Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1 | /** |
| 2 | * \file psa/crypto_values.h |
| 3 | * |
| 4 | * \brief PSA cryptography module: macros to build and analyze integer values. |
| 5 | * |
| 6 | * \note This file may not be included directly. Applications must |
| 7 | * include psa/crypto.h. Drivers must include the appropriate driver |
| 8 | * header file. |
| 9 | * |
| 10 | * This file contains portable definitions of macros to build and analyze |
| 11 | * values of integral types that encode properties of cryptographic keys, |
| 12 | * designations of cryptographic algorithms, and error codes returned by |
| 13 | * the library. |
| 14 | * |
| 15 | * This header file only defines preprocessor macros. |
| 16 | */ |
| 17 | /* |
| 18 | * Copyright (C) 2018, ARM Limited, All Rights Reserved |
| 19 | * SPDX-License-Identifier: Apache-2.0 |
| 20 | * |
| 21 | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
| 22 | * not use this file except in compliance with the License. |
| 23 | * You may obtain a copy of the License at |
| 24 | * |
| 25 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 26 | * |
| 27 | * Unless required by applicable law or agreed to in writing, software |
| 28 | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 29 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 30 | * See the License for the specific language governing permissions and |
| 31 | * limitations under the License. |
| 32 | * |
| 33 | * This file is part of mbed TLS (https://tls.mbed.org) |
| 34 | */ |
| 35 | |
| 36 | #ifndef PSA_CRYPTO_VALUES_H |
| 37 | #define PSA_CRYPTO_VALUES_H |
| 38 | |
| 39 | /** \defgroup error Error codes |
| 40 | * @{ |
| 41 | */ |
| 42 | |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 43 | /* PSA error codes */ |
| 44 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 45 | /** The action was completed successfully. */ |
| 46 | #define PSA_SUCCESS ((psa_status_t)0) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 47 | |
| 48 | /** An error occurred that does not correspond to any defined |
| 49 | * failure cause. |
| 50 | * |
| 51 | * Implementations may use this error code if none of the other standard |
| 52 | * error codes are applicable. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 53 | #define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 54 | |
| 55 | /** The requested operation or a parameter is not supported |
| 56 | * by this implementation. |
| 57 | * |
| 58 | * Implementations should return this error code when an enumeration |
| 59 | * parameter such as a key type, algorithm, etc. is not recognized. |
| 60 | * If a combination of parameters is recognized and identified as |
| 61 | * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 62 | #define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 63 | |
| 64 | /** The requested action is denied by a policy. |
| 65 | * |
| 66 | * Implementations should return this error code when the parameters |
| 67 | * are recognized as valid and supported, and a policy explicitly |
| 68 | * denies the requested operation. |
| 69 | * |
| 70 | * If a subset of the parameters of a function call identify a |
| 71 | * forbidden operation, and another subset of the parameters are |
| 72 | * not valid or not supported, it is unspecified whether the function |
| 73 | * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or |
| 74 | * #PSA_ERROR_INVALID_ARGUMENT. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 75 | #define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 76 | |
| 77 | /** An output buffer is too small. |
| 78 | * |
| 79 | * Applications can call the \c PSA_xxx_SIZE macro listed in the function |
| 80 | * description to determine a sufficient buffer size. |
| 81 | * |
| 82 | * Implementations should preferably return this error code only |
| 83 | * in cases when performing the operation with a larger output |
| 84 | * buffer would succeed. However implementations may return this |
| 85 | * error if a function has invalid or unsupported parameters in addition |
| 86 | * to the parameters that determine the necessary output buffer size. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 87 | #define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 88 | |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 89 | /** Asking for an item that already exists |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 90 | * |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 91 | * Implementations should return this error, when attempting |
| 92 | * to write an item (like a key) that already exists. */ |
| 93 | #define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 94 | |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 95 | /** Asking for an item that doesn't exist |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 96 | * |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 97 | * Implementations should return this error, if a requested item (like |
| 98 | * a key) does not exist. */ |
| 99 | #define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 100 | |
| 101 | /** The requested action cannot be performed in the current state. |
| 102 | * |
| 103 | * Multipart operations return this error when one of the |
| 104 | * functions is called out of sequence. Refer to the function |
| 105 | * descriptions for permitted sequencing of functions. |
| 106 | * |
| 107 | * Implementations shall not return this error code to indicate |
Adrian L. Shaw | 67e1c7a | 2019-05-14 15:24:21 +0100 | [diff] [blame] | 108 | * that a key either exists or not, |
| 109 | * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST |
Adrian L. Shaw | d56456c | 2019-05-15 11:36:13 +0100 | [diff] [blame] | 110 | * as applicable. |
| 111 | * |
| 112 | * Implementations shall not return this error code to indicate that a |
| 113 | * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE |
| 114 | * instead. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 115 | #define PSA_ERROR_BAD_STATE ((psa_status_t)-137) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 116 | |
| 117 | /** The parameters passed to the function are invalid. |
| 118 | * |
| 119 | * Implementations may return this error any time a parameter or |
| 120 | * combination of parameters are recognized as invalid. |
| 121 | * |
Adrian L. Shaw | d56456c | 2019-05-15 11:36:13 +0100 | [diff] [blame] | 122 | * Implementations shall not return this error code to indicate that a |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 123 | * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE |
| 124 | * instead. |
| 125 | */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 126 | #define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 127 | |
| 128 | /** There is not enough runtime memory. |
| 129 | * |
| 130 | * If the action is carried out across multiple security realms, this |
| 131 | * error can refer to available memory in any of the security realms. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 132 | #define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 133 | |
| 134 | /** There is not enough persistent storage. |
| 135 | * |
| 136 | * Functions that modify the key storage return this error code if |
| 137 | * there is insufficient storage space on the host media. In addition, |
| 138 | * many functions that do not otherwise access storage may return this |
| 139 | * error code if the implementation requires a mandatory log entry for |
| 140 | * the requested action and the log storage space is full. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 141 | #define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 142 | |
| 143 | /** There was a communication failure inside the implementation. |
| 144 | * |
| 145 | * This can indicate a communication failure between the application |
| 146 | * and an external cryptoprocessor or between the cryptoprocessor and |
| 147 | * an external volatile or persistent memory. A communication failure |
| 148 | * may be transient or permanent depending on the cause. |
| 149 | * |
| 150 | * \warning If a function returns this error, it is undetermined |
| 151 | * whether the requested action has completed or not. Implementations |
Gilles Peskine | be06133 | 2019-07-18 13:52:30 +0200 | [diff] [blame] | 152 | * should return #PSA_SUCCESS on successful completion whenever |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 153 | * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE |
| 154 | * if the requested action was completed successfully in an external |
| 155 | * cryptoprocessor but there was a breakdown of communication before |
| 156 | * the cryptoprocessor could report the status to the application. |
| 157 | */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 158 | #define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 159 | |
| 160 | /** There was a storage failure that may have led to data loss. |
| 161 | * |
| 162 | * This error indicates that some persistent storage is corrupted. |
| 163 | * It should not be used for a corruption of volatile memory |
Gilles Peskine | 4b3eb69 | 2019-05-16 21:35:18 +0200 | [diff] [blame] | 164 | * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 165 | * between the cryptoprocessor and its external storage (use |
| 166 | * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is |
| 167 | * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE). |
| 168 | * |
| 169 | * Note that a storage failure does not indicate that any data that was |
| 170 | * previously read is invalid. However this previously read data may no |
| 171 | * longer be readable from storage. |
| 172 | * |
| 173 | * When a storage failure occurs, it is no longer possible to ensure |
| 174 | * the global integrity of the keystore. Depending on the global |
| 175 | * integrity guarantees offered by the implementation, access to other |
| 176 | * data may or may not fail even if the data is still readable but |
Gilles Peskine | bf7a98b | 2019-02-22 16:42:11 +0100 | [diff] [blame] | 177 | * its integrity cannot be guaranteed. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 178 | * |
| 179 | * Implementations should only use this error code to report a |
| 180 | * permanent storage corruption. However application writers should |
| 181 | * keep in mind that transient errors while reading the storage may be |
| 182 | * reported using this error code. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 183 | #define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 184 | |
| 185 | /** A hardware failure was detected. |
| 186 | * |
| 187 | * A hardware failure may be transient or permanent depending on the |
| 188 | * cause. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 189 | #define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 190 | |
| 191 | /** A tampering attempt was detected. |
| 192 | * |
| 193 | * If an application receives this error code, there is no guarantee |
| 194 | * that previously accessed or computed data was correct and remains |
| 195 | * confidential. Applications should not perform any security function |
| 196 | * and should enter a safe failure state. |
| 197 | * |
| 198 | * Implementations may return this error code if they detect an invalid |
| 199 | * state that cannot happen during normal operation and that indicates |
| 200 | * that the implementation's security guarantees no longer hold. Depending |
| 201 | * on the implementation architecture and on its security and safety goals, |
| 202 | * the implementation may forcibly terminate the application. |
| 203 | * |
| 204 | * This error code is intended as a last resort when a security breach |
| 205 | * is detected and it is unsure whether the keystore data is still |
