blob: 798d75824af18c91c9d6f9289df6e390a7f0c0fb [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
Janos Follath4614b9a2022-07-21 15:34:47 +010041#include "bignum_core.h"
Chris Jones4c5819c2021-03-03 17:45:34 +000042#include "bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050043#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000044#include "mbedtls/error.h"
Gabor Mezei22c9a6f2021-10-20 12:09:35 +020045#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000046
Dave Rodgman351c71b2021-12-06 17:50:53 +000047#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000048#include <string.h>
49
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000050#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020051
Gilles Peskine449bd832023-01-11 14:50:10 +010052#define MPI_VALIDATE_RET(cond) \
53 MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
54#define MPI_VALIDATE(cond) \
55 MBEDTLS_INTERNAL_VALIDATE(cond)
Gabor Mezei66669142022-08-03 12:52:26 +020056
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050057/* Implementation that should never be optimized out by the compiler */
Tom Cosgrovebc345e82023-07-25 15:17:39 +010058#define mbedtls_mpi_zeroize_and_free(v, n) mbedtls_zeroize_and_free(v, ciL * (n))
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050059
Paul Bakker5121ce52009-01-03 21:22:43 +000060/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000061 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000062 */
Gilles Peskine449bd832023-01-11 14:50:10 +010063void mbedtls_mpi_init(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000064{
Gilles Peskine449bd832023-01-11 14:50:10 +010065 MPI_VALIDATE(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +000066
Paul Bakker6c591fa2011-05-05 11:49:20 +000067 X->s = 1;
68 X->n = 0;
69 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000070}
71
72/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000073 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000074 */
Gilles Peskine449bd832023-01-11 14:50:10 +010075void mbedtls_mpi_free(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000076{
Gilles Peskine449bd832023-01-11 14:50:10 +010077 if (X == NULL) {
Paul Bakker6c591fa2011-05-05 11:49:20 +000078 return;
Gilles Peskine449bd832023-01-11 14:50:10 +010079 }
Paul Bakker5121ce52009-01-03 21:22:43 +000080
Gilles Peskine449bd832023-01-11 14:50:10 +010081 if (X->p != NULL) {
Tom Cosgrove46259f62023-07-18 16:44:14 +010082 mbedtls_mpi_zeroize_and_free(X->p, X->n);
Paul Bakker5121ce52009-01-03 21:22:43 +000083 }
84
Paul Bakker6c591fa2011-05-05 11:49:20 +000085 X->s = 1;
86 X->n = 0;
87 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000088}
89
90/*
91 * Enlarge to the specified number of limbs
92 */
Gilles Peskine449bd832023-01-11 14:50:10 +010093int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
Paul Bakker5121ce52009-01-03 21:22:43 +000094{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020095 mbedtls_mpi_uint *p;
Gilles Peskine449bd832023-01-11 14:50:10 +010096 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +000097
Gilles Peskine449bd832023-01-11 14:50:10 +010098 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
99 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
100 }
Paul Bakkerf9688572011-05-05 10:00:45 +0000101
Gilles Peskine449bd832023-01-11 14:50:10 +0100102 if (X->n < nblimbs) {
103 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
104 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
105 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000106
Gilles Peskine449bd832023-01-11 14:50:10 +0100107 if (X->p != NULL) {
108 memcpy(p, X->p, X->n * ciL);
Tom Cosgrove46259f62023-07-18 16:44:14 +0100109 mbedtls_mpi_zeroize_and_free(X->p, X->n);
Paul Bakker5121ce52009-01-03 21:22:43 +0000110 }
111
Gilles Peskine053022f2023-06-29 19:26:48 +0200112 /* nblimbs fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
113 * fits, and we've checked that nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
114 X->n = (unsigned short) nblimbs;
Paul Bakker5121ce52009-01-03 21:22:43 +0000115 X->p = p;
116 }
117
Gilles Peskine449bd832023-01-11 14:50:10 +0100118 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000119}
120
121/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100122 * Resize down as much as possible,
123 * while keeping at least the specified number of limbs
124 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100125int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100126{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200127 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100128 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100129 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000130
Gilles Peskine449bd832023-01-11 14:50:10 +0100131 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
132 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
133 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100134
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100135 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100136 if (X->n <= nblimbs) {
137 return mbedtls_mpi_grow(X, nblimbs);
138 }
Gilles Peskine322752b2020-01-21 13:59:51 +0100139 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100140
Gilles Peskine449bd832023-01-11 14:50:10 +0100141 for (i = X->n - 1; i > 0; i--) {
142 if (X->p[i] != 0) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100143 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100144 }
145 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100146 i++;
147
Gilles Peskine449bd832023-01-11 14:50:10 +0100148 if (i < nblimbs) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100149 i = nblimbs;
Gilles Peskine449bd832023-01-11 14:50:10 +0100150 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100151
Gilles Peskine449bd832023-01-11 14:50:10 +0100152 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
153 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
154 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100155
Gilles Peskine449bd832023-01-11 14:50:10 +0100156 if (X->p != NULL) {
157 memcpy(p, X->p, i * ciL);
Tom Cosgrove46259f62023-07-18 16:44:14 +0100158 mbedtls_mpi_zeroize_and_free(X->p, X->n);
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100159 }
160
Gilles Peskine053022f2023-06-29 19:26:48 +0200161 /* i fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
162 * fits, and we've checked that i <= nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
163 X->n = (unsigned short) i;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100164 X->p = p;
165
Gilles Peskine449bd832023-01-11 14:50:10 +0100166 return 0;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100167}
168
Gilles Peskineed32b572021-06-02 22:17:52 +0200169/* Resize X to have exactly n limbs and set it to 0. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100170static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
Gilles Peskineed32b572021-06-02 22:17:52 +0200171{
Gilles Peskine449bd832023-01-11 14:50:10 +0100172 if (limbs == 0) {
173 mbedtls_mpi_free(X);
174 return 0;
175 } else if (X->n == limbs) {
176 memset(X->p, 0, limbs * ciL);
Gilles Peskineed32b572021-06-02 22:17:52 +0200177 X->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100178 return 0;
179 } else {
180 mbedtls_mpi_free(X);
181 return mbedtls_mpi_grow(X, limbs);
Gilles Peskineed32b572021-06-02 22:17:52 +0200182 }
183}
184
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100185/*
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200186 * Copy the contents of Y into X.
187 *
188 * This function is not constant-time. Leading zeros in Y may be removed.
189 *
190 * Ensure that X does not shrink. This is not guaranteed by the public API,
191 * but some code in the bignum module relies on this property, for example
192 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000193 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100194int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000195{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100196 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000197 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100198 MPI_VALIDATE_RET(X != NULL);
199 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000200
Gilles Peskine449bd832023-01-11 14:50:10 +0100201 if (X == Y) {
202 return 0;
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200203 }
204
Gilles Peskine449bd832023-01-11 14:50:10 +0100205 if (Y->n == 0) {
206 if (X->n != 0) {
207 X->s = 1;
208 memset(X->p, 0, X->n * ciL);
209 }
210 return 0;
211 }
212
213 for (i = Y->n - 1; i > 0; i--) {
214 if (Y->p[i] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000215 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100216 }
217 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000218 i++;
219
220 X->s = Y->s;
221
Gilles Peskine449bd832023-01-11 14:50:10 +0100222 if (X->n < i) {
223 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
224 } else {
225 memset(X->p + i, 0, (X->n - i) * ciL);
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100226 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000227
Gilles Peskine449bd832023-01-11 14:50:10 +0100228 memcpy(X->p, Y->p, i * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000229
230cleanup:
231
Gilles Peskine449bd832023-01-11 14:50:10 +0100232 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000233}
234
235/*
236 * Swap the contents of X and Y
237 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100238void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000239{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200240 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100241 MPI_VALIDATE(X != NULL);
242 MPI_VALIDATE(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000243
Gilles Peskine449bd832023-01-11 14:50:10 +0100244 memcpy(&T, X, sizeof(mbedtls_mpi));
245 memcpy(X, Y, sizeof(mbedtls_mpi));
246 memcpy(Y, &T, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +0000247}
248
Gilles Peskine449bd832023-01-11 14:50:10 +0100249static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100250{
Gilles Peskine449bd832023-01-11 14:50:10 +0100251 if (z >= 0) {
252 return z;
253 }
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100254 /* Take care to handle the most negative value (-2^(biL-1)) correctly.
255 * A naive -z would have undefined behavior.
256 * Write this in a way that makes popular compilers happy (GCC, Clang,
257 * MSVC). */
Gilles Peskine449bd832023-01-11 14:50:10 +0100258 return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100259}
260
Paul Bakker5121ce52009-01-03 21:22:43 +0000261/*
262 * Set value from integer
263 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100264int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +0000265{
Janos Follath24eed8d2019-11-22 13:21:35 +0000266 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100267 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000268
Gilles Peskine449bd832023-01-11 14:50:10 +0100269 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
270 memset(X->p, 0, X->n * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000271
Gilles Peskine449bd832023-01-11 14:50:10 +0100272 X->p[0] = mpi_sint_abs(z);
273 X->s = (z < 0) ? -1 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000274
275cleanup:
276
Gilles Peskine449bd832023-01-11 14:50:10 +0100277 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000278}
279
280/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000281 * Get a specific bit
282 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100283int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000284{
Gilles Peskine449bd832023-01-11 14:50:10 +0100285 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000286
Gilles Peskine449bd832023-01-11 14:50:10 +0100287 if (X->n * biL <= pos) {
288 return 0;
289 }
Paul Bakker2f5947e2011-05-18 15:47:11 +0000290
Gilles Peskine449bd832023-01-11 14:50:10 +0100291 return (X->p[pos / biL] >> (pos % biL)) & 0x01;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000292}
293
294/*
295 * Set a bit to a specific value of 0 or 1
296 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100297int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000298{
299 int ret = 0;
300 size_t off = pos / biL;
301 size_t idx = pos % biL;
Gilles Peskine449bd832023-01-11 14:50:10 +0100302 MPI_VALIDATE_RET(X != NULL);
Paul Bakker2f5947e2011-05-18 15:47:11 +0000303
Gilles Peskine449bd832023-01-11 14:50:10 +0100304 if (val != 0 && val != 1) {
305 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000306 }
307
Gilles Peskine449bd832023-01-11 14:50:10 +0100308 if (X->n * biL <= pos) {
309 if (val == 0) {
310 return 0;
311 }
312
313 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
314 }
315
316 X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200317 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000318
319cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200320
Gilles Peskine449bd832023-01-11 14:50:10 +0100321 return ret;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000322}
323
324/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200325 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000326 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100327size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000328{
Paul Bakker23986e52011-04-24 08:57:21 +0000329 size_t i, j, count = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +0100330 MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000331
Gilles Peskine449bd832023-01-11 14:50:10 +0100332 for (i = 0; i < X->n; i++) {
333 for (j = 0; j < biL; j++, count++) {
334 if (((X->p[i] >> j) & 1) != 0) {
335 return count;
336 }
337 }
338 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000339
Gilles Peskine449bd832023-01-11 14:50:10 +0100340 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000341}
342
343/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200344 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000345 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100346size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000347{
Gilles Peskine449bd832023-01-11 14:50:10 +0100348 return mbedtls_mpi_core_bitlen(X->p, X->n);
Paul Bakker5121ce52009-01-03 21:22:43 +0000349}
350
351/*
352 * Return the total size in bytes
353 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100354size_t mbedtls_mpi_size(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000355{
Gilles Peskine449bd832023-01-11 14:50:10 +0100356 return (mbedtls_mpi_bitlen(X) + 7) >> 3;
Paul Bakker5121ce52009-01-03 21:22:43 +0000357}
358
359/*
360 * Convert an ASCII character to digit value
361 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100362static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
Paul Bakker5121ce52009-01-03 21:22:43 +0000363{
364 *d = 255;
365
Gilles Peskine449bd832023-01-11 14:50:10 +0100366 if (c >= 0x30 && c <= 0x39) {
367 *d = c - 0x30;
368 }
369 if (c >= 0x41 && c <= 0x46) {
370 *d = c - 0x37;
371 }
372 if (c >= 0x61 && c <= 0x66) {
373 *d = c - 0x57;
374 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000375
Gilles Peskine449bd832023-01-11 14:50:10 +0100376 if (*d >= (mbedtls_mpi_uint) radix) {
377 return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
378 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000379
Gilles Peskine449bd832023-01-11 14:50:10 +0100380 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000381}
382
383/*
384 * Import from an ASCII string
385 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100386int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
Paul Bakker5121ce52009-01-03 21:22:43 +0000387{
Janos Follath24eed8d2019-11-22 13:21:35 +0000388 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000389 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200390 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200391 mbedtls_mpi_uint d;
392 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100393 MPI_VALIDATE_RET(X != NULL);
394 MPI_VALIDATE_RET(s != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000395
Gilles Peskine449bd832023-01-11 14:50:10 +0100396 if (radix < 2 || radix > 16) {
397 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskine7cba8592021-06-08 18:32:34 +0200398 }
399
Gilles Peskine449bd832023-01-11 14:50:10 +0100400 mbedtls_mpi_init(&T);
401
402 if (s[0] == 0) {
403 mbedtls_mpi_free(X);
404 return 0;
405 }
406
407 if (s[0] == '-') {
Gilles Peskine80f56732021-04-03 18:26:13 +0200408 ++s;
409 sign = -1;
410 }
411
Gilles Peskine449bd832023-01-11 14:50:10 +0100412 slen = strlen(s);
Paul Bakkerff60ee62010-03-16 21:09:09 +0000413
Gilles Peskine449bd832023-01-11 14:50:10 +0100414 if (radix == 16) {
Dave Rodgman68ef1d62023-05-18 20:49:03 +0100415 if (slen > SIZE_MAX >> 2) {
Gilles Peskine449bd832023-01-11 14:50:10 +0100416 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker5121ce52009-01-03 21:22:43 +0000417 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000418
Gilles Peskine449bd832023-01-11 14:50:10 +0100419 n = BITS_TO_LIMBS(slen << 2);
420
421 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
422 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
423
424 for (i = slen, j = 0; i > 0; i--, j++) {
425 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
426 X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
427 }
428 } else {
429 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
430
431 for (i = 0; i < slen; i++) {
432 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
433 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
434 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
Paul Bakker5121ce52009-01-03 21:22:43 +0000435 }
436 }
437
Gilles Peskine449bd832023-01-11 14:50:10 +0100438 if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
Gilles Peskine80f56732021-04-03 18:26:13 +0200439 X->s = -1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100440 }
Gilles Peskine80f56732021-04-03 18:26:13 +0200441
Paul Bakker5121ce52009-01-03 21:22:43 +0000442cleanup:
443
Gilles Peskine449bd832023-01-11 14:50:10 +0100444 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000445
Gilles Peskine449bd832023-01-11 14:50:10 +0100446 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000447}
448
449/*
Ron Eldora16fa292018-11-20 14:07:01 +0200450 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000451 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100452static int mpi_write_hlp(mbedtls_mpi *X, int radix,
453 char **p, const size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000454{
Janos Follath24eed8d2019-11-22 13:21:35 +0000455 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200456 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200457 size_t length = 0;
458 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000459
Gilles Peskine449bd832023-01-11 14:50:10 +0100460 do {
461 if (length >= buflen) {
462 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Ron Eldora16fa292018-11-20 14:07:01 +0200463 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000464
Gilles Peskine449bd832023-01-11 14:50:10 +0100465 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
466 MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
Ron Eldora16fa292018-11-20 14:07:01 +0200467 /*
468 * Write the residue in the current position, as an ASCII character.
