blob: 58276c90bba1d062fdfabeb840e32de7a499dced [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
18 * Copyright (C) 2018, ARM Limited, All Rights Reserved
19 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
32 *
33 * This file is part of mbed TLS (https://tls.mbed.org)
34 */
35
36#ifndef PSA_CRYPTO_VALUES_H
37#define PSA_CRYPTO_VALUES_H
38
39/** \defgroup error Error codes
40 * @{
41 */
42
David Saadab4ecc272019-02-14 13:48:10 +020043/* PSA error codes */
44
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045/** The action was completed successfully. */
46#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010047
48/** An error occurred that does not correspond to any defined
49 * failure cause.
50 *
51 * Implementations may use this error code if none of the other standard
52 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020053#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010054
55/** The requested operation or a parameter is not supported
56 * by this implementation.
57 *
58 * Implementations should return this error code when an enumeration
59 * parameter such as a key type, algorithm, etc. is not recognized.
60 * If a combination of parameters is recognized and identified as
61 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020062#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010063
64/** The requested action is denied by a policy.
65 *
66 * Implementations should return this error code when the parameters
67 * are recognized as valid and supported, and a policy explicitly
68 * denies the requested operation.
69 *
70 * If a subset of the parameters of a function call identify a
71 * forbidden operation, and another subset of the parameters are
72 * not valid or not supported, it is unspecified whether the function
73 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
74 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020075#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010076
77/** An output buffer is too small.
78 *
79 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
80 * description to determine a sufficient buffer size.
81 *
82 * Implementations should preferably return this error code only
83 * in cases when performing the operation with a larger output
84 * buffer would succeed. However implementations may return this
85 * error if a function has invalid or unsupported parameters in addition
86 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020087#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088
David Saadab4ecc272019-02-14 13:48:10 +020089/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010090 *
David Saadab4ecc272019-02-14 13:48:10 +020091 * Implementations should return this error, when attempting
92 * to write an item (like a key) that already exists. */
93#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094
David Saadab4ecc272019-02-14 13:48:10 +020095/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010096 *
David Saadab4ecc272019-02-14 13:48:10 +020097 * Implementations should return this error, if a requested item (like
98 * a key) does not exist. */
99#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100
101/** The requested action cannot be performed in the current state.
102 *
103 * Multipart operations return this error when one of the
104 * functions is called out of sequence. Refer to the function
105 * descriptions for permitted sequencing of functions.
106 *
107 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100108 * that a key either exists or not,
109 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100110 * as applicable.
111 *
112 * Implementations shall not return this error code to indicate that a
113 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
114 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200115#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100116
117/** The parameters passed to the function are invalid.
118 *
119 * Implementations may return this error any time a parameter or
120 * combination of parameters are recognized as invalid.
121 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100122 * Implementations shall not return this error code to indicate that a
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
124 * instead.
125 */
David Saadab4ecc272019-02-14 13:48:10 +0200126#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100127
128/** There is not enough runtime memory.
129 *
130 * If the action is carried out across multiple security realms, this
131 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200132#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100133
134/** There is not enough persistent storage.
135 *
136 * Functions that modify the key storage return this error code if
137 * there is insufficient storage space on the host media. In addition,
138 * many functions that do not otherwise access storage may return this
139 * error code if the implementation requires a mandatory log entry for
140 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200141#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100142
143/** There was a communication failure inside the implementation.
144 *
145 * This can indicate a communication failure between the application
146 * and an external cryptoprocessor or between the cryptoprocessor and
147 * an external volatile or persistent memory. A communication failure
148 * may be transient or permanent depending on the cause.
149 *
150 * \warning If a function returns this error, it is undetermined
151 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200152 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100153 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
154 * if the requested action was completed successfully in an external
155 * cryptoprocessor but there was a breakdown of communication before
156 * the cryptoprocessor could report the status to the application.
157 */
David Saadab4ecc272019-02-14 13:48:10 +0200158#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100159
160/** There was a storage failure that may have led to data loss.
161 *
162 * This error indicates that some persistent storage is corrupted.
163 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200164 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100165 * between the cryptoprocessor and its external storage (use
166 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
167 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
168 *
169 * Note that a storage failure does not indicate that any data that was
170 * previously read is invalid. However this previously read data may no
171 * longer be readable from storage.
172 *
173 * When a storage failure occurs, it is no longer possible to ensure
174 * the global integrity of the keystore. Depending on the global
175 * integrity guarantees offered by the implementation, access to other
176 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100177 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100178 *
179 * Implementations should only use this error code to report a
180 * permanent storage corruption. However application writers should
181 * keep in mind that transient errors while reading the storage may be
182 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200183#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100184
185/** A hardware failure was detected.
186 *
187 * A hardware failure may be transient or permanent depending on the
188 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200189#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100190
191/** A tampering attempt was detected.
192 *
193 * If an application receives this error code, there is no guarantee
194 * that previously accessed or computed data was correct and remains
195 * confidential. Applications should not perform any security function
196 * and should enter a safe failure state.