| 206 | * protected. Implementations shall only return this error code |
| 207 | * to report an alarm from a tampering detector, to indicate that |
| 208 | * the confidentiality of stored data can no longer be guaranteed, |
| 209 | * or to indicate that the integrity of previously returned data is now |
| 210 | * considered compromised. Implementations shall not use this error code |
| 211 | * to indicate a hardware failure that merely makes it impossible to |
| 212 | * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE, |
| 213 | * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE, |
| 214 | * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code |
| 215 | * instead). |
| 216 | * |
| 217 | * This error indicates an attack against the application. Implementations |
| 218 | * shall not return this error code as a consequence of the behavior of |
| 219 | * the application itself. */ |
Gilles Peskine | 4b3eb69 | 2019-05-16 21:35:18 +0200 | [diff] [blame] | 220 | #define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 221 | |
| 222 | /** There is not enough entropy to generate random data needed |
| 223 | * for the requested action. |
| 224 | * |
| 225 | * This error indicates a failure of a hardware random generator. |
| 226 | * Application writers should note that this error can be returned not |
| 227 | * only by functions whose purpose is to generate random data, such |
| 228 | * as key, IV or nonce generation, but also by functions that execute |
| 229 | * an algorithm with a randomized result, as well as functions that |
| 230 | * use randomization of intermediate computations as a countermeasure |
| 231 | * to certain attacks. |
| 232 | * |
| 233 | * Implementations should avoid returning this error after psa_crypto_init() |
| 234 | * has succeeded. Implementations should generate sufficient |
| 235 | * entropy during initialization and subsequently use a cryptographically |
| 236 | * secure pseudorandom generator (PRNG). However implementations may return |
| 237 | * this error at any time if a policy requires the PRNG to be reseeded |
| 238 | * during normal operation. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 239 | #define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 240 | |
| 241 | /** The signature, MAC or hash is incorrect. |
| 242 | * |
| 243 | * Verification functions return this error if the verification |
| 244 | * calculations completed successfully, and the value to be verified |
| 245 | * was determined to be incorrect. |
| 246 | * |
| 247 | * If the value to verify has an invalid size, implementations may return |
| 248 | * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 249 | #define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 250 | |
| 251 | /** The decrypted padding is incorrect. |
| 252 | * |
| 253 | * \warning In some protocols, when decrypting data, it is essential that |
| 254 | * the behavior of the application does not depend on whether the padding |
| 255 | * is correct, down to precise timing. Applications should prefer |
| 256 | * protocols that use authenticated encryption rather than plain |
| 257 | * encryption. If the application must perform a decryption of |
| 258 | * unauthenticated data, the application writer should take care not |
| 259 | * to reveal whether the padding is invalid. |
| 260 | * |
| 261 | * Implementations should strive to make valid and invalid padding |
| 262 | * as close as possible to indistinguishable to an external observer. |
| 263 | * In particular, the timing of a decryption operation should not |
| 264 | * depend on the validity of the padding. */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 265 | #define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 266 | |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 267 | /** Return this error when there's insufficient data when attempting |
| 268 | * to read from a resource. */ |
| 269 | #define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 270 | |
Andrew Thoelke | 3c2b803 | 2019-08-22 12:20:12 +0100 | [diff] [blame] | 271 | /** The key handle is not valid. See also :ref:\`key-handles\`. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 272 | */ |
David Saada | b4ecc27 | 2019-02-14 13:48:10 +0200 | [diff] [blame] | 273 | #define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 274 | |
| 275 | /**@}*/ |
| 276 | |
| 277 | /** \defgroup crypto_types Key and algorithm types |
| 278 | * @{ |
| 279 | */ |
| 280 | |
| 281 | /** An invalid key type value. |
| 282 | * |
| 283 | * Zero is not the encoding of any key type. |
| 284 | */ |
| 285 | #define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000) |
| 286 | |
| 287 | /** Vendor-defined flag |
| 288 | * |
| 289 | * Key types defined by this standard will never have the |
| 290 | * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types |
| 291 | * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should |
| 292 | * respect the bitwise structure used by standard encodings whenever practical. |
| 293 | */ |
| 294 | #define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000) |
| 295 | |
| 296 | #define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000) |
| 297 | #define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000) |
| 298 | #define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000) |
| 299 | #define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000) |
| 300 | #define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000) |
| 301 | |
| 302 | #define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000) |
| 303 | |
| 304 | /** Whether a key type is vendor-defined. */ |
| 305 | #define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \ |
| 306 | (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0) |
| 307 | |
| 308 | /** Whether a key type is an unstructured array of bytes. |
| 309 | * |
| 310 | * This encompasses both symmetric keys and non-key data. |
| 311 | */ |
| 312 | #define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \ |
| 313 | (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \ |
| 314 | PSA_KEY_TYPE_CATEGORY_SYMMETRIC) |
| 315 | |
| 316 | /** Whether a key type is asymmetric: either a key pair or a public key. */ |
| 317 | #define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \ |
| 318 | (((type) & PSA_KEY_TYPE_CATEGORY_MASK \ |
| 319 | & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \ |
| 320 | PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY) |
| 321 | /** Whether a key type is the public part of a key pair. */ |
| 322 | #define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \ |
| 323 | (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY) |
| 324 | /** Whether a key type is a key pair containing a private part and a public |
| 325 | * part. */ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 326 | #define PSA_KEY_TYPE_IS_KEY_PAIR(type) \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 327 | (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR) |
| 328 | /** The key pair type corresponding to a public key type. |
| 329 | * |
| 330 | * You may also pass a key pair type as \p type, it will be left unchanged. |
| 331 | * |
| 332 | * \param type A public key type or key pair type. |
| 333 | * |
| 334 | * \return The corresponding key pair type. |
| 335 | * If \p type is not a public key or a key pair, |
| 336 | * the return value is undefined. |
| 337 | */ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 338 | #define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 339 | ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) |
| 340 | /** The public key type corresponding to a key pair type. |
| 341 | * |
| 342 | * You may also pass a key pair type as \p type, it will be left unchanged. |
| 343 | * |
| 344 | * \param type A public key type or key pair type. |
| 345 | * |
| 346 | * \return The corresponding public key type. |
| 347 | * If \p type is not a public key or a key pair, |
| 348 | * the return value is undefined. |
| 349 | */ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 350 | #define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 351 | ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) |
| 352 | |
| 353 | /** Raw data. |
| 354 | * |
| 355 | * A "key" of this type cannot be used for any cryptographic operation. |
| 356 | * Applications may use this type to store arbitrary data in the keystore. */ |
| 357 | #define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001) |
| 358 | |
| 359 | /** HMAC key. |
| 360 | * |
| 361 | * The key policy determines which underlying hash algorithm the key can be |
| 362 | * used for. |
| 363 | * |
| 364 | * HMAC keys should generally have the same size as the underlying hash. |
| 365 | * This size can be calculated with #PSA_HASH_SIZE(\c alg) where |
| 366 | * \c alg is the HMAC algorithm or the underlying hash algorithm. */ |
| 367 | #define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000) |
| 368 | |
| 369 | /** A secret for key derivation. |
| 370 | * |
| 371 | * The key policy determines which key derivation algorithm the key |
| 372 | * can be used for. |
| 373 | */ |
| 374 | #define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000) |
| 375 | |
Gilles Peskine | 737c6be | 2019-05-21 16:01:06 +0200 | [diff] [blame] | 376 | /** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 377 | * |
| 378 | * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or |
| 379 | * 32 bytes (AES-256). |
| 380 | */ |
| 381 | #define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001) |
| 382 | |
| 383 | /** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES). |
| 384 | * |
| 385 | * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or |
| 386 | * 24 bytes (3-key 3DES). |
| 387 | * |
| 388 | * Note that single DES and 2-key 3DES are weak and strongly |
| 389 | * deprecated and should only be used to decrypt legacy data. 3-key 3DES |
| 390 | * is weak and deprecated and should only be used in legacy protocols. |
| 391 | */ |
| 392 | #define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002) |
| 393 | |
Gilles Peskine | 737c6be | 2019-05-21 16:01:06 +0200 | [diff] [blame] | 394 | /** Key for a cipher, AEAD or MAC algorithm based on the |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 395 | * Camellia block cipher. */ |
| 396 | #define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003) |
| 397 | |
| 398 | /** Key for the RC4 stream cipher. |
| 399 | * |
| 400 | * Note that RC4 is weak and deprecated and should only be used in |
| 401 | * legacy protocols. */ |
| 402 | #define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004) |
| 403 | |
Gilles Peskine | 3e79c8e | 2019-05-06 15:20:04 +0200 | [diff] [blame] | 404 | /** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm. |
| 405 | * |
| 406 | * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539. |
| 407 | * |
| 408 | * Implementations must support 12-byte nonces, may support 8-byte nonces, |
| 409 | * and should reject other sizes. |
| 410 | */ |
| 411 | #define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x40000005) |
| 412 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 413 | /** RSA public key. */ |
| 414 | #define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000) |
| 415 | /** RSA key pair (private and public key). */ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 416 | #define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x70010000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 417 | /** Whether a key type is an RSA key (pair or public-only). */ |