469 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100470 if (r < 0xA) {
471 *(--p_end) = (char) ('0' + r);
472 } else {
473 *(--p_end) = (char) ('A' + (r - 0xA));
474 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000475
Ron Eldora16fa292018-11-20 14:07:01 +0200476 length++;
Gilles Peskine449bd832023-01-11 14:50:10 +0100477 } while (mbedtls_mpi_cmp_int(X, 0) != 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000478
Gilles Peskine449bd832023-01-11 14:50:10 +0100479 memmove(*p, p_end, length);
Ron Eldora16fa292018-11-20 14:07:01 +0200480 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000481
482cleanup:
483
Gilles Peskine449bd832023-01-11 14:50:10 +0100484 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000485}
486
487/*
488 * Export into an ASCII string
489 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100490int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
491 char *buf, size_t buflen, size_t *olen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000492{
Paul Bakker23986e52011-04-24 08:57:21 +0000493 int ret = 0;
494 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000495 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200496 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100497 MPI_VALIDATE_RET(X != NULL);
498 MPI_VALIDATE_RET(olen != NULL);
499 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000500
Gilles Peskine449bd832023-01-11 14:50:10 +0100501 if (radix < 2 || radix > 16) {
502 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
503 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000504
Gilles Peskine449bd832023-01-11 14:50:10 +0100505 n = mbedtls_mpi_bitlen(X); /* Number of bits necessary to present `n`. */
506 if (radix >= 4) {
507 n >>= 1; /* Number of 4-adic digits necessary to present
Hanno Becker23cfea02019-02-04 09:45:07 +0000508 * `n`. If radix > 4, this might be a strict
509 * overapproximation of the number of
510 * radix-adic digits needed to present `n`. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100511 }
512 if (radix >= 16) {
513 n >>= 1; /* Number of hexadecimal digits necessary to
Hanno Becker23cfea02019-02-04 09:45:07 +0000514 * present `n`. */
515
Gilles Peskine449bd832023-01-11 14:50:10 +0100516 }
Janos Follath80470622019-03-06 13:43:02 +0000517 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000518 n += 1; /* Compensate for the divisions above, which round down `n`
519 * in case it's not even. */
520 n += 1; /* Potential '-'-sign. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100521 n += (n & 1); /* Make n even to have enough space for hexadecimal writing,
Hanno Becker23cfea02019-02-04 09:45:07 +0000522 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000523
Gilles Peskine449bd832023-01-11 14:50:10 +0100524 if (buflen < n) {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100525 *olen = n;
Gilles Peskine449bd832023-01-11 14:50:10 +0100526 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Paul Bakker5121ce52009-01-03 21:22:43 +0000527 }
528
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100529 p = buf;
Gilles Peskine449bd832023-01-11 14:50:10 +0100530 mbedtls_mpi_init(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000531
Gilles Peskine449bd832023-01-11 14:50:10 +0100532 if (X->s == -1) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000533 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000534 buflen--;
535 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000536
Gilles Peskine449bd832023-01-11 14:50:10 +0100537 if (radix == 16) {
Paul Bakker23986e52011-04-24 08:57:21 +0000538 int c;
539 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000540
Gilles Peskine449bd832023-01-11 14:50:10 +0100541 for (i = X->n, k = 0; i > 0; i--) {
542 for (j = ciL; j > 0; j--) {
543 c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000544
Gilles Peskine449bd832023-01-11 14:50:10 +0100545 if (c == 0 && k == 0 && (i + j) != 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000546 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +0100547 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000548
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000549 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000550 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000551 k = 1;
552 }
553 }
Gilles Peskine449bd832023-01-11 14:50:10 +0100554 } else {
555 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000556
Gilles Peskine449bd832023-01-11 14:50:10 +0100557 if (T.s == -1) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000558 T.s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100559 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000560
Gilles Peskine449bd832023-01-11 14:50:10 +0100561 MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
Paul Bakker5121ce52009-01-03 21:22:43 +0000562 }
563
564 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100565 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000566
567cleanup:
568
Gilles Peskine449bd832023-01-11 14:50:10 +0100569 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000570
Gilles Peskine449bd832023-01-11 14:50:10 +0100571 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000572}
573
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200574#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000575/*
576 * Read X from an opened file
577 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100578int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
Paul Bakker5121ce52009-01-03 21:22:43 +0000579{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200580 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000581 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000582 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000583 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000584 * Buffer should have space for (short) label and decimal formatted MPI,
585 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000586 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100587 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
Paul Bakker5121ce52009-01-03 21:22:43 +0000588
Gilles Peskine449bd832023-01-11 14:50:10 +0100589 MPI_VALIDATE_RET(X != NULL);
590 MPI_VALIDATE_RET(fin != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000591
Gilles Peskine449bd832023-01-11 14:50:10 +0100592 if (radix < 2 || radix > 16) {
593 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
594 }
Hanno Becker73d7d792018-12-11 10:35:51 +0000595
Gilles Peskine449bd832023-01-11 14:50:10 +0100596 memset(s, 0, sizeof(s));
597 if (fgets(s, sizeof(s) - 1, fin) == NULL) {
598 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
599 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000600
Gilles Peskine449bd832023-01-11 14:50:10 +0100601 slen = strlen(s);
602 if (slen == sizeof(s) - 2) {
603 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
604 }
Paul Bakkercb37aa52011-11-30 16:00:20 +0000605
Gilles Peskine449bd832023-01-11 14:50:10 +0100606 if (slen > 0 && s[slen - 1] == '\n') {
607 slen--; s[slen] = '\0';
608 }
609 if (slen > 0 && s[slen - 1] == '\r') {
610 slen--; s[slen] = '\0';
611 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000612
613 p = s + slen;
Gilles Peskine449bd832023-01-11 14:50:10 +0100614 while (p-- > s) {
615 if (mpi_get_digit(&d, radix, *p) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000616 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100617 }
618 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000619
Gilles Peskine449bd832023-01-11 14:50:10 +0100620 return mbedtls_mpi_read_string(X, radix, p + 1);
Paul Bakker5121ce52009-01-03 21:22:43 +0000621}
622
623/*
624 * Write X into an opened file (or stdout if fout == NULL)
625 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100626int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
Paul Bakker5121ce52009-01-03 21:22:43 +0000627{
Janos Follath24eed8d2019-11-22 13:21:35 +0000628 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000629 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000630 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000631 * Buffer should have space for (short) label and decimal formatted MPI,
632 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000633 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100634 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
635 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000636
Gilles Peskine449bd832023-01-11 14:50:10 +0100637 if (radix < 2 || radix > 16) {
638 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
639 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000640
Gilles Peskine449bd832023-01-11 14:50:10 +0100641 memset(s, 0, sizeof(s));
Paul Bakker5121ce52009-01-03 21:22:43 +0000642
Gilles Peskine449bd832023-01-11 14:50:10 +0100643 MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
Paul Bakker5121ce52009-01-03 21:22:43 +0000644
Gilles Peskine449bd832023-01-11 14:50:10 +0100645 if (p == NULL) {
646 p = "";
647 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000648
Gilles Peskine449bd832023-01-11 14:50:10 +0100649 plen = strlen(p);
650 slen = strlen(s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000651 s[slen++] = '\r';
652 s[slen++] = '\n';
653
Gilles Peskine449bd832023-01-11 14:50:10 +0100654 if (fout != NULL) {
655 if (fwrite(p, 1, plen, fout) != plen ||
656 fwrite(s, 1, slen, fout) != slen) {
657 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
658 }
659 } else {
660 mbedtls_printf("%s%s", p, s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000661 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000662
663cleanup:
664
Gilles Peskine449bd832023-01-11 14:50:10 +0100665 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000666}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200667#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000668
669/*
Janos Follatha778a942019-02-13 10:28:28 +0000670 * Import X from unsigned binary data, little endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100671 *
672 * This function is guaranteed to return an MPI with exactly the necessary
673 * number of limbs (in particular, it does not skip 0s in the input).
Janos Follatha778a942019-02-13 10:28:28 +0000674 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100675int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
676 const unsigned char *buf, size_t buflen)
Janos Follatha778a942019-02-13 10:28:28 +0000677{
Janos Follath24eed8d2019-11-22 13:21:35 +0000678 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100679 const size_t limbs = CHARS_TO_LIMBS(buflen);
Janos Follatha778a942019-02-13 10:28:28 +0000680
681 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +0100682 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Janos Follatha778a942019-02-13 10:28:28 +0000683
Gilles Peskine449bd832023-01-11 14:50:10 +0100684 MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
Janos Follatha778a942019-02-13 10:28:28 +0000685
686cleanup:
687
Janos Follath171a7ef2019-02-15 16:17:45 +0000688 /*
689 * This function is also used to import keys. However, wiping the buffers
690 * upon failure is not necessary because failure only can happen before any
691 * input is copied.
692 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100693 return ret;
Janos Follatha778a942019-02-13 10:28:28 +0000694}
695
696/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000697 * Import X from unsigned binary data, big endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100698 *
699 * This function is guaranteed to return an MPI with exactly the necessary
700 * number of limbs (in particular, it does not skip 0s in the input).
