blob: bf16ec1cf50d8a1ee2cd2eba681801227f43b678 [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
Janos Follath4614b9a2022-07-21 15:34:47 +010041#include "bignum_core.h"
Chris Jones4c5819c2021-03-03 17:45:34 +000042#include "bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050043#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000044#include "mbedtls/error.h"
Gabor Mezei22c9a6f2021-10-20 12:09:35 +020045#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000046
Dave Rodgman351c71b2021-12-06 17:50:53 +000047#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000048#include <string.h>
49
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000050#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020051
Gilles Peskine449bd832023-01-11 14:50:10 +010052#define MPI_VALIDATE_RET(cond) \
53 MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
54#define MPI_VALIDATE(cond) \
55 MBEDTLS_INTERNAL_VALIDATE(cond)
Gabor Mezei66669142022-08-03 12:52:26 +020056
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050057/* Implementation that should never be optimized out by the compiler */
Tom Cosgrovebc345e82023-07-25 15:17:39 +010058#define mbedtls_mpi_zeroize_and_free(v, n) mbedtls_zeroize_and_free(v, ciL * (n))
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050059
Paul Bakker5121ce52009-01-03 21:22:43 +000060/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000061 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000062 */
Gilles Peskine449bd832023-01-11 14:50:10 +010063void mbedtls_mpi_init(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000064{
Gilles Peskine449bd832023-01-11 14:50:10 +010065 MPI_VALIDATE(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +000066
Paul Bakker6c591fa2011-05-05 11:49:20 +000067 X->s = 1;
68 X->n = 0;
69 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000070}
71
72/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000073 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000074 */
Gilles Peskine449bd832023-01-11 14:50:10 +010075void mbedtls_mpi_free(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000076{
Gilles Peskine449bd832023-01-11 14:50:10 +010077 if (X == NULL) {
Paul Bakker6c591fa2011-05-05 11:49:20 +000078 return;
Gilles Peskine449bd832023-01-11 14:50:10 +010079 }
Paul Bakker5121ce52009-01-03 21:22:43 +000080
Gilles Peskine449bd832023-01-11 14:50:10 +010081 if (X->p != NULL) {
Tom Cosgrove46259f62023-07-18 16:44:14 +010082 mbedtls_mpi_zeroize_and_free(X->p, X->n);
Paul Bakker5121ce52009-01-03 21:22:43 +000083 }
84
Paul Bakker6c591fa2011-05-05 11:49:20 +000085 X->s = 1;
86 X->n = 0;
87 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000088}
89
90/*
91 * Enlarge to the specified number of limbs
92 */
Gilles Peskine449bd832023-01-11 14:50:10 +010093int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
Paul Bakker5121ce52009-01-03 21:22:43 +000094{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020095 mbedtls_mpi_uint *p;
Gilles Peskine449bd832023-01-11 14:50:10 +010096 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +000097
Gilles Peskine449bd832023-01-11 14:50:10 +010098 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
99 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
100 }
Paul Bakkerf9688572011-05-05 10:00:45 +0000101
Gilles Peskine449bd832023-01-11 14:50:10 +0100102 if (X->n < nblimbs) {
103 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
104 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
105 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000106
Gilles Peskine449bd832023-01-11 14:50:10 +0100107 if (X->p != NULL) {
108 memcpy(p, X->p, X->n * ciL);
Tom Cosgrove46259f62023-07-18 16:44:14 +0100109 mbedtls_mpi_zeroize_and_free(X->p, X->n);
Paul Bakker5121ce52009-01-03 21:22:43 +0000110 }
111
Gilles Peskine053022f2023-06-29 19:26:48 +0200112 /* nblimbs fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
113 * fits, and we've checked that nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
114 X->n = (unsigned short) nblimbs;
Paul Bakker5121ce52009-01-03 21:22:43 +0000115 X->p = p;
116 }
117
Gilles Peskine449bd832023-01-11 14:50:10 +0100118 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000119}
120
121/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100122 * Resize down as much as possible,
123 * while keeping at least the specified number of limbs
124 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100125int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100126{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200127 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100128 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100129 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000130
Gilles Peskine449bd832023-01-11 14:50:10 +0100131 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
132 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
133 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100134
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100135 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100136 if (X->n <= nblimbs) {
137 return mbedtls_mpi_grow(X, nblimbs);
138 }
Gilles Peskine322752b2020-01-21 13:59:51 +0100139 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100140
Gilles Peskine449bd832023-01-11 14:50:10 +0100141 for (i = X->n - 1; i > 0; i--) {
142 if (X->p[i] != 0) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100143 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100144 }
145 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100146 i++;
147
Gilles Peskine449bd832023-01-11 14:50:10 +0100148 if (i < nblimbs) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100149 i = nblimbs;
Gilles Peskine449bd832023-01-11 14:50:10 +0100150 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100151
Gilles Peskine449bd832023-01-11 14:50:10 +0100152 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
153 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
154 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100155
Gilles Peskine449bd832023-01-11 14:50:10 +0100156 if (X->p != NULL) {
157 memcpy(p, X->p, i * ciL);
Tom Cosgrove46259f62023-07-18 16:44:14 +0100158 mbedtls_mpi_zeroize_and_free(X->p, X->n);
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100159 }
160
Gilles Peskine053022f2023-06-29 19:26:48 +0200161 /* i fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
162 * fits, and we've checked that i <= nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
163 X->n = (unsigned short) i;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100164 X->p = p;
165
Gilles Peskine449bd832023-01-11 14:50:10 +0100166 return 0;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100167}
168
Gilles Peskineed32b572021-06-02 22:17:52 +0200169/* Resize X to have exactly n limbs and set it to 0. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100170static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
Gilles Peskineed32b572021-06-02 22:17:52 +0200171{
Gilles Peskine449bd832023-01-11 14:50:10 +0100172 if (limbs == 0) {
173 mbedtls_mpi_free(X);
174 return 0;
175 } else if (X->n == limbs) {
176 memset(X->p, 0, limbs * ciL);
Gilles Peskineed32b572021-06-02 22:17:52 +0200177 X->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100178 return 0;
179 } else {
180 mbedtls_mpi_free(X);
181 return mbedtls_mpi_grow(X, limbs);
Gilles Peskineed32b572021-06-02 22:17:52 +0200182 }
183}
184
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100185/*
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200186 * Copy the contents of Y into X.
187 *
188 * This function is not constant-time. Leading zeros in Y may be removed.
189 *
190 * Ensure that X does not shrink. This is not guaranteed by the public API,
191 * but some code in the bignum module relies on this property, for example
192 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000193 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100194int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000195{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100196 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000197 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100198 MPI_VALIDATE_RET(X != NULL);
199 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000200
Gilles Peskine449bd832023-01-11 14:50:10 +0100201 if (X == Y) {
202 return 0;
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200203 }
204
Gilles Peskine449bd832023-01-11 14:50:10 +0100205 if (Y->n == 0) {
206 if (X->n != 0) {
207 X->s = 1;
208 memset(X->p, 0, X->n * ciL);
209 }
210 return 0;
211 }
212
213 for (i = Y->n - 1; i > 0; i--) {
214 if (Y->p[i] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000215 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100216 }
217 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000218 i++;
219
220 X->s = Y->s;
221
Gilles Peskine449bd832023-01-11 14:50:10 +0100222 if (X->n < i) {
223 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
224 } else {
225 memset(X->p + i, 0, (X->n - i) * ciL);
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100226 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000227
Gilles Peskine449bd832023-01-11 14:50:10 +0100228 memcpy(X->p, Y->p, i * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000229
230cleanup:
231
Gilles Peskine449bd832023-01-11 14:50:10 +0100232 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000233}
234
235/*
236 * Swap the contents of X and Y
237 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100238void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000239{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200240 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100241 MPI_VALIDATE(X != NULL);
242 MPI_VALIDATE(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000243
Gilles Peskine449bd832023-01-11 14:50:10 +0100244 memcpy(&T, X, sizeof(mbedtls_mpi));
245 memcpy(X, Y, sizeof(mbedtls_mpi));
246 memcpy(Y, &T, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +0000247}
248
Gilles Peskine449bd832023-01-11 14:50:10 +0100249static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100250{
Gilles Peskine449bd832023-01-11 14:50:10 +0100251 if (z >= 0) {
252 return z;
253 }
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100254 /* Take care to handle the most negative value (-2^(biL-1)) correctly.
255 * A naive -z would have undefined behavior.
256 * Write this in a way that makes popular compilers happy (GCC, Clang,
257 * MSVC). */
Gilles Peskine449bd832023-01-11 14:50:10 +0100258 return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100259}
260
Dave Rodgmanf3df1052023-08-09 18:55:41 +0100261/* Convert x to a sign, i.e. to 1, if x is positive, or -1, if x is negative.
262 * This looks awkward but generates smaller code than (x < 0 ? -1 : 1) */
263#define TO_SIGN(x) ((((mbedtls_mpi_uint)x) >> (biL - 1)) * -2 + 1)
264
Paul Bakker5121ce52009-01-03 21:22:43 +0000265/*
266 * Set value from integer
267 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100268int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +0000269{
Janos Follath24eed8d2019-11-22 13:21:35 +0000270 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100271 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000272
Gilles Peskine449bd832023-01-11 14:50:10 +0100273 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
274 memset(X->p, 0, X->n * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000275
Gilles Peskine449bd832023-01-11 14:50:10 +0100276 X->p[0] = mpi_sint_abs(z);
Dave Rodgmanf3df1052023-08-09 18:55:41 +0100277 X->s = TO_SIGN(z);
Paul Bakker5121ce52009-01-03 21:22:43 +0000278
279cleanup:
280
Gilles Peskine449bd832023-01-11 14:50:10 +0100281 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000282}
283
284/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000285 * Get a specific bit
286 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100287int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000288{
Gilles Peskine449bd832023-01-11 14:50:10 +0100289 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000290
Gilles Peskine449bd832023-01-11 14:50:10 +0100291 if (X->n * biL <= pos) {
292 return 0;
293 }
Paul Bakker2f5947e2011-05-18 15:47:11 +0000294
Gilles Peskine449bd832023-01-11 14:50:10 +0100295 return (X->p[pos / biL] >> (pos % biL)) & 0x01;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000296}
297
298/*
299 * Set a bit to a specific value of 0 or 1
300 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100301int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000302{
303 int ret = 0;
304 size_t off = pos / biL;
305 size_t idx = pos % biL;
Gilles Peskine449bd832023-01-11 14:50:10 +0100306 MPI_VALIDATE_RET(X != NULL);
Paul Bakker2f5947e2011-05-18 15:47:11 +0000307
Gilles Peskine449bd832023-01-11 14:50:10 +0100308 if (val != 0 && val != 1) {
309 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000310 }
311
Gilles Peskine449bd832023-01-11 14:50:10 +0100312 if (X->n * biL <= pos) {
313 if (val == 0) {
314 return 0;
315 }
316
317 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
318 }
319
320 X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200321 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000322
323cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200324
Gilles Peskine449bd832023-01-11 14:50:10 +0100325 return ret;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000326}
327
328/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200329 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000330 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100331size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000332{
Dave Rodgmanfa703e32023-08-09 18:56:07 +0100333 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100334 MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000335
Dave Rodgmanfa703e32023-08-09 18:56:07 +0100336#if defined(__has_builtin)
337#if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_ctz)
338 #define mbedtls_mpi_uint_ctz __builtin_ctz
339#elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_ctzl)
340 #define mbedtls_mpi_uint_ctz __builtin_ctzl
341#elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_ctzll)
342 #define mbedtls_mpi_uint_ctz __builtin_ctzll
343#endif
344#endif
345
346#if defined(mbedtls_mpi_uint_ctz)
Gilles Peskine449bd832023-01-11 14:50:10 +0100347 for (i = 0; i < X->n; i++) {
Dave Rodgmanfa703e32023-08-09 18:56:07 +0100348 if (X->p[i] != 0) return i * biL + mbedtls_mpi_uint_ctz(X->p[i]);
349 }
350#else
351 size_t count = 0;
352 for (i = 0; i < X->n; i++) {
353 for (size_t j = 0; j < biL; j++, count++) {
Gilles Peskine449bd832023-01-11 14:50:10 +0100354 if (((X->p[i] >> j) & 1) != 0) {
355 return count;
356 }
357 }
358 }
Dave Rodgmanfa703e32023-08-09 18:56:07 +0100359#endif
Paul Bakker5121ce52009-01-03 21:22:43 +0000360
Gilles Peskine449bd832023-01-11 14:50:10 +0100361 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000362}
363
364/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200365 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000366 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100367size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000368{
Gilles Peskine449bd832023-01-11 14:50:10 +0100369 return mbedtls_mpi_core_bitlen(X->p, X->n);