| 418 | #define PSA_KEY_TYPE_IS_RSA(type) \ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 419 | (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 420 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 421 | #define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000) |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 422 | #define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x70030000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 423 | #define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff) |
| 424 | /** Elliptic curve key pair. */ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 425 | #define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \ |
| 426 | (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve)) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 427 | /** Elliptic curve public key. */ |
| 428 | #define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \ |
| 429 | (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve)) |
| 430 | |
| 431 | /** Whether a key type is an elliptic curve key (pair or public-only). */ |
| 432 | #define PSA_KEY_TYPE_IS_ECC(type) \ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 433 | ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 434 | ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE) |
Gilles Peskine | 5e9c9cc | 2018-12-12 14:02:48 +0100 | [diff] [blame] | 435 | /** Whether a key type is an elliptic curve key pair. */ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 436 | #define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 437 | (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 438 | PSA_KEY_TYPE_ECC_KEY_PAIR_BASE) |
Gilles Peskine | 5e9c9cc | 2018-12-12 14:02:48 +0100 | [diff] [blame] | 439 | /** Whether a key type is an elliptic curve public key. */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 440 | #define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \ |
| 441 | (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \ |
| 442 | PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE) |
| 443 | |
| 444 | /** Extract the curve from an elliptic curve key type. */ |
| 445 | #define PSA_KEY_TYPE_GET_CURVE(type) \ |
| 446 | ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \ |
| 447 | ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \ |
| 448 | 0)) |
| 449 | |
| 450 | /* The encoding of curve identifiers is currently aligned with the |
| 451 | * TLS Supported Groups Registry (formerly known as the |
| 452 | * TLS EC Named Curve Registry) |
| 453 | * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8 |
| 454 | * The values are defined by RFC 8422 and RFC 7027. */ |
| 455 | #define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001) |
| 456 | #define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002) |
| 457 | #define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003) |
| 458 | #define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004) |
| 459 | #define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005) |
| 460 | #define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006) |
| 461 | #define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007) |
| 462 | #define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008) |
| 463 | #define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009) |
| 464 | #define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a) |
| 465 | #define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b) |
| 466 | #define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c) |
| 467 | #define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d) |
| 468 | #define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e) |
| 469 | #define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f) |
| 470 | #define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010) |
| 471 | #define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011) |
| 472 | #define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012) |
| 473 | #define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013) |
| 474 | #define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014) |
| 475 | #define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015) |
| 476 | #define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016) |
| 477 | #define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017) |
| 478 | #define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018) |
| 479 | #define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019) |
| 480 | #define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a) |
| 481 | #define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b) |
| 482 | #define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c) |
Gilles Peskine | a9b9cf7 | 2019-05-21 19:18:33 +0200 | [diff] [blame] | 483 | /** Curve25519. |
| 484 | * |
| 485 | * This is the curve defined in Bernstein et al., |
| 486 | * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006. |
| 487 | * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve. |
| 488 | */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 489 | #define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d) |
Gilles Peskine | a9b9cf7 | 2019-05-21 19:18:33 +0200 | [diff] [blame] | 490 | /** Curve448 |
| 491 | * |
| 492 | * This is the curve defined in Hamburg, |
| 493 | * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015. |
| 494 | * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve. |
| 495 | */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 496 | #define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e) |
| 497 | |
Gilles Peskine | dcaefae | 2019-05-16 12:55:35 +0200 | [diff] [blame] | 498 | #define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x60040000) |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 499 | #define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x70040000) |
Gilles Peskine | dcaefae | 2019-05-16 12:55:35 +0200 | [diff] [blame] | 500 | #define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x0000ffff) |
| 501 | /** Diffie-Hellman key pair. */ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 502 | #define PSA_KEY_TYPE_DH_KEY_PAIR(group) \ |
| 503 | (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group)) |
Gilles Peskine | dcaefae | 2019-05-16 12:55:35 +0200 | [diff] [blame] | 504 | /** Diffie-Hellman public key. */ |
| 505 | #define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \ |
| 506 | (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group)) |
| 507 | |
| 508 | /** Whether a key type is a Diffie-Hellman key (pair or public-only). */ |
| 509 | #define PSA_KEY_TYPE_IS_DH(type) \ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 510 | ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \ |
Gilles Peskine | dcaefae | 2019-05-16 12:55:35 +0200 | [diff] [blame] | 511 | ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE) |
| 512 | /** Whether a key type is a Diffie-Hellman key pair. */ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 513 | #define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \ |
Gilles Peskine | dcaefae | 2019-05-16 12:55:35 +0200 | [diff] [blame] | 514 | (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \ |
Gilles Peskine | c93b80c | 2019-05-16 19:39:54 +0200 | [diff] [blame] | 515 | PSA_KEY_TYPE_DH_KEY_PAIR_BASE) |
Gilles Peskine | dcaefae | 2019-05-16 12:55:35 +0200 | [diff] [blame] | 516 | /** Whether a key type is a Diffie-Hellman public key. */ |
| 517 | #define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \ |
| 518 | (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \ |
| 519 | PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE) |
| 520 | |
| 521 | /** Extract the group from a Diffie-Hellman key type. */ |
| 522 | #define PSA_KEY_TYPE_GET_GROUP(type) \ |
| 523 | ((psa_dh_group_t) (PSA_KEY_TYPE_IS_DH(type) ? \ |
| 524 | ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \ |
| 525 | 0)) |
| 526 | |
| 527 | /* The encoding of group identifiers is currently aligned with the |
| 528 | * TLS Supported Groups Registry (formerly known as the |
| 529 | * TLS EC Named Curve Registry) |
| 530 | * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8 |
| 531 | * The values are defined by RFC 7919. */ |
| 532 | #define PSA_DH_GROUP_FFDHE2048 ((psa_dh_group_t) 0x0100) |
| 533 | #define PSA_DH_GROUP_FFDHE3072 ((psa_dh_group_t) 0x0101) |
| 534 | #define PSA_DH_GROUP_FFDHE4096 ((psa_dh_group_t) 0x0102) |
| 535 | #define PSA_DH_GROUP_FFDHE6144 ((psa_dh_group_t) 0x0103) |
| 536 | #define PSA_DH_GROUP_FFDHE8192 ((psa_dh_group_t) 0x0104) |
Jaeden Amero | 8851c40 | 2019-01-11 14:20:03 +0000 | [diff] [blame] | 537 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 538 | /** The block size of a block cipher. |
| 539 | * |
| 540 | * \param type A cipher key type (value of type #psa_key_type_t). |
| 541 | * |
| 542 | * \return The block size for a block cipher, or 1 for a stream cipher. |
| 543 | * The return value is undefined if \p type is not a supported |
| 544 | * cipher key type. |
| 545 | * |
| 546 | * \note It is possible to build stream cipher algorithms on top of a block |
| 547 | * cipher, for example CTR mode (#PSA_ALG_CTR). |
| 548 | * This macro only takes the key type into account, so it cannot be |
| 549 | * used to determine the size of the data that #psa_cipher_update() |
| 550 | * might buffer for future processing in general. |
| 551 | * |
| 552 | * \note This macro returns a compile-time constant if its argument is one. |
| 553 | * |
| 554 | * \warning This macro may evaluate its argument multiple times. |
| 555 | */ |
| 556 | #define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \ |
| 557 | ( \ |
| 558 | (type) == PSA_KEY_TYPE_AES ? 16 : \ |
| 559 | (type) == PSA_KEY_TYPE_DES ? 8 : \ |
| 560 | (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \ |
| 561 | (type) == PSA_KEY_TYPE_ARC4 ? 1 : \ |
| 562 | 0) |
| 563 | |
| 564 | #define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000) |
| 565 | #define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000) |
| 566 | #define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000) |
| 567 | #define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000) |
| 568 | #define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000) |
| 569 | #define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000) |
| 570 | #define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000) |
| 571 | #define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000) |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 572 | #define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000) |
| 573 | #define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 574 | |
| 575 | #define PSA_ALG_IS_VENDOR_DEFINED(alg) \ |
| 576 | (((alg) & PSA_ALG_VENDOR_FLAG) != 0) |
| 577 | |
| 578 | /** Whether the specified algorithm is a hash algorithm. |
| 579 | * |
| 580 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 581 | * |
| 582 | * \return 1 if \p alg is a hash algorithm, 0 otherwise. |
| 583 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 584 | * algorithm identifier. |
| 585 | */ |
| 586 | #define PSA_ALG_IS_HASH(alg) \ |
| 587 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH) |
| 588 | |
| 589 | /** Whether the specified algorithm is a MAC algorithm. |
| 590 | * |
| 591 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 592 | * |
| 593 | * \return 1 if \p alg is a MAC algorithm, 0 otherwise. |
| 594 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 595 | * algorithm identifier. |
| 596 | */ |
| 597 | #define PSA_ALG_IS_MAC(alg) \ |
| 598 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC) |
| 599 | |
| 600 | /** Whether the specified algorithm is a symmetric cipher algorithm. |
| 601 | * |
| 602 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 603 | * |
| 604 | * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise. |