Paul Bakker5121ce52009-01-03 21:22:43 +0000701 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100702int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000703{
Janos Follath24eed8d2019-11-22 13:21:35 +0000704 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100705 const size_t limbs = CHARS_TO_LIMBS(buflen);
Paul Bakker5121ce52009-01-03 21:22:43 +0000706
Gilles Peskine449bd832023-01-11 14:50:10 +0100707 MPI_VALIDATE_RET(X != NULL);
708 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000709
Hanno Becker073c1992017-10-17 15:17:27 +0100710 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +0100711 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Paul Bakker5121ce52009-01-03 21:22:43 +0000712
Gilles Peskine449bd832023-01-11 14:50:10 +0100713 MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
Paul Bakker5121ce52009-01-03 21:22:43 +0000714
715cleanup:
716
Janos Follath171a7ef2019-02-15 16:17:45 +0000717 /*
718 * This function is also used to import keys. However, wiping the buffers
719 * upon failure is not necessary because failure only can happen before any
720 * input is copied.
721 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100722 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000723}
724
725/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000726 * Export X into unsigned binary data, little endian
727 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100728int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
729 unsigned char *buf, size_t buflen)
Janos Follathe344d0f2019-02-19 16:17:40 +0000730{
Gilles Peskine449bd832023-01-11 14:50:10 +0100731 return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
Janos Follathe344d0f2019-02-19 16:17:40 +0000732}
733
734/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000735 * Export X into unsigned binary data, big endian
736 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100737int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
738 unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000739{
Gilles Peskine449bd832023-01-11 14:50:10 +0100740 return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
Paul Bakker5121ce52009-01-03 21:22:43 +0000741}
742
743/*
744 * Left-shift: X <<= count
745 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100746int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000747{
Janos Follath24eed8d2019-11-22 13:21:35 +0000748 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Minos Galanakis0144b352023-05-02 14:02:32 +0100749 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100750 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000751
Gilles Peskine449bd832023-01-11 14:50:10 +0100752 i = mbedtls_mpi_bitlen(X) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000753
Gilles Peskine449bd832023-01-11 14:50:10 +0100754 if (X->n * biL < i) {
755 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
756 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000757
758 ret = 0;
759
Minos Galanakis0144b352023-05-02 14:02:32 +0100760 mbedtls_mpi_core_shift_l(X->p, X->n, count);
Paul Bakker5121ce52009-01-03 21:22:43 +0000761cleanup:
762
Gilles Peskine449bd832023-01-11 14:50:10 +0100763 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000764}
765
766/*
767 * Right-shift: X >>= count
768 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100769int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000770{
Gilles Peskine449bd832023-01-11 14:50:10 +0100771 MPI_VALIDATE_RET(X != NULL);
772 if (X->n != 0) {
773 mbedtls_mpi_core_shift_r(X->p, X->n, count);
774 }
775 return 0;
Gilles Peskine66414202022-09-21 15:36:16 +0200776}
777
Paul Bakker5121ce52009-01-03 21:22:43 +0000778/*
779 * Compare unsigned values
780 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100781int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000782{
Paul Bakker23986e52011-04-24 08:57:21 +0000783 size_t i, j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100784 MPI_VALIDATE_RET(X != NULL);
785 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000786
Gilles Peskine449bd832023-01-11 14:50:10 +0100787 for (i = X->n; i > 0; i--) {
788 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000789 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100790 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000791 }
792
Gilles Peskine449bd832023-01-11 14:50:10 +0100793 for (j = Y->n; j > 0; j--) {
794 if (Y->p[j - 1] != 0) {
795 break;
796 }
797 }
798
799 if (i == 0 && j == 0) {
800 return 0;
801 }
802
803 if (i > j) {
804 return 1;
805 }
806 if (j > i) {
807 return -1;
808 }
809
810 for (; i > 0; i--) {
811 if (X->p[i - 1] > Y->p[i - 1]) {
812 return 1;
813 }
814 if (X->p[i - 1] < Y->p[i - 1]) {
815 return -1;
816 }
817 }
818
819 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000820}
821
822/*
823 * Compare signed values
824 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100825int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000826{
Paul Bakker23986e52011-04-24 08:57:21 +0000827 size_t i, j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100828 MPI_VALIDATE_RET(X != NULL);
829 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000830
Gilles Peskine449bd832023-01-11 14:50:10 +0100831 for (i = X->n; i > 0; i--) {
832 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000833 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100834 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000835 }
836
Gilles Peskine449bd832023-01-11 14:50:10 +0100837 for (j = Y->n; j > 0; j--) {
838 if (Y->p[j - 1] != 0) {
839 break;
840 }
841 }
842
843 if (i == 0 && j == 0) {
844 return 0;
845 }
846
847 if (i > j) {
848 return X->s;
849 }
850 if (j > i) {
851 return -Y->s;
852 }
853
854 if (X->s > 0 && Y->s < 0) {
855 return 1;
856 }
857 if (Y->s > 0 && X->s < 0) {
858 return -1;
859 }
860
861 for (; i > 0; i--) {
862 if (X->p[i - 1] > Y->p[i - 1]) {
863 return X->s;
864 }
865 if (X->p[i - 1] < Y->p[i - 1]) {
866 return -X->s;
867 }
868 }
869
870 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000871}
872
Janos Follathee6abce2019-09-05 14:47:19 +0100873/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000874 * Compare signed values
875 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100876int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +0000877{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200878 mbedtls_mpi Y;
879 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +0100880 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000881
Gilles Peskine449bd832023-01-11 14:50:10 +0100882 *p = mpi_sint_abs(z);
883 Y.s = (z < 0) ? -1 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000884 Y.n = 1;
885 Y.p = p;
886
Gilles Peskine449bd832023-01-11 14:50:10 +0100887 return mbedtls_mpi_cmp_mpi(X, &Y);
Paul Bakker5121ce52009-01-03 21:22:43 +0000888}
889
890/*
891 * Unsigned addition: X = |A| + |B| (HAC 14.7)
892 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100893int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +0000894{
Janos Follath24eed8d2019-11-22 13:21:35 +0000895 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100896 size_t j;
Agathiyan Bragadeeshc99840a2023-07-12 11:15:46 +0100897 mbedtls_mpi_uint *p;
898 mbedtls_mpi_uint c;
Gilles Peskine449bd832023-01-11 14:50:10 +0100899 MPI_VALIDATE_RET(X != NULL);
900 MPI_VALIDATE_RET(A != NULL);
901 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000902
Gilles Peskine449bd832023-01-11 14:50:10 +0100903 if (X == B) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200904 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +0000905 }
906
Gilles Peskine449bd832023-01-11 14:50:10 +0100907 if (X != A) {
908 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
909 }
Paul Bakker9af723c2014-05-01 13:03:14 +0200910
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000911 /*
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100912 * X must always be positive as a result of unsigned additions.
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000913 */
914 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000915
Gilles Peskine449bd832023-01-11 14:50:10 +0100916 for (j = B->n; j > 0; j--) {
917 if (B->p[j - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000918 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100919 }
920 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000921
Gilles Peskinedb14a9d2022-11-15 22:59:00 +0100922 /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
923 * and B is 0 (of any size). */
Gilles Peskine449bd832023-01-11 14:50:10 +0100924 if (j == 0) {
925 return 0;
926 }
Gilles Peskinedb14a9d2022-11-15 22:59:00 +0100927
Gilles Peskine449bd832023-01-11 14:50:10 +0100928 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
Paul Bakker5121ce52009-01-03 21:22:43 +0000929
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100930 /* j is the number of non-zero limbs of B. Add those to X. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000931
Agathiyan Bragadeeshc99840a2023-07-12 11:15:46 +0100932 p = X->p;
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100933
Agathiyan Bragadeeshc99840a2023-07-12 11:15:46 +0100934 c = mbedtls_mpi_core_add(p, p, B->p, j);
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100935
936 p += j;
937
938 /* Now propagate any carry */
Paul Bakker5121ce52009-01-03 21:22:43 +0000939
Gilles Peskine449bd832023-01-11 14:50:10 +0100940 while (c != 0) {
941 if (j >= X->n) {
942 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100943 p = X->p + j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000944 }
945
Gilles Peskine449bd832023-01-11 14:50:10 +0100946 *p += c; c = (*p < c); j++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +0000947 }
948
949cleanup:
950
Gilles Peskine449bd832023-01-11 14:50:10 +0100951 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000952}
953
Paul Bakker5121ce52009-01-03 21:22:43 +0000954/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200955 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +0000956 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100957int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +0000958{
Janos Follath24eed8d2019-11-22 13:21:35 +0000959 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000960 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200961 mbedtls_mpi_uint carry;
Gilles Peskine449bd832023-01-11 14:50:10 +0100962 MPI_VALIDATE_RET(X != NULL);
963 MPI_VALIDATE_RET(A != NULL);
964 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000965
Gilles Peskine449bd832023-01-11 14:50:10 +0100966 for (n = B->n; n > 0; n--) {
967 if (B->p[n - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000968 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100969 }
970 }
971 if (n > A->n) {
Gilles Peskinec8a91772021-01-27 22:30:43 +0100972 /* B >= (2^ciL)^n > A */
973 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
974 goto cleanup;
975 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000976
Gilles Peskine449bd832023-01-11 14:50:10 +0100977 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200978
979 /* Set the high limbs of X to match A. Don't touch the lower limbs
980 * because X might be aliased to B, and we must not overwrite the
981 * significant digits of B. */
Aaron M. Uckoaf67d2c2023-01-17 11:52:22 -0500982 if (A->n > n && A != X) {
Gilles Peskine449bd832023-01-11 14:50:10 +0100983 memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
984 }
985 if (X->n > A->n) {
986 memset(X->p + A->n, 0, (X->n - A->n) * ciL);
987 }
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200988
Gilles Peskine449bd832023-01-11 14:50:10 +0100989 carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
990 if (carry != 0) {
Tom Cosgrove452c99c2022-08-25 10:07:07 +0100991 /* Propagate the carry through the rest of X. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100992 carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
Tom Cosgrove452c99c2022-08-25 10:07:07 +0100993
994 /* If we have further carry/borrow, the result is negative. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100995 if (carry != 0) {
Gilles Peskine89b41302020-07-23 01:16:46 +0200996 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
997 goto cleanup;
998 }
Gilles Peskinec097e9e2020-06-08 21:58:22 +0200999 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001000
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001001 /* X should always be positive as a result of unsigned subtractions. */
1002 X->s = 1;
1003
Paul Bakker5121ce52009-01-03 21:22:43 +00001004cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001005 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001006}
1007
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001008/* Common function for signed addition and subtraction.
1009 * Calculate A + B * flip_B where flip_B is 1 or -1.
