blob: bbe4d8fbbf4f174d5f642e675b935a6c9707e761 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
18 * Copyright (C) 2018, ARM Limited, All Rights Reserved
19 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
32 *
33 * This file is part of mbed TLS (https://tls.mbed.org)
34 */
35
36#ifndef PSA_CRYPTO_VALUES_H
37#define PSA_CRYPTO_VALUES_H
38
39/** \defgroup error Error codes
40 * @{
41 */
42
David Saadab4ecc272019-02-14 13:48:10 +020043/* PSA error codes */
44
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045/** The action was completed successfully. */
46#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010047
48/** An error occurred that does not correspond to any defined
49 * failure cause.
50 *
51 * Implementations may use this error code if none of the other standard
52 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020053#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010054
55/** The requested operation or a parameter is not supported
56 * by this implementation.
57 *
58 * Implementations should return this error code when an enumeration
59 * parameter such as a key type, algorithm, etc. is not recognized.
60 * If a combination of parameters is recognized and identified as
61 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020062#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010063
64/** The requested action is denied by a policy.
65 *
66 * Implementations should return this error code when the parameters
67 * are recognized as valid and supported, and a policy explicitly
68 * denies the requested operation.
69 *
70 * If a subset of the parameters of a function call identify a
71 * forbidden operation, and another subset of the parameters are
72 * not valid or not supported, it is unspecified whether the function
73 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
74 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020075#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010076
77/** An output buffer is too small.
78 *
79 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
80 * description to determine a sufficient buffer size.
81 *
82 * Implementations should preferably return this error code only
83 * in cases when performing the operation with a larger output
84 * buffer would succeed. However implementations may return this
85 * error if a function has invalid or unsupported parameters in addition
86 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020087#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088
David Saadab4ecc272019-02-14 13:48:10 +020089/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010090 *
David Saadab4ecc272019-02-14 13:48:10 +020091 * Implementations should return this error, when attempting
92 * to write an item (like a key) that already exists. */
93#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094
David Saadab4ecc272019-02-14 13:48:10 +020095/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010096 *
David Saadab4ecc272019-02-14 13:48:10 +020097 * Implementations should return this error, if a requested item (like
98 * a key) does not exist. */
99#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100
101/** The requested action cannot be performed in the current state.
102 *
103 * Multipart operations return this error when one of the
104 * functions is called out of sequence. Refer to the function
105 * descriptions for permitted sequencing of functions.
106 *
107 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100108 * that a key either exists or not,
109 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100110 * as applicable.
111 *
112 * Implementations shall not return this error code to indicate that a
113 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
114 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200115#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100116
117/** The parameters passed to the function are invalid.
118 *
119 * Implementations may return this error any time a parameter or
120 * combination of parameters are recognized as invalid.
121 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100122 * Implementations shall not return this error code to indicate that a
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
124 * instead.
125 */
David Saadab4ecc272019-02-14 13:48:10 +0200126#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100127
128/** There is not enough runtime memory.
129 *
130 * If the action is carried out across multiple security realms, this
131 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200132#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100133
134/** There is not enough persistent storage.
135 *
136 * Functions that modify the key storage return this error code if
137 * there is insufficient storage space on the host media. In addition,
138 * many functions that do not otherwise access storage may return this
139 * error code if the implementation requires a mandatory log entry for
140 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200141#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100142
143/** There was a communication failure inside the implementation.
144 *
145 * This can indicate a communication failure between the application
146 * and an external cryptoprocessor or between the cryptoprocessor and
147 * an external volatile or persistent memory. A communication failure
148 * may be transient or permanent depending on the cause.
149 *
150 * \warning If a function returns this error, it is undetermined
151 * whether the requested action has completed or not. Implementations
152 * should return #PSA_SUCCESS on successful completion whenver
153 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
154 * if the requested action was completed successfully in an external
155 * cryptoprocessor but there was a breakdown of communication before
156 * the cryptoprocessor could report the status to the application.
157 */
David Saadab4ecc272019-02-14 13:48:10 +0200158#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100159
160/** There was a storage failure that may have led to data loss.
161 *
162 * This error indicates that some persistent storage is corrupted.
163 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200164 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100165 * between the cryptoprocessor and its external storage (use
166 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
167 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
168 *
169 * Note that a storage failure does not indicate that any data that was
170 * previously read is invalid. However this previously read data may no
171 * longer be readable from storage.
172 *
173 * When a storage failure occurs, it is no longer possible to ensure
174 * the global integrity of the keystore. Depending on the global
175 * integrity guarantees offered by the implementation, access to other
176 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100177 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100178 *
179 * Implementations should only use this error code to report a
180 * permanent storage corruption. However application writers should
181 * keep in mind that transient errors while reading the storage may be
182 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200183#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100184
185/** A hardware failure was detected.
186 *
187 * A hardware failure may be transient or permanent depending on the
188 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200189#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100190
191/** A tampering attempt was detected.
192 *
193 * If an application receives this error code, there is no guarantee
194 * that previously accessed or computed data was correct and remains
195 * confidential. Applications should not perform any security function
196 * and should enter a safe failure state.
197 *
198 * Implementations may return this error code if they detect an invalid
199 * state that cannot happen during normal operation and that indicates
200 * that the implementation's security guarantees no longer hold. Depending
201 * on the implementation architecture and on its security and safety goals,
202 * the implementation may forcibly terminate the application.