| 605 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 606 | * algorithm identifier. |
| 607 | */ |
| 608 | #define PSA_ALG_IS_CIPHER(alg) \ |
| 609 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER) |
| 610 | |
| 611 | /** Whether the specified algorithm is an authenticated encryption |
| 612 | * with associated data (AEAD) algorithm. |
| 613 | * |
| 614 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 615 | * |
| 616 | * \return 1 if \p alg is an AEAD algorithm, 0 otherwise. |
| 617 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 618 | * algorithm identifier. |
| 619 | */ |
| 620 | #define PSA_ALG_IS_AEAD(alg) \ |
| 621 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD) |
| 622 | |
| 623 | /** Whether the specified algorithm is a public-key signature algorithm. |
| 624 | * |
| 625 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 626 | * |
| 627 | * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise. |
| 628 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 629 | * algorithm identifier. |
| 630 | */ |
| 631 | #define PSA_ALG_IS_SIGN(alg) \ |
| 632 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN) |
| 633 | |
| 634 | /** Whether the specified algorithm is a public-key encryption algorithm. |
| 635 | * |
| 636 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 637 | * |
| 638 | * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise. |
| 639 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 640 | * algorithm identifier. |
| 641 | */ |
| 642 | #define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \ |
| 643 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION) |
| 644 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 645 | /** Whether the specified algorithm is a key agreement algorithm. |
| 646 | * |
| 647 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 648 | * |
| 649 | * \return 1 if \p alg is a key agreement algorithm, 0 otherwise. |
| 650 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 651 | * algorithm identifier. |
| 652 | */ |
| 653 | #define PSA_ALG_IS_KEY_AGREEMENT(alg) \ |
Gilles Peskine | 47e79fb | 2019-02-08 11:24:59 +0100 | [diff] [blame] | 654 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 655 | |
| 656 | /** Whether the specified algorithm is a key derivation algorithm. |
| 657 | * |
| 658 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 659 | * |
| 660 | * \return 1 if \p alg is a key derivation algorithm, 0 otherwise. |
| 661 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 662 | * algorithm identifier. |
| 663 | */ |
| 664 | #define PSA_ALG_IS_KEY_DERIVATION(alg) \ |
| 665 | (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION) |
| 666 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 667 | #define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff) |
Adrian L. Shaw | 21e7145 | 2019-09-20 16:01:11 +0100 | [diff] [blame^] | 668 | /** MD2 */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 669 | #define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001) |
Adrian L. Shaw | 21e7145 | 2019-09-20 16:01:11 +0100 | [diff] [blame^] | 670 | /** MD4 */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 671 | #define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002) |
Adrian L. Shaw | 21e7145 | 2019-09-20 16:01:11 +0100 | [diff] [blame^] | 672 | /** MD5 */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 673 | #define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003) |
Adrian L. Shaw | 21e7145 | 2019-09-20 16:01:11 +0100 | [diff] [blame^] | 674 | /** PSA_ALG_RIPEMD160 */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 675 | #define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004) |
Adrian L. Shaw | 21e7145 | 2019-09-20 16:01:11 +0100 | [diff] [blame^] | 676 | /** SHA1 */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 677 | #define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005) |
| 678 | /** SHA2-224 */ |
| 679 | #define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008) |
| 680 | /** SHA2-256 */ |
| 681 | #define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009) |
| 682 | /** SHA2-384 */ |
| 683 | #define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a) |
| 684 | /** SHA2-512 */ |
| 685 | #define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b) |
| 686 | /** SHA2-512/224 */ |
| 687 | #define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c) |
| 688 | /** SHA2-512/256 */ |
| 689 | #define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d) |
| 690 | /** SHA3-224 */ |
| 691 | #define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010) |
| 692 | /** SHA3-256 */ |
| 693 | #define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011) |
| 694 | /** SHA3-384 */ |
| 695 | #define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012) |
| 696 | /** SHA3-512 */ |
| 697 | #define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013) |
| 698 | |
Gilles Peskine | 763fb9a | 2019-01-28 13:29:01 +0100 | [diff] [blame] | 699 | /** In a hash-and-sign algorithm policy, allow any hash algorithm. |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 700 | * |
Gilles Peskine | 763fb9a | 2019-01-28 13:29:01 +0100 | [diff] [blame] | 701 | * This value may be used to form the algorithm usage field of a policy |
| 702 | * for a signature algorithm that is parametrized by a hash. The key |
| 703 | * may then be used to perform operations using the same signature |
| 704 | * algorithm parametrized with any supported hash. |
| 705 | * |
| 706 | * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros: |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 707 | * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 708 | * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA. |
Gilles Peskine | 763fb9a | 2019-01-28 13:29:01 +0100 | [diff] [blame] | 709 | * Then you may create and use a key as follows: |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 710 | * - Set the key usage field using #PSA_ALG_ANY_HASH, for example: |
| 711 | * ``` |
Gilles Peskine | 80b39ae | 2019-05-15 16:09:46 +0200 | [diff] [blame] | 712 | * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN); // or VERIFY |
| 713 | * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH)); |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 714 | * ``` |
| 715 | * - Import or generate key material. |
| 716 | * - Call psa_asymmetric_sign() or psa_asymmetric_verify(), passing |
| 717 | * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each |
| 718 | * call to sign or verify a message may use a different hash. |
| 719 | * ``` |
| 720 | * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...); |
| 721 | * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...); |
| 722 | * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...); |
| 723 | * ``` |
| 724 | * |
| 725 | * This value may not be used to build other algorithms that are |
| 726 | * parametrized over a hash. For any valid use of this macro to build |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 727 | * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true. |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 728 | * |
| 729 | * This value may not be used to build an algorithm specification to |
| 730 | * perform an operation. It is only valid to build policies. |
| 731 | */ |
| 732 | #define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff) |
| 733 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 734 | #define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000) |
| 735 | #define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000) |
| 736 | /** Macro to build an HMAC algorithm. |
| 737 | * |
| 738 | * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256. |
| 739 | * |
| 740 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 741 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
| 742 | * |
| 743 | * \return The corresponding HMAC algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 744 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 745 | * hash algorithm. |
| 746 | */ |
| 747 | #define PSA_ALG_HMAC(hash_alg) \ |
| 748 | (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 749 | |
| 750 | #define PSA_ALG_HMAC_GET_HASH(hmac_alg) \ |
| 751 | (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK)) |
| 752 | |
| 753 | /** Whether the specified algorithm is an HMAC algorithm. |
| 754 | * |
| 755 | * HMAC is a family of MAC algorithms that are based on a hash function. |
| 756 | * |
| 757 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 758 | * |
| 759 | * \return 1 if \p alg is an HMAC algorithm, 0 otherwise. |
| 760 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 761 | * algorithm identifier. |
| 762 | */ |
| 763 | #define PSA_ALG_IS_HMAC(alg) \ |
| 764 | (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \ |
| 765 | PSA_ALG_HMAC_BASE) |
| 766 | |
| 767 | /* In the encoding of a MAC algorithm, the bits corresponding to |
| 768 | * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is |
| 769 | * truncated. As an exception, the value 0 means the untruncated algorithm, |
| 770 | * whatever its length is. The length is encoded in 6 bits, so it can |
| 771 | * reach up to 63; the largest MAC is 64 bytes so its trivial truncation |
| 772 | * to full length is correctly encoded as 0 and any non-trivial truncation |
| 773 | * is correctly encoded as a value between 1 and 63. */ |
| 774 | #define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00) |
| 775 | #define PSA_MAC_TRUNCATION_OFFSET 8 |
| 776 | |
| 777 | /** Macro to build a truncated MAC algorithm. |
| 778 | * |
| 779 | * A truncated MAC algorithm is identical to the corresponding MAC |
| 780 | * algorithm except that the MAC value for the truncated algorithm |
| 781 | * consists of only the first \p mac_length bytes of the MAC value |
| 782 | * for the untruncated algorithm. |
| 783 | * |
| 784 | * \note This macro may allow constructing algorithm identifiers that |
| 785 | * are not valid, either because the specified length is larger |
| 786 | * than the untruncated MAC or because the specified length is |
| 787 | * smaller than permitted by the implementation. |
| 788 | * |
| 789 | * \note It is implementation-defined whether a truncated MAC that |
| 790 | * is truncated to the same length as the MAC of the untruncated |
| 791 | * algorithm is considered identical to the untruncated algorithm |
| 792 | * for policy comparison purposes. |
| 793 | * |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 794 | * \param mac_alg A MAC algorithm identifier (value of type |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 795 | * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg) |
| 796 | * is true). This may be a truncated or untruncated |
| 797 | * MAC algorithm. |
| 798 | * \param mac_length Desired length of the truncated MAC in bytes. |
| 799 | * This must be at most the full length of the MAC |
| 800 | * and must be at least an implementation-specified |
| 801 | * minimum. The implementation-specified minimum |
| 802 | * shall not be zero. |
| 803 | * |
| 804 | * \return The corresponding MAC algorithm with the specified |
| 805 | * length. |
| 806 | * \return Unspecified if \p alg is not a supported |
| 807 | * MAC algorithm or if \p mac_length is too small or |
| 808 | * too large for the specified MAC algorithm. |
| 809 | */ |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 810 | #define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \ |
| 811 | (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 812 | ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK)) |
| 813 | |
| 814 | /** Macro to build the base MAC algorithm corresponding to a truncated |
| 815 | * MAC algorithm. |