Paul Bakker5121ce52009-01-03 21:22:43 +00001010 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001011static int add_sub_mpi(mbedtls_mpi *X,
1012 const mbedtls_mpi *A, const mbedtls_mpi *B,
1013 int flip_B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001014{
Hanno Becker73d7d792018-12-11 10:35:51 +00001015 int ret, s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001016 MPI_VALIDATE_RET(X != NULL);
1017 MPI_VALIDATE_RET(A != NULL);
1018 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001019
Hanno Becker73d7d792018-12-11 10:35:51 +00001020 s = A->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001021 if (A->s * B->s * flip_B < 0) {
1022 int cmp = mbedtls_mpi_cmp_abs(A, B);
1023 if (cmp >= 0) {
1024 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
Gilles Peskine4a768dd2022-11-09 22:02:16 +01001025 /* If |A| = |B|, the result is 0 and we must set the sign bit
1026 * to +1 regardless of which of A or B was negative. Otherwise,
1027 * since |A| > |B|, the sign is the sign of A. */
1028 X->s = cmp == 0 ? 1 : s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001029 } else {
1030 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
Gilles Peskine4a768dd2022-11-09 22:02:16 +01001031 /* Since |A| < |B|, the sign is the opposite of A. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001032 X->s = -s;
1033 }
Gilles Peskine449bd832023-01-11 14:50:10 +01001034 } else {
1035 MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001036 X->s = s;
1037 }
1038
1039cleanup:
1040
Gilles Peskine449bd832023-01-11 14:50:10 +01001041 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001042}
1043
1044/*
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001045 * Signed addition: X = A + B
1046 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001047int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001048{
Gilles Peskine449bd832023-01-11 14:50:10 +01001049 return add_sub_mpi(X, A, B, 1);
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001050}
1051
1052/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001053 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001054 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001055int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001056{
Gilles Peskine449bd832023-01-11 14:50:10 +01001057 return add_sub_mpi(X, A, B, -1);
Paul Bakker5121ce52009-01-03 21:22:43 +00001058}
1059
1060/*
1061 * Signed addition: X = A + b
1062 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001063int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001064{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001065 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001066 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001067 MPI_VALIDATE_RET(X != NULL);
1068 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001069
Gilles Peskine449bd832023-01-11 14:50:10 +01001070 p[0] = mpi_sint_abs(b);
1071 B.s = (b < 0) ? -1 : 1;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001072 B.n = 1;
1073 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001074
Gilles Peskine449bd832023-01-11 14:50:10 +01001075 return mbedtls_mpi_add_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001076}
1077
1078/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001079 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001080 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001081int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001082{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001083 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001084 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001085 MPI_VALIDATE_RET(X != NULL);
1086 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001087
Gilles Peskine449bd832023-01-11 14:50:10 +01001088 p[0] = mpi_sint_abs(b);
1089 B.s = (b < 0) ? -1 : 1;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001090 B.n = 1;
1091 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001092
Gilles Peskine449bd832023-01-11 14:50:10 +01001093 return mbedtls_mpi_sub_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001094}
1095
Paul Bakker5121ce52009-01-03 21:22:43 +00001096/*
1097 * Baseline multiplication: X = A * B (HAC 14.12)
1098 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001099int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001100{
Janos Follath24eed8d2019-11-22 13:21:35 +00001101 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker1772e052022-04-13 06:51:40 +01001102 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001103 mbedtls_mpi TA, TB;
Hanno Beckerda763de2022-04-13 06:50:02 +01001104 int result_is_zero = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001105 MPI_VALIDATE_RET(X != NULL);
1106 MPI_VALIDATE_RET(A != NULL);
1107 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001108
Tom Cosgrove6af26f32022-08-24 16:40:55 +01001109 mbedtls_mpi_init(&TA);
1110 mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00001111
Gilles Peskine449bd832023-01-11 14:50:10 +01001112 if (X == A) {
1113 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
1114 }
1115 if (X == B) {
1116 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
1117 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001118
Gilles Peskine449bd832023-01-11 14:50:10 +01001119 for (i = A->n; i > 0; i--) {
1120 if (A->p[i - 1] != 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001121 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001122 }
1123 }
1124 if (i == 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001125 result_is_zero = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001126 }
Hanno Beckerda763de2022-04-13 06:50:02 +01001127
Gilles Peskine449bd832023-01-11 14:50:10 +01001128 for (j = B->n; j > 0; j--) {
1129 if (B->p[j - 1] != 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001130 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001131 }
1132 }
1133 if (j == 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001134 result_is_zero = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001135 }
Hanno Beckerda763de2022-04-13 06:50:02 +01001136
Gilles Peskine449bd832023-01-11 14:50:10 +01001137 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
1138 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
Paul Bakker5121ce52009-01-03 21:22:43 +00001139
Tom Cosgrove6af26f32022-08-24 16:40:55 +01001140 mbedtls_mpi_core_mul(X->p, A->p, i, B->p, j);
Paul Bakker5121ce52009-01-03 21:22:43 +00001141
Hanno Beckerda763de2022-04-13 06:50:02 +01001142 /* If the result is 0, we don't shortcut the operation, which reduces
1143 * but does not eliminate side channels leaking the zero-ness. We do
1144 * need to take care to set the sign bit properly since the library does
1145 * not fully support an MPI object with a value of 0 and s == -1. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001146 if (result_is_zero) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001147 X->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001148 } else {
Hanno Beckerda763de2022-04-13 06:50:02 +01001149 X->s = A->s * B->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001150 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001151
1152cleanup:
1153
Gilles Peskine449bd832023-01-11 14:50:10 +01001154 mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
Paul Bakker5121ce52009-01-03 21:22:43 +00001155
Gilles Peskine449bd832023-01-11 14:50:10 +01001156 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001157}
1158
1159/*
1160 * Baseline multiplication: X = A * b
1161 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001162int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001163{
Gilles Peskine449bd832023-01-11 14:50:10 +01001164 MPI_VALIDATE_RET(X != NULL);
1165 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001166
Hanno Becker35771312022-04-14 11:52:11 +01001167 size_t n = A->n;
Gilles Peskine449bd832023-01-11 14:50:10 +01001168 while (n > 0 && A->p[n - 1] == 0) {
Hanno Becker35771312022-04-14 11:52:11 +01001169 --n;
Gilles Peskine449bd832023-01-11 14:50:10 +01001170 }
Hanno Becker35771312022-04-14 11:52:11 +01001171
Hanno Becker74a11a32022-04-06 06:27:00 +01001172 /* The general method below doesn't work if b==0. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001173 if (b == 0 || n == 0) {
1174 return mbedtls_mpi_lset(X, 0);
1175 }
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001176
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001177 /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001178 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001179 /* In general, A * b requires 1 limb more than b. If
1180 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1181 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001182 * copy() will take care of the growth if needed. However, experimentally,
1183 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001184 * calls to calloc() in ECP code, presumably because it reuses the
1185 * same mpi for a while and this way the mpi is more likely to directly
Hanno Becker9137b9c2022-04-12 10:51:54 +01001186 * grow to its final size.
1187 *
1188 * Note that calculating A*b as 0 + A*b doesn't work as-is because
1189 * A,X can be the same. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001190 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
1191 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1192 mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001193
1194cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001195 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001196}
1197
1198/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001199 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1200 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001201 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001202static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
1203 mbedtls_mpi_uint u0,
1204 mbedtls_mpi_uint d,
1205 mbedtls_mpi_uint *r)
Simon Butcher15b15d12015-11-26 19:35:03 +00001206{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001207#if defined(MBEDTLS_HAVE_UDBL)
1208 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001209#else
Simon Butcher9803d072016-01-03 00:24:34 +00001210 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
Gilles Peskine449bd832023-01-11 14:50:10 +01001211 const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001212 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1213 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001214 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001215#endif
1216
Simon Butcher15b15d12015-11-26 19:35:03 +00001217 /*
1218 * Check for overflow
1219 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001220 if (0 == d || u1 >= d) {
1221 if (r != NULL) {
1222 *r = ~(mbedtls_mpi_uint) 0u;
1223 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001224
Gilles Peskine449bd832023-01-11 14:50:10 +01001225 return ~(mbedtls_mpi_uint) 0u;
Simon Butcher15b15d12015-11-26 19:35:03 +00001226 }
1227
1228#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001229 dividend = (mbedtls_t_udbl) u1 << biL;
1230 dividend |= (mbedtls_t_udbl) u0;
1231 quotient = dividend / d;
Gilles Peskine449bd832023-01-11 14:50:10 +01001232 if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
1233 quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
1234 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001235
Gilles Peskine449bd832023-01-11 14:50:10 +01001236 if (r != NULL) {
1237 *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
1238 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001239
1240 return (mbedtls_mpi_uint) quotient;
1241#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001242
1243 /*
1244 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1245 * Vol. 2 - Seminumerical Algorithms, Knuth
1246 */
1247
1248 /*
1249 * Normalize the divisor, d, and dividend, u0, u1
1250 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001251 s = mbedtls_mpi_core_clz(d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001252 d = d << s;
1253
1254 u1 = u1 << s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001255 u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
Simon Butcher15b15d12015-11-26 19:35:03 +00001256 u0 = u0 << s;
1257
1258 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001259 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001260
1261 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001262 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001263
1264 /*
1265 * Find the first quotient and remainder
1266 */
1267 q1 = u1 / d1;
1268 r0 = u1 - d1 * q1;
1269
Gilles Peskine449bd832023-01-11 14:50:10 +01001270 while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001271 q1 -= 1;
1272 r0 += d1;
1273
Gilles Peskine449bd832023-01-11 14:50:10 +01001274 if (r0 >= radix) {
1275 break;
1276 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001277 }
1278
Gilles Peskine449bd832023-01-11 14:50:10 +01001279 rAX = (u1 * radix) + (u0_msw - q1 * d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001280 q0 = rAX / d1;
1281 r0 = rAX - q0 * d1;
1282
Gilles Peskine449bd832023-01-11 14:50:10 +01001283 while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001284 q0 -= 1;
1285 r0 += d1;
1286
Gilles Peskine449bd832023-01-11 14:50:10 +01001287 if (r0 >= radix) {
1288 break;
1289 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001290 }
1291
Gilles Peskine449bd832023-01-11 14:50:10 +01001292 if (r != NULL) {
1293 *r = (rAX * radix + u0_lsw - q0 * d) >> s;
1294 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001295
1296 quotient = q1 * radix + q0;
1297
1298 return quotient;
1299#endif
1300}
1301
1302/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001303 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001304 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001305int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1306 const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001307{
Janos Follath24eed8d2019-11-22 13:21:35 +00001308 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001309 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001310 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001311 mbedtls_mpi_uint TP2[3];
Gilles Peskine449bd832023-01-11 14:50:10 +01001312 MPI_VALIDATE_RET(A != NULL);
1313 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001314
Gilles Peskine449bd832023-01-11 14:50:10 +01001315 if (mbedtls_mpi_cmp_int(B, 0) == 0) {
1316 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1317 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001318
Gilles Peskine449bd832023-01-11 14:50:10 +01001319 mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
1320 mbedtls_mpi_init(&T1);
Alexander Kd19a1932019-11-01 18:20:42 +03001321 /*
1322 * Avoid dynamic memory allocations for constant-size T2.
1323 *
1324 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1325 * so nobody increase the size of the MPI and we're safe to use an on-stack
1326 * buffer.