Paul Bakker5121ce52009-01-03 21:22:43 +0000370}
371
372/*
373 * Return the total size in bytes
374 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100375size_t mbedtls_mpi_size(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000376{
Gilles Peskine449bd832023-01-11 14:50:10 +0100377 return (mbedtls_mpi_bitlen(X) + 7) >> 3;
Paul Bakker5121ce52009-01-03 21:22:43 +0000378}
379
380/*
381 * Convert an ASCII character to digit value
382 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100383static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
Paul Bakker5121ce52009-01-03 21:22:43 +0000384{
385 *d = 255;
386
Gilles Peskine449bd832023-01-11 14:50:10 +0100387 if (c >= 0x30 && c <= 0x39) {
388 *d = c - 0x30;
389 }
390 if (c >= 0x41 && c <= 0x46) {
391 *d = c - 0x37;
392 }
393 if (c >= 0x61 && c <= 0x66) {
394 *d = c - 0x57;
395 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000396
Gilles Peskine449bd832023-01-11 14:50:10 +0100397 if (*d >= (mbedtls_mpi_uint) radix) {
398 return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
399 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000400
Gilles Peskine449bd832023-01-11 14:50:10 +0100401 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000402}
403
404/*
405 * Import from an ASCII string
406 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100407int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
Paul Bakker5121ce52009-01-03 21:22:43 +0000408{
Janos Follath24eed8d2019-11-22 13:21:35 +0000409 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000410 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200411 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200412 mbedtls_mpi_uint d;
413 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100414 MPI_VALIDATE_RET(X != NULL);
415 MPI_VALIDATE_RET(s != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000416
Gilles Peskine449bd832023-01-11 14:50:10 +0100417 if (radix < 2 || radix > 16) {
418 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskine7cba8592021-06-08 18:32:34 +0200419 }
420
Gilles Peskine449bd832023-01-11 14:50:10 +0100421 mbedtls_mpi_init(&T);
422
423 if (s[0] == 0) {
424 mbedtls_mpi_free(X);
425 return 0;
426 }
427
428 if (s[0] == '-') {
Gilles Peskine80f56732021-04-03 18:26:13 +0200429 ++s;
430 sign = -1;
431 }
432
Gilles Peskine449bd832023-01-11 14:50:10 +0100433 slen = strlen(s);
Paul Bakkerff60ee62010-03-16 21:09:09 +0000434
Gilles Peskine449bd832023-01-11 14:50:10 +0100435 if (radix == 16) {
Dave Rodgman68ef1d62023-05-18 20:49:03 +0100436 if (slen > SIZE_MAX >> 2) {
Gilles Peskine449bd832023-01-11 14:50:10 +0100437 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker5121ce52009-01-03 21:22:43 +0000438 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000439
Gilles Peskine449bd832023-01-11 14:50:10 +0100440 n = BITS_TO_LIMBS(slen << 2);
441
442 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
443 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
444
445 for (i = slen, j = 0; i > 0; i--, j++) {
446 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
447 X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
448 }
449 } else {
450 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
451
452 for (i = 0; i < slen; i++) {
453 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
454 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
455 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
Paul Bakker5121ce52009-01-03 21:22:43 +0000456 }
457 }
458
Gilles Peskine449bd832023-01-11 14:50:10 +0100459 if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
Gilles Peskine80f56732021-04-03 18:26:13 +0200460 X->s = -1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100461 }
Gilles Peskine80f56732021-04-03 18:26:13 +0200462
Paul Bakker5121ce52009-01-03 21:22:43 +0000463cleanup:
464
Gilles Peskine449bd832023-01-11 14:50:10 +0100465 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000466
Gilles Peskine449bd832023-01-11 14:50:10 +0100467 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000468}
469
470/*
Ron Eldora16fa292018-11-20 14:07:01 +0200471 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000472 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100473static int mpi_write_hlp(mbedtls_mpi *X, int radix,
474 char **p, const size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000475{
Janos Follath24eed8d2019-11-22 13:21:35 +0000476 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200477 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200478 size_t length = 0;
479 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000480
Gilles Peskine449bd832023-01-11 14:50:10 +0100481 do {
482 if (length >= buflen) {
483 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Ron Eldora16fa292018-11-20 14:07:01 +0200484 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000485
Gilles Peskine449bd832023-01-11 14:50:10 +0100486 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
487 MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
Ron Eldora16fa292018-11-20 14:07:01 +0200488 /*
489 * Write the residue in the current position, as an ASCII character.
490 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100491 if (r < 0xA) {
492 *(--p_end) = (char) ('0' + r);
493 } else {
494 *(--p_end) = (char) ('A' + (r - 0xA));
495 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000496
Ron Eldora16fa292018-11-20 14:07:01 +0200497 length++;
Gilles Peskine449bd832023-01-11 14:50:10 +0100498 } while (mbedtls_mpi_cmp_int(X, 0) != 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000499
Gilles Peskine449bd832023-01-11 14:50:10 +0100500 memmove(*p, p_end, length);
Ron Eldora16fa292018-11-20 14:07:01 +0200501 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000502
503cleanup:
504
Gilles Peskine449bd832023-01-11 14:50:10 +0100505 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000506}
507
508/*
509 * Export into an ASCII string
510 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100511int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
512 char *buf, size_t buflen, size_t *olen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000513{
Paul Bakker23986e52011-04-24 08:57:21 +0000514 int ret = 0;
515 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000516 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200517 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100518 MPI_VALIDATE_RET(X != NULL);
519 MPI_VALIDATE_RET(olen != NULL);
520 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000521
Gilles Peskine449bd832023-01-11 14:50:10 +0100522 if (radix < 2 || radix > 16) {
523 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
524 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000525
Gilles Peskine449bd832023-01-11 14:50:10 +0100526 n = mbedtls_mpi_bitlen(X); /* Number of bits necessary to present `n`. */
527 if (radix >= 4) {
528 n >>= 1; /* Number of 4-adic digits necessary to present
Hanno Becker23cfea02019-02-04 09:45:07 +0000529 * `n`. If radix > 4, this might be a strict
530 * overapproximation of the number of
531 * radix-adic digits needed to present `n`. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100532 }
533 if (radix >= 16) {
534 n >>= 1; /* Number of hexadecimal digits necessary to
Hanno Becker23cfea02019-02-04 09:45:07 +0000535 * present `n`. */
536
Gilles Peskine449bd832023-01-11 14:50:10 +0100537 }
Janos Follath80470622019-03-06 13:43:02 +0000538 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000539 n += 1; /* Compensate for the divisions above, which round down `n`
540 * in case it's not even. */
541 n += 1; /* Potential '-'-sign. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100542 n += (n & 1); /* Make n even to have enough space for hexadecimal writing,
Hanno Becker23cfea02019-02-04 09:45:07 +0000543 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000544
Gilles Peskine449bd832023-01-11 14:50:10 +0100545 if (buflen < n) {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100546 *olen = n;
Gilles Peskine449bd832023-01-11 14:50:10 +0100547 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Paul Bakker5121ce52009-01-03 21:22:43 +0000548 }
549
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100550 p = buf;
Gilles Peskine449bd832023-01-11 14:50:10 +0100551 mbedtls_mpi_init(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000552
Gilles Peskine449bd832023-01-11 14:50:10 +0100553 if (X->s == -1) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000554 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000555 buflen--;
556 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000557
Gilles Peskine449bd832023-01-11 14:50:10 +0100558 if (radix == 16) {
Paul Bakker23986e52011-04-24 08:57:21 +0000559 int c;
560 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000561
Gilles Peskine449bd832023-01-11 14:50:10 +0100562 for (i = X->n, k = 0; i > 0; i--) {
563 for (j = ciL; j > 0; j--) {
564 c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000565
Gilles Peskine449bd832023-01-11 14:50:10 +0100566 if (c == 0 && k == 0 && (i + j) != 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000567 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +0100568 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000569
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000570 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000571 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000572 k = 1;
573 }
574 }
Gilles Peskine449bd832023-01-11 14:50:10 +0100575 } else {
576 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000577
Gilles Peskine449bd832023-01-11 14:50:10 +0100578 if (T.s == -1) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000579 T.s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100580 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000581
Gilles Peskine449bd832023-01-11 14:50:10 +0100582 MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
Paul Bakker5121ce52009-01-03 21:22:43 +0000583 }
584
585 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100586 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000587
588cleanup:
589
Gilles Peskine449bd832023-01-11 14:50:10 +0100590 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000591
Gilles Peskine449bd832023-01-11 14:50:10 +0100592 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000593}
594
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200595#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000596/*
597 * Read X from an opened file
598 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100599int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
Paul Bakker5121ce52009-01-03 21:22:43 +0000600{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200601 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000602 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000603 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000604 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000605 * Buffer should have space for (short) label and decimal formatted MPI,
606 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000607 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100608 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
Paul Bakker5121ce52009-01-03 21:22:43 +0000609
Gilles Peskine449bd832023-01-11 14:50:10 +0100610 MPI_VALIDATE_RET(X != NULL);
611 MPI_VALIDATE_RET(fin != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000612
Gilles Peskine449bd832023-01-11 14:50:10 +0100613 if (radix < 2 || radix > 16) {
614 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
615 }
Hanno Becker73d7d792018-12-11 10:35:51 +0000616
Gilles Peskine449bd832023-01-11 14:50:10 +0100617 memset(s, 0, sizeof(s));
618 if (fgets(s, sizeof(s) - 1, fin) == NULL) {
619 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
620 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000621
Gilles Peskine449bd832023-01-11 14:50:10 +0100622 slen = strlen(s);
623 if (slen == sizeof(s) - 2) {
624 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
625 }
Paul Bakkercb37aa52011-11-30 16:00:20 +0000626
Gilles Peskine449bd832023-01-11 14:50:10 +0100627 if (slen > 0 && s[slen - 1] == '\n') {
628 slen--; s[slen] = '\0';
629 }
630 if (slen > 0 && s[slen - 1] == '\r') {
631 slen--; s[slen] = '\0';
632 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000633
634 p = s + slen;
Gilles Peskine449bd832023-01-11 14:50:10 +0100635 while (p-- > s) {
636 if (mpi_get_digit(&d, radix, *p) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000637 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100638 }
639 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000640
Gilles Peskine449bd832023-01-11 14:50:10 +0100641 return mbedtls_mpi_read_string(X, radix, p + 1);
Paul Bakker5121ce52009-01-03 21:22:43 +0000642}
643
644/*
645 * Write X into an opened file (or stdout if fout == NULL)
646 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100647int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
Paul Bakker5121ce52009-01-03 21:22:43 +0000648{
Janos Follath24eed8d2019-11-22 13:21:35 +0000649 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000650 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000651 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000652 * Buffer should have space for (short) label and decimal formatted MPI,
653 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000654 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100655 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
656 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000657
Gilles Peskine449bd832023-01-11 14:50:10 +0100658 if (radix < 2 || radix > 16) {
659 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
660 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000661
Gilles Peskine449bd832023-01-11 14:50:10 +0100662 memset(s, 0, sizeof(s));
Paul Bakker5121ce52009-01-03 21:22:43 +0000663
Gilles Peskine449bd832023-01-11 14:50:10 +0100664 MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
Paul Bakker5121ce52009-01-03 21:22:43 +0000665
Gilles Peskine449bd832023-01-11 14:50:10 +0100666 if (p == NULL) {
667 p = "";
668 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000669
Gilles Peskine449bd832023-01-11 14:50:10 +0100670 plen = strlen(p);
671 slen = strlen(s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000672 s[slen++] = '\r';
673 s[slen++] = '\n';
674
Gilles Peskine449bd832023-01-11 14:50:10 +0100675 if (fout != NULL) {
676 if (fwrite(p, 1, plen, fout) != plen ||
677 fwrite(s, 1, slen, fout) != slen) {
678 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
679 }
680 } else {
681 mbedtls_printf("%s%s", p, s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000682 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000683
684cleanup:
685
Gilles Peskine449bd832023-01-11 14:50:10 +0100686 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000687}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200688#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000689
690/*
Janos Follatha778a942019-02-13 10:28:28 +0000691 * Import X from unsigned binary data, little endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100692 *
693 * This function is guaranteed to return an MPI with exactly the necessary
694 * number of limbs (in particular, it does not skip 0s in the input).