203 *
204 * This error code is intended as a last resort when a security breach
205 * is detected and it is unsure whether the keystore data is still
206 * protected. Implementations shall only return this error code
207 * to report an alarm from a tampering detector, to indicate that
208 * the confidentiality of stored data can no longer be guaranteed,
209 * or to indicate that the integrity of previously returned data is now
210 * considered compromised. Implementations shall not use this error code
211 * to indicate a hardware failure that merely makes it impossible to
212 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
213 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
214 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
215 * instead).
216 *
217 * This error indicates an attack against the application. Implementations
218 * shall not return this error code as a consequence of the behavior of
219 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200220#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100221
222/** There is not enough entropy to generate random data needed
223 * for the requested action.
224 *
225 * This error indicates a failure of a hardware random generator.
226 * Application writers should note that this error can be returned not
227 * only by functions whose purpose is to generate random data, such
228 * as key, IV or nonce generation, but also by functions that execute
229 * an algorithm with a randomized result, as well as functions that
230 * use randomization of intermediate computations as a countermeasure
231 * to certain attacks.
232 *
233 * Implementations should avoid returning this error after psa_crypto_init()
234 * has succeeded. Implementations should generate sufficient
235 * entropy during initialization and subsequently use a cryptographically
236 * secure pseudorandom generator (PRNG). However implementations may return
237 * this error at any time if a policy requires the PRNG to be reseeded
238 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200239#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100240
241/** The signature, MAC or hash is incorrect.
242 *
243 * Verification functions return this error if the verification
244 * calculations completed successfully, and the value to be verified
245 * was determined to be incorrect.
246 *
247 * If the value to verify has an invalid size, implementations may return
248 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200249#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100250
251/** The decrypted padding is incorrect.
252 *
253 * \warning In some protocols, when decrypting data, it is essential that
254 * the behavior of the application does not depend on whether the padding
255 * is correct, down to precise timing. Applications should prefer
256 * protocols that use authenticated encryption rather than plain
257 * encryption. If the application must perform a decryption of
258 * unauthenticated data, the application writer should take care not
259 * to reveal whether the padding is invalid.
260 *
261 * Implementations should strive to make valid and invalid padding
262 * as close as possible to indistinguishable to an external observer.
263 * In particular, the timing of a decryption operation should not
264 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200265#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100266
David Saadab4ecc272019-02-14 13:48:10 +0200267/** Return this error when there's insufficient data when attempting
268 * to read from a resource. */
269#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270
271/** The key handle is not valid.
272 */
David Saadab4ecc272019-02-14 13:48:10 +0200273#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100274
275/**@}*/
276
277/** \defgroup crypto_types Key and algorithm types
278 * @{
279 */
280
281/** An invalid key type value.
282 *
283 * Zero is not the encoding of any key type.
284 */
285#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
286
287/** Vendor-defined flag
288 *
289 * Key types defined by this standard will never have the
290 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
291 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
292 * respect the bitwise structure used by standard encodings whenever practical.
293 */
294#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
295
296#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000)
297#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000)
298#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000)
299#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000)
300#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000)
301
302#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000)
303
304/** Whether a key type is vendor-defined. */
305#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
306 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
307
308/** Whether a key type is an unstructured array of bytes.
309 *
310 * This encompasses both symmetric keys and non-key data.
311 */
312#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
313 (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \
314 PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
315
316/** Whether a key type is asymmetric: either a key pair or a public key. */
317#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
318 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
319 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
320 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
321/** Whether a key type is the public part of a key pair. */
322#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
323 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
324/** Whether a key type is a key pair containing a private part and a public
325 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200326#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100327 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
328/** The key pair type corresponding to a public key type.
329 *
330 * You may also pass a key pair type as \p type, it will be left unchanged.
331 *
332 * \param type A public key type or key pair type.
333 *
334 * \return The corresponding key pair type.
335 * If \p type is not a public key or a key pair,
336 * the return value is undefined.
337 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200338#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
340/** The public key type corresponding to a key pair type.
341 *
342 * You may also pass a key pair type as \p type, it will be left unchanged.
343 *
344 * \param type A public key type or key pair type.
345 *
346 * \return The corresponding public key type.
347 * If \p type is not a public key or a key pair,
348 * the return value is undefined.
349 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200350#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100351 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
352
353/** Raw data.
354 *
355 * A "key" of this type cannot be used for any cryptographic operation.
356 * Applications may use this type to store arbitrary data in the keystore. */
357#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001)
358
359/** HMAC key.
360 *
361 * The key policy determines which underlying hash algorithm the key can be
362 * used for.
363 *
364 * HMAC keys should generally have the same size as the underlying hash.
365 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
366 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
367#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000)
368
369/** A secret for key derivation.
370 *
371 * The key policy determines which key derivation algorithm the key
372 * can be used for.
373 */
374#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000)
375
Gilles Peskine737c6be2019-05-21 16:01:06 +0200376/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100377 *
378 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
379 * 32 bytes (AES-256).
380 */
381#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001)
382
383/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
384 *
385 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
386 * 24 bytes (3-key 3DES).
387 *
388 * Note that single DES and 2-key 3DES are weak and strongly
389 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
390 * is weak and deprecated and should only be used in legacy protocols.
391 */
392#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002)
393
Gilles Peskine737c6be2019-05-21 16:01:06 +0200394/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100395 * Camellia block cipher. */
396#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003)
397
398/** Key for the RC4 stream cipher.
