1581 * for an AEAD decryption-and-verification operation,
1582 * or for an asymmetric decryption operation,
1583 * if otherwise permitted by the key's type and policy.
1584 *
1585 * For a key pair, this concerns the private key.
1586 */
1587#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1588
1589/** Whether the key may be used to sign a message.
1590 *
1591 * This flag allows the key to be used for a MAC calculation operation
1592 * or for an asymmetric signature operation,
1593 * if otherwise permitted by the key's type and policy.
1594 *
1595 * For a key pair, this concerns the private key.
1596 */
1597#define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400)
1598
1599/** Whether the key may be used to verify a message signature.
1600 *
1601 * This flag allows the key to be used for a MAC verification operation
1602 * or for an asymmetric signature verification operation,
1603 * if otherwise permitted by by the key's type and policy.
1604 *
1605 * For a key pair, this concerns the public key.
1606 */
1607#define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800)
1608
1609/** Whether the key may be used to derive other keys.
1610 */
1611#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1612
1613/**@}*/
1614
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001615/** \defgroup derivation Key derivation
1616 * @{
1617 */
1618
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001619/** A secret input for key derivation.
1620 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001621 * This should be a key of type #PSA_KEY_TYPE_DERIVE
1622 * (passed to psa_key_derivation_input_key())
1623 * or the shared secret resulting from a key agreement
1624 * (obtained via psa_key_derivation_key_agreement()).
1625 * It can also be a direct input (passed to key_derivation_input_bytes()).
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001626 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001627#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001628
1629/** A label for key derivation.
1630 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001631 * This should be a direct input.
1632 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001633 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001634#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001635
1636/** A salt for key derivation.
1637 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001638 * This should be a direct input.
1639 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001640 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001641#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001642
1643/** An information string for key derivation.
1644 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001645 * This should be a direct input.
1646 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001647 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001648#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001649
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001650/** A seed for key derivation.
1651 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001652 * This should be a direct input.
1653 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001654 */
1655#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
1656
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001657/**@}*/
1658
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001659#endif /* PSA_CRYPTO_VALUES_H */