Janos Follatha778a942019-02-13 10:28:28 +0000695 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100696int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
697 const unsigned char *buf, size_t buflen)
Janos Follatha778a942019-02-13 10:28:28 +0000698{
Janos Follath24eed8d2019-11-22 13:21:35 +0000699 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100700 const size_t limbs = CHARS_TO_LIMBS(buflen);
Janos Follatha778a942019-02-13 10:28:28 +0000701
702 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +0100703 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Janos Follatha778a942019-02-13 10:28:28 +0000704
Gilles Peskine449bd832023-01-11 14:50:10 +0100705 MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
Janos Follatha778a942019-02-13 10:28:28 +0000706
707cleanup:
708
Janos Follath171a7ef2019-02-15 16:17:45 +0000709 /*
710 * This function is also used to import keys. However, wiping the buffers
711 * upon failure is not necessary because failure only can happen before any
712 * input is copied.
713 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100714 return ret;
Janos Follatha778a942019-02-13 10:28:28 +0000715}
716
717/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000718 * Import X from unsigned binary data, big endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100719 *
720 * This function is guaranteed to return an MPI with exactly the necessary
721 * number of limbs (in particular, it does not skip 0s in the input).
Paul Bakker5121ce52009-01-03 21:22:43 +0000722 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100723int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000724{
Janos Follath24eed8d2019-11-22 13:21:35 +0000725 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100726 const size_t limbs = CHARS_TO_LIMBS(buflen);
Paul Bakker5121ce52009-01-03 21:22:43 +0000727
Gilles Peskine449bd832023-01-11 14:50:10 +0100728 MPI_VALIDATE_RET(X != NULL);
729 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000730
Hanno Becker073c1992017-10-17 15:17:27 +0100731 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +0100732 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Paul Bakker5121ce52009-01-03 21:22:43 +0000733
Gilles Peskine449bd832023-01-11 14:50:10 +0100734 MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
Paul Bakker5121ce52009-01-03 21:22:43 +0000735
736cleanup:
737
Janos Follath171a7ef2019-02-15 16:17:45 +0000738 /*
739 * This function is also used to import keys. However, wiping the buffers
740 * upon failure is not necessary because failure only can happen before any
741 * input is copied.
742 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100743 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000744}
745
746/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000747 * Export X into unsigned binary data, little endian
748 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100749int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
750 unsigned char *buf, size_t buflen)
Janos Follathe344d0f2019-02-19 16:17:40 +0000751{
Gilles Peskine449bd832023-01-11 14:50:10 +0100752 return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
Janos Follathe344d0f2019-02-19 16:17:40 +0000753}
754
755/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000756 * Export X into unsigned binary data, big endian
757 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100758int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
759 unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000760{
Gilles Peskine449bd832023-01-11 14:50:10 +0100761 return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
Paul Bakker5121ce52009-01-03 21:22:43 +0000762}
763
764/*
765 * Left-shift: X <<= count
766 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100767int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000768{
Janos Follath24eed8d2019-11-22 13:21:35 +0000769 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Minos Galanakis0144b352023-05-02 14:02:32 +0100770 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100771 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000772
Gilles Peskine449bd832023-01-11 14:50:10 +0100773 i = mbedtls_mpi_bitlen(X) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000774
Gilles Peskine449bd832023-01-11 14:50:10 +0100775 if (X->n * biL < i) {
776 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
777 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000778
779 ret = 0;
780
Minos Galanakis0144b352023-05-02 14:02:32 +0100781 mbedtls_mpi_core_shift_l(X->p, X->n, count);
Paul Bakker5121ce52009-01-03 21:22:43 +0000782cleanup:
783
Gilles Peskine449bd832023-01-11 14:50:10 +0100784 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000785}
786
787/*
788 * Right-shift: X >>= count
789 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100790int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000791{
Gilles Peskine449bd832023-01-11 14:50:10 +0100792 MPI_VALIDATE_RET(X != NULL);
793 if (X->n != 0) {
794 mbedtls_mpi_core_shift_r(X->p, X->n, count);
795 }
796 return 0;
Gilles Peskine66414202022-09-21 15:36:16 +0200797}
798
Paul Bakker5121ce52009-01-03 21:22:43 +0000799/*
800 * Compare unsigned values
801 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100802int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000803{
Paul Bakker23986e52011-04-24 08:57:21 +0000804 size_t i, j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100805 MPI_VALIDATE_RET(X != NULL);
806 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000807
Gilles Peskine449bd832023-01-11 14:50:10 +0100808 for (i = X->n; i > 0; i--) {
809 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000810 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100811 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000812 }
813
Gilles Peskine449bd832023-01-11 14:50:10 +0100814 for (j = Y->n; j > 0; j--) {
815 if (Y->p[j - 1] != 0) {
816 break;
817 }
818 }
819
820 if (i == 0 && j == 0) {
821 return 0;
822 }
823
824 if (i > j) {
825 return 1;
826 }
827 if (j > i) {
828 return -1;
829 }
830
831 for (; i > 0; i--) {
832 if (X->p[i - 1] > Y->p[i - 1]) {
833 return 1;
834 }
835 if (X->p[i - 1] < Y->p[i - 1]) {
836 return -1;
837 }
838 }
839
840 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000841}
842
843/*
844 * Compare signed values
845 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100846int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000847{
Paul Bakker23986e52011-04-24 08:57:21 +0000848 size_t i, j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100849 MPI_VALIDATE_RET(X != NULL);
850 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000851
Gilles Peskine449bd832023-01-11 14:50:10 +0100852 for (i = X->n; i > 0; i--) {
853 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000854 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100855 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000856 }
857
Gilles Peskine449bd832023-01-11 14:50:10 +0100858 for (j = Y->n; j > 0; j--) {
859 if (Y->p[j - 1] != 0) {
860 break;
861 }
862 }
863
864 if (i == 0 && j == 0) {
865 return 0;
866 }
867
868 if (i > j) {
869 return X->s;
870 }
871 if (j > i) {
872 return -Y->s;
873 }
874
875 if (X->s > 0 && Y->s < 0) {
876 return 1;
877 }
878 if (Y->s > 0 && X->s < 0) {
879 return -1;
880 }
881
882 for (; i > 0; i--) {
883 if (X->p[i - 1] > Y->p[i - 1]) {
884 return X->s;
885 }
886 if (X->p[i - 1] < Y->p[i - 1]) {
887 return -X->s;
888 }
889 }
890
891 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000892}
893
Janos Follathee6abce2019-09-05 14:47:19 +0100894/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000895 * Compare signed values
896 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100897int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +0000898{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200899 mbedtls_mpi Y;
900 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +0100901 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000902
Gilles Peskine449bd832023-01-11 14:50:10 +0100903 *p = mpi_sint_abs(z);
Dave Rodgmanf3df1052023-08-09 18:55:41 +0100904 Y.s = TO_SIGN(z);
Paul Bakker5121ce52009-01-03 21:22:43 +0000905 Y.n = 1;
906 Y.p = p;
907
Gilles Peskine449bd832023-01-11 14:50:10 +0100908 return mbedtls_mpi_cmp_mpi(X, &Y);
Paul Bakker5121ce52009-01-03 21:22:43 +0000909}
910
911/*
912 * Unsigned addition: X = |A| + |B| (HAC 14.7)
913 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100914int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +0000915{
Janos Follath24eed8d2019-11-22 13:21:35 +0000916 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100917 size_t j;
Agathiyan Bragadeeshc99840a2023-07-12 11:15:46 +0100918 mbedtls_mpi_uint *p;
919 mbedtls_mpi_uint c;
Gilles Peskine449bd832023-01-11 14:50:10 +0100920 MPI_VALIDATE_RET(X != NULL);
921 MPI_VALIDATE_RET(A != NULL);
922 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000923
Gilles Peskine449bd832023-01-11 14:50:10 +0100924 if (X == B) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200925 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +0000926 }
927
Gilles Peskine449bd832023-01-11 14:50:10 +0100928 if (X != A) {
929 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
930 }
Paul Bakker9af723c2014-05-01 13:03:14 +0200931
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000932 /*
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100933 * X must always be positive as a result of unsigned additions.
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000934 */
935 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000936
Gilles Peskine449bd832023-01-11 14:50:10 +0100937 for (j = B->n; j > 0; j--) {
938 if (B->p[j - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000939 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100940 }
941 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000942
Gilles Peskinedb14a9d2022-11-15 22:59:00 +0100943 /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
944 * and B is 0 (of any size). */
Gilles Peskine449bd832023-01-11 14:50:10 +0100945 if (j == 0) {
946 return 0;
947 }
Gilles Peskinedb14a9d2022-11-15 22:59:00 +0100948
Gilles Peskine449bd832023-01-11 14:50:10 +0100949 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
Paul Bakker5121ce52009-01-03 21:22:43 +0000950
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100951 /* j is the number of non-zero limbs of B. Add those to X. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000952
Agathiyan Bragadeeshc99840a2023-07-12 11:15:46 +0100953 p = X->p;
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100954
Agathiyan Bragadeeshc99840a2023-07-12 11:15:46 +0100955 c = mbedtls_mpi_core_add(p, p, B->p, j);
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100956
957 p += j;
958
959 /* Now propagate any carry */
Paul Bakker5121ce52009-01-03 21:22:43 +0000960
Gilles Peskine449bd832023-01-11 14:50:10 +0100961 while (c != 0) {
962 if (j >= X->n) {
963 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100964 p = X->p + j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000965 }
966
Gilles Peskine449bd832023-01-11 14:50:10 +0100967 *p += c; c = (*p < c); j++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +0000968 }
969
970cleanup:
971
Gilles Peskine449bd832023-01-11 14:50:10 +0100972 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000973}
974
Paul Bakker5121ce52009-01-03 21:22:43 +0000975/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200976 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +0000977 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100978int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +0000979{
Janos Follath24eed8d2019-11-22 13:21:35 +0000980 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000981 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200982 mbedtls_mpi_uint carry;
Gilles Peskine449bd832023-01-11 14:50:10 +0100983 MPI_VALIDATE_RET(X != NULL);
984 MPI_VALIDATE_RET(A != NULL);
985 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000986
Gilles Peskine449bd832023-01-11 14:50:10 +0100987 for (n = B->n; n > 0; n--) {
988 if (B->p[n - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000989 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100990 }
991 }
992 if (n > A->n) {
Gilles Peskinec8a91772021-01-27 22:30:43 +0100993 /* B >= (2^ciL)^n > A */
994 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
995 goto cleanup;
996 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000997
Gilles Peskine449bd832023-01-11 14:50:10 +0100998 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200999
1000 /* Set the high limbs of X to match A. Don't touch the lower limbs
1001 * because X might be aliased to B, and we must not overwrite the
1002 * significant digits of B. */
Aaron M. Uckoaf67d2c2023-01-17 11:52:22 -05001003 if (A->n > n && A != X) {
Gilles Peskine449bd832023-01-11 14:50:10 +01001004 memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
1005 }
1006 if (X->n > A->n) {
1007 memset(X->p + A->n, 0, (X->n - A->n) * ciL);
1008 }
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001009
Gilles Peskine449bd832023-01-11 14:50:10 +01001010 carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
1011 if (carry != 0) {
Tom Cosgrove452c99c2022-08-25 10:07:07 +01001012 /* Propagate the carry through the rest of X. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001013 carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
Tom Cosgrove452c99c2022-08-25 10:07:07 +01001014
1015 /* If we have further carry/borrow, the result is negative. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001016 if (carry != 0) {
Gilles Peskine89b41302020-07-23 01:16:46 +02001017 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1018 goto cleanup;
1019 }
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001020 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001021
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001022 /* X should always be positive as a result of unsigned subtractions. */
1023 X->s = 1;
1024
Paul Bakker5121ce52009-01-03 21:22:43 +00001025cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001026 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001027}
1028
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001029/* Common function for signed addition and subtraction.
1030 * Calculate A + B * flip_B where flip_B is 1 or -1.