399 *
400 * Note that RC4 is weak and deprecated and should only be used in
401 * legacy protocols. */
402#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004)
403
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200404/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
405 *
406 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
407 *
408 * Implementations must support 12-byte nonces, may support 8-byte nonces,
409 * and should reject other sizes.
410 */
411#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x40000005)
412
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100413/** RSA public key. */
414#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000)
415/** RSA key pair (private and public key). */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200416#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x70010000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100417/** Whether a key type is an RSA key (pair or public-only). */
418#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200419 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100420
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100421#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000)
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200422#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x70030000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff)
424/** Elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200425#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
426 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100427/** Elliptic curve public key. */
428#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
429 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
430
431/** Whether a key type is an elliptic curve key (pair or public-only). */
432#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200433 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100434 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100435/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200436#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100437 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200438 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100439/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100440#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
441 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
442 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
443
444/** Extract the curve from an elliptic curve key type. */
445#define PSA_KEY_TYPE_GET_CURVE(type) \
446 ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
447 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
448 0))
449
450/* The encoding of curve identifiers is currently aligned with the
451 * TLS Supported Groups Registry (formerly known as the
452 * TLS EC Named Curve Registry)
453 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
454 * The values are defined by RFC 8422 and RFC 7027. */
455#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001)
456#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002)
457#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003)
458#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004)
459#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005)
460#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006)
461#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007)
462#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008)
463#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009)
464#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a)
465#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b)
466#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c)
467#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d)
468#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e)
469#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f)
470#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010)
471#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011)
472#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012)
473#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013)
474#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014)
475#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015)
476#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016)
477#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017)
478#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018)
479#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019)
480#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a)
481#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b)
482#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c)
Gilles Peskinea9b9cf72019-05-21 19:18:33 +0200483/** Curve25519.
484 *
485 * This is the curve defined in Bernstein et al.,
486 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
487 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
488 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100489#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d)
Gilles Peskinea9b9cf72019-05-21 19:18:33 +0200490/** Curve448
491 *
492 * This is the curve defined in Hamburg,
493 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
494 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
495 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100496#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e)
497
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200498#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x60040000)
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200499#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x70040000)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200500#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x0000ffff)
501/** Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200502#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
503 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200504/** Diffie-Hellman public key. */
505#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
506 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
507
508/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
509#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200510 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200511 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
512/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200513#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200514 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200515 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200516/** Whether a key type is a Diffie-Hellman public key. */
517#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
518 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
519 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
520
521/** Extract the group from a Diffie-Hellman key type. */
522#define PSA_KEY_TYPE_GET_GROUP(type) \
523 ((psa_dh_group_t) (PSA_KEY_TYPE_IS_DH(type) ? \
524 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
525 0))
526
527/* The encoding of group identifiers is currently aligned with the
528 * TLS Supported Groups Registry (formerly known as the
529 * TLS EC Named Curve Registry)
530 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
531 * The values are defined by RFC 7919. */
532#define PSA_DH_GROUP_FFDHE2048 ((psa_dh_group_t) 0x0100)
533#define PSA_DH_GROUP_FFDHE3072 ((psa_dh_group_t) 0x0101)
534#define PSA_DH_GROUP_FFDHE4096 ((psa_dh_group_t) 0x0102)
535#define PSA_DH_GROUP_FFDHE6144 ((psa_dh_group_t) 0x0103)
536#define PSA_DH_GROUP_FFDHE8192 ((psa_dh_group_t) 0x0104)
Jaeden Amero8851c402019-01-11 14:20:03 +0000537
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100538/** The block size of a block cipher.
539 *
540 * \param type A cipher key type (value of type #psa_key_type_t).
541 *
542 * \return The block size for a block cipher, or 1 for a stream cipher.
543 * The return value is undefined if \p type is not a supported
544 * cipher key type.
545 *
546 * \note It is possible to build stream cipher algorithms on top of a block
547 * cipher, for example CTR mode (#PSA_ALG_CTR).
548 * This macro only takes the key type into account, so it cannot be
549 * used to determine the size of the data that #psa_cipher_update()
550 * might buffer for future processing in general.
551 *
552 * \note This macro returns a compile-time constant if its argument is one.
553 *
554 * \warning This macro may evaluate its argument multiple times.
555 */
556#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
557 ( \
558 (type) == PSA_KEY_TYPE_AES ? 16 : \
559 (type) == PSA_KEY_TYPE_DES ? 8 : \
560 (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \
561 (type) == PSA_KEY_TYPE_ARC4 ? 1 : \
562 0)
563
564#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
565#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
566#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
567#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
568#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
569#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
570#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
571#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100572#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
573#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100574
575#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
576 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
577
578/** Whether the specified algorithm is a hash algorithm.
579 *
580 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
581 *
582 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
583 * This macro may return either 0 or 1 if \p alg is not a supported
584 * algorithm identifier.
585 */
586#define PSA_ALG_IS_HASH(alg) \
587 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
588
589/** Whether the specified algorithm is a MAC algorithm.
590 *
591 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
592 *
593 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
594 * This macro may return either 0 or 1 if \p alg is not a supported
595 * algorithm identifier.
596 */
597#define PSA_ALG_IS_MAC(alg) \
598 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
599
600/** Whether the specified algorithm is a symmetric cipher algorithm.
601 *
602 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
603 *
604 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
605 * This macro may return either 0 or 1 if \p alg is not a supported
606 * algorithm identifier.
607 */
608#define PSA_ALG_IS_CIPHER(alg) \
609 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
610
611/** Whether the specified algorithm is an authenticated encryption
612 * with associated data (AEAD) algorithm.