1327 */
Alexander K35d6d462019-10-31 14:46:45 +03001328 T2.s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001329 T2.n = sizeof(TP2) / sizeof(*TP2);
Alexander Kd19a1932019-11-01 18:20:42 +03001330 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001331
Gilles Peskine449bd832023-01-11 14:50:10 +01001332 if (mbedtls_mpi_cmp_abs(A, B) < 0) {
1333 if (Q != NULL) {
1334 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
1335 }
1336 if (R != NULL) {
1337 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
1338 }
1339 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001340 }
1341
Gilles Peskine449bd832023-01-11 14:50:10 +01001342 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
1343 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001344 X.s = Y.s = 1;
1345
Gilles Peskine449bd832023-01-11 14:50:10 +01001346 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
1347 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z, 0));
1348 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001349
Gilles Peskine449bd832023-01-11 14:50:10 +01001350 k = mbedtls_mpi_bitlen(&Y) % biL;
1351 if (k < biL - 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001352 k = biL - 1 - k;
Gilles Peskine449bd832023-01-11 14:50:10 +01001353 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
1354 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
1355 } else {
1356 k = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001357 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001358
1359 n = X.n - 1;
1360 t = Y.n - 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001361 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001362
Gilles Peskine449bd832023-01-11 14:50:10 +01001363 while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001364 Z.p[n - t]++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001365 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
Paul Bakker5121ce52009-01-03 21:22:43 +00001366 }
Gilles Peskine449bd832023-01-11 14:50:10 +01001367 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001368
Gilles Peskine449bd832023-01-11 14:50:10 +01001369 for (i = n; i > t; i--) {
1370 if (X.p[i] >= Y.p[t]) {
1371 Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
1372 } else {
1373 Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
1374 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001375 }
1376
Gilles Peskine449bd832023-01-11 14:50:10 +01001377 T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
1378 T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
Alexander K35d6d462019-10-31 14:46:45 +03001379 T2.p[2] = X.p[i];
1380
Paul Bakker5121ce52009-01-03 21:22:43 +00001381 Z.p[i - t - 1]++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001382 do {
Paul Bakker5121ce52009-01-03 21:22:43 +00001383 Z.p[i - t - 1]--;
1384
Gilles Peskine449bd832023-01-11 14:50:10 +01001385 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
1386 T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001387 T1.p[1] = Y.p[t];
Gilles Peskine449bd832023-01-11 14:50:10 +01001388 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
1389 } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00001390
Gilles Peskine449bd832023-01-11 14:50:10 +01001391 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
1392 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1393 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001394
Gilles Peskine449bd832023-01-11 14:50:10 +01001395 if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
1396 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
1397 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1398 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001399 Z.p[i - t - 1]--;
1400 }
1401 }
1402
Gilles Peskine449bd832023-01-11 14:50:10 +01001403 if (Q != NULL) {
1404 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
Paul Bakker5121ce52009-01-03 21:22:43 +00001405 Q->s = A->s * B->s;
1406 }
1407
Gilles Peskine449bd832023-01-11 14:50:10 +01001408 if (R != NULL) {
1409 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
Paul Bakkerf02c5642012-11-13 10:25:21 +00001410 X.s = A->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001411 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
Paul Bakker5121ce52009-01-03 21:22:43 +00001412
Gilles Peskine449bd832023-01-11 14:50:10 +01001413 if (mbedtls_mpi_cmp_int(R, 0) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001414 R->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001415 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001416 }
1417
1418cleanup:
1419
Gilles Peskine449bd832023-01-11 14:50:10 +01001420 mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
1421 mbedtls_mpi_free(&T1);
1422 mbedtls_platform_zeroize(TP2, sizeof(TP2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001423
Gilles Peskine449bd832023-01-11 14:50:10 +01001424 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001425}
1426
1427/*
1428 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001429 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001430int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
1431 const mbedtls_mpi *A,
1432 mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001433{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001434 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001435 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001436 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001437
Gilles Peskine449bd832023-01-11 14:50:10 +01001438 p[0] = mpi_sint_abs(b);
1439 B.s = (b < 0) ? -1 : 1;
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001440 B.n = 1;
1441 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001442
Gilles Peskine449bd832023-01-11 14:50:10 +01001443 return mbedtls_mpi_div_mpi(Q, R, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001444}
1445
1446/*
1447 * Modulo: R = A mod B
1448 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001449int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001450{
Janos Follath24eed8d2019-11-22 13:21:35 +00001451 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +01001452 MPI_VALIDATE_RET(R != NULL);
1453 MPI_VALIDATE_RET(A != NULL);
1454 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001455
Gilles Peskine449bd832023-01-11 14:50:10 +01001456 if (mbedtls_mpi_cmp_int(B, 0) < 0) {
1457 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1458 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001459
Gilles Peskine449bd832023-01-11 14:50:10 +01001460 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001461
Gilles Peskine449bd832023-01-11 14:50:10 +01001462 while (mbedtls_mpi_cmp_int(R, 0) < 0) {
1463 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
1464 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001465
Gilles Peskine449bd832023-01-11 14:50:10 +01001466 while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
1467 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
1468 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001469
1470cleanup:
1471
Gilles Peskine449bd832023-01-11 14:50:10 +01001472 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001473}
1474
1475/*
1476 * Modulo: r = A mod b
1477 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001478int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001479{
Paul Bakker23986e52011-04-24 08:57:21 +00001480 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001481 mbedtls_mpi_uint x, y, z;
Gilles Peskine449bd832023-01-11 14:50:10 +01001482 MPI_VALIDATE_RET(r != NULL);
1483 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001484
Gilles Peskine449bd832023-01-11 14:50:10 +01001485 if (b == 0) {
1486 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1487 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001488
Gilles Peskine449bd832023-01-11 14:50:10 +01001489 if (b < 0) {
1490 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1491 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001492
1493 /*
1494 * handle trivial cases
1495 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001496 if (b == 1 || A->n == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001497 *r = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001498 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001499 }
1500
Gilles Peskine449bd832023-01-11 14:50:10 +01001501 if (b == 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001502 *r = A->p[0] & 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001503 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001504 }
1505
1506 /*
1507 * general case
1508 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001509 for (i = A->n, y = 0; i > 0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +00001510 x = A->p[i - 1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001511 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001512 z = y / b;
1513 y -= z * b;
1514
1515 x <<= biH;
Gilles Peskine449bd832023-01-11 14:50:10 +01001516 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001517 z = y / b;
1518 y -= z * b;
1519 }
1520
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001521 /*
1522 * If A is negative, then the current y represents a negative value.
1523 * Flipping it to the positive side.
1524 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001525 if (A->s < 0 && y != 0) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001526 y = b - y;
Gilles Peskine449bd832023-01-11 14:50:10 +01001527 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001528
Paul Bakker5121ce52009-01-03 21:22:43 +00001529 *r = y;
1530
Gilles Peskine449bd832023-01-11 14:50:10 +01001531 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001532}
1533
Gilles Peskine449bd832023-01-11 14:50:10 +01001534static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00001535{
Gilles Peskine449bd832023-01-11 14:50:10 +01001536 *mm = mbedtls_mpi_core_montmul_init(N->p);
Paul Bakker5121ce52009-01-03 21:22:43 +00001537}
1538
Tom Cosgrove93842842022-08-05 16:59:43 +01001539/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1540 *
1541 * \param[in,out] A One of the numbers to multiply.
1542 * It must have at least as many limbs as N
1543 * (A->n >= N->n), and any limbs beyond n are ignored.
1544 * On successful completion, A contains the result of
1545 * the multiplication A * B * R^-1 mod N where
1546 * R = (2^ciL)^n.
1547 * \param[in] B One of the numbers to multiply.
1548 * It must be nonzero and must not have more limbs than N
1549 * (B->n <= N->n).
Tom Cosgrove40d22942022-08-17 06:42:44 +01001550 * \param[in] N The modulus. \p N must be odd.
Tom Cosgrove93842842022-08-05 16:59:43 +01001551 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1552 * This is -N^-1 mod 2^ciL.
1553 * \param[in,out] T A bignum for temporary storage.
1554 * It must be at least twice the limb size of N plus 1
1555 * (T->n >= 2 * N->n + 1).
1556 * Its initial content is unused and
1557 * its final content is indeterminate.
Tom Cosgrove5dd97e62022-08-30 14:31:49 +01001558 * It does not get reallocated.
Tom Cosgrove93842842022-08-05 16:59:43 +01001559 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001560static void mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B,
1561 const mbedtls_mpi *N, mbedtls_mpi_uint mm,
1562 mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00001563{
Gilles Peskine449bd832023-01-11 14:50:10 +01001564 mbedtls_mpi_core_montmul(A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p);
Paul Bakker5121ce52009-01-03 21:22:43 +00001565}
1566
1567/*
1568 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001569 *
Tom Cosgrove93842842022-08-05 16:59:43 +01001570 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001571 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001572static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N,
1573 mbedtls_mpi_uint mm, mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00001574{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001575 mbedtls_mpi_uint z = 1;
1576 mbedtls_mpi U;
Gilles Peskine053022f2023-06-29 19:26:48 +02001577 U.n = 1;
1578 U.s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001579 U.p = &z;
1580
Gilles Peskine449bd832023-01-11 14:50:10 +01001581 mpi_montmul(A, &U, N, mm, T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001582}
1583
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001584/**
1585 * Select an MPI from a table without leaking the index.
1586 *
1587 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1588 * reads the entire table in order to avoid leaking the value of idx to an
1589 * attacker able to observe memory access patterns.
1590 *
1591 * \param[out] R Where to write the selected MPI.
1592 * \param[in] T The table to read from.
1593 * \param[in] T_size The number of elements in the table.
1594 * \param[in] idx The index of the element to select;
1595 * this must satisfy 0 <= idx < T_size.
1596 *
1597 * \return \c 0 on success, or a negative error code.
1598 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001599static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx)
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001600{
1601 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1602
Gilles Peskine449bd832023-01-11 14:50:10 +01001603 for (size_t i = 0; i < T_size; i++) {
1604 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i],
1605 (unsigned char) mbedtls_ct_size_bool_eq(i,
1606 idx)));
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001607 }
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001608
1609cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001610 return ret;
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001611}
1612
Paul Bakker5121ce52009-01-03 21:22:43 +00001613/*
1614 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1615 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001616int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
1617 const mbedtls_mpi *E, const mbedtls_mpi *N,
1618 mbedtls_mpi *prec_RR)
Paul Bakker5121ce52009-01-03 21:22:43 +00001619{
Janos Follath24eed8d2019-11-22 13:21:35 +00001620 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath74601202022-11-21 15:54:20 +00001621 size_t window_bitsize;
Paul Bakker23986e52011-04-24 08:57:21 +00001622 size_t i, j, nblimbs;
1623 size_t bufsize, nbits;
Paul Elliott1748de12023-02-13 15:35:35 +00001624 size_t exponent_bits_in_window = 0;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001625 mbedtls_mpi_uint ei, mm, state;
Gilles Peskine449bd832023-01-11 14:50:10 +01001626 mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00001627 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00001628
Gilles Peskine449bd832023-01-11 14:50:10 +01001629 MPI_VALIDATE_RET(X != NULL);
1630 MPI_VALIDATE_RET(A != NULL);
1631 MPI_VALIDATE_RET(E != NULL);
1632 MPI_VALIDATE_RET(N != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00001633
Gilles Peskine449bd832023-01-11 14:50:10 +01001634 if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
1635 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1636 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001637
Gilles Peskine449bd832023-01-11 14:50:10 +01001638 if (mbedtls_mpi_cmp_int(E, 0) < 0) {
1639 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1640 }
Paul Bakkerf6198c12012-05-16 08:02:29 +00001641
Gilles Peskine449bd832023-01-11 14:50:10 +01001642 if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
1643 mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
1644 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1645 }
Chris Jones9246d042020-11-25 15:12:39 +00001646
Paul Bakkerf6198c12012-05-16 08:02:29 +00001647 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001648 * Init temps and window size
1649 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001650 mpi_montg_init(&mm, N);
1651 mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T);
1652 mbedtls_mpi_init(&Apos);
1653 mbedtls_mpi_init(&WW);
1654 memset(W, 0, sizeof(W));
Paul Bakker5121ce52009-01-03 21:22:43 +00001655
Gilles Peskine449bd832023-01-11 14:50:10 +01001656 i = mbedtls_mpi_bitlen(E);
Paul Bakker5121ce52009-01-03 21:22:43 +00001657
Gilles Peskine449bd832023-01-11 14:50:10 +01001658 window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 :
1659 (i > 79) ? 4 : (i > 23) ? 3 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001660
Gilles Peskine449bd832023-01-11 14:50:10 +01001661#if (MBEDTLS_MPI_WINDOW_SIZE < 6)
1662 if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) {
Janos Follath7fa11b82022-11-21 14:48:02 +00001663 window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
Gilles Peskine449bd832023-01-11 14:50:10 +01001664 }
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001665#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00001666
Janos Follathc8d66d52022-11-22 10:47:10 +00001667 const size_t w_table_used_size = (size_t) 1 << window_bitsize;
Janos Follath06000952022-11-22 10:18:06 +00001668
Paul Bakker5121ce52009-01-03 21:22:43 +00001669 /*
Janos Follathbe54ca72022-11-21 16:14:54 +00001670 * This function is not constant-trace: its memory accesses depend on the
1671 * exponent value. To defend against timing attacks, callers (such as RSA
1672 * and DHM) should use exponent blinding. However this is not enough if the
1673 * adversary can find the exponent in a single trace, so this function
1674 * takes extra precautions against adversaries who can observe memory
1675 * access patterns.
Janos Follathf08b40e2022-11-11 15:56:38 +00001676 *
Janos Follathbe54ca72022-11-21 16:14:54 +00001677 * This function performs a series of multiplications by table elements and
1678 * squarings, and we want the prevent the adversary from finding out which
1679 * table element was used, and from distinguishing between multiplications
1680 * and squarings. Firstly, when multiplying by an element of the window
1681 * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
1682 * squarings as having a different memory access patterns from other
Gilles Peskinee6cb45e2023-08-10 15:59:28 +02001683 * multiplications. So secondly, we put the accumulator in the table as
1684 * well, and also do a constant-trace table lookup to multiply by the
1685 * accumulator which is W[x_index].
Janos Follathbe54ca72022-11-21 16:14:54 +00001686 *
1687 * This way, all multiplications take the form of a lookup-and-multiply.
1688 * The number of lookup-and-multiply operations inside each iteration of
1689 * the main loop still depends on the bits of the exponent, but since the
1690 * other operations in the loop don't have an easily recognizable memory
1691 * trace, an adversary is unlikely to be able to observe the exact
1692 * patterns.