Paul Bakker5121ce52009-01-03 21:22:43 +00001031 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001032static int add_sub_mpi(mbedtls_mpi *X,
1033 const mbedtls_mpi *A, const mbedtls_mpi *B,
1034 int flip_B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001035{
Hanno Becker73d7d792018-12-11 10:35:51 +00001036 int ret, s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001037 MPI_VALIDATE_RET(X != NULL);
1038 MPI_VALIDATE_RET(A != NULL);
1039 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001040
Hanno Becker73d7d792018-12-11 10:35:51 +00001041 s = A->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001042 if (A->s * B->s * flip_B < 0) {
1043 int cmp = mbedtls_mpi_cmp_abs(A, B);
1044 if (cmp >= 0) {
1045 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
Gilles Peskine4a768dd2022-11-09 22:02:16 +01001046 /* If |A| = |B|, the result is 0 and we must set the sign bit
1047 * to +1 regardless of which of A or B was negative. Otherwise,
1048 * since |A| > |B|, the sign is the sign of A. */
1049 X->s = cmp == 0 ? 1 : s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001050 } else {
1051 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
Gilles Peskine4a768dd2022-11-09 22:02:16 +01001052 /* Since |A| < |B|, the sign is the opposite of A. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001053 X->s = -s;
1054 }
Gilles Peskine449bd832023-01-11 14:50:10 +01001055 } else {
1056 MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001057 X->s = s;
1058 }
1059
1060cleanup:
1061
Gilles Peskine449bd832023-01-11 14:50:10 +01001062 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001063}
1064
1065/*
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001066 * Signed addition: X = A + B
1067 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001068int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001069{
Gilles Peskine449bd832023-01-11 14:50:10 +01001070 return add_sub_mpi(X, A, B, 1);
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001071}
1072
1073/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001074 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001075 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001076int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001077{
Gilles Peskine449bd832023-01-11 14:50:10 +01001078 return add_sub_mpi(X, A, B, -1);
Paul Bakker5121ce52009-01-03 21:22:43 +00001079}
1080
1081/*
1082 * Signed addition: X = A + b
1083 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001084int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001085{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001086 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001087 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001088 MPI_VALIDATE_RET(X != NULL);
1089 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001090
Gilles Peskine449bd832023-01-11 14:50:10 +01001091 p[0] = mpi_sint_abs(b);
Dave Rodgmanf3df1052023-08-09 18:55:41 +01001092 B.s = TO_SIGN(b);
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001093 B.n = 1;
1094 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001095
Gilles Peskine449bd832023-01-11 14:50:10 +01001096 return mbedtls_mpi_add_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001097}
1098
1099/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001100 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001101 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001102int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001103{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001104 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001105 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001106 MPI_VALIDATE_RET(X != NULL);
1107 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001108
Gilles Peskine449bd832023-01-11 14:50:10 +01001109 p[0] = mpi_sint_abs(b);
Dave Rodgmanf3df1052023-08-09 18:55:41 +01001110 B.s = TO_SIGN(b);
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001111 B.n = 1;
1112 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001113
Gilles Peskine449bd832023-01-11 14:50:10 +01001114 return mbedtls_mpi_sub_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001115}
1116
Paul Bakker5121ce52009-01-03 21:22:43 +00001117/*
1118 * Baseline multiplication: X = A * B (HAC 14.12)
1119 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001120int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001121{
Janos Follath24eed8d2019-11-22 13:21:35 +00001122 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker1772e052022-04-13 06:51:40 +01001123 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001124 mbedtls_mpi TA, TB;
Hanno Beckerda763de2022-04-13 06:50:02 +01001125 int result_is_zero = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001126 MPI_VALIDATE_RET(X != NULL);
1127 MPI_VALIDATE_RET(A != NULL);
1128 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001129
Tom Cosgrove6af26f32022-08-24 16:40:55 +01001130 mbedtls_mpi_init(&TA);
1131 mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00001132
Gilles Peskine449bd832023-01-11 14:50:10 +01001133 if (X == A) {
1134 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
1135 }
1136 if (X == B) {
1137 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
1138 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001139
Gilles Peskine449bd832023-01-11 14:50:10 +01001140 for (i = A->n; i > 0; i--) {
1141 if (A->p[i - 1] != 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001142 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001143 }
1144 }
1145 if (i == 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001146 result_is_zero = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001147 }
Hanno Beckerda763de2022-04-13 06:50:02 +01001148
Gilles Peskine449bd832023-01-11 14:50:10 +01001149 for (j = B->n; j > 0; j--) {
1150 if (B->p[j - 1] != 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001151 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001152 }
1153 }
1154 if (j == 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001155 result_is_zero = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001156 }
Hanno Beckerda763de2022-04-13 06:50:02 +01001157
Gilles Peskine449bd832023-01-11 14:50:10 +01001158 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
1159 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
Paul Bakker5121ce52009-01-03 21:22:43 +00001160
Tom Cosgrove6af26f32022-08-24 16:40:55 +01001161 mbedtls_mpi_core_mul(X->p, A->p, i, B->p, j);
Paul Bakker5121ce52009-01-03 21:22:43 +00001162
Hanno Beckerda763de2022-04-13 06:50:02 +01001163 /* If the result is 0, we don't shortcut the operation, which reduces
1164 * but does not eliminate side channels leaking the zero-ness. We do
1165 * need to take care to set the sign bit properly since the library does
1166 * not fully support an MPI object with a value of 0 and s == -1. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001167 if (result_is_zero) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001168 X->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001169 } else {
Hanno Beckerda763de2022-04-13 06:50:02 +01001170 X->s = A->s * B->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001171 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001172
1173cleanup:
1174
Gilles Peskine449bd832023-01-11 14:50:10 +01001175 mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
Paul Bakker5121ce52009-01-03 21:22:43 +00001176
Gilles Peskine449bd832023-01-11 14:50:10 +01001177 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001178}
1179
1180/*
1181 * Baseline multiplication: X = A * b
1182 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001183int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001184{
Gilles Peskine449bd832023-01-11 14:50:10 +01001185 MPI_VALIDATE_RET(X != NULL);
1186 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001187
Hanno Becker35771312022-04-14 11:52:11 +01001188 size_t n = A->n;
Gilles Peskine449bd832023-01-11 14:50:10 +01001189 while (n > 0 && A->p[n - 1] == 0) {
Hanno Becker35771312022-04-14 11:52:11 +01001190 --n;
Gilles Peskine449bd832023-01-11 14:50:10 +01001191 }
Hanno Becker35771312022-04-14 11:52:11 +01001192
Hanno Becker74a11a32022-04-06 06:27:00 +01001193 /* The general method below doesn't work if b==0. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001194 if (b == 0 || n == 0) {
1195 return mbedtls_mpi_lset(X, 0);
1196 }
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001197
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001198 /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001199 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001200 /* In general, A * b requires 1 limb more than b. If
1201 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1202 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001203 * copy() will take care of the growth if needed. However, experimentally,
1204 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001205 * calls to calloc() in ECP code, presumably because it reuses the
1206 * same mpi for a while and this way the mpi is more likely to directly
Hanno Becker9137b9c2022-04-12 10:51:54 +01001207 * grow to its final size.
1208 *
1209 * Note that calculating A*b as 0 + A*b doesn't work as-is because
1210 * A,X can be the same. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001211 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
1212 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1213 mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001214
1215cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001216 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001217}
1218
1219/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001220 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1221 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001222 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001223static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
1224 mbedtls_mpi_uint u0,
1225 mbedtls_mpi_uint d,
1226 mbedtls_mpi_uint *r)
Simon Butcher15b15d12015-11-26 19:35:03 +00001227{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001228#if defined(MBEDTLS_HAVE_UDBL)
1229 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001230#else
Simon Butcher9803d072016-01-03 00:24:34 +00001231 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
Gilles Peskine449bd832023-01-11 14:50:10 +01001232 const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001233 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1234 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001235 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001236#endif
1237
Simon Butcher15b15d12015-11-26 19:35:03 +00001238 /*
1239 * Check for overflow
1240 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001241 if (0 == d || u1 >= d) {
1242 if (r != NULL) {
1243 *r = ~(mbedtls_mpi_uint) 0u;
1244 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001245
Gilles Peskine449bd832023-01-11 14:50:10 +01001246 return ~(mbedtls_mpi_uint) 0u;
Simon Butcher15b15d12015-11-26 19:35:03 +00001247 }
1248
1249#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001250 dividend = (mbedtls_t_udbl) u1 << biL;
1251 dividend |= (mbedtls_t_udbl) u0;
1252 quotient = dividend / d;
Gilles Peskine449bd832023-01-11 14:50:10 +01001253 if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
1254 quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
1255 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001256
Gilles Peskine449bd832023-01-11 14:50:10 +01001257 if (r != NULL) {
1258 *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
1259 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001260
1261 return (mbedtls_mpi_uint) quotient;
1262#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001263
1264 /*
1265 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1266 * Vol. 2 - Seminumerical Algorithms, Knuth
1267 */
1268
1269 /*
1270 * Normalize the divisor, d, and dividend, u0, u1
1271 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001272 s = mbedtls_mpi_core_clz(d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001273 d = d << s;
1274
1275 u1 = u1 << s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001276 u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
Simon Butcher15b15d12015-11-26 19:35:03 +00001277 u0 = u0 << s;
1278
1279 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001280 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001281
1282 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001283 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001284
1285 /*
1286 * Find the first quotient and remainder
1287 */
1288 q1 = u1 / d1;
1289 r0 = u1 - d1 * q1;
1290
Gilles Peskine449bd832023-01-11 14:50:10 +01001291 while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001292 q1 -= 1;
1293 r0 += d1;
1294
Gilles Peskine449bd832023-01-11 14:50:10 +01001295 if (r0 >= radix) {
1296 break;
1297 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001298 }
1299
Gilles Peskine449bd832023-01-11 14:50:10 +01001300 rAX = (u1 * radix) + (u0_msw - q1 * d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001301 q0 = rAX / d1;
1302 r0 = rAX - q0 * d1;
1303
Gilles Peskine449bd832023-01-11 14:50:10 +01001304 while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001305 q0 -= 1;
1306 r0 += d1;
1307
Gilles Peskine449bd832023-01-11 14:50:10 +01001308 if (r0 >= radix) {
1309 break;
1310 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001311 }
1312
Gilles Peskine449bd832023-01-11 14:50:10 +01001313 if (r != NULL) {
1314 *r = (rAX * radix + u0_lsw - q0 * d) >> s;
1315 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001316
1317 quotient = q1 * radix + q0;
1318
1319 return quotient;
1320#endif
1321}
1322
1323/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001324 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001325 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001326int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1327 const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001328{
Janos Follath24eed8d2019-11-22 13:21:35 +00001329 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001330 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001331 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001332 mbedtls_mpi_uint TP2[3];
Gilles Peskine449bd832023-01-11 14:50:10 +01001333 MPI_VALIDATE_RET(A != NULL);
1334 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001335
Gilles Peskine449bd832023-01-11 14:50:10 +01001336 if (mbedtls_mpi_cmp_int(B, 0) == 0) {
1337 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1338 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001339
Gilles Peskine449bd832023-01-11 14:50:10 +01001340 mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
1341 mbedtls_mpi_init(&T1);
Alexander Kd19a1932019-11-01 18:20:42 +03001342 /*
1343 * Avoid dynamic memory allocations for constant-size T2.
1344 *
1345 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1346 * so nobody increase the size of the MPI and we're safe to use an on-stack
1347 * buffer.