613 *
614 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
615 *
616 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
617 * This macro may return either 0 or 1 if \p alg is not a supported
618 * algorithm identifier.
619 */
620#define PSA_ALG_IS_AEAD(alg) \
621 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
622
623/** Whether the specified algorithm is a public-key signature algorithm.
624 *
625 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
626 *
627 * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise.
628 * This macro may return either 0 or 1 if \p alg is not a supported
629 * algorithm identifier.
630 */
631#define PSA_ALG_IS_SIGN(alg) \
632 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
633
634/** Whether the specified algorithm is a public-key encryption algorithm.
635 *
636 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
637 *
638 * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise.
639 * This macro may return either 0 or 1 if \p alg is not a supported
640 * algorithm identifier.
641 */
642#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
643 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
644
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100645/** Whether the specified algorithm is a key agreement algorithm.
646 *
647 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
648 *
649 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
650 * This macro may return either 0 or 1 if \p alg is not a supported
651 * algorithm identifier.
652 */
653#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100654 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100655
656/** Whether the specified algorithm is a key derivation algorithm.
657 *
658 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
659 *
660 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
661 * This macro may return either 0 or 1 if \p alg is not a supported
662 * algorithm identifier.
663 */
664#define PSA_ALG_IS_KEY_DERIVATION(alg) \
665 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
666
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100667#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100668
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100669#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
670#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
671#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
672#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
673#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
674/** SHA2-224 */
675#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
676/** SHA2-256 */
677#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
678/** SHA2-384 */
679#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
680/** SHA2-512 */
681#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
682/** SHA2-512/224 */
683#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
684/** SHA2-512/256 */
685#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
686/** SHA3-224 */
687#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
688/** SHA3-256 */
689#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
690/** SHA3-384 */
691#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
692/** SHA3-512 */
693#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
694
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100695/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100696 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100697 * This value may be used to form the algorithm usage field of a policy
698 * for a signature algorithm that is parametrized by a hash. The key
699 * may then be used to perform operations using the same signature
700 * algorithm parametrized with any supported hash.
701 *
702 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100703 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100704 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100705 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100706 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
707 * ```
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200708 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN); // or VERIFY
709 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100710 * ```
711 * - Import or generate key material.
712 * - Call psa_asymmetric_sign() or psa_asymmetric_verify(), passing
713 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
714 * call to sign or verify a message may use a different hash.
715 * ```
716 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
717 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
718 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
719 * ```
720 *
721 * This value may not be used to build other algorithms that are
722 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100723 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100724 *
725 * This value may not be used to build an algorithm specification to
726 * perform an operation. It is only valid to build policies.
727 */
728#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
729
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100730#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
731#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
732/** Macro to build an HMAC algorithm.
733 *
734 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
735 *
736 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
737 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
738 *
739 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100740 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100741 * hash algorithm.
742 */
743#define PSA_ALG_HMAC(hash_alg) \
744 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
745
746#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
747 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
748
749/** Whether the specified algorithm is an HMAC algorithm.
750 *
751 * HMAC is a family of MAC algorithms that are based on a hash function.
752 *
753 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
754 *
755 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
756 * This macro may return either 0 or 1 if \p alg is not a supported
757 * algorithm identifier.
758 */
759#define PSA_ALG_IS_HMAC(alg) \
760 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
761 PSA_ALG_HMAC_BASE)
762
763/* In the encoding of a MAC algorithm, the bits corresponding to
764 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
765 * truncated. As an exception, the value 0 means the untruncated algorithm,
766 * whatever its length is. The length is encoded in 6 bits, so it can
767 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
768 * to full length is correctly encoded as 0 and any non-trivial truncation
769 * is correctly encoded as a value between 1 and 63. */
770#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
771#define PSA_MAC_TRUNCATION_OFFSET 8
772
773/** Macro to build a truncated MAC algorithm.
774 *
775 * A truncated MAC algorithm is identical to the corresponding MAC
776 * algorithm except that the MAC value for the truncated algorithm
777 * consists of only the first \p mac_length bytes of the MAC value
778 * for the untruncated algorithm.
779 *
780 * \note This macro may allow constructing algorithm identifiers that
781 * are not valid, either because the specified length is larger
782 * than the untruncated MAC or because the specified length is
783 * smaller than permitted by the implementation.
784 *
785 * \note It is implementation-defined whether a truncated MAC that
786 * is truncated to the same length as the MAC of the untruncated
787 * algorithm is considered identical to the untruncated algorithm
788 * for policy comparison purposes.
789 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200790 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100791 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
792 * is true). This may be a truncated or untruncated
793 * MAC algorithm.
794 * \param mac_length Desired length of the truncated MAC in bytes.
795 * This must be at most the full length of the MAC
796 * and must be at least an implementation-specified
797 * minimum. The implementation-specified minimum
798 * shall not be zero.
799 *
800 * \return The corresponding MAC algorithm with the specified
801 * length.
802 * \return Unspecified if \p alg is not a supported
803 * MAC algorithm or if \p mac_length is too small or
804 * too large for the specified MAC algorithm.
805 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200806#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
807 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100808 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
809
810/** Macro to build the base MAC algorithm corresponding to a truncated
811 * MAC algorithm.
812 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200813 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100814 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
815 * is true). This may be a truncated or untruncated
816 * MAC algorithm.
817 *
818 * \return The corresponding base MAC algorithm.