1693 *
1694 * An adversary may still be able to recover the exponent if they can
1695 * observe both memory accesses and branches. However, branch prediction
1696 * exploitation typically requires many traces of execution over the same
1697 * data, which is defeated by randomized blinding.
Janos Follath8e7d6a02022-10-04 13:27:40 +01001698 */
Janos Follathc8d66d52022-11-22 10:47:10 +00001699 const size_t x_index = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001700 mbedtls_mpi_init(&W[x_index]);
Janos Follath84461482022-11-21 14:31:22 +00001701
Paul Bakker5121ce52009-01-03 21:22:43 +00001702 j = N->n + 1;
Gilles Peskinee6cb45e2023-08-10 15:59:28 +02001703 /* All W[i] including the accumulator must have at least N->n limbs for
1704 * the mpi_montmul() and mpi_montred() calls later. Here we ensure that
1705 * W[1] and the accumulator W[x_index] are large enough. later we'll grow
1706 * other W[i] to the same length. They must not be shrunk midway through
1707 * this function!
Paul Bakker5121ce52009-01-03 21:22:43 +00001708 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001709 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j));
1710 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], j));
1711 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001712
1713 /*
Paul Bakker50546922012-05-19 08:40:49 +00001714 * Compensate for negative A (and correct at the end)
1715 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001716 neg = (A->s == -1);
1717 if (neg) {
1718 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));
Paul Bakker50546922012-05-19 08:40:49 +00001719 Apos.s = 1;
1720 A = &Apos;
1721 }
1722
1723 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001724 * If 1st call, pre-compute R^2 mod N
1725 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001726 if (prec_RR == NULL || prec_RR->p == NULL) {
1727 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1));
1728 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL));
1729 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00001730
Gilles Peskine449bd832023-01-11 14:50:10 +01001731 if (prec_RR != NULL) {
1732 memcpy(prec_RR, &RR, sizeof(mbedtls_mpi));
1733 }
1734 } else {
1735 memcpy(&RR, prec_RR, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +00001736 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001737
1738 /*
1739 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1740 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001741 if (mbedtls_mpi_cmp_mpi(A, N) >= 0) {
1742 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001743 /* This should be a no-op because W[1] is already that large before
1744 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
Tom Cosgrove93842842022-08-05 16:59:43 +01001745 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001746 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1));
1747 } else {
1748 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001749 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001750
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001751 /* Note that this is safe because W[1] always has at least N->n limbs
1752 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001753 mpi_montmul(&W[1], &RR, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001754
1755 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001756 * W[x_index] = R^2 * R^-1 mod N = R mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001757 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001758 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR));
1759 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001760
Janos Follathc8d66d52022-11-22 10:47:10 +00001761
Gilles Peskine449bd832023-01-11 14:50:10 +01001762 if (window_bitsize > 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001763 /*
Janos Follath74601202022-11-21 15:54:20 +00001764 * W[i] = W[1] ^ i
1765 *
1766 * The first bit of the sliding window is always 1 and therefore we
1767 * only need to store the second half of the table.
Janos Follathc8d66d52022-11-22 10:47:10 +00001768 *
1769 * (There are two special elements in the table: W[0] for the
1770 * accumulator/result and W[1] for A in Montgomery form. Both of these
1771 * are already set at this point.)
Paul Bakker5121ce52009-01-03 21:22:43 +00001772 */
Janos Follath74601202022-11-21 15:54:20 +00001773 j = w_table_used_size / 2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001774
Gilles Peskine449bd832023-01-11 14:50:10 +01001775 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));
1776 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00001777
Gilles Peskine449bd832023-01-11 14:50:10 +01001778 for (i = 0; i < window_bitsize - 1; i++) {
1779 mpi_montmul(&W[j], &W[j], N, mm, &T);
1780 }
Paul Bakker0d7702c2013-10-29 16:18:35 +01001781
Paul Bakker5121ce52009-01-03 21:22:43 +00001782 /*
1783 * W[i] = W[i - 1] * W[1]
1784 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001785 for (i = j + 1; i < w_table_used_size; i++) {
1786 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));
1787 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00001788
Gilles Peskine449bd832023-01-11 14:50:10 +01001789 mpi_montmul(&W[i], &W[1], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001790 }
1791 }
1792
1793 nblimbs = E->n;
1794 bufsize = 0;
1795 nbits = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001796 state = 0;
1797
Gilles Peskine449bd832023-01-11 14:50:10 +01001798 while (1) {
1799 if (bufsize == 0) {
1800 if (nblimbs == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001801 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001802 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001803
Paul Bakker0d7702c2013-10-29 16:18:35 +01001804 nblimbs--;
1805
Gilles Peskine449bd832023-01-11 14:50:10 +01001806 bufsize = sizeof(mbedtls_mpi_uint) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00001807 }
1808
1809 bufsize--;
1810
1811 ei = (E->p[nblimbs] >> bufsize) & 1;
1812
1813 /*
1814 * skip leading 0s
1815 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001816 if (ei == 0 && state == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001817 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +01001818 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001819
Gilles Peskine449bd832023-01-11 14:50:10 +01001820 if (ei == 0 && state == 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001821 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001822 * out of window, square W[x_index]
Paul Bakker5121ce52009-01-03 21:22:43 +00001823 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001824 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1825 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001826 continue;
1827 }
1828
1829 /*
1830 * add ei to current window
1831 */
1832 state = 2;
1833
1834 nbits++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001835 exponent_bits_in_window |= (ei << (window_bitsize - nbits));
Paul Bakker5121ce52009-01-03 21:22:43 +00001836
Gilles Peskine449bd832023-01-11 14:50:10 +01001837 if (nbits == window_bitsize) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001838 /*
Janos Follath7fa11b82022-11-21 14:48:02 +00001839 * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001840 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001841 for (i = 0; i < window_bitsize; i++) {
1842 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1843 x_index));
1844 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follathb764ee12022-10-04 14:00:09 +01001845 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001846
1847 /*
Janos Follath7fa11b82022-11-21 14:48:02 +00001848 * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001849 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001850 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1851 exponent_bits_in_window));
1852 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001853
1854 state--;
1855 nbits = 0;
Janos Follath7fa11b82022-11-21 14:48:02 +00001856 exponent_bits_in_window = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001857 }
1858 }
1859
1860 /*
1861 * process the remaining bits
1862 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001863 for (i = 0; i < nbits; i++) {
1864 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1865 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001866
Janos Follath7fa11b82022-11-21 14:48:02 +00001867 exponent_bits_in_window <<= 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001868
Gilles Peskine449bd832023-01-11 14:50:10 +01001869 if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) {
1870 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1));
1871 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follathb764ee12022-10-04 14:00:09 +01001872 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001873 }
1874
1875 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001876 * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001877 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001878 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001879
Gilles Peskine449bd832023-01-11 14:50:10 +01001880 if (neg && E->n != 0 && (E->p[0] & 1) != 0) {
Janos Follath8e7d6a02022-10-04 13:27:40 +01001881 W[x_index].s = -1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001882 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index]));
Paul Bakkerf6198c12012-05-16 08:02:29 +00001883 }
1884
Janos Follath8e7d6a02022-10-04 13:27:40 +01001885 /*
1886 * Load the result in the output variable.
1887 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001888 mbedtls_mpi_copy(X, &W[x_index]);
Janos Follath8e7d6a02022-10-04 13:27:40 +01001889
Paul Bakker5121ce52009-01-03 21:22:43 +00001890cleanup:
1891
Janos Follathb2c2fca2022-11-21 15:05:31 +00001892 /* The first bit of the sliding window is always 1 and therefore the first
1893 * half of the table was unused. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001894 for (i = w_table_used_size/2; i < w_table_used_size; i++) {
1895 mbedtls_mpi_free(&W[i]);
1896 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001897
Gilles Peskine449bd832023-01-11 14:50:10 +01001898 mbedtls_mpi_free(&W[x_index]);
1899 mbedtls_mpi_free(&W[1]);
1900 mbedtls_mpi_free(&T);
1901 mbedtls_mpi_free(&Apos);
1902 mbedtls_mpi_free(&WW);
Paul Bakker6c591fa2011-05-05 11:49:20 +00001903
Gilles Peskine449bd832023-01-11 14:50:10 +01001904 if (prec_RR == NULL || prec_RR->p == NULL) {
1905 mbedtls_mpi_free(&RR);
1906 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001907
Gilles Peskine449bd832023-01-11 14:50:10 +01001908 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001909}
1910
Paul Bakker5121ce52009-01-03 21:22:43 +00001911/*
1912 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
1913 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001914int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001915{
Janos Follath24eed8d2019-11-22 13:21:35 +00001916 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001917 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03001918 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00001919
Gilles Peskine449bd832023-01-11 14:50:10 +01001920 MPI_VALIDATE_RET(G != NULL);
1921 MPI_VALIDATE_RET(A != NULL);
1922 MPI_VALIDATE_RET(B != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00001923
Gilles Peskine449bd832023-01-11 14:50:10 +01001924 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00001925
Gilles Peskine449bd832023-01-11 14:50:10 +01001926 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
1927 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001928
Gilles Peskine449bd832023-01-11 14:50:10 +01001929 lz = mbedtls_mpi_lsb(&TA);
1930 lzt = mbedtls_mpi_lsb(&TB);
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001931
Gilles Peskine27253bc2021-06-09 13:26:43 +02001932 /* The loop below gives the correct result when A==0 but not when B==0.
1933 * So have a special case for B==0. Leverage the fact that we just
1934 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1935 * slightly more efficient than cmp_int(). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001936 if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
1937 ret = mbedtls_mpi_copy(G, A);
Gilles Peskine27253bc2021-06-09 13:26:43 +02001938 goto cleanup;
1939 }
1940
Gilles Peskine449bd832023-01-11 14:50:10 +01001941 if (lzt < lz) {
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001942 lz = lzt;
Gilles Peskine449bd832023-01-11 14:50:10 +01001943 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001944
Paul Bakker5121ce52009-01-03 21:22:43 +00001945 TA.s = TB.s = 1;
1946
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001947 /* We mostly follow the procedure described in HAC 14.54, but with some
1948 * minor differences:
1949 * - Sequences of multiplications or divisions by 2 are grouped into a
1950 * single shift operation.
Gilles Peskineb09c7ee2021-06-21 18:58:39 +02001951 * - The procedure in HAC assumes that 0 < TB <= TA.
1952 * - The condition TB <= TA is not actually necessary for correctness.
1953 * TA and TB have symmetric roles except for the loop termination
1954 * condition, and the shifts at the beginning of the loop body
1955 * remove any significance from the ordering of TA vs TB before
1956 * the shifts.
1957 * - If TA = 0, the loop goes through 0 iterations and the result is
1958 * correctly TB.
1959 * - The case TB = 0 was short-circuited above.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001960 *
1961 * For the correctness proof below, decompose the original values of
1962 * A and B as
1963 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
1964 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
1965 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
1966 * and gcd(A',B') is odd or 0.
1967 *
1968 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
1969 * The code maintains the following invariant:
1970 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine4df3f1f2021-06-15 22:09:39 +02001971 */
1972
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001973 /* Proof that the loop terminates:
1974 * At each iteration, either the right-shift by 1 is made on a nonzero
1975 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
1976 * by at least 1, or the right-shift by 1 is made on zero and then
1977 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
1978 * since in that case TB is calculated from TB-TA with the condition TB>TA).
1979 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001980 while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001981 /* Divisions by 2 preserve the invariant (I). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001982 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
1983 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001984
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001985 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
1986 * TA-TB is even so the division by 2 has an integer result.
1987 * Invariant (I) is preserved since any odd divisor of both TA and TB
1988 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001989 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001990 * divides TA.
1991 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001992 if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
1993 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
1994 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
1995 } else {
1996 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
1997 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001998 }
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001999 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00002000 }
2001
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002002 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2003 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2004 * - If there was at least one loop iteration, then one of TA or TB is odd,
2005 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2006 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2007 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskine4d3fd362021-06-21 11:40:38 +02002008 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002009 */
2010
Gilles Peskine449bd832023-01-11 14:50:10 +01002011 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
2012 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
Paul Bakker5121ce52009-01-03 21:22:43 +00002013
2014cleanup:
2015
Gilles Peskine449bd832023-01-11 14:50:10 +01002016 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00002017
Gilles Peskine449bd832023-01-11 14:50:10 +01002018 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002019}
2020
Paul Bakker33dc46b2014-04-30 16:11:39 +02002021/*
2022 * Fill X with size bytes of random.