1348 */
Alexander K35d6d462019-10-31 14:46:45 +03001349 T2.s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001350 T2.n = sizeof(TP2) / sizeof(*TP2);
Alexander Kd19a1932019-11-01 18:20:42 +03001351 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001352
Gilles Peskine449bd832023-01-11 14:50:10 +01001353 if (mbedtls_mpi_cmp_abs(A, B) < 0) {
1354 if (Q != NULL) {
1355 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
1356 }
1357 if (R != NULL) {
1358 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
1359 }
1360 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001361 }
1362
Gilles Peskine449bd832023-01-11 14:50:10 +01001363 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
1364 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001365 X.s = Y.s = 1;
1366
Gilles Peskine449bd832023-01-11 14:50:10 +01001367 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
1368 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z, 0));
1369 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001370
Gilles Peskine449bd832023-01-11 14:50:10 +01001371 k = mbedtls_mpi_bitlen(&Y) % biL;
1372 if (k < biL - 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001373 k = biL - 1 - k;
Gilles Peskine449bd832023-01-11 14:50:10 +01001374 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
1375 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
1376 } else {
1377 k = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001378 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001379
1380 n = X.n - 1;
1381 t = Y.n - 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001382 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001383
Gilles Peskine449bd832023-01-11 14:50:10 +01001384 while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001385 Z.p[n - t]++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001386 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
Paul Bakker5121ce52009-01-03 21:22:43 +00001387 }
Gilles Peskine449bd832023-01-11 14:50:10 +01001388 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001389
Gilles Peskine449bd832023-01-11 14:50:10 +01001390 for (i = n; i > t; i--) {
1391 if (X.p[i] >= Y.p[t]) {
1392 Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
1393 } else {
1394 Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
1395 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001396 }
1397
Gilles Peskine449bd832023-01-11 14:50:10 +01001398 T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
1399 T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
Alexander K35d6d462019-10-31 14:46:45 +03001400 T2.p[2] = X.p[i];
1401
Paul Bakker5121ce52009-01-03 21:22:43 +00001402 Z.p[i - t - 1]++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001403 do {
Paul Bakker5121ce52009-01-03 21:22:43 +00001404 Z.p[i - t - 1]--;
1405
Gilles Peskine449bd832023-01-11 14:50:10 +01001406 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
1407 T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001408 T1.p[1] = Y.p[t];
Gilles Peskine449bd832023-01-11 14:50:10 +01001409 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
1410 } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00001411
Gilles Peskine449bd832023-01-11 14:50:10 +01001412 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
1413 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1414 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001415
Gilles Peskine449bd832023-01-11 14:50:10 +01001416 if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
1417 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
1418 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1419 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001420 Z.p[i - t - 1]--;
1421 }
1422 }
1423
Gilles Peskine449bd832023-01-11 14:50:10 +01001424 if (Q != NULL) {
1425 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
Paul Bakker5121ce52009-01-03 21:22:43 +00001426 Q->s = A->s * B->s;
1427 }
1428
Gilles Peskine449bd832023-01-11 14:50:10 +01001429 if (R != NULL) {
1430 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
Paul Bakkerf02c5642012-11-13 10:25:21 +00001431 X.s = A->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001432 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
Paul Bakker5121ce52009-01-03 21:22:43 +00001433
Gilles Peskine449bd832023-01-11 14:50:10 +01001434 if (mbedtls_mpi_cmp_int(R, 0) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001435 R->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001436 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001437 }
1438
1439cleanup:
1440
Gilles Peskine449bd832023-01-11 14:50:10 +01001441 mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
1442 mbedtls_mpi_free(&T1);
1443 mbedtls_platform_zeroize(TP2, sizeof(TP2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001444
Gilles Peskine449bd832023-01-11 14:50:10 +01001445 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001446}
1447
1448/*
1449 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001450 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001451int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
1452 const mbedtls_mpi *A,
1453 mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001454{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001455 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001456 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001457 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001458
Gilles Peskine449bd832023-01-11 14:50:10 +01001459 p[0] = mpi_sint_abs(b);
Dave Rodgmanf3df1052023-08-09 18:55:41 +01001460 B.s = TO_SIGN(b);
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001461 B.n = 1;
1462 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001463
Gilles Peskine449bd832023-01-11 14:50:10 +01001464 return mbedtls_mpi_div_mpi(Q, R, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001465}
1466
1467/*
1468 * Modulo: R = A mod B
1469 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001470int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001471{
Janos Follath24eed8d2019-11-22 13:21:35 +00001472 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +01001473 MPI_VALIDATE_RET(R != NULL);
1474 MPI_VALIDATE_RET(A != NULL);
1475 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001476
Gilles Peskine449bd832023-01-11 14:50:10 +01001477 if (mbedtls_mpi_cmp_int(B, 0) < 0) {
1478 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1479 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001480
Gilles Peskine449bd832023-01-11 14:50:10 +01001481 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001482
Gilles Peskine449bd832023-01-11 14:50:10 +01001483 while (mbedtls_mpi_cmp_int(R, 0) < 0) {
1484 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
1485 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001486
Gilles Peskine449bd832023-01-11 14:50:10 +01001487 while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
1488 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
1489 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001490
1491cleanup:
1492
Gilles Peskine449bd832023-01-11 14:50:10 +01001493 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001494}
1495
1496/*
1497 * Modulo: r = A mod b
1498 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001499int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001500{
Paul Bakker23986e52011-04-24 08:57:21 +00001501 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001502 mbedtls_mpi_uint x, y, z;
Gilles Peskine449bd832023-01-11 14:50:10 +01001503 MPI_VALIDATE_RET(r != NULL);
1504 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001505
Gilles Peskine449bd832023-01-11 14:50:10 +01001506 if (b == 0) {
1507 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1508 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001509
Gilles Peskine449bd832023-01-11 14:50:10 +01001510 if (b < 0) {
1511 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1512 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001513
1514 /*
1515 * handle trivial cases
1516 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001517 if (b == 1 || A->n == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001518 *r = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001519 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001520 }
1521
Gilles Peskine449bd832023-01-11 14:50:10 +01001522 if (b == 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001523 *r = A->p[0] & 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001524 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001525 }
1526
1527 /*
1528 * general case
1529 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001530 for (i = A->n, y = 0; i > 0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +00001531 x = A->p[i - 1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001532 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001533 z = y / b;
1534 y -= z * b;
1535
1536 x <<= biH;
Gilles Peskine449bd832023-01-11 14:50:10 +01001537 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001538 z = y / b;
1539 y -= z * b;
1540 }
1541
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001542 /*
1543 * If A is negative, then the current y represents a negative value.
1544 * Flipping it to the positive side.
1545 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001546 if (A->s < 0 && y != 0) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001547 y = b - y;
Gilles Peskine449bd832023-01-11 14:50:10 +01001548 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001549
Paul Bakker5121ce52009-01-03 21:22:43 +00001550 *r = y;
1551
Gilles Peskine449bd832023-01-11 14:50:10 +01001552 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001553}
1554
Gilles Peskine449bd832023-01-11 14:50:10 +01001555static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00001556{
Gilles Peskine449bd832023-01-11 14:50:10 +01001557 *mm = mbedtls_mpi_core_montmul_init(N->p);
Paul Bakker5121ce52009-01-03 21:22:43 +00001558}
1559
Tom Cosgrove93842842022-08-05 16:59:43 +01001560/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1561 *
1562 * \param[in,out] A One of the numbers to multiply.
1563 * It must have at least as many limbs as N
1564 * (A->n >= N->n), and any limbs beyond n are ignored.
1565 * On successful completion, A contains the result of
1566 * the multiplication A * B * R^-1 mod N where
1567 * R = (2^ciL)^n.
1568 * \param[in] B One of the numbers to multiply.
1569 * It must be nonzero and must not have more limbs than N
1570 * (B->n <= N->n).
Tom Cosgrove40d22942022-08-17 06:42:44 +01001571 * \param[in] N The modulus. \p N must be odd.
Tom Cosgrove93842842022-08-05 16:59:43 +01001572 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1573 * This is -N^-1 mod 2^ciL.
1574 * \param[in,out] T A bignum for temporary storage.
1575 * It must be at least twice the limb size of N plus 1
1576 * (T->n >= 2 * N->n + 1).
1577 * Its initial content is unused and
1578 * its final content is indeterminate.
Tom Cosgrove5dd97e62022-08-30 14:31:49 +01001579 * It does not get reallocated.
Tom Cosgrove93842842022-08-05 16:59:43 +01001580 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001581static void mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B,
1582 const mbedtls_mpi *N, mbedtls_mpi_uint mm,
1583 mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00001584{
Gilles Peskine449bd832023-01-11 14:50:10 +01001585 mbedtls_mpi_core_montmul(A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p);
Paul Bakker5121ce52009-01-03 21:22:43 +00001586}
1587
1588/*
1589 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001590 *
Tom Cosgrove93842842022-08-05 16:59:43 +01001591 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001592 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001593static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N,
1594 mbedtls_mpi_uint mm, mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00001595{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001596 mbedtls_mpi_uint z = 1;
1597 mbedtls_mpi U;
Gilles Peskine053022f2023-06-29 19:26:48 +02001598 U.n = 1;
1599 U.s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001600 U.p = &z;
1601
Gilles Peskine449bd832023-01-11 14:50:10 +01001602 mpi_montmul(A, &U, N, mm, T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001603}
1604
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001605/**
1606 * Select an MPI from a table without leaking the index.
1607 *
1608 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1609 * reads the entire table in order to avoid leaking the value of idx to an
1610 * attacker able to observe memory access patterns.
1611 *
1612 * \param[out] R Where to write the selected MPI.
1613 * \param[in] T The table to read from.
1614 * \param[in] T_size The number of elements in the table.
1615 * \param[in] idx The index of the element to select;
1616 * this must satisfy 0 <= idx < T_size.
1617 *
1618 * \return \c 0 on success, or a negative error code.
1619 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001620static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx)
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001621{
1622 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1623
Gilles Peskine449bd832023-01-11 14:50:10 +01001624 for (size_t i = 0; i < T_size; i++) {
1625 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i],
1626 (unsigned char) mbedtls_ct_size_bool_eq(i,
1627 idx)));
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001628 }
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001629
1630cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001631 return ret;
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001632}
1633
Paul Bakker5121ce52009-01-03 21:22:43 +00001634/*
1635 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1636 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001637int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
1638 const mbedtls_mpi *E, const mbedtls_mpi *N,
1639 mbedtls_mpi *prec_RR)
Paul Bakker5121ce52009-01-03 21:22:43 +00001640{
Janos Follath24eed8d2019-11-22 13:21:35 +00001641 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath74601202022-11-21 15:54:20 +00001642 size_t window_bitsize;
Paul Bakker23986e52011-04-24 08:57:21 +00001643 size_t i, j, nblimbs;
1644 size_t bufsize, nbits;
Paul Elliott1748de12023-02-13 15:35:35 +00001645 size_t exponent_bits_in_window = 0;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001646 mbedtls_mpi_uint ei, mm, state;
Gilles Peskine449bd832023-01-11 14:50:10 +01001647 mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00001648 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00001649
Gilles Peskine449bd832023-01-11 14:50:10 +01001650 MPI_VALIDATE_RET(X != NULL);
1651 MPI_VALIDATE_RET(A != NULL);
1652 MPI_VALIDATE_RET(E != NULL);
1653 MPI_VALIDATE_RET(N != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00001654
Gilles Peskine449bd832023-01-11 14:50:10 +01001655 if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
1656 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1657 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001658
Gilles Peskine449bd832023-01-11 14:50:10 +01001659 if (mbedtls_mpi_cmp_int(E, 0) < 0) {
1660 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1661 }
Paul Bakkerf6198c12012-05-16 08:02:29 +00001662
Gilles Peskine449bd832023-01-11 14:50:10 +01001663 if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
1664 mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
1665 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1666 }
Chris Jones9246d042020-11-25 15:12:39 +00001667
Paul Bakkerf6198c12012-05-16 08:02:29 +00001668 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001669 * Init temps and window size
1670 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001671 mpi_montg_init(&mm, N);
1672 mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T);
1673 mbedtls_mpi_init(&Apos);
1674 mbedtls_mpi_init(&WW);
1675 memset(W, 0, sizeof(W));
Paul Bakker5121ce52009-01-03 21:22:43 +00001676
Gilles Peskine449bd832023-01-11 14:50:10 +01001677 i = mbedtls_mpi_bitlen(E);
Paul Bakker5121ce52009-01-03 21:22:43 +00001678
Gilles Peskine449bd832023-01-11 14:50:10 +01001679 window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 :
1680 (i > 79) ? 4 : (i > 23) ? 3 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001681
Gilles Peskine449bd832023-01-11 14:50:10 +01001682#if (MBEDTLS_MPI_WINDOW_SIZE < 6)
1683 if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) {
Janos Follath7fa11b82022-11-21 14:48:02 +00001684 window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
Gilles Peskine449bd832023-01-11 14:50:10 +01001685 }
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001686#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00001687
Janos Follathc8d66d52022-11-22 10:47:10 +00001688 const size_t w_table_used_size = (size_t) 1 << window_bitsize;
Janos Follath06000952022-11-22 10:18:06 +00001689
Paul Bakker5121ce52009-01-03 21:22:43 +00001690 /*
Janos Follathbe54ca72022-11-21 16:14:54 +00001691 * This function is not constant-trace: its memory accesses depend on the
1692 * exponent value. To defend against timing attacks, callers (such as RSA
1693 * and DHM) should use exponent blinding. However this is not enough if the
1694 * adversary can find the exponent in a single trace, so this function
1695 * takes extra precautions against adversaries who can observe memory
1696 * access patterns.
Janos Follathf08b40e2022-11-11 15:56:38 +00001697 *
Janos Follathbe54ca72022-11-21 16:14:54 +00001698 * This function performs a series of multiplications by table elements and
1699 * squarings, and we want the prevent the adversary from finding out which
1700 * table element was used, and from distinguishing between multiplications
1701 * and squarings. Firstly, when multiplying by an element of the window
1702 * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
1703 * squarings as having a different memory access patterns from other
1704 * multiplications. So secondly, we put the accumulator X in the table as
1705 * well, and also do a constant-trace table lookup to multiply by X.