197 *
198 * Implementations may return this error code if they detect an invalid
199 * state that cannot happen during normal operation and that indicates
200 * that the implementation's security guarantees no longer hold. Depending
201 * on the implementation architecture and on its security and safety goals,
202 * the implementation may forcibly terminate the application.
203 *
204 * This error code is intended as a last resort when a security breach
205 * is detected and it is unsure whether the keystore data is still
206 * protected. Implementations shall only return this error code
207 * to report an alarm from a tampering detector, to indicate that
208 * the confidentiality of stored data can no longer be guaranteed,
209 * or to indicate that the integrity of previously returned data is now
210 * considered compromised. Implementations shall not use this error code
211 * to indicate a hardware failure that merely makes it impossible to
212 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
213 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
214 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
215 * instead).
216 *
217 * This error indicates an attack against the application. Implementations
218 * shall not return this error code as a consequence of the behavior of
219 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200220#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100221
222/** There is not enough entropy to generate random data needed
223 * for the requested action.
224 *
225 * This error indicates a failure of a hardware random generator.
226 * Application writers should note that this error can be returned not
227 * only by functions whose purpose is to generate random data, such
228 * as key, IV or nonce generation, but also by functions that execute
229 * an algorithm with a randomized result, as well as functions that
230 * use randomization of intermediate computations as a countermeasure
231 * to certain attacks.
232 *
233 * Implementations should avoid returning this error after psa_crypto_init()
234 * has succeeded. Implementations should generate sufficient
235 * entropy during initialization and subsequently use a cryptographically
236 * secure pseudorandom generator (PRNG). However implementations may return
237 * this error at any time if a policy requires the PRNG to be reseeded
238 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200239#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100240
241/** The signature, MAC or hash is incorrect.
242 *
243 * Verification functions return this error if the verification
244 * calculations completed successfully, and the value to be verified
245 * was determined to be incorrect.
246 *
247 * If the value to verify has an invalid size, implementations may return
248 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200249#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100250
251/** The decrypted padding is incorrect.
252 *
253 * \warning In some protocols, when decrypting data, it is essential that
254 * the behavior of the application does not depend on whether the padding
255 * is correct, down to precise timing. Applications should prefer
256 * protocols that use authenticated encryption rather than plain
257 * encryption. If the application must perform a decryption of
258 * unauthenticated data, the application writer should take care not
259 * to reveal whether the padding is invalid.
260 *
261 * Implementations should strive to make valid and invalid padding
262 * as close as possible to indistinguishable to an external observer.
263 * In particular, the timing of a decryption operation should not
264 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200265#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100266
David Saadab4ecc272019-02-14 13:48:10 +0200267/** Return this error when there's insufficient data when attempting
268 * to read from a resource. */
269#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270
Andrew Thoelke3c2b8032019-08-22 12:20:12 +0100271/** The key handle is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272 */
David Saadab4ecc272019-02-14 13:48:10 +0200273#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100274
275/**@}*/
276
277/** \defgroup crypto_types Key and algorithm types
278 * @{
279 */
280
281/** An invalid key type value.
282 *
283 * Zero is not the encoding of any key type.
284 */
285#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
286
287/** Vendor-defined flag
288 *
289 * Key types defined by this standard will never have the
290 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
291 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
292 * respect the bitwise structure used by standard encodings whenever practical.
293 */
294#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
295
296#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000)
297#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000)
298#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000)
299#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000)
300#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000)
301
302#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000)
303
304/** Whether a key type is vendor-defined. */
305#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
306 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
307
308/** Whether a key type is an unstructured array of bytes.
309 *
310 * This encompasses both symmetric keys and non-key data.
311 */
312#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
313 (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \
314 PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
315
316/** Whether a key type is asymmetric: either a key pair or a public key. */
317#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
318 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
319 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
320 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
321/** Whether a key type is the public part of a key pair. */
322#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
323 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
324/** Whether a key type is a key pair containing a private part and a public
325 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200326#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100327 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
328/** The key pair type corresponding to a public key type.
329 *
330 * You may also pass a key pair type as \p type, it will be left unchanged.
331 *
332 * \param type A public key type or key pair type.
333 *
334 * \return The corresponding key pair type.
335 * If \p type is not a public key or a key pair,
336 * the return value is undefined.
337 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200338#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
340/** The public key type corresponding to a key pair type.
341 *
342 * You may also pass a key pair type as \p type, it will be left unchanged.
343 *
344 * \param type A public key type or key pair type.
345 *
346 * \return The corresponding public key type.
347 * If \p type is not a public key or a key pair,
348 * the return value is undefined.
349 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200350#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100351 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
352
353/** Raw data.
354 *
355 * A "key" of this type cannot be used for any cryptographic operation.
356 * Applications may use this type to store arbitrary data in the keystore. */
357#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001)
358
359/** HMAC key.
360 *
361 * The key policy determines which underlying hash algorithm the key can be
362 * used for.
363 *
364 * HMAC keys should generally have the same size as the underlying hash.