819 * \return Unspecified if \p alg is not a supported
820 * MAC algorithm.
821 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200822#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
823 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100824
825/** Length to which a MAC algorithm is truncated.
826 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200827 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100828 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
829 * is true).
830 *
831 * \return Length of the truncated MAC in bytes.
832 * \return 0 if \p alg is a non-truncated MAC algorithm.
833 * \return Unspecified if \p alg is not a supported
834 * MAC algorithm.
835 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200836#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
837 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100838
839#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100840/** The CBC-MAC construction over a block cipher
841 *
842 * \warning CBC-MAC is insecure in many cases.
843 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
844 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100845#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100846/** The CMAC construction over a block cipher */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100847#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100848
849/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
850 *
851 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
852 *
853 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
854 * This macro may return either 0 or 1 if \p alg is not a supported
855 * algorithm identifier.
856 */
857#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
858 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
859 PSA_ALG_CIPHER_MAC_BASE)
860
861#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
862#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
863
864/** Whether the specified algorithm is a stream cipher.
865 *
866 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
867 * by applying a bitwise-xor with a stream of bytes that is generated
868 * from a key.
869 *
870 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
871 *
872 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
873 * This macro may return either 0 or 1 if \p alg is not a supported
874 * algorithm identifier or if it is not a symmetric cipher algorithm.
875 */
876#define PSA_ALG_IS_STREAM_CIPHER(alg) \
877 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
878 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
879
880/** The ARC4 stream cipher algorithm.
881 */
882#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
883
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200884/** The ChaCha20 stream cipher.
885 *
886 * ChaCha20 is defined in RFC 7539.
887 *
888 * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv()
889 * must be 12.
890 *
891 * The initial block counter is always 0.
892 *
893 */
894#define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005)
895
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100896/** The CTR stream cipher mode.
897 *
898 * CTR is a stream cipher which is built from a block cipher.
899 * The underlying block cipher is determined by the key type.
900 * For example, to use AES-128-CTR, use this algorithm with
901 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
902 */
903#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
904
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100905/** The CFB stream cipher mode.
906 *
907 * The underlying block cipher is determined by the key type.
908 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100909#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
910
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100911/** The OFB stream cipher mode.
912 *
913 * The underlying block cipher is determined by the key type.
914 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100915#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
916
917/** The XTS cipher mode.
918 *
919 * XTS is a cipher mode which is built from a block cipher. It requires at
920 * least one full block of input, but beyond this minimum the input
921 * does not need to be a whole number of blocks.
922 */
923#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
924
925/** The CBC block cipher chaining mode, with no padding.
926 *
927 * The underlying block cipher is determined by the key type.
928 *
929 * This symmetric cipher mode can only be used with messages whose lengths
930 * are whole number of blocks for the chosen block cipher.
931 */
932#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
933
934/** The CBC block cipher chaining mode with PKCS#7 padding.
935 *
936 * The underlying block cipher is determined by the key type.
937 *
938 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
939 */
940#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
941
Gilles Peskine679693e2019-05-06 15:10:16 +0200942#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
943
944/** Whether the specified algorithm is an AEAD mode on a block cipher.
945 *
946 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
947 *
948 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
949 * a block cipher, 0 otherwise.
950 * This macro may return either 0 or 1 if \p alg is not a supported
951 * algorithm identifier.
952 */
953#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
954 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
955 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
956
Gilles Peskine9153ec02019-02-15 13:02:02 +0100957/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100958 *
959 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +0100960 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200961#define PSA_ALG_CCM ((psa_algorithm_t)0x06401001)
Gilles Peskine9153ec02019-02-15 13:02:02 +0100962
963/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100964 *
965 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +0100966 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200967#define PSA_ALG_GCM ((psa_algorithm_t)0x06401002)
968
969/** The Chacha20-Poly1305 AEAD algorithm.
970 *
971 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200972 *
973 * Implementations must support 12-byte nonces, may support 8-byte nonces,
974 * and should reject other sizes.
975 *
976 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +0200977 */
978#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100979
980/* In the encoding of a AEAD algorithm, the bits corresponding to
981 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
982 * The constants for default lengths follow this encoding.
983 */
984#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
985#define PSA_AEAD_TAG_LENGTH_OFFSET 8
986
987/** Macro to build a shortened AEAD algorithm.
988 *
989 * A shortened AEAD algorithm is similar to the corresponding AEAD
990 * algorithm, but has an authentication tag that consists of fewer bytes.
991 * Depending on the algorithm, the tag length may affect the calculation
992 * of the ciphertext.
993 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200994 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100995 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
996 * is true).
997 * \param tag_length Desired length of the authentication tag in bytes.
998 *
999 * \return The corresponding AEAD algorithm with the specified
1000 * length.
1001 * \return Unspecified if \p alg is not a supported
1002 * AEAD algorithm or if \p tag_length is not valid
1003 * for the specified AEAD algorithm.
1004 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001005#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
1006 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001007 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1008 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1009
1010/** Calculate the corresponding AEAD algorithm with the default tag length.
1011 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001012 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
1013 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001014 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001015 * \return The corresponding AEAD algorithm with the default
1016 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001017 */
Unknowne2e19952019-08-21 03:33:04 -04001018#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
1019 ( \
1020 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CCM) \
1021 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_GCM) \
1022 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001023 0)
Unknowne2e19952019-08-21 03:33:04 -04001024#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, ref) \
1025 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
1026 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001027 ref :
1028
1029#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
1030/** RSA PKCS#1 v1.5 signature with hashing.