1706 *
1707 * This way, all multiplications take the form of a lookup-and-multiply.
1708 * The number of lookup-and-multiply operations inside each iteration of
1709 * the main loop still depends on the bits of the exponent, but since the
1710 * other operations in the loop don't have an easily recognizable memory
1711 * trace, an adversary is unlikely to be able to observe the exact
1712 * patterns.
1713 *
1714 * An adversary may still be able to recover the exponent if they can
1715 * observe both memory accesses and branches. However, branch prediction
1716 * exploitation typically requires many traces of execution over the same
1717 * data, which is defeated by randomized blinding.
Janos Follath84461482022-11-21 14:31:22 +00001718 *
1719 * To achieve this, we make a copy of X and we use the table entry in each
1720 * calculation from this point on.
Janos Follath8e7d6a02022-10-04 13:27:40 +01001721 */
Janos Follathc8d66d52022-11-22 10:47:10 +00001722 const size_t x_index = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001723 mbedtls_mpi_init(&W[x_index]);
1724 mbedtls_mpi_copy(&W[x_index], X);
Janos Follath84461482022-11-21 14:31:22 +00001725
Paul Bakker5121ce52009-01-03 21:22:43 +00001726 j = N->n + 1;
Tom Cosgrove93842842022-08-05 16:59:43 +01001727 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
Paul Bakker5121ce52009-01-03 21:22:43 +00001728 * and mpi_montred() calls later. Here we ensure that W[1] and X are
1729 * large enough, and later we'll grow other W[i] to the same length.
1730 * They must not be shrunk midway through this function!
1731 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001732 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j));
1733 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], j));
1734 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001735
1736 /*
Paul Bakker50546922012-05-19 08:40:49 +00001737 * Compensate for negative A (and correct at the end)
1738 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001739 neg = (A->s == -1);
1740 if (neg) {
1741 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));
Paul Bakker50546922012-05-19 08:40:49 +00001742 Apos.s = 1;
1743 A = &Apos;
1744 }
1745
1746 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001747 * If 1st call, pre-compute R^2 mod N
1748 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001749 if (prec_RR == NULL || prec_RR->p == NULL) {
1750 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1));
1751 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL));
1752 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00001753
Gilles Peskine449bd832023-01-11 14:50:10 +01001754 if (prec_RR != NULL) {
1755 memcpy(prec_RR, &RR, sizeof(mbedtls_mpi));
1756 }
1757 } else {
1758 memcpy(&RR, prec_RR, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +00001759 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001760
1761 /*
1762 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1763 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001764 if (mbedtls_mpi_cmp_mpi(A, N) >= 0) {
1765 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001766 /* This should be a no-op because W[1] is already that large before
1767 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
Tom Cosgrove93842842022-08-05 16:59:43 +01001768 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001769 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1));
1770 } else {
1771 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001772 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001773
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001774 /* Note that this is safe because W[1] always has at least N->n limbs
1775 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001776 mpi_montmul(&W[1], &RR, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001777
1778 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001779 * W[x_index] = R^2 * R^-1 mod N = R mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001780 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001781 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR));
1782 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001783
Janos Follathc8d66d52022-11-22 10:47:10 +00001784
Gilles Peskine449bd832023-01-11 14:50:10 +01001785 if (window_bitsize > 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001786 /*
Janos Follath74601202022-11-21 15:54:20 +00001787 * W[i] = W[1] ^ i
1788 *
1789 * The first bit of the sliding window is always 1 and therefore we
1790 * only need to store the second half of the table.
Janos Follathc8d66d52022-11-22 10:47:10 +00001791 *
1792 * (There are two special elements in the table: W[0] for the
1793 * accumulator/result and W[1] for A in Montgomery form. Both of these
1794 * are already set at this point.)
Paul Bakker5121ce52009-01-03 21:22:43 +00001795 */
Janos Follath74601202022-11-21 15:54:20 +00001796 j = w_table_used_size / 2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001797
Gilles Peskine449bd832023-01-11 14:50:10 +01001798 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));
1799 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00001800
Gilles Peskine449bd832023-01-11 14:50:10 +01001801 for (i = 0; i < window_bitsize - 1; i++) {
1802 mpi_montmul(&W[j], &W[j], N, mm, &T);
1803 }
Paul Bakker0d7702c2013-10-29 16:18:35 +01001804
Paul Bakker5121ce52009-01-03 21:22:43 +00001805 /*
1806 * W[i] = W[i - 1] * W[1]
1807 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001808 for (i = j + 1; i < w_table_used_size; i++) {
1809 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));
1810 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00001811
Gilles Peskine449bd832023-01-11 14:50:10 +01001812 mpi_montmul(&W[i], &W[1], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001813 }
1814 }
1815
1816 nblimbs = E->n;
1817 bufsize = 0;
1818 nbits = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001819 state = 0;
1820
Gilles Peskine449bd832023-01-11 14:50:10 +01001821 while (1) {
1822 if (bufsize == 0) {
1823 if (nblimbs == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001824 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001825 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001826
Paul Bakker0d7702c2013-10-29 16:18:35 +01001827 nblimbs--;
1828
Gilles Peskine449bd832023-01-11 14:50:10 +01001829 bufsize = sizeof(mbedtls_mpi_uint) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00001830 }
1831
1832 bufsize--;
1833
1834 ei = (E->p[nblimbs] >> bufsize) & 1;
1835
1836 /*
1837 * skip leading 0s
1838 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001839 if (ei == 0 && state == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001840 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +01001841 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001842
Gilles Peskine449bd832023-01-11 14:50:10 +01001843 if (ei == 0 && state == 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001844 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001845 * out of window, square W[x_index]
Paul Bakker5121ce52009-01-03 21:22:43 +00001846 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001847 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1848 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001849 continue;
1850 }
1851
1852 /*
1853 * add ei to current window
1854 */
1855 state = 2;
1856
1857 nbits++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001858 exponent_bits_in_window |= (ei << (window_bitsize - nbits));
Paul Bakker5121ce52009-01-03 21:22:43 +00001859
Gilles Peskine449bd832023-01-11 14:50:10 +01001860 if (nbits == window_bitsize) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001861 /*
Janos Follath7fa11b82022-11-21 14:48:02 +00001862 * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001863 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001864 for (i = 0; i < window_bitsize; i++) {
1865 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1866 x_index));
1867 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follathb764ee12022-10-04 14:00:09 +01001868 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001869
1870 /*
Janos Follath7fa11b82022-11-21 14:48:02 +00001871 * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001872 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001873 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1874 exponent_bits_in_window));
1875 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001876
1877 state--;
1878 nbits = 0;
Janos Follath7fa11b82022-11-21 14:48:02 +00001879 exponent_bits_in_window = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001880 }
1881 }
1882
1883 /*
1884 * process the remaining bits
1885 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001886 for (i = 0; i < nbits; i++) {
1887 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1888 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001889
Janos Follath7fa11b82022-11-21 14:48:02 +00001890 exponent_bits_in_window <<= 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001891
Gilles Peskine449bd832023-01-11 14:50:10 +01001892 if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) {
1893 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1));
1894 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follathb764ee12022-10-04 14:00:09 +01001895 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001896 }
1897
1898 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001899 * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001900 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001901 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001902
Gilles Peskine449bd832023-01-11 14:50:10 +01001903 if (neg && E->n != 0 && (E->p[0] & 1) != 0) {
Janos Follath8e7d6a02022-10-04 13:27:40 +01001904 W[x_index].s = -1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001905 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index]));
Paul Bakkerf6198c12012-05-16 08:02:29 +00001906 }
1907
Janos Follath8e7d6a02022-10-04 13:27:40 +01001908 /*
1909 * Load the result in the output variable.
1910 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001911 mbedtls_mpi_copy(X, &W[x_index]);
Janos Follath8e7d6a02022-10-04 13:27:40 +01001912
Paul Bakker5121ce52009-01-03 21:22:43 +00001913cleanup:
1914
Janos Follathb2c2fca2022-11-21 15:05:31 +00001915 /* The first bit of the sliding window is always 1 and therefore the first
1916 * half of the table was unused. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001917 for (i = w_table_used_size/2; i < w_table_used_size; i++) {
1918 mbedtls_mpi_free(&W[i]);
1919 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001920
Gilles Peskine449bd832023-01-11 14:50:10 +01001921 mbedtls_mpi_free(&W[x_index]);
1922 mbedtls_mpi_free(&W[1]);
1923 mbedtls_mpi_free(&T);
1924 mbedtls_mpi_free(&Apos);
1925 mbedtls_mpi_free(&WW);
Paul Bakker6c591fa2011-05-05 11:49:20 +00001926
Gilles Peskine449bd832023-01-11 14:50:10 +01001927 if (prec_RR == NULL || prec_RR->p == NULL) {
1928 mbedtls_mpi_free(&RR);
1929 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001930
Gilles Peskine449bd832023-01-11 14:50:10 +01001931 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001932}
1933
Paul Bakker5121ce52009-01-03 21:22:43 +00001934/*
1935 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
1936 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001937int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001938{
Janos Follath24eed8d2019-11-22 13:21:35 +00001939 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001940 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03001941 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00001942
Gilles Peskine449bd832023-01-11 14:50:10 +01001943 MPI_VALIDATE_RET(G != NULL);
1944 MPI_VALIDATE_RET(A != NULL);
1945 MPI_VALIDATE_RET(B != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00001946
Gilles Peskine449bd832023-01-11 14:50:10 +01001947 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00001948
Gilles Peskine449bd832023-01-11 14:50:10 +01001949 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
1950 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001951
Gilles Peskine449bd832023-01-11 14:50:10 +01001952 lz = mbedtls_mpi_lsb(&TA);
1953 lzt = mbedtls_mpi_lsb(&TB);
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001954
Gilles Peskine27253bc2021-06-09 13:26:43 +02001955 /* The loop below gives the correct result when A==0 but not when B==0.
1956 * So have a special case for B==0. Leverage the fact that we just
1957 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1958 * slightly more efficient than cmp_int(). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001959 if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
1960 ret = mbedtls_mpi_copy(G, A);
Gilles Peskine27253bc2021-06-09 13:26:43 +02001961 goto cleanup;
1962 }
1963
Gilles Peskine449bd832023-01-11 14:50:10 +01001964 if (lzt < lz) {
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001965 lz = lzt;
Gilles Peskine449bd832023-01-11 14:50:10 +01001966 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001967
Paul Bakker5121ce52009-01-03 21:22:43 +00001968 TA.s = TB.s = 1;
1969
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001970 /* We mostly follow the procedure described in HAC 14.54, but with some
1971 * minor differences:
1972 * - Sequences of multiplications or divisions by 2 are grouped into a
1973 * single shift operation.
Gilles Peskineb09c7ee2021-06-21 18:58:39 +02001974 * - The procedure in HAC assumes that 0 < TB <= TA.
1975 * - The condition TB <= TA is not actually necessary for correctness.
1976 * TA and TB have symmetric roles except for the loop termination
1977 * condition, and the shifts at the beginning of the loop body
1978 * remove any significance from the ordering of TA vs TB before
1979 * the shifts.
1980 * - If TA = 0, the loop goes through 0 iterations and the result is
1981 * correctly TB.
1982 * - The case TB = 0 was short-circuited above.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001983 *
1984 * For the correctness proof below, decompose the original values of
1985 * A and B as
1986 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
1987 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
1988 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
1989 * and gcd(A',B') is odd or 0.
1990 *
1991 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
1992 * The code maintains the following invariant:
1993 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine4df3f1f2021-06-15 22:09:39 +02001994 */
1995
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001996 /* Proof that the loop terminates:
1997 * At each iteration, either the right-shift by 1 is made on a nonzero
1998 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
1999 * by at least 1, or the right-shift by 1 is made on zero and then
2000 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
2001 * since in that case TB is calculated from TB-TA with the condition TB>TA).
2002 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002003 while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002004 /* Divisions by 2 preserve the invariant (I). */
Gilles Peskine449bd832023-01-11 14:50:10 +01002005 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
2006 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
Paul Bakker5121ce52009-01-03 21:22:43 +00002007
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002008 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
2009 * TA-TB is even so the division by 2 has an integer result.
2010 * Invariant (I) is preserved since any odd divisor of both TA and TB
2011 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case8b0ecbc2021-12-20 21:14:10 -08002012 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002013 * divides TA.