| 816 | * |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 817 | * \param mac_alg A MAC algorithm identifier (value of type |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 818 | * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg) |
| 819 | * is true). This may be a truncated or untruncated |
| 820 | * MAC algorithm. |
| 821 | * |
| 822 | * \return The corresponding base MAC algorithm. |
| 823 | * \return Unspecified if \p alg is not a supported |
| 824 | * MAC algorithm. |
| 825 | */ |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 826 | #define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \ |
| 827 | ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 828 | |
| 829 | /** Length to which a MAC algorithm is truncated. |
| 830 | * |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 831 | * \param mac_alg A MAC algorithm identifier (value of type |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 832 | * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg) |
| 833 | * is true). |
| 834 | * |
| 835 | * \return Length of the truncated MAC in bytes. |
| 836 | * \return 0 if \p alg is a non-truncated MAC algorithm. |
| 837 | * \return Unspecified if \p alg is not a supported |
| 838 | * MAC algorithm. |
| 839 | */ |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 840 | #define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \ |
| 841 | (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 842 | |
| 843 | #define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000) |
Adrian L. Shaw | fd2aed4 | 2019-07-11 15:47:40 +0100 | [diff] [blame] | 844 | /** The CBC-MAC construction over a block cipher |
| 845 | * |
| 846 | * \warning CBC-MAC is insecure in many cases. |
| 847 | * A more secure mode, such as #PSA_ALG_CMAC, is recommended. |
| 848 | */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 849 | #define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001) |
Adrian L. Shaw | fd2aed4 | 2019-07-11 15:47:40 +0100 | [diff] [blame] | 850 | /** The CMAC construction over a block cipher */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 851 | #define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 852 | |
| 853 | /** Whether the specified algorithm is a MAC algorithm based on a block cipher. |
| 854 | * |
| 855 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 856 | * |
| 857 | * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise. |
| 858 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 859 | * algorithm identifier. |
| 860 | */ |
| 861 | #define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \ |
| 862 | (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \ |
| 863 | PSA_ALG_CIPHER_MAC_BASE) |
| 864 | |
| 865 | #define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000) |
| 866 | #define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000) |
| 867 | |
| 868 | /** Whether the specified algorithm is a stream cipher. |
| 869 | * |
| 870 | * A stream cipher is a symmetric cipher that encrypts or decrypts messages |
| 871 | * by applying a bitwise-xor with a stream of bytes that is generated |
| 872 | * from a key. |
| 873 | * |
| 874 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 875 | * |
| 876 | * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise. |
| 877 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 878 | * algorithm identifier or if it is not a symmetric cipher algorithm. |
| 879 | */ |
| 880 | #define PSA_ALG_IS_STREAM_CIPHER(alg) \ |
| 881 | (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \ |
| 882 | (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG)) |
| 883 | |
| 884 | /** The ARC4 stream cipher algorithm. |
| 885 | */ |
| 886 | #define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001) |
| 887 | |
Gilles Peskine | 3e79c8e | 2019-05-06 15:20:04 +0200 | [diff] [blame] | 888 | /** The ChaCha20 stream cipher. |
| 889 | * |
| 890 | * ChaCha20 is defined in RFC 7539. |
| 891 | * |
| 892 | * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv() |
| 893 | * must be 12. |
| 894 | * |
| 895 | * The initial block counter is always 0. |
| 896 | * |
| 897 | */ |
| 898 | #define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005) |
| 899 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 900 | /** The CTR stream cipher mode. |
| 901 | * |
| 902 | * CTR is a stream cipher which is built from a block cipher. |
| 903 | * The underlying block cipher is determined by the key type. |
| 904 | * For example, to use AES-128-CTR, use this algorithm with |
| 905 | * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes). |
| 906 | */ |
| 907 | #define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001) |
| 908 | |
Adrian L. Shaw | fd2aed4 | 2019-07-11 15:47:40 +0100 | [diff] [blame] | 909 | /** The CFB stream cipher mode. |
| 910 | * |
| 911 | * The underlying block cipher is determined by the key type. |
| 912 | */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 913 | #define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002) |
| 914 | |
Adrian L. Shaw | fd2aed4 | 2019-07-11 15:47:40 +0100 | [diff] [blame] | 915 | /** The OFB stream cipher mode. |
| 916 | * |
| 917 | * The underlying block cipher is determined by the key type. |
| 918 | */ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 919 | #define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003) |
| 920 | |
| 921 | /** The XTS cipher mode. |
| 922 | * |
| 923 | * XTS is a cipher mode which is built from a block cipher. It requires at |
| 924 | * least one full block of input, but beyond this minimum the input |
| 925 | * does not need to be a whole number of blocks. |
| 926 | */ |
| 927 | #define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff) |
| 928 | |
| 929 | /** The CBC block cipher chaining mode, with no padding. |
| 930 | * |
| 931 | * The underlying block cipher is determined by the key type. |
| 932 | * |
| 933 | * This symmetric cipher mode can only be used with messages whose lengths |
| 934 | * are whole number of blocks for the chosen block cipher. |
| 935 | */ |
| 936 | #define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100) |
| 937 | |
| 938 | /** The CBC block cipher chaining mode with PKCS#7 padding. |
| 939 | * |
| 940 | * The underlying block cipher is determined by the key type. |
| 941 | * |
| 942 | * This is the padding method defined by PKCS#7 (RFC 2315) §10.3. |
| 943 | */ |
| 944 | #define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101) |
| 945 | |
Gilles Peskine | 679693e | 2019-05-06 15:10:16 +0200 | [diff] [blame] | 946 | #define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000) |
| 947 | |
| 948 | /** Whether the specified algorithm is an AEAD mode on a block cipher. |
| 949 | * |
| 950 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 951 | * |
| 952 | * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on |
| 953 | * a block cipher, 0 otherwise. |
| 954 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 955 | * algorithm identifier. |
| 956 | */ |
| 957 | #define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \ |
| 958 | (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \ |
| 959 | (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) |
| 960 | |
Gilles Peskine | 9153ec0 | 2019-02-15 13:02:02 +0100 | [diff] [blame] | 961 | /** The CCM authenticated encryption algorithm. |
Adrian L. Shaw | fd2aed4 | 2019-07-11 15:47:40 +0100 | [diff] [blame] | 962 | * |
| 963 | * The underlying block cipher is determined by the key type. |
Gilles Peskine | 9153ec0 | 2019-02-15 13:02:02 +0100 | [diff] [blame] | 964 | */ |
Gilles Peskine | 679693e | 2019-05-06 15:10:16 +0200 | [diff] [blame] | 965 | #define PSA_ALG_CCM ((psa_algorithm_t)0x06401001) |
Gilles Peskine | 9153ec0 | 2019-02-15 13:02:02 +0100 | [diff] [blame] | 966 | |
| 967 | /** The GCM authenticated encryption algorithm. |
Adrian L. Shaw | fd2aed4 | 2019-07-11 15:47:40 +0100 | [diff] [blame] | 968 | * |
| 969 | * The underlying block cipher is determined by the key type. |
Gilles Peskine | 9153ec0 | 2019-02-15 13:02:02 +0100 | [diff] [blame] | 970 | */ |
Gilles Peskine | 679693e | 2019-05-06 15:10:16 +0200 | [diff] [blame] | 971 | #define PSA_ALG_GCM ((psa_algorithm_t)0x06401002) |
| 972 | |
| 973 | /** The Chacha20-Poly1305 AEAD algorithm. |
| 974 | * |
| 975 | * The ChaCha20_Poly1305 construction is defined in RFC 7539. |
Gilles Peskine | 3e79c8e | 2019-05-06 15:20:04 +0200 | [diff] [blame] | 976 | * |
| 977 | * Implementations must support 12-byte nonces, may support 8-byte nonces, |
| 978 | * and should reject other sizes. |
| 979 | * |
| 980 | * Implementations must support 16-byte tags and should reject other sizes. |
Gilles Peskine | 679693e | 2019-05-06 15:10:16 +0200 | [diff] [blame] | 981 | */ |
| 982 | #define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 983 | |
| 984 | /* In the encoding of a AEAD algorithm, the bits corresponding to |
| 985 | * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag. |
| 986 | * The constants for default lengths follow this encoding. |
| 987 | */ |
| 988 | #define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00) |
| 989 | #define PSA_AEAD_TAG_LENGTH_OFFSET 8 |
| 990 | |
| 991 | /** Macro to build a shortened AEAD algorithm. |
| 992 | * |
| 993 | * A shortened AEAD algorithm is similar to the corresponding AEAD |
| 994 | * algorithm, but has an authentication tag that consists of fewer bytes. |
| 995 | * Depending on the algorithm, the tag length may affect the calculation |
| 996 | * of the ciphertext. |
| 997 | * |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 998 | * \param aead_alg An AEAD algorithm identifier (value of type |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 999 | * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg) |
| 1000 | * is true). |
| 1001 | * \param tag_length Desired length of the authentication tag in bytes. |
| 1002 | * |
| 1003 | * \return The corresponding AEAD algorithm with the specified |
| 1004 | * length. |
| 1005 | * \return Unspecified if \p alg is not a supported |
| 1006 | * AEAD algorithm or if \p tag_length is not valid |
| 1007 | * for the specified AEAD algorithm. |
| 1008 | */ |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 1009 | #define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \ |
| 1010 | (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1011 | ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \ |
| 1012 | PSA_ALG_AEAD_TAG_LENGTH_MASK)) |
| 1013 | |
| 1014 | /** Calculate the corresponding AEAD algorithm with the default tag length. |
| 1015 | * |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 1016 | * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that |
| 1017 | * #PSA_ALG_IS_AEAD(\p alg) is true). |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1018 | * |
Gilles Peskine | 434899f | 2018-10-19 11:30:26 +0200 | [diff] [blame] | 1019 | * \return The corresponding AEAD algorithm with the default |
| 1020 | * tag length for that algorithm. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1021 | */ |
Unknown | e2e1995 | 2019-08-21 03:33:04 -0400 | [diff] [blame] | 1022 | #define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \ |
| 1023 | ( \ |
| 1024 | PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CCM) \ |
| 1025 | PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_GCM) \ |
| 1026 | PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1027 | 0) |
Unknown | e2e1995 | 2019-08-21 03:33:04 -0400 | [diff] [blame] | 1028 | #define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, ref) \ |
| 1029 | PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \ |
| 1030 | PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1031 | ref : |
| 1032 | |
| 1033 | #define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000) |