1031 *
1032 * This is the signature scheme defined by RFC 8017
1033 * (PKCS#1: RSA Cryptography Specifications) under the name
1034 * RSASSA-PKCS1-v1_5.
1035 *
1036 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1037 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001038 * This includes #PSA_ALG_ANY_HASH
1039 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001040 *
1041 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001042 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001043 * hash algorithm.
1044 */
1045#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1046 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1047/** Raw PKCS#1 v1.5 signature.
1048 *
1049 * The input to this algorithm is the DigestInfo structure used by
1050 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1051 * steps 3&ndash;6.
1052 */
1053#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1054#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1055 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1056
1057#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
1058/** RSA PSS signature with hashing.
1059 *
1060 * This is the signature scheme defined by RFC 8017
1061 * (PKCS#1: RSA Cryptography Specifications) under the name
1062 * RSASSA-PSS, with the message generation function MGF1, and with
1063 * a salt length equal to the length of the hash. The specified
1064 * hash algorithm is used to hash the input message, to create the
1065 * salted hash, and for the mask generation.
1066 *
1067 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1068 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001069 * This includes #PSA_ALG_ANY_HASH
1070 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001071 *
1072 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001073 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001074 * hash algorithm.
1075 */
1076#define PSA_ALG_RSA_PSS(hash_alg) \
1077 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1078#define PSA_ALG_IS_RSA_PSS(alg) \
1079 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1080
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001081#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1082/** ECDSA signature with hashing.
1083 *
1084 * This is the ECDSA signature scheme defined by ANSI X9.62,
1085 * with a random per-message secret number (*k*).
1086 *
1087 * The representation of the signature as a byte string consists of
1088 * the concatentation of the signature values *r* and *s*. Each of
1089 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1090 * of the base point of the curve in octets. Each value is represented
1091 * in big-endian order (most significant octet first).
1092 *
1093 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1094 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001095 * This includes #PSA_ALG_ANY_HASH
1096 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001097 *
1098 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001099 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001100 * hash algorithm.
1101 */
1102#define PSA_ALG_ECDSA(hash_alg) \
1103 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1104/** ECDSA signature without hashing.
1105 *
1106 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1107 * without specifying a hash algorithm. This algorithm may only be
1108 * used to sign or verify a sequence of bytes that should be an
1109 * already-calculated hash. Note that the input is padded with
1110 * zeros on the left or truncated on the left as required to fit
1111 * the curve size.
1112 */
1113#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1114#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1115/** Deterministic ECDSA signature with hashing.
1116 *
1117 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1118 *
1119 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1120 *
1121 * Note that when this algorithm is used for verification, signatures
1122 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1123 * same private key are accepted. In other words,
1124 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1125 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1126 *
1127 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1128 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001129 * This includes #PSA_ALG_ANY_HASH
1130 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001131 *
1132 * \return The corresponding deterministic ECDSA signature
1133 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001134 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001135 * hash algorithm.
1136 */
1137#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1138 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1139#define PSA_ALG_IS_ECDSA(alg) \
1140 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
1141 PSA_ALG_ECDSA_BASE)
1142#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
1143 (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
1144#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1145 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1146#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1147 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1148
Gilles Peskined35b4892019-01-14 16:02:15 +01001149/** Whether the specified algorithm is a hash-and-sign algorithm.
1150 *
1151 * Hash-and-sign algorithms are public-key signature algorithms structured
1152 * in two parts: first the calculation of a hash in a way that does not
1153 * depend on the key, then the calculation of a signature from the
1154 * hash value and the key.
1155 *
1156 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1157 *
1158 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1159 * This macro may return either 0 or 1 if \p alg is not a supported
1160 * algorithm identifier.
1161 */
1162#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1163 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskinee38ab1a2019-05-16 13:51:50 +02001164 PSA_ALG_IS_ECDSA(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001165
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001166/** Get the hash used by a hash-and-sign signature algorithm.
1167 *
1168 * A hash-and-sign algorithm is a signature algorithm which is
1169 * composed of two phases: first a hashing phase which does not use
1170 * the key and produces a hash of the input message, then a signing
1171 * phase which only uses the hash and the key and not the message
1172 * itself.
1173 *
1174 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1175 * #PSA_ALG_IS_SIGN(\p alg) is true).
1176 *
1177 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1178 * algorithm.
1179 * \return 0 if \p alg is a signature algorithm that does not
1180 * follow the hash-and-sign structure.
1181 * \return Unspecified if \p alg is not a signature algorithm or
1182 * if it is not supported by the implementation.
1183 */
1184#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001185 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001186 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1187 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1188 0)
1189
1190/** RSA PKCS#1 v1.5 encryption.
1191 */
1192#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1193
1194#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1195/** RSA OAEP encryption.
1196 *
1197 * This is the encryption scheme defined by RFC 8017
1198 * (PKCS#1: RSA Cryptography Specifications) under the name
1199 * RSAES-OAEP, with the message generation function MGF1.
1200 *
1201 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1202 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1203 * for MGF1.
1204 *
1205 * \return The corresponding RSA OAEP signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001206 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001207 * hash algorithm.
1208 */
1209#define PSA_ALG_RSA_OAEP(hash_alg) \
1210 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1211#define PSA_ALG_IS_RSA_OAEP(alg) \
1212 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1213#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1214 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1215 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1216 0)
1217
Gilles Peskine6843c292019-01-18 16:44:49 +01001218#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001219/** Macro to build an HKDF algorithm.