2014 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002015 if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
2016 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
2017 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
2018 } else {
2019 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
2020 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002021 }
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002022 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00002023 }
2024
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002025 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2026 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2027 * - If there was at least one loop iteration, then one of TA or TB is odd,
2028 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2029 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2030 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskine4d3fd362021-06-21 11:40:38 +02002031 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002032 */
2033
Gilles Peskine449bd832023-01-11 14:50:10 +01002034 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
2035 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
Paul Bakker5121ce52009-01-03 21:22:43 +00002036
2037cleanup:
2038
Gilles Peskine449bd832023-01-11 14:50:10 +01002039 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00002040
Gilles Peskine449bd832023-01-11 14:50:10 +01002041 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002042}
2043
Paul Bakker33dc46b2014-04-30 16:11:39 +02002044/*
2045 * Fill X with size bytes of random.
Gilles Peskine22cdd0c2022-10-27 20:15:13 +02002046 * The bytes returned from the RNG are used in a specific order which
2047 * is suitable for deterministic ECDSA (see the specification of
2048 * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
Paul Bakker33dc46b2014-04-30 16:11:39 +02002049 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002050int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
2051 int (*f_rng)(void *, unsigned char *, size_t),
2052 void *p_rng)
Paul Bakker287781a2011-03-26 13:18:49 +00002053{
Janos Follath24eed8d2019-11-22 13:21:35 +00002054 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +01002055 const size_t limbs = CHARS_TO_LIMBS(size);
Hanno Beckerda1655a2017-10-18 14:21:44 +01002056
Gilles Peskine449bd832023-01-11 14:50:10 +01002057 MPI_VALIDATE_RET(X != NULL);
2058 MPI_VALIDATE_RET(f_rng != NULL);
Paul Bakker33dc46b2014-04-30 16:11:39 +02002059
Hanno Beckerda1655a2017-10-18 14:21:44 +01002060 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +01002061 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
2062 if (size == 0) {
2063 return 0;
2064 }
Paul Bakker287781a2011-03-26 13:18:49 +00002065
Gilles Peskine449bd832023-01-11 14:50:10 +01002066 ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
Paul Bakker287781a2011-03-26 13:18:49 +00002067
2068cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002069 return ret;
Paul Bakker287781a2011-03-26 13:18:49 +00002070}
2071
Gilles Peskine449bd832023-01-11 14:50:10 +01002072int mbedtls_mpi_random(mbedtls_mpi *X,
2073 mbedtls_mpi_sint min,
2074 const mbedtls_mpi *N,
2075 int (*f_rng)(void *, unsigned char *, size_t),
2076 void *p_rng)
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002077{
Gilles Peskine449bd832023-01-11 14:50:10 +01002078 if (min < 0) {
2079 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2080 }
2081 if (mbedtls_mpi_cmp_int(N, min) <= 0) {
2082 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2083 }
Gilles Peskine1e918f42021-03-29 22:14:51 +02002084
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002085 /* Ensure that target MPI has exactly the same number of limbs
2086 * as the upper bound, even if the upper bound has leading zeros.
Gilles Peskine6b7ce962022-12-15 15:04:33 +01002087 * This is necessary for mbedtls_mpi_core_random. */
Gilles Peskine449bd832023-01-11 14:50:10 +01002088 int ret = mbedtls_mpi_resize_clear(X, N->n);
2089 if (ret != 0) {
2090 return ret;
2091 }
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002092
Gilles Peskine449bd832023-01-11 14:50:10 +01002093 return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002094}
2095
Paul Bakker5121ce52009-01-03 21:22:43 +00002096/*
2097 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2098 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002099int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00002100{
Janos Follath24eed8d2019-11-22 13:21:35 +00002101 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002102 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Gilles Peskine449bd832023-01-11 14:50:10 +01002103 MPI_VALIDATE_RET(X != NULL);
2104 MPI_VALIDATE_RET(A != NULL);
2105 MPI_VALIDATE_RET(N != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00002106
Gilles Peskine449bd832023-01-11 14:50:10 +01002107 if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
2108 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2109 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002110
Gilles Peskine449bd832023-01-11 14:50:10 +01002111 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
2112 mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
2113 mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002114
Gilles Peskine449bd832023-01-11 14:50:10 +01002115 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002116
Gilles Peskine449bd832023-01-11 14:50:10 +01002117 if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002118 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002119 goto cleanup;
2120 }
2121
Gilles Peskine449bd832023-01-11 14:50:10 +01002122 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
2123 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
2124 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
2125 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002126
Gilles Peskine449bd832023-01-11 14:50:10 +01002127 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
2128 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
2129 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
2130 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002131
Gilles Peskine449bd832023-01-11 14:50:10 +01002132 do {
2133 while ((TU.p[0] & 1) == 0) {
2134 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002135
Gilles Peskine449bd832023-01-11 14:50:10 +01002136 if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
2137 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
2138 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002139 }
2140
Gilles Peskine449bd832023-01-11 14:50:10 +01002141 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
2142 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002143 }
2144
Gilles Peskine449bd832023-01-11 14:50:10 +01002145 while ((TV.p[0] & 1) == 0) {
2146 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002147
Gilles Peskine449bd832023-01-11 14:50:10 +01002148 if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
2149 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
2150 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002151 }
2152
Gilles Peskine449bd832023-01-11 14:50:10 +01002153 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
2154 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002155 }
2156
Gilles Peskine449bd832023-01-11 14:50:10 +01002157 if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
2158 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
2159 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
2160 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
2161 } else {
2162 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
2163 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
2164 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
Paul Bakker5121ce52009-01-03 21:22:43 +00002165 }
Gilles Peskine449bd832023-01-11 14:50:10 +01002166 } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
2167
2168 while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
2169 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002170 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002171
Gilles Peskine449bd832023-01-11 14:50:10 +01002172 while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
2173 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
2174 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002175
Gilles Peskine449bd832023-01-11 14:50:10 +01002176 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002177
2178cleanup:
2179
Gilles Peskine449bd832023-01-11 14:50:10 +01002180 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
2181 mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
2182 mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002183
Gilles Peskine449bd832023-01-11 14:50:10 +01002184 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002185}
2186
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002187#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002188
Paul Bakker5121ce52009-01-03 21:22:43 +00002189static const int small_prime[] =
2190{
Gilles Peskine449bd832023-01-11 14:50:10 +01002191 3, 5, 7, 11, 13, 17, 19, 23,
2192 29, 31, 37, 41, 43, 47, 53, 59,
2193 61, 67, 71, 73, 79, 83, 89, 97,
2194 101, 103, 107, 109, 113, 127, 131, 137,
2195 139, 149, 151, 157, 163, 167, 173, 179,
2196 181, 191, 193, 197, 199, 211, 223, 227,
2197 229, 233, 239, 241, 251, 257, 263, 269,
2198 271, 277, 281, 283, 293, 307, 311, 313,
2199 317, 331, 337, 347, 349, 353, 359, 367,
2200 373, 379, 383, 389, 397, 401, 409, 419,
2201 421, 431, 433, 439, 443, 449, 457, 461,
2202 463, 467, 479, 487, 491, 499, 503, 509,
2203 521, 523, 541, 547, 557, 563, 569, 571,
2204 577, 587, 593, 599, 601, 607, 613, 617,
2205 619, 631, 641, 643, 647, 653, 659, 661,
2206 673, 677, 683, 691, 701, 709, 719, 727,
2207 733, 739, 743, 751, 757, 761, 769, 773,
2208 787, 797, 809, 811, 821, 823, 827, 829,
2209 839, 853, 857, 859, 863, 877, 881, 883,
2210 887, 907, 911, 919, 929, 937, 941, 947,
2211 953, 967, 971, 977, 983, 991, 997, -103
Paul Bakker5121ce52009-01-03 21:22:43 +00002212};
2213
2214/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002215 * Small divisors test (X must be positive)
2216 *
2217 * Return values:
2218 * 0: no small factor (possible prime, more tests needed)
2219 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002220 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002221 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002222 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002223static int mpi_check_small_factors(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +00002224{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002225 int ret = 0;
2226 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002227 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002228
Gilles Peskine449bd832023-01-11 14:50:10 +01002229 if ((X->p[0] & 1) == 0) {
2230 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2231 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002232
Gilles Peskine449bd832023-01-11 14:50:10 +01002233 for (i = 0; small_prime[i] > 0; i++) {
2234 if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) {
2235 return 1;
2236 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002237
Gilles Peskine449bd832023-01-11 14:50:10 +01002238 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i]));
Paul Bakker5121ce52009-01-03 21:22:43 +00002239
Gilles Peskine449bd832023-01-11 14:50:10 +01002240 if (r == 0) {
2241 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2242 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002243 }
2244
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002245cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002246 return ret;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002247}
2248
2249/*
2250 * Miller-Rabin pseudo-primality test (HAC 4.24)
2251 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002252static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
2253 int (*f_rng)(void *, unsigned char *, size_t),
2254 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002255{
Pascal Junodb99183d2015-03-11 16:49:45 +01002256 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002257 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002258 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002259
Gilles Peskine449bd832023-01-11 14:50:10 +01002260 MPI_VALIDATE_RET(X != NULL);
2261 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002262
Gilles Peskine449bd832023-01-11 14:50:10 +01002263 mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
2264 mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
2265 mbedtls_mpi_init(&RR);
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002266
Paul Bakker5121ce52009-01-03 21:22:43 +00002267 /*
2268 * W = |X| - 1
2269 * R = W >> lsb( W )
2270 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002271 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
2272 s = mbedtls_mpi_lsb(&W);
2273 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
2274 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
Paul Bakker5121ce52009-01-03 21:22:43 +00002275
Gilles Peskine449bd832023-01-11 14:50:10 +01002276 for (i = 0; i < rounds; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002277 /*
2278 * pick a random A, 1 < A < |X| - 1
2279 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002280 count = 0;
2281 do {
Gilles Peskine449bd832023-01-11 14:50:10 +01002282 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
Pascal Junodb99183d2015-03-11 16:49:45 +01002283
Gilles Peskine449bd832023-01-11 14:50:10 +01002284 j = mbedtls_mpi_bitlen(&A);
2285 k = mbedtls_mpi_bitlen(&W);
Pascal Junodb99183d2015-03-11 16:49:45 +01002286 if (j > k) {
Gilles Peskine449bd832023-01-11 14:50:10 +01002287 A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002288 }
2289
2290 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002291 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2292 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002293 }
2294
Gilles Peskine449bd832023-01-11 14:50:10 +01002295 } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
2296 mbedtls_mpi_cmp_int(&A, 1) <= 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00002297
2298 /*
2299 * A = A^R mod |X|
2300 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002301 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
Paul Bakker5121ce52009-01-03 21:22:43 +00002302
Gilles Peskine449bd832023-01-11 14:50:10 +01002303 if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
2304 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002305 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +01002306 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002307
2308 j = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01002309 while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002310 /*
2311 * A = A * A mod |X|
2312 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002313 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
2314 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
Paul Bakker5121ce52009-01-03 21:22:43 +00002315
Gilles Peskine449bd832023-01-11 14:50:10 +01002316 if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002317 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01002318 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002319
2320 j++;
2321 }
2322
2323 /*
2324 * not prime if A != |X| - 1 or A == 1
2325 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002326 if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
2327 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002328 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002329 break;
2330 }
2331 }
2332
2333cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002334 mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
2335 mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
2336 mbedtls_mpi_free(&RR);
Paul Bakker5121ce52009-01-03 21:22:43 +00002337
Gilles Peskine449bd832023-01-11 14:50:10 +01002338 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002339}
2340
2341/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002342 * Pseudo-primality test: small factors, then Miller-Rabin
2343 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002344int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
2345 int (*f_rng)(void *, unsigned char *, size_t),
2346 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002347{