365 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
366 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
367#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000)
368
369/** A secret for key derivation.
370 *
371 * The key policy determines which key derivation algorithm the key
372 * can be used for.
373 */
374#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000)
375
Gilles Peskine737c6be2019-05-21 16:01:06 +0200376/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100377 *
378 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
379 * 32 bytes (AES-256).
380 */
381#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001)
382
383/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
384 *
385 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
386 * 24 bytes (3-key 3DES).
387 *
388 * Note that single DES and 2-key 3DES are weak and strongly
389 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
390 * is weak and deprecated and should only be used in legacy protocols.
391 */
392#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002)
393
Gilles Peskine737c6be2019-05-21 16:01:06 +0200394/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100395 * Camellia block cipher. */
396#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003)
397
398/** Key for the RC4 stream cipher.
399 *
400 * Note that RC4 is weak and deprecated and should only be used in
401 * legacy protocols. */
402#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004)
403
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200404/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
405 *
406 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
407 *
408 * Implementations must support 12-byte nonces, may support 8-byte nonces,
409 * and should reject other sizes.
410 */
411#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x40000005)
412
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100413/** RSA public key. */
414#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000)
415/** RSA key pair (private and public key). */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200416#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x70010000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100417/** Whether a key type is an RSA key (pair or public-only). */
418#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200419 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100420
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100421#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000)
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200422#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x70030000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff)
424/** Elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200425#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
426 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100427/** Elliptic curve public key. */
428#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
429 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
430
431/** Whether a key type is an elliptic curve key (pair or public-only). */
432#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200433 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100434 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100435/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200436#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100437 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200438 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100439/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100440#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
441 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
442 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
443
444/** Extract the curve from an elliptic curve key type. */
445#define PSA_KEY_TYPE_GET_CURVE(type) \
446 ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
447 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
448 0))
449
450/* The encoding of curve identifiers is currently aligned with the
451 * TLS Supported Groups Registry (formerly known as the
452 * TLS EC Named Curve Registry)
453 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
454 * The values are defined by RFC 8422 and RFC 7027. */
455#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001)
456#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002)
457#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003)
458#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004)
459#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005)
460#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006)
461#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007)
462#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008)
463#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009)
464#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a)
465#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b)
466#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c)
467#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d)
468#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e)
469#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f)
470#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010)
471#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011)
472#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012)
473#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013)
474#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014)
475#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015)
476#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016)
477#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017)
478#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018)
479#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019)
480#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a)
481#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b)
482#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c)
Gilles Peskinea9b9cf72019-05-21 19:18:33 +0200483/** Curve25519.
484 *
485 * This is the curve defined in Bernstein et al.,
486 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
487 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
488 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100489#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d)
Gilles Peskinea9b9cf72019-05-21 19:18:33 +0200490/** Curve448
491 *
492 * This is the curve defined in Hamburg,
493 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
494 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
495 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100496#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e)
497
Andrew Thoelkefd368e52019-09-25 22:14:29 +0100498/** Minimum value for a vendor-defined ECC curve identifier
499 *
500 * The range for vendor-defined curve identifiers is a subset of the IANA
501 * registry private use range, `0xfe00` - `0xfeff`.
502 */
503#define PSA_ECC_CURVE_VENDOR_MIN ((psa_ecc_curve_t) 0xfe00)
504/** Maximum value for a vendor-defined ECC curve identifier
505 *
506 * The range for vendor-defined curve identifiers is a subset of the IANA
507 * registry private use range, `0xfe00` - `0xfeff`.
508 */
509#define PSA_ECC_CURVE_VENDOR_MAX ((psa_ecc_curve_t) 0xfe7f)
510
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200511#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x60040000)
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200512#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x70040000)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200513#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x0000ffff)
514/** Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200515#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
516 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200517/** Diffie-Hellman public key. */
518#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
519 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
520
521/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
522#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200523 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200524 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
525/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200526#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200527 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200528 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200529/** Whether a key type is a Diffie-Hellman public key. */
530#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
531 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
532 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
533
534/** Extract the group from a Diffie-Hellman key type. */
535#define PSA_KEY_TYPE_GET_GROUP(type) \
536 ((psa_dh_group_t) (PSA_KEY_TYPE_IS_DH(type) ? \
537 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
538 0))
539
540/* The encoding of group identifiers is currently aligned with the
541 * TLS Supported Groups Registry (formerly known as the
542 * TLS EC Named Curve Registry)
543 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
544 * The values are defined by RFC 7919. */
545#define PSA_DH_GROUP_FFDHE2048 ((psa_dh_group_t) 0x0100)
546#define PSA_DH_GROUP_FFDHE3072 ((psa_dh_group_t) 0x0101)
547#define PSA_DH_GROUP_FFDHE4096 ((psa_dh_group_t) 0x0102)
548#define PSA_DH_GROUP_FFDHE6144 ((psa_dh_group_t) 0x0103)
549#define PSA_DH_GROUP_FFDHE8192 ((psa_dh_group_t) 0x0104)
Jaeden Amero8851c402019-01-11 14:20:03 +0000550
Andrew Thoelkefd368e52019-09-25 22:14:29 +0100551/** Minimum value for a vendor-defined Diffie Hellman group identifier
552 *
553 * The range for vendor-defined group identifiers is a subset of the IANA
554 * registry private use range, `0x01fc` - `0x01ff`.