| 1034 | /** RSA PKCS#1 v1.5 signature with hashing. |
| 1035 | * |
| 1036 | * This is the signature scheme defined by RFC 8017 |
| 1037 | * (PKCS#1: RSA Cryptography Specifications) under the name |
| 1038 | * RSASSA-PKCS1-v1_5. |
| 1039 | * |
| 1040 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1041 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 1042 | * This includes #PSA_ALG_ANY_HASH |
| 1043 | * when specifying the algorithm in a usage policy. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1044 | * |
| 1045 | * \return The corresponding RSA PKCS#1 v1.5 signature algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 1046 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1047 | * hash algorithm. |
| 1048 | */ |
| 1049 | #define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \ |
| 1050 | (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1051 | /** Raw PKCS#1 v1.5 signature. |
| 1052 | * |
| 1053 | * The input to this algorithm is the DigestInfo structure used by |
| 1054 | * RFC 8017 (PKCS#1: RSA Cryptography Specifications), §9.2 |
| 1055 | * steps 3–6. |
| 1056 | */ |
| 1057 | #define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE |
| 1058 | #define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \ |
| 1059 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE) |
| 1060 | |
| 1061 | #define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000) |
| 1062 | /** RSA PSS signature with hashing. |
| 1063 | * |
| 1064 | * This is the signature scheme defined by RFC 8017 |
| 1065 | * (PKCS#1: RSA Cryptography Specifications) under the name |
| 1066 | * RSASSA-PSS, with the message generation function MGF1, and with |
| 1067 | * a salt length equal to the length of the hash. The specified |
| 1068 | * hash algorithm is used to hash the input message, to create the |
| 1069 | * salted hash, and for the mask generation. |
| 1070 | * |
| 1071 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1072 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 1073 | * This includes #PSA_ALG_ANY_HASH |
| 1074 | * when specifying the algorithm in a usage policy. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1075 | * |
| 1076 | * \return The corresponding RSA PSS signature algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 1077 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1078 | * hash algorithm. |
| 1079 | */ |
| 1080 | #define PSA_ALG_RSA_PSS(hash_alg) \ |
| 1081 | (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1082 | #define PSA_ALG_IS_RSA_PSS(alg) \ |
| 1083 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE) |
| 1084 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1085 | #define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000) |
| 1086 | /** ECDSA signature with hashing. |
| 1087 | * |
| 1088 | * This is the ECDSA signature scheme defined by ANSI X9.62, |
| 1089 | * with a random per-message secret number (*k*). |
| 1090 | * |
| 1091 | * The representation of the signature as a byte string consists of |
| 1092 | * the concatentation of the signature values *r* and *s*. Each of |
| 1093 | * *r* and *s* is encoded as an *N*-octet string, where *N* is the length |
| 1094 | * of the base point of the curve in octets. Each value is represented |
| 1095 | * in big-endian order (most significant octet first). |
| 1096 | * |
| 1097 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1098 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 1099 | * This includes #PSA_ALG_ANY_HASH |
| 1100 | * when specifying the algorithm in a usage policy. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1101 | * |
| 1102 | * \return The corresponding ECDSA signature algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 1103 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1104 | * hash algorithm. |
| 1105 | */ |
| 1106 | #define PSA_ALG_ECDSA(hash_alg) \ |
| 1107 | (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1108 | /** ECDSA signature without hashing. |
| 1109 | * |
| 1110 | * This is the same signature scheme as #PSA_ALG_ECDSA(), but |
| 1111 | * without specifying a hash algorithm. This algorithm may only be |
| 1112 | * used to sign or verify a sequence of bytes that should be an |
| 1113 | * already-calculated hash. Note that the input is padded with |
| 1114 | * zeros on the left or truncated on the left as required to fit |
| 1115 | * the curve size. |
| 1116 | */ |
| 1117 | #define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE |
| 1118 | #define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000) |
| 1119 | /** Deterministic ECDSA signature with hashing. |
| 1120 | * |
| 1121 | * This is the deterministic ECDSA signature scheme defined by RFC 6979. |
| 1122 | * |
| 1123 | * The representation of a signature is the same as with #PSA_ALG_ECDSA(). |
| 1124 | * |
| 1125 | * Note that when this algorithm is used for verification, signatures |
| 1126 | * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the |
| 1127 | * same private key are accepted. In other words, |
| 1128 | * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from |
| 1129 | * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification. |
| 1130 | * |
| 1131 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1132 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 1133 | * This includes #PSA_ALG_ANY_HASH |
| 1134 | * when specifying the algorithm in a usage policy. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1135 | * |
| 1136 | * \return The corresponding deterministic ECDSA signature |
| 1137 | * algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 1138 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1139 | * hash algorithm. |
| 1140 | */ |
| 1141 | #define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \ |
| 1142 | (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1143 | #define PSA_ALG_IS_ECDSA(alg) \ |
| 1144 | (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \ |
| 1145 | PSA_ALG_ECDSA_BASE) |
| 1146 | #define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \ |
| 1147 | (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0) |
| 1148 | #define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \ |
| 1149 | (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)) |
| 1150 | #define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \ |
| 1151 | (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)) |
| 1152 | |
Gilles Peskine | d35b489 | 2019-01-14 16:02:15 +0100 | [diff] [blame] | 1153 | /** Whether the specified algorithm is a hash-and-sign algorithm. |
| 1154 | * |
| 1155 | * Hash-and-sign algorithms are public-key signature algorithms structured |
| 1156 | * in two parts: first the calculation of a hash in a way that does not |
| 1157 | * depend on the key, then the calculation of a signature from the |
| 1158 | * hash value and the key. |
| 1159 | * |
| 1160 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1161 | * |
| 1162 | * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise. |
| 1163 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 1164 | * algorithm identifier. |
| 1165 | */ |
| 1166 | #define PSA_ALG_IS_HASH_AND_SIGN(alg) \ |
| 1167 | (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \ |
Gilles Peskine | e38ab1a | 2019-05-16 13:51:50 +0200 | [diff] [blame] | 1168 | PSA_ALG_IS_ECDSA(alg)) |
Gilles Peskine | d35b489 | 2019-01-14 16:02:15 +0100 | [diff] [blame] | 1169 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1170 | /** Get the hash used by a hash-and-sign signature algorithm. |
| 1171 | * |
| 1172 | * A hash-and-sign algorithm is a signature algorithm which is |
| 1173 | * composed of two phases: first a hashing phase which does not use |
| 1174 | * the key and produces a hash of the input message, then a signing |
| 1175 | * phase which only uses the hash and the key and not the message |
| 1176 | * itself. |
| 1177 | * |
| 1178 | * \param alg A signature algorithm (\c PSA_ALG_XXX value such that |
| 1179 | * #PSA_ALG_IS_SIGN(\p alg) is true). |
| 1180 | * |
| 1181 | * \return The underlying hash algorithm if \p alg is a hash-and-sign |
| 1182 | * algorithm. |
| 1183 | * \return 0 if \p alg is a signature algorithm that does not |
| 1184 | * follow the hash-and-sign structure. |
| 1185 | * \return Unspecified if \p alg is not a signature algorithm or |
| 1186 | * if it is not supported by the implementation. |
| 1187 | */ |
| 1188 | #define PSA_ALG_SIGN_GET_HASH(alg) \ |
Gilles Peskine | d35b489 | 2019-01-14 16:02:15 +0100 | [diff] [blame] | 1189 | (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \ |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1190 | ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \ |
| 1191 | ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \ |
| 1192 | 0) |
| 1193 | |
| 1194 | /** RSA PKCS#1 v1.5 encryption. |
| 1195 | */ |
| 1196 | #define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000) |
| 1197 | |
| 1198 | #define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000) |
| 1199 | /** RSA OAEP encryption. |
| 1200 | * |
| 1201 | * This is the encryption scheme defined by RFC 8017 |
| 1202 | * (PKCS#1: RSA Cryptography Specifications) under the name |
| 1203 | * RSAES-OAEP, with the message generation function MGF1. |
| 1204 | * |
| 1205 | * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that |
| 1206 | * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use |
| 1207 | * for MGF1. |
| 1208 | * |
| 1209 | * \return The corresponding RSA OAEP signature algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 1210 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1211 | * hash algorithm. |
| 1212 | */ |
| 1213 | #define PSA_ALG_RSA_OAEP(hash_alg) \ |
| 1214 | (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1215 | #define PSA_ALG_IS_RSA_OAEP(alg) \ |
| 1216 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE) |
| 1217 | #define PSA_ALG_RSA_OAEP_GET_HASH(alg) \ |
| 1218 | (PSA_ALG_IS_RSA_OAEP(alg) ? \ |
| 1219 | ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \ |
| 1220 | 0) |
| 1221 | |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 1222 | #define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1223 | /** Macro to build an HKDF algorithm. |
| 1224 | * |
| 1225 | * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256. |
| 1226 | * |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 1227 | * This key derivation algorithm uses the following inputs: |
Gilles Peskine | 03410b5 | 2019-05-16 16:05:19 +0200 | [diff] [blame] | 1228 | * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step. |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 1229 | * It is optional; if omitted, the derivation uses an empty salt. |
Gilles Peskine | 03410b5 | 2019-05-16 16:05:19 +0200 | [diff] [blame] | 1230 | * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step. |
| 1231 | * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step. |
| 1232 | * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET. |
| 1233 | * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 1234 | * starting to generate output. |
| 1235 | * |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1236 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1237 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
| 1238 | * |
| 1239 | * \return The corresponding HKDF algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 1240 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1241 | * hash algorithm. |
| 1242 | */ |
| 1243 | #define PSA_ALG_HKDF(hash_alg) \ |
| 1244 | (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1245 | /** Whether the specified algorithm is an HKDF algorithm. |
| 1246 | * |