Janos Follath24eed8d2019-11-22 13:21:35 +00002348 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002349 mbedtls_mpi XX;
Gilles Peskine449bd832023-01-11 14:50:10 +01002350 MPI_VALIDATE_RET(X != NULL);
2351 MPI_VALIDATE_RET(f_rng != NULL);
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002352
2353 XX.s = 1;
2354 XX.n = X->n;
2355 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002356
Gilles Peskine449bd832023-01-11 14:50:10 +01002357 if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
2358 mbedtls_mpi_cmp_int(&XX, 1) == 0) {
2359 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002360 }
2361
Gilles Peskine449bd832023-01-11 14:50:10 +01002362 if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
2363 return 0;
2364 }
2365
2366 if ((ret = mpi_check_small_factors(&XX)) != 0) {
2367 if (ret == 1) {
2368 return 0;
2369 }
2370
2371 return ret;
2372 }
2373
2374 return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
Janos Follathf301d232018-08-14 13:34:01 +01002375}
2376
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002377/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002378 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002379 *
Janos Follathf301d232018-08-14 13:34:01 +01002380 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2381 * be either 1024 bits or 1536 bits long, and flags must contain
2382 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002383 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002384int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
2385 int (*f_rng)(void *, unsigned char *, size_t),
2386 void *p_rng)
Paul Bakker5121ce52009-01-03 21:22:43 +00002387{
Jethro Beekman66689272018-02-14 19:24:10 -08002388#ifdef MBEDTLS_HAVE_INT64
2389// ceil(2^63.5)
2390#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2391#else
2392// ceil(2^31.5)
2393#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2394#endif
2395 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002396 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002397 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002398 mbedtls_mpi_uint r;
2399 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002400
Gilles Peskine449bd832023-01-11 14:50:10 +01002401 MPI_VALIDATE_RET(X != NULL);
2402 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002403
Gilles Peskine449bd832023-01-11 14:50:10 +01002404 if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
2405 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2406 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002407
Gilles Peskine449bd832023-01-11 14:50:10 +01002408 mbedtls_mpi_init(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00002409
Gilles Peskine449bd832023-01-11 14:50:10 +01002410 n = BITS_TO_LIMBS(nbits);
Paul Bakker5121ce52009-01-03 21:22:43 +00002411
Gilles Peskine449bd832023-01-11 14:50:10 +01002412 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
Janos Follathda31fa12018-09-03 14:45:23 +01002413 /*
2414 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2415 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002416 rounds = ((nbits >= 1300) ? 2 : (nbits >= 850) ? 3 :
2417 (nbits >= 650) ? 4 : (nbits >= 350) ? 8 :
2418 (nbits >= 250) ? 12 : (nbits >= 150) ? 18 : 27);
2419 } else {
Janos Follathda31fa12018-09-03 14:45:23 +01002420 /*
2421 * 2^-100 error probability, number of rounds computed based on HAC,
2422 * fact 4.48
2423 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002424 rounds = ((nbits >= 1450) ? 4 : (nbits >= 1150) ? 5 :
2425 (nbits >= 1000) ? 6 : (nbits >= 850) ? 7 :
2426 (nbits >= 750) ? 8 : (nbits >= 500) ? 13 :
2427 (nbits >= 250) ? 28 : (nbits >= 150) ? 40 : 51);
Janos Follathda31fa12018-09-03 14:45:23 +01002428 }
2429
Gilles Peskine449bd832023-01-11 14:50:10 +01002430 while (1) {
2431 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
Jethro Beekman66689272018-02-14 19:24:10 -08002432 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
Gilles Peskine449bd832023-01-11 14:50:10 +01002433 if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
2434 continue;
2435 }
Jethro Beekman66689272018-02-14 19:24:10 -08002436
2437 k = n * biL;
Gilles Peskine449bd832023-01-11 14:50:10 +01002438 if (k > nbits) {
2439 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
2440 }
Jethro Beekman66689272018-02-14 19:24:10 -08002441 X->p[0] |= 1;
2442
Gilles Peskine449bd832023-01-11 14:50:10 +01002443 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
2444 ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
Jethro Beekman66689272018-02-14 19:24:10 -08002445
Gilles Peskine449bd832023-01-11 14:50:10 +01002446 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002447 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002448 }
2449 } else {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002450 /*
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01002451 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002452 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2453 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002454 */
Jethro Beekman66689272018-02-14 19:24:10 -08002455
2456 X->p[0] |= 2;
2457
Gilles Peskine449bd832023-01-11 14:50:10 +01002458 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
2459 if (r == 0) {
2460 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
2461 } else if (r == 1) {
2462 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
2463 }
Jethro Beekman66689272018-02-14 19:24:10 -08002464
2465 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
Gilles Peskine449bd832023-01-11 14:50:10 +01002466 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
2467 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
Jethro Beekman66689272018-02-14 19:24:10 -08002468
Gilles Peskine449bd832023-01-11 14:50:10 +01002469 while (1) {
Jethro Beekman66689272018-02-14 19:24:10 -08002470 /*
2471 * First, check small factors for X and Y
2472 * before doing Miller-Rabin on any of them
2473 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002474 if ((ret = mpi_check_small_factors(X)) == 0 &&
2475 (ret = mpi_check_small_factors(&Y)) == 0 &&
2476 (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
2477 == 0 &&
2478 (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
2479 == 0) {
Jethro Beekman66689272018-02-14 19:24:10 -08002480 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002481 }
Jethro Beekman66689272018-02-14 19:24:10 -08002482
Gilles Peskine449bd832023-01-11 14:50:10 +01002483 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Jethro Beekman66689272018-02-14 19:24:10 -08002484 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002485 }
Jethro Beekman66689272018-02-14 19:24:10 -08002486
2487 /*
2488 * Next candidates. We want to preserve Y = (X-1) / 2 and
2489 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2490 * so up Y by 6 and X by 12.
2491 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002492 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 12));
2493 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
Paul Bakker5121ce52009-01-03 21:22:43 +00002494 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002495 }
2496 }
2497
2498cleanup:
2499
Gilles Peskine449bd832023-01-11 14:50:10 +01002500 mbedtls_mpi_free(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00002501
Gilles Peskine449bd832023-01-11 14:50:10 +01002502 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002503}
2504
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002505#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002506
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002507#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002508
Paul Bakker23986e52011-04-24 08:57:21 +00002509#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002510
2511static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2512{
2513 { 693, 609, 21 },
2514 { 1764, 868, 28 },
2515 { 768454923, 542167814, 1 }
2516};
2517
Paul Bakker5121ce52009-01-03 21:22:43 +00002518/*
2519 * Checkup routine
2520 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002521int mbedtls_mpi_self_test(int verbose)
Paul Bakker5121ce52009-01-03 21:22:43 +00002522{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002523 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002524 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002525
Gilles Peskine449bd832023-01-11 14:50:10 +01002526 mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
2527 mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00002528
Gilles Peskine449bd832023-01-11 14:50:10 +01002529 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
2530 "EFE021C2645FD1DC586E69184AF4A31E" \
2531 "D5F53E93B5F123FA41680867BA110131" \
2532 "944FE7952E2517337780CB0DB80E61AA" \
2533 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002534
Gilles Peskine449bd832023-01-11 14:50:10 +01002535 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
2536 "B2E7EFD37075B9F03FF989C7C5051C20" \
2537 "34D2A323810251127E7BF8625A4F49A5" \
2538 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2539 "5B5C25763222FEFCCFC38B832366C29E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002540
Gilles Peskine449bd832023-01-11 14:50:10 +01002541 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
2542 "0066A198186C18C10B2F5ED9B522752A" \
2543 "9830B69916E535C8F047518A889A43A5" \
2544 "94B6BED27A168D31D4A52F88925AA8F5"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002545
Gilles Peskine449bd832023-01-11 14:50:10 +01002546 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002547
Gilles Peskine449bd832023-01-11 14:50:10 +01002548 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2549 "602AB7ECA597A3D6B56FF9829A5E8B85" \
2550 "9E857EA95A03512E2BAE7391688D264A" \
2551 "A5663B0341DB9CCFD2C4C5F421FEC814" \
2552 "8001B72E848A38CAE1C65F78E56ABDEF" \
2553 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2554 "ECF677152EF804370C1A305CAF3B5BF1" \
2555 "30879B56C61DE584A0F53A2447A51E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002556
Gilles Peskine449bd832023-01-11 14:50:10 +01002557 if (verbose != 0) {
2558 mbedtls_printf(" MPI test #1 (mul_mpi): ");
2559 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002560
Gilles Peskine449bd832023-01-11 14:50:10 +01002561 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2562 if (verbose != 0) {
2563 mbedtls_printf("failed\n");
2564 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002565
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002566 ret = 1;
2567 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002568 }
2569
Gilles Peskine449bd832023-01-11 14:50:10 +01002570 if (verbose != 0) {
2571 mbedtls_printf("passed\n");
2572 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002573
Gilles Peskine449bd832023-01-11 14:50:10 +01002574 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002575
Gilles Peskine449bd832023-01-11 14:50:10 +01002576 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2577 "256567336059E52CAE22925474705F39A94"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002578
Gilles Peskine449bd832023-01-11 14:50:10 +01002579 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
2580 "6613F26162223DF488E9CD48CC132C7A" \
2581 "0AC93C701B001B092E4E5B9F73BCD27B" \
2582 "9EE50D0657C77F374E903CDFA4C642"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002583
Gilles Peskine449bd832023-01-11 14:50:10 +01002584 if (verbose != 0) {
2585 mbedtls_printf(" MPI test #2 (div_mpi): ");
2586 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002587
Gilles Peskine449bd832023-01-11 14:50:10 +01002588 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
2589 mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
2590 if (verbose != 0) {
2591 mbedtls_printf("failed\n");
2592 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002593
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002594 ret = 1;
2595 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002596 }
2597
Gilles Peskine449bd832023-01-11 14:50:10 +01002598 if (verbose != 0) {
2599 mbedtls_printf("passed\n");
2600 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002601
Gilles Peskine449bd832023-01-11 14:50:10 +01002602 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
Paul Bakker5121ce52009-01-03 21:22:43 +00002603
Gilles Peskine449bd832023-01-11 14:50:10 +01002604 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2605 "36E139AEA55215609D2816998ED020BB" \
2606 "BD96C37890F65171D948E9BC7CBAA4D9" \
2607 "325D24D6A3C12710F10A09FA08AB87"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002608
Gilles Peskine449bd832023-01-11 14:50:10 +01002609 if (verbose != 0) {
2610 mbedtls_printf(" MPI test #3 (exp_mod): ");
2611 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002612
Gilles Peskine449bd832023-01-11 14:50:10 +01002613 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2614 if (verbose != 0) {
2615 mbedtls_printf("failed\n");
2616 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002617
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002618 ret = 1;
2619 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002620 }
2621
Gilles Peskine449bd832023-01-11 14:50:10 +01002622 if (verbose != 0) {
2623 mbedtls_printf("passed\n");
2624 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002625
Gilles Peskine449bd832023-01-11 14:50:10 +01002626 MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002627
Gilles Peskine449bd832023-01-11 14:50:10 +01002628 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2629 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2630 "C3DBA76456363A10869622EAC2DD84EC" \
2631 "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002632
Gilles Peskine449bd832023-01-11 14:50:10 +01002633 if (verbose != 0) {
2634 mbedtls_printf(" MPI test #4 (inv_mod): ");
2635 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002636
Gilles Peskine449bd832023-01-11 14:50:10 +01002637 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2638 if (verbose != 0) {
2639 mbedtls_printf("failed\n");
2640 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002641
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002642 ret = 1;
2643 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002644 }
2645
Gilles Peskine449bd832023-01-11 14:50:10 +01002646 if (verbose != 0) {
2647 mbedtls_printf("passed\n");
2648 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002649
Gilles Peskine449bd832023-01-11 14:50:10 +01002650 if (verbose != 0) {
2651 mbedtls_printf(" MPI test #5 (simple gcd): ");
2652 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002653
Gilles Peskine449bd832023-01-11 14:50:10 +01002654 for (i = 0; i < GCD_PAIR_COUNT; i++) {
2655 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
2656 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002657
Gilles Peskine449bd832023-01-11 14:50:10 +01002658 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002659
Gilles Peskine449bd832023-01-11 14:50:10 +01002660 if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
2661 if (verbose != 0) {
2662 mbedtls_printf("failed at %d\n", i);
2663 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002664
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002665 ret = 1;
2666 goto cleanup;
2667 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002668 }
2669
Gilles Peskine449bd832023-01-11 14:50:10 +01002670 if (verbose != 0) {
2671 mbedtls_printf("passed\n");
2672 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002673
Paul Bakker5121ce52009-01-03 21:22:43 +00002674cleanup:
2675
Gilles Peskine449bd832023-01-11 14:50:10 +01002676 if (ret != 0 && verbose != 0) {
2677 mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
2678 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002679
Gilles Peskine449bd832023-01-11 14:50:10 +01002680 mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
2681 mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00002682
Gilles Peskine449bd832023-01-11 14:50:10 +01002683 if (verbose != 0) {
2684 mbedtls_printf("\n");
2685 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002686
Gilles Peskine449bd832023-01-11 14:50:10 +01002687 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002688}
2689
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002690#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00002691
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002692#endif /* MBEDTLS_BIGNUM_C */