Gilles Peskine22cdd0c2022-10-27 20:15:13 +02002023 * The bytes returned from the RNG are used in a specific order which
2024 * is suitable for deterministic ECDSA (see the specification of
2025 * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
Paul Bakker33dc46b2014-04-30 16:11:39 +02002026 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002027int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
2028 int (*f_rng)(void *, unsigned char *, size_t),
2029 void *p_rng)
Paul Bakker287781a2011-03-26 13:18:49 +00002030{
Janos Follath24eed8d2019-11-22 13:21:35 +00002031 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +01002032 const size_t limbs = CHARS_TO_LIMBS(size);
Hanno Beckerda1655a2017-10-18 14:21:44 +01002033
Gilles Peskine449bd832023-01-11 14:50:10 +01002034 MPI_VALIDATE_RET(X != NULL);
2035 MPI_VALIDATE_RET(f_rng != NULL);
Paul Bakker33dc46b2014-04-30 16:11:39 +02002036
Hanno Beckerda1655a2017-10-18 14:21:44 +01002037 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +01002038 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
2039 if (size == 0) {
2040 return 0;
2041 }
Paul Bakker287781a2011-03-26 13:18:49 +00002042
Gilles Peskine449bd832023-01-11 14:50:10 +01002043 ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
Paul Bakker287781a2011-03-26 13:18:49 +00002044
2045cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002046 return ret;
Paul Bakker287781a2011-03-26 13:18:49 +00002047}
2048
Gilles Peskine449bd832023-01-11 14:50:10 +01002049int mbedtls_mpi_random(mbedtls_mpi *X,
2050 mbedtls_mpi_sint min,
2051 const mbedtls_mpi *N,
2052 int (*f_rng)(void *, unsigned char *, size_t),
2053 void *p_rng)
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002054{
Gilles Peskine449bd832023-01-11 14:50:10 +01002055 if (min < 0) {
2056 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2057 }
2058 if (mbedtls_mpi_cmp_int(N, min) <= 0) {
2059 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2060 }
Gilles Peskine1e918f42021-03-29 22:14:51 +02002061
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002062 /* Ensure that target MPI has exactly the same number of limbs
2063 * as the upper bound, even if the upper bound has leading zeros.
Gilles Peskine6b7ce962022-12-15 15:04:33 +01002064 * This is necessary for mbedtls_mpi_core_random. */
Gilles Peskine449bd832023-01-11 14:50:10 +01002065 int ret = mbedtls_mpi_resize_clear(X, N->n);
2066 if (ret != 0) {
2067 return ret;
2068 }
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002069
Gilles Peskine449bd832023-01-11 14:50:10 +01002070 return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002071}
2072
Paul Bakker5121ce52009-01-03 21:22:43 +00002073/*
2074 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2075 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002076int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00002077{
Janos Follath24eed8d2019-11-22 13:21:35 +00002078 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002079 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Gilles Peskine449bd832023-01-11 14:50:10 +01002080 MPI_VALIDATE_RET(X != NULL);
2081 MPI_VALIDATE_RET(A != NULL);
2082 MPI_VALIDATE_RET(N != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00002083
Gilles Peskine449bd832023-01-11 14:50:10 +01002084 if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
2085 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2086 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002087
Gilles Peskine449bd832023-01-11 14:50:10 +01002088 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
2089 mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
2090 mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002091
Gilles Peskine449bd832023-01-11 14:50:10 +01002092 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002093
Gilles Peskine449bd832023-01-11 14:50:10 +01002094 if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002095 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002096 goto cleanup;
2097 }
2098
Gilles Peskine449bd832023-01-11 14:50:10 +01002099 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
2100 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
2101 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
2102 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002103
Gilles Peskine449bd832023-01-11 14:50:10 +01002104 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
2105 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
2106 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
2107 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002108
Gilles Peskine449bd832023-01-11 14:50:10 +01002109 do {
2110 while ((TU.p[0] & 1) == 0) {
2111 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002112
Gilles Peskine449bd832023-01-11 14:50:10 +01002113 if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
2114 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
2115 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002116 }
2117
Gilles Peskine449bd832023-01-11 14:50:10 +01002118 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
2119 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002120 }
2121
Gilles Peskine449bd832023-01-11 14:50:10 +01002122 while ((TV.p[0] & 1) == 0) {
2123 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002124
Gilles Peskine449bd832023-01-11 14:50:10 +01002125 if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
2126 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
2127 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002128 }
2129
Gilles Peskine449bd832023-01-11 14:50:10 +01002130 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
2131 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002132 }
2133
Gilles Peskine449bd832023-01-11 14:50:10 +01002134 if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
2135 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
2136 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
2137 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
2138 } else {
2139 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
2140 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
2141 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
Paul Bakker5121ce52009-01-03 21:22:43 +00002142 }
Gilles Peskine449bd832023-01-11 14:50:10 +01002143 } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
2144
2145 while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
2146 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002147 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002148
Gilles Peskine449bd832023-01-11 14:50:10 +01002149 while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
2150 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
2151 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002152
Gilles Peskine449bd832023-01-11 14:50:10 +01002153 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002154
2155cleanup:
2156
Gilles Peskine449bd832023-01-11 14:50:10 +01002157 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
2158 mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
2159 mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002160
Gilles Peskine449bd832023-01-11 14:50:10 +01002161 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002162}
2163
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002164#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002165
Paul Bakker5121ce52009-01-03 21:22:43 +00002166static const int small_prime[] =
2167{
Gilles Peskine449bd832023-01-11 14:50:10 +01002168 3, 5, 7, 11, 13, 17, 19, 23,
2169 29, 31, 37, 41, 43, 47, 53, 59,
2170 61, 67, 71, 73, 79, 83, 89, 97,
2171 101, 103, 107, 109, 113, 127, 131, 137,
2172 139, 149, 151, 157, 163, 167, 173, 179,
2173 181, 191, 193, 197, 199, 211, 223, 227,
2174 229, 233, 239, 241, 251, 257, 263, 269,
2175 271, 277, 281, 283, 293, 307, 311, 313,
2176 317, 331, 337, 347, 349, 353, 359, 367,
2177 373, 379, 383, 389, 397, 401, 409, 419,
2178 421, 431, 433, 439, 443, 449, 457, 461,
2179 463, 467, 479, 487, 491, 499, 503, 509,
2180 521, 523, 541, 547, 557, 563, 569, 571,
2181 577, 587, 593, 599, 601, 607, 613, 617,
2182 619, 631, 641, 643, 647, 653, 659, 661,
2183 673, 677, 683, 691, 701, 709, 719, 727,
2184 733, 739, 743, 751, 757, 761, 769, 773,
2185 787, 797, 809, 811, 821, 823, 827, 829,
2186 839, 853, 857, 859, 863, 877, 881, 883,
2187 887, 907, 911, 919, 929, 937, 941, 947,
2188 953, 967, 971, 977, 983, 991, 997, -103
Paul Bakker5121ce52009-01-03 21:22:43 +00002189};
2190
2191/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002192 * Small divisors test (X must be positive)
2193 *
2194 * Return values:
2195 * 0: no small factor (possible prime, more tests needed)
2196 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002197 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002198 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002199 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002200static int mpi_check_small_factors(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +00002201{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002202 int ret = 0;
2203 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002204 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002205
Gilles Peskine449bd832023-01-11 14:50:10 +01002206 if ((X->p[0] & 1) == 0) {
2207 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2208 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002209
Gilles Peskine449bd832023-01-11 14:50:10 +01002210 for (i = 0; small_prime[i] > 0; i++) {
2211 if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) {
2212 return 1;
2213 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002214
Gilles Peskine449bd832023-01-11 14:50:10 +01002215 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i]));
Paul Bakker5121ce52009-01-03 21:22:43 +00002216
Gilles Peskine449bd832023-01-11 14:50:10 +01002217 if (r == 0) {
2218 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2219 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002220 }
2221
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002222cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002223 return ret;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002224}
2225
2226/*
2227 * Miller-Rabin pseudo-primality test (HAC 4.24)
2228 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002229static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
2230 int (*f_rng)(void *, unsigned char *, size_t),
2231 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002232{
Pascal Junodb99183d2015-03-11 16:49:45 +01002233 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002234 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002235 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002236
Gilles Peskine449bd832023-01-11 14:50:10 +01002237 MPI_VALIDATE_RET(X != NULL);
2238 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002239
Gilles Peskine449bd832023-01-11 14:50:10 +01002240 mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
2241 mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
2242 mbedtls_mpi_init(&RR);
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002243
Paul Bakker5121ce52009-01-03 21:22:43 +00002244 /*
2245 * W = |X| - 1
2246 * R = W >> lsb( W )
2247 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002248 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
2249 s = mbedtls_mpi_lsb(&W);
2250 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
2251 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
Paul Bakker5121ce52009-01-03 21:22:43 +00002252
Gilles Peskine449bd832023-01-11 14:50:10 +01002253 for (i = 0; i < rounds; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002254 /*
2255 * pick a random A, 1 < A < |X| - 1
2256 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002257 count = 0;
2258 do {
Gilles Peskine449bd832023-01-11 14:50:10 +01002259 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
Pascal Junodb99183d2015-03-11 16:49:45 +01002260
Gilles Peskine449bd832023-01-11 14:50:10 +01002261 j = mbedtls_mpi_bitlen(&A);
2262 k = mbedtls_mpi_bitlen(&W);
Pascal Junodb99183d2015-03-11 16:49:45 +01002263 if (j > k) {
Gilles Peskine449bd832023-01-11 14:50:10 +01002264 A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002265 }
2266
2267 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002268 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2269 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002270 }
2271
Gilles Peskine449bd832023-01-11 14:50:10 +01002272 } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
2273 mbedtls_mpi_cmp_int(&A, 1) <= 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00002274
2275 /*
2276 * A = A^R mod |X|
2277 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002278 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
Paul Bakker5121ce52009-01-03 21:22:43 +00002279
Gilles Peskine449bd832023-01-11 14:50:10 +01002280 if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
2281 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002282 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +01002283 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002284
2285 j = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01002286 while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002287 /*
2288 * A = A * A mod |X|
2289 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002290 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
2291 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
Paul Bakker5121ce52009-01-03 21:22:43 +00002292
Gilles Peskine449bd832023-01-11 14:50:10 +01002293 if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002294 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01002295 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002296
2297 j++;
2298 }
2299
2300 /*
2301 * not prime if A != |X| - 1 or A == 1
2302 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002303 if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
2304 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002305 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002306 break;
2307 }
2308 }
2309
2310cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002311 mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
2312 mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
2313 mbedtls_mpi_free(&RR);
Paul Bakker5121ce52009-01-03 21:22:43 +00002314
Gilles Peskine449bd832023-01-11 14:50:10 +01002315 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002316}
2317
2318/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002319 * Pseudo-primality test: small factors, then Miller-Rabin
2320 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002321int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
2322 int (*f_rng)(void *, unsigned char *, size_t),
2323 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002324{
Janos Follath24eed8d2019-11-22 13:21:35 +00002325 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002326 mbedtls_mpi XX;
Gilles Peskine449bd832023-01-11 14:50:10 +01002327 MPI_VALIDATE_RET(X != NULL);
2328 MPI_VALIDATE_RET(f_rng != NULL);
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002329
2330 XX.s = 1;
2331 XX.n = X->n;
2332 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002333
Gilles Peskine449bd832023-01-11 14:50:10 +01002334 if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
2335 mbedtls_mpi_cmp_int(&XX, 1) == 0) {
2336 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002337 }
2338
Gilles Peskine449bd832023-01-11 14:50:10 +01002339 if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
2340 return 0;
2341 }
2342
2343 if ((ret = mpi_check_small_factors(&XX)) != 0) {