| 1247 | * HKDF is a family of key derivation algorithms that are based on a hash |
| 1248 | * function and the HMAC construction. |
| 1249 | * |
| 1250 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1251 | * |
| 1252 | * \return 1 if \c alg is an HKDF algorithm, 0 otherwise. |
| 1253 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 1254 | * key derivation algorithm identifier. |
| 1255 | */ |
| 1256 | #define PSA_ALG_IS_HKDF(alg) \ |
| 1257 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE) |
| 1258 | #define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \ |
| 1259 | (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) |
| 1260 | |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 1261 | #define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1262 | /** Macro to build a TLS-1.2 PRF algorithm. |
| 1263 | * |
| 1264 | * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule, |
| 1265 | * specified in Section 5 of RFC 5246. It is based on HMAC and can be |
| 1266 | * used with either SHA-256 or SHA-384. |
| 1267 | * |
Gilles Peskine | ed87d31 | 2019-05-29 17:32:39 +0200 | [diff] [blame] | 1268 | * This key derivation algorithm uses the following inputs, which must be |
| 1269 | * passed in the order given here: |
| 1270 | * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed. |
Gilles Peskine | 2cb9e39 | 2019-05-21 15:58:13 +0200 | [diff] [blame] | 1271 | * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key. |
| 1272 | * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label. |
Gilles Peskine | 2cb9e39 | 2019-05-21 15:58:13 +0200 | [diff] [blame] | 1273 | * |
| 1274 | * For the application to TLS-1.2 key expansion, the seed is the |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1275 | * concatenation of ServerHello.Random + ClientHello.Random, |
Gilles Peskine | 2cb9e39 | 2019-05-21 15:58:13 +0200 | [diff] [blame] | 1276 | * and the label is "key expansion". |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1277 | * |
| 1278 | * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the |
| 1279 | * TLS 1.2 PRF using HMAC-SHA-256. |
| 1280 | * |
| 1281 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1282 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
| 1283 | * |
| 1284 | * \return The corresponding TLS-1.2 PRF algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 1285 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1286 | * hash algorithm. |
| 1287 | */ |
| 1288 | #define PSA_ALG_TLS12_PRF(hash_alg) \ |
| 1289 | (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1290 | |
| 1291 | /** Whether the specified algorithm is a TLS-1.2 PRF algorithm. |
| 1292 | * |
| 1293 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1294 | * |
| 1295 | * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise. |
| 1296 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 1297 | * key derivation algorithm identifier. |
| 1298 | */ |
| 1299 | #define PSA_ALG_IS_TLS12_PRF(alg) \ |
| 1300 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE) |
| 1301 | #define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \ |
| 1302 | (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) |
| 1303 | |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 1304 | #define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1305 | /** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm. |
| 1306 | * |
| 1307 | * In a pure-PSK handshake in TLS 1.2, the master secret is derived |
| 1308 | * from the PreSharedKey (PSK) through the application of padding |
| 1309 | * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5). |
| 1310 | * The latter is based on HMAC and can be used with either SHA-256 |
| 1311 | * or SHA-384. |
| 1312 | * |
Gilles Peskine | ed87d31 | 2019-05-29 17:32:39 +0200 | [diff] [blame] | 1313 | * This key derivation algorithm uses the following inputs, which must be |
| 1314 | * passed in the order given here: |
| 1315 | * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed. |
Gilles Peskine | 2cb9e39 | 2019-05-21 15:58:13 +0200 | [diff] [blame] | 1316 | * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key. |
| 1317 | * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label. |
Gilles Peskine | 2cb9e39 | 2019-05-21 15:58:13 +0200 | [diff] [blame] | 1318 | * |
| 1319 | * For the application to TLS-1.2, the seed (which is |
| 1320 | * forwarded to the TLS-1.2 PRF) is the concatenation of the |
| 1321 | * ClientHello.Random + ServerHello.Random, |
| 1322 | * and the label is "master secret" or "extended master secret". |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1323 | * |
| 1324 | * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the |
| 1325 | * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256. |
| 1326 | * |
| 1327 | * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that |
| 1328 | * #PSA_ALG_IS_HASH(\p hash_alg) is true). |
| 1329 | * |
| 1330 | * \return The corresponding TLS-1.2 PSK to MS algorithm. |
Gilles Peskine | 3be6b7f | 2019-03-05 19:32:26 +0100 | [diff] [blame] | 1331 | * \return Unspecified if \p hash_alg is not a supported |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1332 | * hash algorithm. |
| 1333 | */ |
| 1334 | #define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \ |
| 1335 | (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) |
| 1336 | |
| 1337 | /** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm. |
| 1338 | * |
| 1339 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1340 | * |
| 1341 | * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise. |
| 1342 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 1343 | * key derivation algorithm identifier. |
| 1344 | */ |
| 1345 | #define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \ |
| 1346 | (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE) |
| 1347 | #define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \ |
| 1348 | (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) |
| 1349 | |
Gilles Peskine | a52460c | 2019-04-12 00:11:21 +0200 | [diff] [blame] | 1350 | #define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff) |
| 1351 | #define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1352 | |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 1353 | /** Macro to build a combined algorithm that chains a key agreement with |
| 1354 | * a key derivation. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1355 | * |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 1356 | * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such |
| 1357 | * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true). |
| 1358 | * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such |
| 1359 | * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true). |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1360 | * |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 1361 | * \return The corresponding key agreement and derivation |
| 1362 | * algorithm. |
| 1363 | * \return Unspecified if \p ka_alg is not a supported |
| 1364 | * key agreement algorithm or \p kdf_alg is not a |
| 1365 | * supported key derivation algorithm. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1366 | */ |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 1367 | #define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \ |
| 1368 | ((ka_alg) | (kdf_alg)) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1369 | |
| 1370 | #define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \ |
| 1371 | (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION) |
| 1372 | |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 1373 | #define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \ |
| 1374 | (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1375 | |
Gilles Peskine | 47e79fb | 2019-02-08 11:24:59 +0100 | [diff] [blame] | 1376 | /** Whether the specified algorithm is a raw key agreement algorithm. |
| 1377 | * |
| 1378 | * A raw key agreement algorithm is one that does not specify |
| 1379 | * a key derivation function. |
| 1380 | * Usually, raw key agreement algorithms are constructed directly with |
| 1381 | * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are |
| 1382 | * constructed with PSA_ALG_KEY_AGREEMENT(). |
| 1383 | * |
| 1384 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1385 | * |
| 1386 | * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise. |
| 1387 | * This macro may return either 0 or 1 if \p alg is not a supported |
| 1388 | * algorithm identifier. |
| 1389 | */ |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 1390 | #define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \ |
Gilles Peskine | 47e79fb | 2019-02-08 11:24:59 +0100 | [diff] [blame] | 1391 | (PSA_ALG_IS_KEY_AGREEMENT(alg) && \ |
| 1392 | PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION) |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 1393 | |
| 1394 | #define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \ |
| 1395 | ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg))) |
| 1396 | |
| 1397 | /** The finite-field Diffie-Hellman (DH) key agreement algorithm. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1398 | * |
Gilles Peskine | 2e37c0d | 2019-03-05 19:32:02 +0100 | [diff] [blame] | 1399 | * The shared secret produced by key agreement is |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1400 | * `g^{ab}` in big-endian format. |
| 1401 | * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p` |
| 1402 | * in bits. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1403 | */ |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 1404 | #define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000) |
| 1405 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1406 | /** Whether the specified algorithm is a finite field Diffie-Hellman algorithm. |
| 1407 | * |
Gilles Peskine | 2e37c0d | 2019-03-05 19:32:02 +0100 | [diff] [blame] | 1408 | * This includes the raw finite field Diffie-Hellman algorithm as well as |
| 1409 | * finite-field Diffie-Hellman followed by any supporter key derivation |
| 1410 | * algorithm. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1411 | * |
| 1412 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1413 | * |
| 1414 | * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise. |
| 1415 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 1416 | * key agreement algorithm identifier. |
| 1417 | */ |
| 1418 | #define PSA_ALG_IS_FFDH(alg) \ |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 1419 | (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1420 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1421 | /** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm. |
| 1422 | * |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 1423 | * The shared secret produced by key agreement is the x-coordinate of |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1424 | * the shared secret point. It is always `ceiling(m / 8)` bytes long where |
| 1425 | * `m` is the bit size associated with the curve, i.e. the bit size of the |
| 1426 | * order of the curve's coordinate field. When `m` is not a multiple of 8, |
| 1427 | * the byte containing the most significant bit of the shared secret |
| 1428 | * is padded with zero bits. The byte order is either little-endian |
| 1429 | * or big-endian depending on the curve type. |
| 1430 | * |
| 1431 | * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`), |
| 1432 | * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` |
| 1433 | * in little-endian byte order. |
| 1434 | * The bit size is 448 for Curve448 and 255 for Curve25519. |
| 1435 | * - For Weierstrass curves over prime fields (curve types |
| 1436 | * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`), |