555 */
556#define PSA_DH_GROUP_VENDOR_MIN ((psa_dh_group_t) 0x01fc)
557/** Maximum value for a vendor-defined Diffie Hellman group identifier
558 *
559 * The range for vendor-defined group identifiers is a subset of the IANA
560 * registry private use range, `0x01fc` - `0x01ff`.
561 */
562#define PSA_DH_GROUP_VENDOR_MAX ((psa_dh_group_t) 0x01fd)
563
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100564/** The block size of a block cipher.
565 *
566 * \param type A cipher key type (value of type #psa_key_type_t).
567 *
568 * \return The block size for a block cipher, or 1 for a stream cipher.
569 * The return value is undefined if \p type is not a supported
570 * cipher key type.
571 *
572 * \note It is possible to build stream cipher algorithms on top of a block
573 * cipher, for example CTR mode (#PSA_ALG_CTR).
574 * This macro only takes the key type into account, so it cannot be
575 * used to determine the size of the data that #psa_cipher_update()
576 * might buffer for future processing in general.
577 *
578 * \note This macro returns a compile-time constant if its argument is one.
579 *
580 * \warning This macro may evaluate its argument multiple times.
581 */
582#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
583 ( \
584 (type) == PSA_KEY_TYPE_AES ? 16 : \
585 (type) == PSA_KEY_TYPE_DES ? 8 : \
586 (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \
587 (type) == PSA_KEY_TYPE_ARC4 ? 1 : \
588 0)
589
590#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
591#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
592#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
593#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
594#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
595#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
596#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
597#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100598#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
599#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100600
601#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
602 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
603
604/** Whether the specified algorithm is a hash algorithm.
605 *
606 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
607 *
608 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
609 * This macro may return either 0 or 1 if \p alg is not a supported
610 * algorithm identifier.
611 */
612#define PSA_ALG_IS_HASH(alg) \
613 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
614
615/** Whether the specified algorithm is a MAC algorithm.
616 *
617 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
618 *
619 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
620 * This macro may return either 0 or 1 if \p alg is not a supported
621 * algorithm identifier.
622 */
623#define PSA_ALG_IS_MAC(alg) \
624 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
625
626/** Whether the specified algorithm is a symmetric cipher algorithm.
627 *
628 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
629 *
630 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
631 * This macro may return either 0 or 1 if \p alg is not a supported
632 * algorithm identifier.
633 */
634#define PSA_ALG_IS_CIPHER(alg) \
635 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
636
637/** Whether the specified algorithm is an authenticated encryption
638 * with associated data (AEAD) algorithm.
639 *
640 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
641 *
642 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
643 * This macro may return either 0 or 1 if \p alg is not a supported
644 * algorithm identifier.
645 */
646#define PSA_ALG_IS_AEAD(alg) \
647 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
648
649/** Whether the specified algorithm is a public-key signature algorithm.
650 *
651 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
652 *
653 * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise.
654 * This macro may return either 0 or 1 if \p alg is not a supported
655 * algorithm identifier.
656 */
657#define PSA_ALG_IS_SIGN(alg) \
658 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
659
660/** Whether the specified algorithm is a public-key encryption algorithm.
661 *
662 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
663 *
664 * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise.
665 * This macro may return either 0 or 1 if \p alg is not a supported
666 * algorithm identifier.
667 */
668#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
669 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
670
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100671/** Whether the specified algorithm is a key agreement algorithm.
672 *
673 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
674 *
675 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
676 * This macro may return either 0 or 1 if \p alg is not a supported
677 * algorithm identifier.
678 */
679#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100680 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100681
682/** Whether the specified algorithm is a key derivation algorithm.
683 *
684 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
685 *
686 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
687 * This macro may return either 0 or 1 if \p alg is not a supported
688 * algorithm identifier.
689 */
690#define PSA_ALG_IS_KEY_DERIVATION(alg) \
691 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
692
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100693#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100694
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100695#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
696#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
697#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
698#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
699#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
700/** SHA2-224 */
701#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
702/** SHA2-256 */
703#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
704/** SHA2-384 */
705#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
706/** SHA2-512 */
707#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
708/** SHA2-512/224 */
709#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
710/** SHA2-512/256 */
711#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
712/** SHA3-224 */
713#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
714/** SHA3-256 */
715#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
716/** SHA3-384 */
717#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
718/** SHA3-512 */
719#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
720
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100721/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100722 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100723 * This value may be used to form the algorithm usage field of a policy
724 * for a signature algorithm that is parametrized by a hash. The key
725 * may then be used to perform operations using the same signature
726 * algorithm parametrized with any supported hash.