2344 if (ret == 1) {
2345 return 0;
2346 }
2347
2348 return ret;
2349 }
2350
2351 return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
Janos Follathf301d232018-08-14 13:34:01 +01002352}
2353
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002354/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002355 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002356 *
Janos Follathf301d232018-08-14 13:34:01 +01002357 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2358 * be either 1024 bits or 1536 bits long, and flags must contain
2359 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002360 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002361int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
2362 int (*f_rng)(void *, unsigned char *, size_t),
2363 void *p_rng)
Paul Bakker5121ce52009-01-03 21:22:43 +00002364{
Jethro Beekman66689272018-02-14 19:24:10 -08002365#ifdef MBEDTLS_HAVE_INT64
2366// ceil(2^63.5)
2367#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2368#else
2369// ceil(2^31.5)
2370#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2371#endif
2372 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002373 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002374 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002375 mbedtls_mpi_uint r;
2376 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002377
Gilles Peskine449bd832023-01-11 14:50:10 +01002378 MPI_VALIDATE_RET(X != NULL);
2379 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002380
Gilles Peskine449bd832023-01-11 14:50:10 +01002381 if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
2382 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2383 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002384
Gilles Peskine449bd832023-01-11 14:50:10 +01002385 mbedtls_mpi_init(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00002386
Gilles Peskine449bd832023-01-11 14:50:10 +01002387 n = BITS_TO_LIMBS(nbits);
Paul Bakker5121ce52009-01-03 21:22:43 +00002388
Gilles Peskine449bd832023-01-11 14:50:10 +01002389 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
Janos Follathda31fa12018-09-03 14:45:23 +01002390 /*
2391 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2392 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002393 rounds = ((nbits >= 1300) ? 2 : (nbits >= 850) ? 3 :
2394 (nbits >= 650) ? 4 : (nbits >= 350) ? 8 :
2395 (nbits >= 250) ? 12 : (nbits >= 150) ? 18 : 27);
2396 } else {
Janos Follathda31fa12018-09-03 14:45:23 +01002397 /*
2398 * 2^-100 error probability, number of rounds computed based on HAC,
2399 * fact 4.48
2400 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002401 rounds = ((nbits >= 1450) ? 4 : (nbits >= 1150) ? 5 :
2402 (nbits >= 1000) ? 6 : (nbits >= 850) ? 7 :
2403 (nbits >= 750) ? 8 : (nbits >= 500) ? 13 :
2404 (nbits >= 250) ? 28 : (nbits >= 150) ? 40 : 51);
Janos Follathda31fa12018-09-03 14:45:23 +01002405 }
2406
Gilles Peskine449bd832023-01-11 14:50:10 +01002407 while (1) {
2408 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
Jethro Beekman66689272018-02-14 19:24:10 -08002409 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
Gilles Peskine449bd832023-01-11 14:50:10 +01002410 if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
2411 continue;
2412 }
Jethro Beekman66689272018-02-14 19:24:10 -08002413
2414 k = n * biL;
Gilles Peskine449bd832023-01-11 14:50:10 +01002415 if (k > nbits) {
2416 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
2417 }
Jethro Beekman66689272018-02-14 19:24:10 -08002418 X->p[0] |= 1;
2419
Gilles Peskine449bd832023-01-11 14:50:10 +01002420 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
2421 ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
Jethro Beekman66689272018-02-14 19:24:10 -08002422
Gilles Peskine449bd832023-01-11 14:50:10 +01002423 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002424 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002425 }
2426 } else {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002427 /*
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01002428 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002429 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2430 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002431 */
Jethro Beekman66689272018-02-14 19:24:10 -08002432
2433 X->p[0] |= 2;
2434
Gilles Peskine449bd832023-01-11 14:50:10 +01002435 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
2436 if (r == 0) {
2437 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
2438 } else if (r == 1) {
2439 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
2440 }
Jethro Beekman66689272018-02-14 19:24:10 -08002441
2442 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
Gilles Peskine449bd832023-01-11 14:50:10 +01002443 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
2444 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
Jethro Beekman66689272018-02-14 19:24:10 -08002445
Gilles Peskine449bd832023-01-11 14:50:10 +01002446 while (1) {
Jethro Beekman66689272018-02-14 19:24:10 -08002447 /*
2448 * First, check small factors for X and Y
2449 * before doing Miller-Rabin on any of them
2450 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002451 if ((ret = mpi_check_small_factors(X)) == 0 &&
2452 (ret = mpi_check_small_factors(&Y)) == 0 &&
2453 (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
2454 == 0 &&
2455 (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
2456 == 0) {
Jethro Beekman66689272018-02-14 19:24:10 -08002457 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002458 }
Jethro Beekman66689272018-02-14 19:24:10 -08002459
Gilles Peskine449bd832023-01-11 14:50:10 +01002460 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Jethro Beekman66689272018-02-14 19:24:10 -08002461 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002462 }
Jethro Beekman66689272018-02-14 19:24:10 -08002463
2464 /*
2465 * Next candidates. We want to preserve Y = (X-1) / 2 and
2466 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2467 * so up Y by 6 and X by 12.
2468 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002469 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 12));
2470 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
Paul Bakker5121ce52009-01-03 21:22:43 +00002471 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002472 }
2473 }
2474
2475cleanup:
2476
Gilles Peskine449bd832023-01-11 14:50:10 +01002477 mbedtls_mpi_free(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00002478
Gilles Peskine449bd832023-01-11 14:50:10 +01002479 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002480}
2481
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002482#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002483
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002484#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002485
Paul Bakker23986e52011-04-24 08:57:21 +00002486#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002487
2488static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2489{
2490 { 693, 609, 21 },
2491 { 1764, 868, 28 },
2492 { 768454923, 542167814, 1 }
2493};
2494
Paul Bakker5121ce52009-01-03 21:22:43 +00002495/*
2496 * Checkup routine
2497 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002498int mbedtls_mpi_self_test(int verbose)
Paul Bakker5121ce52009-01-03 21:22:43 +00002499{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002500 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002501 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002502
Gilles Peskine449bd832023-01-11 14:50:10 +01002503 mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
2504 mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00002505
Gilles Peskine449bd832023-01-11 14:50:10 +01002506 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
2507 "EFE021C2645FD1DC586E69184AF4A31E" \
2508 "D5F53E93B5F123FA41680867BA110131" \
2509 "944FE7952E2517337780CB0DB80E61AA" \
2510 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002511
Gilles Peskine449bd832023-01-11 14:50:10 +01002512 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
2513 "B2E7EFD37075B9F03FF989C7C5051C20" \
2514 "34D2A323810251127E7BF8625A4F49A5" \
2515 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2516 "5B5C25763222FEFCCFC38B832366C29E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002517
Gilles Peskine449bd832023-01-11 14:50:10 +01002518 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
2519 "0066A198186C18C10B2F5ED9B522752A" \
2520 "9830B69916E535C8F047518A889A43A5" \
2521 "94B6BED27A168D31D4A52F88925AA8F5"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002522
Gilles Peskine449bd832023-01-11 14:50:10 +01002523 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002524
Gilles Peskine449bd832023-01-11 14:50:10 +01002525 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2526 "602AB7ECA597A3D6B56FF9829A5E8B85" \
2527 "9E857EA95A03512E2BAE7391688D264A" \
2528 "A5663B0341DB9CCFD2C4C5F421FEC814" \
2529 "8001B72E848A38CAE1C65F78E56ABDEF" \
2530 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2531 "ECF677152EF804370C1A305CAF3B5BF1" \
2532 "30879B56C61DE584A0F53A2447A51E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002533
Gilles Peskine449bd832023-01-11 14:50:10 +01002534 if (verbose != 0) {
2535 mbedtls_printf(" MPI test #1 (mul_mpi): ");
2536 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002537
Gilles Peskine449bd832023-01-11 14:50:10 +01002538 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2539 if (verbose != 0) {
2540 mbedtls_printf("failed\n");
2541 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002542
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002543 ret = 1;
2544 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002545 }
2546
Gilles Peskine449bd832023-01-11 14:50:10 +01002547 if (verbose != 0) {
2548 mbedtls_printf("passed\n");
2549 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002550
Gilles Peskine449bd832023-01-11 14:50:10 +01002551 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002552
Gilles Peskine449bd832023-01-11 14:50:10 +01002553 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2554 "256567336059E52CAE22925474705F39A94"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002555
Gilles Peskine449bd832023-01-11 14:50:10 +01002556 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
2557 "6613F26162223DF488E9CD48CC132C7A" \
2558 "0AC93C701B001B092E4E5B9F73BCD27B" \
2559 "9EE50D0657C77F374E903CDFA4C642"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002560
Gilles Peskine449bd832023-01-11 14:50:10 +01002561 if (verbose != 0) {
2562 mbedtls_printf(" MPI test #2 (div_mpi): ");
2563 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002564
Gilles Peskine449bd832023-01-11 14:50:10 +01002565 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
2566 mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
2567 if (verbose != 0) {
2568 mbedtls_printf("failed\n");
2569 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002570
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002571 ret = 1;
2572 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002573 }
2574
Gilles Peskine449bd832023-01-11 14:50:10 +01002575 if (verbose != 0) {
2576 mbedtls_printf("passed\n");
2577 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002578
Gilles Peskine449bd832023-01-11 14:50:10 +01002579 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
Paul Bakker5121ce52009-01-03 21:22:43 +00002580
Gilles Peskine449bd832023-01-11 14:50:10 +01002581 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2582 "36E139AEA55215609D2816998ED020BB" \
2583 "BD96C37890F65171D948E9BC7CBAA4D9" \
2584 "325D24D6A3C12710F10A09FA08AB87"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002585
Gilles Peskine449bd832023-01-11 14:50:10 +01002586 if (verbose != 0) {
2587 mbedtls_printf(" MPI test #3 (exp_mod): ");
2588 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002589
Gilles Peskine449bd832023-01-11 14:50:10 +01002590 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2591 if (verbose != 0) {
2592 mbedtls_printf("failed\n");
2593 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002594
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002595 ret = 1;
2596 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002597 }
2598
Gilles Peskine449bd832023-01-11 14:50:10 +01002599 if (verbose != 0) {
2600 mbedtls_printf("passed\n");
2601 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002602
Gilles Peskine449bd832023-01-11 14:50:10 +01002603 MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002604
Gilles Peskine449bd832023-01-11 14:50:10 +01002605 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2606 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2607 "C3DBA76456363A10869622EAC2DD84EC" \
2608 "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002609
Gilles Peskine449bd832023-01-11 14:50:10 +01002610 if (verbose != 0) {
2611 mbedtls_printf(" MPI test #4 (inv_mod): ");
2612 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002613
Gilles Peskine449bd832023-01-11 14:50:10 +01002614 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2615 if (verbose != 0) {
2616 mbedtls_printf("failed\n");
2617 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002618
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002619 ret = 1;
2620 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002621 }
2622
Gilles Peskine449bd832023-01-11 14:50:10 +01002623 if (verbose != 0) {
2624 mbedtls_printf("passed\n");
2625 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002626
Gilles Peskine449bd832023-01-11 14:50:10 +01002627 if (verbose != 0) {
2628 mbedtls_printf(" MPI test #5 (simple gcd): ");
2629 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002630
Gilles Peskine449bd832023-01-11 14:50:10 +01002631 for (i = 0; i < GCD_PAIR_COUNT; i++) {
2632 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
2633 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002634
Gilles Peskine449bd832023-01-11 14:50:10 +01002635 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002636
Gilles Peskine449bd832023-01-11 14:50:10 +01002637 if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
2638 if (verbose != 0) {
2639 mbedtls_printf("failed at %d\n", i);
2640 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002641
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002642 ret = 1;
2643 goto cleanup;
2644 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002645 }
2646
Gilles Peskine449bd832023-01-11 14:50:10 +01002647 if (verbose != 0) {
2648 mbedtls_printf("passed\n");
2649 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002650
Paul Bakker5121ce52009-01-03 21:22:43 +00002651cleanup:
2652
Gilles Peskine449bd832023-01-11 14:50:10 +01002653 if (ret != 0 && verbose != 0) {
2654 mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
2655 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002656
Gilles Peskine449bd832023-01-11 14:50:10 +01002657 mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
2658 mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00002659
Gilles Peskine449bd832023-01-11 14:50:10 +01002660 if (verbose != 0) {
2661 mbedtls_printf("\n");
2662 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002663
Gilles Peskine449bd832023-01-11 14:50:10 +01002664 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002665}
2666
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002667#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00002668
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002669#endif /* MBEDTLS_BIGNUM_C */