| 1437 | * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` |
| 1438 | * in big-endian byte order. |
| 1439 | * The bit size is `m = ceiling(log_2(p))` for the field `F_p`. |
| 1440 | * - For Weierstrass curves over binary fields (curve types |
| 1441 | * `PSA_ECC_CURVE_SECTXXX`), |
| 1442 | * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` |
| 1443 | * in big-endian byte order. |
| 1444 | * The bit size is `m` for the field `F_{2^m}`. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1445 | */ |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 1446 | #define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000) |
| 1447 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1448 | /** Whether the specified algorithm is an elliptic curve Diffie-Hellman |
| 1449 | * algorithm. |
| 1450 | * |
Gilles Peskine | 2e37c0d | 2019-03-05 19:32:02 +0100 | [diff] [blame] | 1451 | * This includes the raw elliptic curve Diffie-Hellman algorithm as well as |
| 1452 | * elliptic curve Diffie-Hellman followed by any supporter key derivation |
| 1453 | * algorithm. |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1454 | * |
| 1455 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1456 | * |
| 1457 | * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm, |
| 1458 | * 0 otherwise. |
| 1459 | * This macro may return either 0 or 1 if \c alg is not a supported |
| 1460 | * key agreement algorithm identifier. |
| 1461 | */ |
| 1462 | #define PSA_ALG_IS_ECDH(alg) \ |
Gilles Peskine | 6843c29 | 2019-01-18 16:44:49 +0100 | [diff] [blame] | 1463 | (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH) |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1464 | |
Gilles Peskine | 30f77cd | 2019-01-14 16:06:39 +0100 | [diff] [blame] | 1465 | /** Whether the specified algorithm encoding is a wildcard. |
| 1466 | * |
| 1467 | * Wildcard values may only be used to set the usage algorithm field in |
| 1468 | * a policy, not to perform an operation. |
| 1469 | * |
| 1470 | * \param alg An algorithm identifier (value of type #psa_algorithm_t). |
| 1471 | * |
| 1472 | * \return 1 if \c alg is a wildcard algorithm encoding. |
| 1473 | * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for |
| 1474 | * an operation). |
| 1475 | * \return This macro may return either 0 or 1 if \c alg is not a supported |
| 1476 | * algorithm identifier. |
| 1477 | */ |
| 1478 | #define PSA_ALG_IS_WILDCARD(alg) \ |
| 1479 | (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \ |
| 1480 | PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \ |
| 1481 | (alg) == PSA_ALG_ANY_HASH) |
| 1482 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1483 | /**@}*/ |
| 1484 | |
| 1485 | /** \defgroup key_lifetimes Key lifetimes |
| 1486 | * @{ |
| 1487 | */ |
| 1488 | |
| 1489 | /** A volatile key only exists as long as the handle to it is not closed. |
| 1490 | * The key material is guaranteed to be erased on a power reset. |
| 1491 | */ |
| 1492 | #define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000) |
| 1493 | |
| 1494 | /** The default storage area for persistent keys. |
| 1495 | * |
| 1496 | * A persistent key remains in storage until it is explicitly destroyed or |
| 1497 | * until the corresponding storage area is wiped. This specification does |
| 1498 | * not define any mechanism to wipe a storage area, but implementations may |
| 1499 | * provide their own mechanism (for example to perform a factory reset, |
| 1500 | * to prepare for device refurbishment, or to uninstall an application). |
| 1501 | * |
| 1502 | * This lifetime value is the default storage area for the calling |
| 1503 | * application. Implementations may offer other storage areas designated |
| 1504 | * by other lifetime values as implementation-specific extensions. |
| 1505 | */ |
| 1506 | #define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001) |
| 1507 | |
Gilles Peskine | 4a231b8 | 2019-05-06 18:56:14 +0200 | [diff] [blame] | 1508 | /** The minimum value for a key identifier chosen by the application. |
| 1509 | */ |
Jaeden Amero | 6fa62a5 | 2019-08-20 17:43:48 +0100 | [diff] [blame] | 1510 | #define PSA_KEY_ID_USER_MIN ((psa_app_key_id_t)0x00000001) |
Gilles Peskine | 280948a | 2019-05-16 15:27:14 +0200 | [diff] [blame] | 1511 | /** The maximum value for a key identifier chosen by the application. |
Gilles Peskine | 4a231b8 | 2019-05-06 18:56:14 +0200 | [diff] [blame] | 1512 | */ |
Jaeden Amero | 6fa62a5 | 2019-08-20 17:43:48 +0100 | [diff] [blame] | 1513 | #define PSA_KEY_ID_USER_MAX ((psa_app_key_id_t)0x3fffffff) |
Gilles Peskine | 280948a | 2019-05-16 15:27:14 +0200 | [diff] [blame] | 1514 | /** The minimum value for a key identifier chosen by the implementation. |
Gilles Peskine | 4a231b8 | 2019-05-06 18:56:14 +0200 | [diff] [blame] | 1515 | */ |
Jaeden Amero | 6fa62a5 | 2019-08-20 17:43:48 +0100 | [diff] [blame] | 1516 | #define PSA_KEY_ID_VENDOR_MIN ((psa_app_key_id_t)0x40000000) |
Gilles Peskine | 280948a | 2019-05-16 15:27:14 +0200 | [diff] [blame] | 1517 | /** The maximum value for a key identifier chosen by the implementation. |
Gilles Peskine | 4a231b8 | 2019-05-06 18:56:14 +0200 | [diff] [blame] | 1518 | */ |
Jaeden Amero | 6fa62a5 | 2019-08-20 17:43:48 +0100 | [diff] [blame] | 1519 | #define PSA_KEY_ID_VENDOR_MAX ((psa_app_key_id_t)0x7fffffff) |
Gilles Peskine | 4a231b8 | 2019-05-06 18:56:14 +0200 | [diff] [blame] | 1520 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1521 | /**@}*/ |
| 1522 | |
| 1523 | /** \defgroup policy Key policies |
| 1524 | * @{ |
| 1525 | */ |
| 1526 | |
| 1527 | /** Whether the key may be exported. |
| 1528 | * |
| 1529 | * A public key or the public part of a key pair may always be exported |
| 1530 | * regardless of the value of this permission flag. |
| 1531 | * |
| 1532 | * If a key does not have export permission, implementations shall not |
| 1533 | * allow the key to be exported in plain form from the cryptoprocessor, |
| 1534 | * whether through psa_export_key() or through a proprietary interface. |
| 1535 | * The key may however be exportable in a wrapped form, i.e. in a form |
| 1536 | * where it is encrypted by another key. |
| 1537 | */ |
| 1538 | #define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001) |
| 1539 | |
Gilles Peskine | 8e0206a | 2019-05-14 14:24:28 +0200 | [diff] [blame] | 1540 | /** Whether the key may be copied. |
| 1541 | * |
Gilles Peskine | d6a8f5f | 2019-05-14 16:25:50 +0200 | [diff] [blame] | 1542 | * This flag allows the use of psa_copy_key() to make a copy of the key |
Gilles Peskine | 8e0206a | 2019-05-14 14:24:28 +0200 | [diff] [blame] | 1543 | * with the same policy or a more restrictive policy. |
| 1544 | * |
Gilles Peskine | d6a8f5f | 2019-05-14 16:25:50 +0200 | [diff] [blame] | 1545 | * For lifetimes for which the key is located in a secure element which |
| 1546 | * enforce the non-exportability of keys, copying a key outside the secure |
| 1547 | * element also requires the usage flag #PSA_KEY_USAGE_EXPORT. |
| 1548 | * Copying the key inside the secure element is permitted with just |
| 1549 | * #PSA_KEY_USAGE_COPY if the secure element supports it. |
| 1550 | * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or |
Gilles Peskine | 8e0206a | 2019-05-14 14:24:28 +0200 | [diff] [blame] | 1551 | * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY |
| 1552 | * is sufficient to permit the copy. |
| 1553 | */ |
| 1554 | #define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002) |
| 1555 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1556 | /** Whether the key may be used to encrypt a message. |
| 1557 | * |
| 1558 | * This flag allows the key to be used for a symmetric encryption operation, |
| 1559 | * for an AEAD encryption-and-authentication operation, |
| 1560 | * or for an asymmetric encryption operation, |
| 1561 | * if otherwise permitted by the key's type and policy. |
| 1562 | * |
| 1563 | * For a key pair, this concerns the public key. |
| 1564 | */ |
| 1565 | #define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100) |
| 1566 | |
| 1567 | /** Whether the key may be used to decrypt a message. |
| 1568 | * |
| 1569 | * This flag allows the key to be used for a symmetric decryption operation, |
| 1570 | * for an AEAD decryption-and-verification operation, |
| 1571 | * or for an asymmetric decryption operation, |
| 1572 | * if otherwise permitted by the key's type and policy. |
| 1573 | * |
| 1574 | * For a key pair, this concerns the private key. |
| 1575 | */ |
| 1576 | #define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200) |
| 1577 | |
| 1578 | /** Whether the key may be used to sign a message. |
| 1579 | * |
| 1580 | * This flag allows the key to be used for a MAC calculation operation |
| 1581 | * or for an asymmetric signature operation, |
| 1582 | * if otherwise permitted by the key's type and policy. |
| 1583 | * |
| 1584 | * For a key pair, this concerns the private key. |
| 1585 | */ |
| 1586 | #define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400) |
| 1587 | |
| 1588 | /** Whether the key may be used to verify a message signature. |
| 1589 | * |
| 1590 | * This flag allows the key to be used for a MAC verification operation |
| 1591 | * or for an asymmetric signature verification operation, |
| 1592 | * if otherwise permitted by by the key's type and policy. |
| 1593 | * |
| 1594 | * For a key pair, this concerns the public key. |
| 1595 | */ |
| 1596 | #define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800) |
| 1597 | |
| 1598 | /** Whether the key may be used to derive other keys. |
| 1599 | */ |
| 1600 | #define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000) |
| 1601 | |
| 1602 | /**@}*/ |
| 1603 | |
Gilles Peskine | b70a0fd | 2019-01-07 22:59:38 +0100 | [diff] [blame] | 1604 | /** \defgroup derivation Key derivation |
| 1605 | * @{ |
| 1606 | */ |
| 1607 | |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 1608 | /** A secret input for key derivation. |
| 1609 | * |
| 1610 | * This must be a key of type #PSA_KEY_TYPE_DERIVE. |
| 1611 | */ |
Gilles Peskine | cf7292e | 2019-05-16 17:53:40 +0200 | [diff] [blame] | 1612 | #define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101) |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 1613 | |
| 1614 | /** A label for key derivation. |
| 1615 | * |
| 1616 | * This must be a direct input. |
| 1617 | */ |
Gilles Peskine | cf7292e | 2019-05-16 17:53:40 +0200 | [diff] [blame] | 1618 | #define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201) |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 1619 | |
| 1620 | /** A salt for key derivation. |
| 1621 | * |
| 1622 | * This must be a direct input. |
| 1623 | */ |
Gilles Peskine | cf7292e | 2019-05-16 17:53:40 +0200 | [diff] [blame] | 1624 | #define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202) |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 1625 | |
| 1626 | /** An information string for key derivation. |
| 1627 | * |
| 1628 | * This must be a direct input. |
| 1629 | */ |
Gilles Peskine | cf7292e | 2019-05-16 17:53:40 +0200 | [diff] [blame] | 1630 | #define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203) |
Gilles Peskine | 6cdfdb7 | 2019-01-08 10:31:27 +0100 | [diff] [blame] | 1631 | |
Gilles Peskine | 2cb9e39 | 2019-05-21 15:58:13 +0200 | [diff] [blame] | 1632 | /** A seed for key derivation. |
| 1633 | * |
| 1634 | * This must be a direct input. |
| 1635 | */ |
| 1636 | #define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204) |
| 1637 | |
Gilles Peskine | b70a0fd | 2019-01-07 22:59:38 +0100 | [diff] [blame] | 1638 | /**@}*/ |
| 1639 | |
Gilles Peskine | f3b731e | 2018-12-12 13:38:31 +0100 | [diff] [blame] | 1640 | #endif /* PSA_CRYPTO_VALUES_H */ |