727 *
728 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100729 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100730 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100731 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100732 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
733 * ```
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200734 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN); // or VERIFY
735 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100736 * ```
737 * - Import or generate key material.
738 * - Call psa_asymmetric_sign() or psa_asymmetric_verify(), passing
739 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
740 * call to sign or verify a message may use a different hash.
741 * ```
742 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
743 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
744 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
745 * ```
746 *
747 * This value may not be used to build other algorithms that are
748 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100749 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100750 *
751 * This value may not be used to build an algorithm specification to
752 * perform an operation. It is only valid to build policies.
753 */
754#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
755
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100756#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
757#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
758/** Macro to build an HMAC algorithm.
759 *
760 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
761 *
762 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
763 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
764 *
765 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100766 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100767 * hash algorithm.
768 */
769#define PSA_ALG_HMAC(hash_alg) \
770 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
771
772#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
773 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
774
775/** Whether the specified algorithm is an HMAC algorithm.
776 *
777 * HMAC is a family of MAC algorithms that are based on a hash function.
778 *
779 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
780 *
781 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
782 * This macro may return either 0 or 1 if \p alg is not a supported
783 * algorithm identifier.
784 */
785#define PSA_ALG_IS_HMAC(alg) \
786 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
787 PSA_ALG_HMAC_BASE)
788
789/* In the encoding of a MAC algorithm, the bits corresponding to
790 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
791 * truncated. As an exception, the value 0 means the untruncated algorithm,
792 * whatever its length is. The length is encoded in 6 bits, so it can
793 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
794 * to full length is correctly encoded as 0 and any non-trivial truncation
795 * is correctly encoded as a value between 1 and 63. */
796#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
797#define PSA_MAC_TRUNCATION_OFFSET 8
798
799/** Macro to build a truncated MAC algorithm.
800 *
801 * A truncated MAC algorithm is identical to the corresponding MAC
802 * algorithm except that the MAC value for the truncated algorithm
803 * consists of only the first \p mac_length bytes of the MAC value
804 * for the untruncated algorithm.
805 *
806 * \note This macro may allow constructing algorithm identifiers that
807 * are not valid, either because the specified length is larger
808 * than the untruncated MAC or because the specified length is
809 * smaller than permitted by the implementation.
810 *
811 * \note It is implementation-defined whether a truncated MAC that
812 * is truncated to the same length as the MAC of the untruncated
813 * algorithm is considered identical to the untruncated algorithm
814 * for policy comparison purposes.
815 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200816 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100817 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
818 * is true). This may be a truncated or untruncated
819 * MAC algorithm.
820 * \param mac_length Desired length of the truncated MAC in bytes.
821 * This must be at most the full length of the MAC
822 * and must be at least an implementation-specified
823 * minimum. The implementation-specified minimum
824 * shall not be zero.
825 *
826 * \return The corresponding MAC algorithm with the specified
827 * length.
828 * \return Unspecified if \p alg is not a supported
829 * MAC algorithm or if \p mac_length is too small or
830 * too large for the specified MAC algorithm.
831 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200832#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
833 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100834 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
835
836/** Macro to build the base MAC algorithm corresponding to a truncated
837 * MAC algorithm.
838 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200839 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100840 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
841 * is true). This may be a truncated or untruncated
842 * MAC algorithm.
843 *
844 * \return The corresponding base MAC algorithm.
845 * \return Unspecified if \p alg is not a supported
846 * MAC algorithm.
847 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200848#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
849 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100850
851/** Length to which a MAC algorithm is truncated.
852 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200853 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100854 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
855 * is true).
856 *
857 * \return Length of the truncated MAC in bytes.
858 * \return 0 if \p alg is a non-truncated MAC algorithm.
859 * \return Unspecified if \p alg is not a supported
860 * MAC algorithm.
861 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200862#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
863 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100864
865#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100866/** The CBC-MAC construction over a block cipher
867 *
868 * \warning CBC-MAC is insecure in many cases.
869 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
870 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100871#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100872/** The CMAC construction over a block cipher */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100873#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100874
875/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
876 *
877 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
878 *
879 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
880 * This macro may return either 0 or 1 if \p alg is not a supported
881 * algorithm identifier.
882 */
883#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
884 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
885 PSA_ALG_CIPHER_MAC_BASE)
886
887#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
888#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
889
890/** Whether the specified algorithm is a stream cipher.
891 *
892 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
893 * by applying a bitwise-xor with a stream of bytes that is generated
894 * from a key.
895 *
896 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
897 *
898 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
899 * This macro may return either 0 or 1 if \p alg is not a supported
900 * algorithm identifier or if it is not a symmetric cipher algorithm.
901 */
902#define PSA_ALG_IS_STREAM_CIPHER(alg) \
903 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
904 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
905
906/** The ARC4 stream cipher algorithm.
907 */
908#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
909
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200910/** The ChaCha20 stream cipher.
911 *
912 * ChaCha20 is defined in RFC 7539.
913 *
914 * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv()
915 * must be 12.
916 *
917 * The initial block counter is always 0.