1220 *
1221 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1222 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001223 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001224 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001225 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001226 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1227 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1228 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1229 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001230 * starting to generate output.
1231 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001232 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1233 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1234 *
1235 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001236 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001237 * hash algorithm.
1238 */
1239#define PSA_ALG_HKDF(hash_alg) \
1240 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1241/** Whether the specified algorithm is an HKDF algorithm.
1242 *
1243 * HKDF is a family of key derivation algorithms that are based on a hash
1244 * function and the HMAC construction.
1245 *
1246 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1247 *
1248 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1249 * This macro may return either 0 or 1 if \c alg is not a supported
1250 * key derivation algorithm identifier.
1251 */
1252#define PSA_ALG_IS_HKDF(alg) \
1253 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1254#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1255 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1256
Gilles Peskine6843c292019-01-18 16:44:49 +01001257#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001258/** Macro to build a TLS-1.2 PRF algorithm.
1259 *
1260 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1261 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1262 * used with either SHA-256 or SHA-384.
1263 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001264 * This key derivation algorithm uses the following inputs, which must be
1265 * passed in the order given here:
1266 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001267 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1268 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001269 *
1270 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001271 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001272 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001273 *
1274 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1275 * TLS 1.2 PRF using HMAC-SHA-256.
1276 *
1277 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1278 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1279 *
1280 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001281 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001282 * hash algorithm.
1283 */
1284#define PSA_ALG_TLS12_PRF(hash_alg) \
1285 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1286
1287/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1288 *
1289 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1290 *
1291 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1292 * This macro may return either 0 or 1 if \c alg is not a supported
1293 * key derivation algorithm identifier.
1294 */
1295#define PSA_ALG_IS_TLS12_PRF(alg) \
1296 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1297#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1298 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1299
Gilles Peskine6843c292019-01-18 16:44:49 +01001300#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001301/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1302 *
1303 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1304 * from the PreSharedKey (PSK) through the application of padding
1305 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1306 * The latter is based on HMAC and can be used with either SHA-256
1307 * or SHA-384.
1308 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001309 * This key derivation algorithm uses the following inputs, which must be
1310 * passed in the order given here:
1311 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001312 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1313 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001314 *
1315 * For the application to TLS-1.2, the seed (which is
1316 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1317 * ClientHello.Random + ServerHello.Random,
1318 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001319 *
1320 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1321 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1322 *
1323 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1324 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1325 *
1326 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001327 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001328 * hash algorithm.
1329 */
1330#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1331 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1332
1333/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1334 *
1335 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1336 *
1337 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1338 * This macro may return either 0 or 1 if \c alg is not a supported
1339 * key derivation algorithm identifier.
1340 */
1341#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1342 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1343#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1344 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1345
Gilles Peskinea52460c2019-04-12 00:11:21 +02001346#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff)
1347#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001348
Gilles Peskine6843c292019-01-18 16:44:49 +01001349/** Macro to build a combined algorithm that chains a key agreement with
1350 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001351 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001352 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1353 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1354 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1355 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001356 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001357 * \return The corresponding key agreement and derivation
1358 * algorithm.
1359 * \return Unspecified if \p ka_alg is not a supported
1360 * key agreement algorithm or \p kdf_alg is not a
1361 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001362 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001363#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1364 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001365
1366#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1367 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1368
Gilles Peskine6843c292019-01-18 16:44:49 +01001369#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1370 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001371
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001372/** Whether the specified algorithm is a raw key agreement algorithm.
1373 *
1374 * A raw key agreement algorithm is one that does not specify
1375 * a key derivation function.
1376 * Usually, raw key agreement algorithms are constructed directly with
1377 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
1378 * constructed with PSA_ALG_KEY_AGREEMENT().
1379 *
1380 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1381 *
1382 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1383 * This macro may return either 0 or 1 if \p alg is not a supported
1384 * algorithm identifier.
1385 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001386#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001387 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1388 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001389
1390#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1391 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1392
1393/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001394 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001395 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001396 * `g^{ab}` in big-endian format.
1397 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1398 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001399 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001400#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1401
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001402/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1403 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001404 * This includes the raw finite field Diffie-Hellman algorithm as well as
1405 * finite-field Diffie-Hellman followed by any supporter key derivation
1406 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001407 *
1408 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1409 *
1410 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1411 * This macro may return either 0 or 1 if \c alg is not a supported
1412 * key agreement algorithm identifier.
1413 */
1414#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001415 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001416
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001417/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1418 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001419 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001420 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1421 * `m` is the bit size associated with the curve, i.e. the bit size of the
1422 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1423 * the byte containing the most significant bit of the shared secret
1424 * is padded with zero bits. The byte order is either little-endian
1425 * or big-endian depending on the curve type.
1426 *
1427 * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`),
1428 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1429 * in little-endian byte order.
1430 * The bit size is 448 for Curve448 and 255 for Curve25519.
1431 * - For Weierstrass curves over prime fields (curve types
1432 * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`),
1433 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1434 * in big-endian byte order.
1435 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1436 * - For Weierstrass curves over binary fields (curve types
1437 * `PSA_ECC_CURVE_SECTXXX`),
1438 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1439 * in big-endian byte order.
1440 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001441 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001442#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1443
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001444/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1445 * algorithm.
1446 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001447 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1448 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1449 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001450 *
1451 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1452 *
1453 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1454 * 0 otherwise.