918 *
919 */
920#define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005)
921
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100922/** The CTR stream cipher mode.
923 *
924 * CTR is a stream cipher which is built from a block cipher.
925 * The underlying block cipher is determined by the key type.
926 * For example, to use AES-128-CTR, use this algorithm with
927 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
928 */
929#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
930
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100931/** The CFB stream cipher mode.
932 *
933 * The underlying block cipher is determined by the key type.
934 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100935#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
936
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100937/** The OFB stream cipher mode.
938 *
939 * The underlying block cipher is determined by the key type.
940 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100941#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
942
943/** The XTS cipher mode.
944 *
945 * XTS is a cipher mode which is built from a block cipher. It requires at
946 * least one full block of input, but beyond this minimum the input
947 * does not need to be a whole number of blocks.
948 */
949#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
950
951/** The CBC block cipher chaining mode, with no padding.
952 *
953 * The underlying block cipher is determined by the key type.
954 *
955 * This symmetric cipher mode can only be used with messages whose lengths
956 * are whole number of blocks for the chosen block cipher.
957 */
958#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
959
960/** The CBC block cipher chaining mode with PKCS#7 padding.
961 *
962 * The underlying block cipher is determined by the key type.
963 *
964 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
965 */
966#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
967
Gilles Peskine679693e2019-05-06 15:10:16 +0200968#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
969
970/** Whether the specified algorithm is an AEAD mode on a block cipher.
971 *
972 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
973 *
974 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
975 * a block cipher, 0 otherwise.
976 * This macro may return either 0 or 1 if \p alg is not a supported
977 * algorithm identifier.
978 */
979#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
980 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
981 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
982
Gilles Peskine9153ec02019-02-15 13:02:02 +0100983/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100984 *
985 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +0100986 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200987#define PSA_ALG_CCM ((psa_algorithm_t)0x06401001)
Gilles Peskine9153ec02019-02-15 13:02:02 +0100988
989/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100990 *
991 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +0100992 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200993#define PSA_ALG_GCM ((psa_algorithm_t)0x06401002)
994
995/** The Chacha20-Poly1305 AEAD algorithm.
996 *
997 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200998 *
999 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1000 * and should reject other sizes.
1001 *
1002 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001003 */
1004#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001005
1006/* In the encoding of a AEAD algorithm, the bits corresponding to
1007 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1008 * The constants for default lengths follow this encoding.
1009 */
1010#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
1011#define PSA_AEAD_TAG_LENGTH_OFFSET 8
1012
1013/** Macro to build a shortened AEAD algorithm.
1014 *
1015 * A shortened AEAD algorithm is similar to the corresponding AEAD
1016 * algorithm, but has an authentication tag that consists of fewer bytes.
1017 * Depending on the algorithm, the tag length may affect the calculation
1018 * of the ciphertext.
1019 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001020 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001021 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
1022 * is true).
1023 * \param tag_length Desired length of the authentication tag in bytes.
1024 *
1025 * \return The corresponding AEAD algorithm with the specified
1026 * length.
1027 * \return Unspecified if \p alg is not a supported
1028 * AEAD algorithm or if \p tag_length is not valid
1029 * for the specified AEAD algorithm.
1030 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001031#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
1032 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001033 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1034 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1035
1036/** Calculate the corresponding AEAD algorithm with the default tag length.
1037 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001038 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
1039 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001040 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001041 * \return The corresponding AEAD algorithm with the default
1042 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001043 */
Unknowne2e19952019-08-21 03:33:04 -04001044#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
1045 ( \
1046 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CCM) \
1047 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_GCM) \
1048 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001049 0)
Unknowne2e19952019-08-21 03:33:04 -04001050#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, ref) \
1051 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
1052 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001053 ref :
1054
1055#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
1056/** RSA PKCS#1 v1.5 signature with hashing.
1057 *
1058 * This is the signature scheme defined by RFC 8017
1059 * (PKCS#1: RSA Cryptography Specifications) under the name
1060 * RSASSA-PKCS1-v1_5.
1061 *
1062 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1063 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001064 * This includes #PSA_ALG_ANY_HASH
1065 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001066 *
1067 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001068 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001069 * hash algorithm.
1070 */
1071#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1072 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1073/** Raw PKCS#1 v1.5 signature.
1074 *
1075 * The input to this algorithm is the DigestInfo structure used by
1076 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1077 * steps 3&ndash;6.
1078 */
1079#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1080#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1081 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1082
1083#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
1084/** RSA PSS signature with hashing.
1085 *
1086 * This is the signature scheme defined by RFC 8017
1087 * (PKCS#1: RSA Cryptography Specifications) under the name
1088 * RSASSA-PSS, with the message generation function MGF1, and with
1089 * a salt length equal to the length of the hash. The specified
1090 * hash algorithm is used to hash the input message, to create the
1091 * salted hash, and for the mask generation.
1092 *
1093 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1094 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001095 * This includes #PSA_ALG_ANY_HASH
1096 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001097 *
1098 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001099 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001100 * hash algorithm.
1101 */
1102#define PSA_ALG_RSA_PSS(hash_alg) \
1103 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1104#define PSA_ALG_IS_RSA_PSS(alg) \
1105 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1106
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001107#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1108/** ECDSA signature with hashing.
1109 *
1110 * This is the ECDSA signature scheme defined by ANSI X9.62,
1111 * with a random per-message secret number (*k*).
1112 *
1113 * The representation of the signature as a byte string consists of
1114 * the concatentation of the signature values *r* and *s*. Each of
1115 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1116 * of the base point of the curve in octets. Each value is represented
1117 * in big-endian order (most significant octet first).
1118 *
1119 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1120 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001121 * This includes #PSA_ALG_ANY_HASH
1122 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001123 *
1124 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001125 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001126 * hash algorithm.
1127 */
1128#define PSA_ALG_ECDSA(hash_alg) \
1129 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1130/** ECDSA signature without hashing.
1131 *
1132 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1133 * without specifying a hash algorithm. This algorithm may only be
1134 * used to sign or verify a sequence of bytes that should be an
1135 * already-calculated hash. Note that the input is padded with
1136 * zeros on the left or truncated on the left as required to fit
1137 * the curve size.
1138 */
1139#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1140#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1141/** Deterministic ECDSA signature with hashing.
1142 *
1143 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1144 *
1145 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1146 *
1147 * Note that when this algorithm is used for verification, signatures
1148 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1149 * same private key are accepted. In other words,
1150 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1151 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1152 *
1153 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1154 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001155 * This includes #PSA_ALG_ANY_HASH
1156 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001157 *
1158 * \return The corresponding deterministic ECDSA signature
1159 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001160 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001161 * hash algorithm.
1162 */
1163#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1164 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1165#define PSA_ALG_IS_ECDSA(alg) \
1166 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
1167 PSA_ALG_ECDSA_BASE)
1168#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
1169 (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
1170#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1171 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1172#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1173 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1174
Gilles Peskined35b4892019-01-14 16:02:15 +01001175/** Whether the specified algorithm is a hash-and-sign algorithm.
1176 *
1177 * Hash-and-sign algorithms are public-key signature algorithms structured
1178 * in two parts: first the calculation of a hash in a way that does not
1179 * depend on the key, then the calculation of a signature from the
1180 * hash value and the key.
1181 *
1182 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1183 *
1184 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1185 * This macro may return either 0 or 1 if \p alg is not a supported
1186 * algorithm identifier.
1187 */
1188#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1189 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskinee38ab1a2019-05-16 13:51:50 +02001190 PSA_ALG_IS_ECDSA(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001191
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001192/** Get the hash used by a hash-and-sign signature algorithm.
1193 *
1194 * A hash-and-sign algorithm is a signature algorithm which is
1195 * composed of two phases: first a hashing phase which does not use
1196 * the key and produces a hash of the input message, then a signing
1197 * phase which only uses the hash and the key and not the message
1198 * itself.
1199 *
1200 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1201 * #PSA_ALG_IS_SIGN(\p alg) is true).
1202 *
1203 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1204 * algorithm.
1205 * \return 0 if \p alg is a signature algorithm that does not
1206 * follow the hash-and-sign structure.
1207 * \return Unspecified if \p alg is not a signature algorithm or
1208 * if it is not supported by the implementation.
1209 */
1210#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001211 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001212 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1213 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1214 0)
1215
1216/** RSA PKCS#1 v1.5 encryption.
1217 */
1218#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1219
1220#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1221/** RSA OAEP encryption.
1222 *
1223 * This is the encryption scheme defined by RFC 8017
1224 * (PKCS#1: RSA Cryptography Specifications) under the name
1225 * RSAES-OAEP, with the message generation function MGF1.
1226 *
1227 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1228 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1229 * for MGF1.
1230 *
1231 * \return The corresponding RSA OAEP signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001232 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001233 * hash algorithm.
1234 */
1235#define PSA_ALG_RSA_OAEP(hash_alg) \
1236 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1237#define PSA_ALG_IS_RSA_OAEP(alg) \
1238 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1239#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1240 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1241 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1242 0)
1243
Gilles Peskine6843c292019-01-18 16:44:49 +01001244#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001245/** Macro to build an HKDF algorithm.
1246 *
1247 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1248 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001249 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001250 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001251 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001252 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1253 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1254 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1255 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001256 * starting to generate output.
1257 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001258 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1259 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1260 *
1261 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001262 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001263 * hash algorithm.
1264 */
1265#define PSA_ALG_HKDF(hash_alg) \
1266 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1267/** Whether the specified algorithm is an HKDF algorithm.
1268 *
1269 * HKDF is a family of key derivation algorithms that are based on a hash
1270 * function and the HMAC construction.
1271 *
1272 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1273 *
1274 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1275 * This macro may return either 0 or 1 if \c alg is not a supported
1276 * key derivation algorithm identifier.
1277 */
1278#define PSA_ALG_IS_HKDF(alg) \
1279 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1280#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1281 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1282
Gilles Peskine6843c292019-01-18 16:44:49 +01001283#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001284/** Macro to build a TLS-1.2 PRF algorithm.