1455 * This macro may return either 0 or 1 if \c alg is not a supported
1456 * key agreement algorithm identifier.
1457 */
1458#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001459 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001460
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001461/** Whether the specified algorithm encoding is a wildcard.
1462 *
1463 * Wildcard values may only be used to set the usage algorithm field in
1464 * a policy, not to perform an operation.
1465 *
1466 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1467 *
1468 * \return 1 if \c alg is a wildcard algorithm encoding.
1469 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1470 * an operation).
1471 * \return This macro may return either 0 or 1 if \c alg is not a supported
1472 * algorithm identifier.
1473 */
1474#define PSA_ALG_IS_WILDCARD(alg) \
1475 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1476 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1477 (alg) == PSA_ALG_ANY_HASH)
1478
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001479/**@}*/
1480
1481/** \defgroup key_lifetimes Key lifetimes
1482 * @{
1483 */
1484
1485/** A volatile key only exists as long as the handle to it is not closed.
1486 * The key material is guaranteed to be erased on a power reset.
1487 */
1488#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1489
1490/** The default storage area for persistent keys.
1491 *
1492 * A persistent key remains in storage until it is explicitly destroyed or
1493 * until the corresponding storage area is wiped. This specification does
1494 * not define any mechanism to wipe a storage area, but implementations may
1495 * provide their own mechanism (for example to perform a factory reset,
1496 * to prepare for device refurbishment, or to uninstall an application).
1497 *
1498 * This lifetime value is the default storage area for the calling
1499 * application. Implementations may offer other storage areas designated
1500 * by other lifetime values as implementation-specific extensions.
1501 */
1502#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1503
Gilles Peskine4a231b82019-05-06 18:56:14 +02001504/** The minimum value for a key identifier chosen by the application.
1505 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001506#define PSA_KEY_ID_USER_MIN ((psa_app_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001507/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001508 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001509#define PSA_KEY_ID_USER_MAX ((psa_app_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001510/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001511 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001512#define PSA_KEY_ID_VENDOR_MIN ((psa_app_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001513/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001514 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001515#define PSA_KEY_ID_VENDOR_MAX ((psa_app_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02001516
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001517/**@}*/
1518
1519/** \defgroup policy Key policies
1520 * @{
1521 */
1522
1523/** Whether the key may be exported.
1524 *
1525 * A public key or the public part of a key pair may always be exported
1526 * regardless of the value of this permission flag.
1527 *
1528 * If a key does not have export permission, implementations shall not
1529 * allow the key to be exported in plain form from the cryptoprocessor,
1530 * whether through psa_export_key() or through a proprietary interface.
1531 * The key may however be exportable in a wrapped form, i.e. in a form
1532 * where it is encrypted by another key.
1533 */
1534#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1535
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001536/** Whether the key may be copied.
1537 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001538 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001539 * with the same policy or a more restrictive policy.
1540 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001541 * For lifetimes for which the key is located in a secure element which
1542 * enforce the non-exportability of keys, copying a key outside the secure
1543 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1544 * Copying the key inside the secure element is permitted with just
1545 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1546 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001547 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1548 * is sufficient to permit the copy.
1549 */
1550#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1551
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001552/** Whether the key may be used to encrypt a message.
1553 *
1554 * This flag allows the key to be used for a symmetric encryption operation,
1555 * for an AEAD encryption-and-authentication operation,
1556 * or for an asymmetric encryption operation,
1557 * if otherwise permitted by the key's type and policy.
1558 *
1559 * For a key pair, this concerns the public key.
1560 */
1561#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1562
1563/** Whether the key may be used to decrypt a message.
1564 *
1565 * This flag allows the key to be used for a symmetric decryption operation,
1566 * for an AEAD decryption-and-verification operation,
1567 * or for an asymmetric decryption operation,
1568 * if otherwise permitted by the key's type and policy.
1569 *
1570 * For a key pair, this concerns the private key.
1571 */
1572#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1573
1574/** Whether the key may be used to sign a message.
1575 *
1576 * This flag allows the key to be used for a MAC calculation operation
1577 * or for an asymmetric signature operation,
1578 * if otherwise permitted by the key's type and policy.
1579 *
1580 * For a key pair, this concerns the private key.
1581 */
1582#define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400)
1583
1584/** Whether the key may be used to verify a message signature.
1585 *
1586 * This flag allows the key to be used for a MAC verification operation
1587 * or for an asymmetric signature verification operation,
1588 * if otherwise permitted by by the key's type and policy.
1589 *
1590 * For a key pair, this concerns the public key.
1591 */
1592#define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800)
1593
1594/** Whether the key may be used to derive other keys.
1595 */
1596#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1597
1598/**@}*/
1599
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001600/** \defgroup derivation Key derivation
1601 * @{
1602 */
1603
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001604/** A secret input for key derivation.
1605 *
1606 * This must be a key of type #PSA_KEY_TYPE_DERIVE.
1607 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001608#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001609
1610/** A label for key derivation.
1611 *
1612 * This must be a direct input.
1613 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001614#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001615
1616/** A salt for key derivation.
1617 *
1618 * This must be a direct input.
1619 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001620#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001621
1622/** An information string for key derivation.
1623 *
1624 * This must be a direct input.
1625 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001626#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001627
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001628/** A seed for key derivation.
1629 *
1630 * This must be a direct input.
1631 */
1632#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
1633
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001634/**@}*/
1635
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001636#endif /* PSA_CRYPTO_VALUES_H */