1285 *
1286 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1287 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1288 * used with either SHA-256 or SHA-384.
1289 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001290 * This key derivation algorithm uses the following inputs, which must be
1291 * passed in the order given here:
1292 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001293 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1294 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001295 *
1296 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001297 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001298 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001299 *
1300 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1301 * TLS 1.2 PRF using HMAC-SHA-256.
1302 *
1303 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1304 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1305 *
1306 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001307 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001308 * hash algorithm.
1309 */
1310#define PSA_ALG_TLS12_PRF(hash_alg) \
1311 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1312
1313/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1314 *
1315 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1316 *
1317 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1318 * This macro may return either 0 or 1 if \c alg is not a supported
1319 * key derivation algorithm identifier.
1320 */
1321#define PSA_ALG_IS_TLS12_PRF(alg) \
1322 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1323#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1324 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1325
Gilles Peskine6843c292019-01-18 16:44:49 +01001326#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001327/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1328 *
1329 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1330 * from the PreSharedKey (PSK) through the application of padding
1331 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1332 * The latter is based on HMAC and can be used with either SHA-256
1333 * or SHA-384.
1334 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001335 * This key derivation algorithm uses the following inputs, which must be
1336 * passed in the order given here:
1337 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001338 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1339 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001340 *
1341 * For the application to TLS-1.2, the seed (which is
1342 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1343 * ClientHello.Random + ServerHello.Random,
1344 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001345 *
1346 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1347 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1348 *
1349 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1350 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1351 *
1352 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001353 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001354 * hash algorithm.
1355 */
1356#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1357 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1358
1359/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1360 *
1361 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1362 *
1363 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1364 * This macro may return either 0 or 1 if \c alg is not a supported
1365 * key derivation algorithm identifier.
1366 */
1367#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1368 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1369#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1370 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1371
Gilles Peskinea52460c2019-04-12 00:11:21 +02001372#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff)
1373#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001374
Gilles Peskine6843c292019-01-18 16:44:49 +01001375/** Macro to build a combined algorithm that chains a key agreement with
1376 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001377 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001378 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1379 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1380 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1381 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001382 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001383 * \return The corresponding key agreement and derivation
1384 * algorithm.
1385 * \return Unspecified if \p ka_alg is not a supported
1386 * key agreement algorithm or \p kdf_alg is not a
1387 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001388 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001389#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1390 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001391
1392#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1393 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1394
Gilles Peskine6843c292019-01-18 16:44:49 +01001395#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1396 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001397
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001398/** Whether the specified algorithm is a raw key agreement algorithm.
1399 *
1400 * A raw key agreement algorithm is one that does not specify
1401 * a key derivation function.
1402 * Usually, raw key agreement algorithms are constructed directly with
1403 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
1404 * constructed with PSA_ALG_KEY_AGREEMENT().
1405 *
1406 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1407 *
1408 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1409 * This macro may return either 0 or 1 if \p alg is not a supported
1410 * algorithm identifier.
1411 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001412#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001413 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1414 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001415
1416#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1417 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1418
1419/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001420 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001421 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001422 * `g^{ab}` in big-endian format.
1423 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1424 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001425 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001426#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1427
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001428/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1429 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001430 * This includes the raw finite field Diffie-Hellman algorithm as well as
1431 * finite-field Diffie-Hellman followed by any supporter key derivation
1432 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001433 *
1434 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1435 *
1436 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1437 * This macro may return either 0 or 1 if \c alg is not a supported
1438 * key agreement algorithm identifier.
1439 */
1440#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001441 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001442
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001443/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1444 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001445 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001446 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1447 * `m` is the bit size associated with the curve, i.e. the bit size of the
1448 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1449 * the byte containing the most significant bit of the shared secret
1450 * is padded with zero bits. The byte order is either little-endian
1451 * or big-endian depending on the curve type.
1452 *
1453 * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`),
1454 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1455 * in little-endian byte order.
1456 * The bit size is 448 for Curve448 and 255 for Curve25519.
1457 * - For Weierstrass curves over prime fields (curve types
1458 * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`),
1459 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1460 * in big-endian byte order.
1461 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1462 * - For Weierstrass curves over binary fields (curve types
1463 * `PSA_ECC_CURVE_SECTXXX`),
1464 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1465 * in big-endian byte order.
1466 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001467 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001468#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1469
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001470/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1471 * algorithm.
1472 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001473 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1474 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1475 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001476 *
1477 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1478 *
1479 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1480 * 0 otherwise.
1481 * This macro may return either 0 or 1 if \c alg is not a supported
1482 * key agreement algorithm identifier.
1483 */
1484#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001485 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001486
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001487/** Whether the specified algorithm encoding is a wildcard.
1488 *
1489 * Wildcard values may only be used to set the usage algorithm field in
1490 * a policy, not to perform an operation.
1491 *
1492 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1493 *
1494 * \return 1 if \c alg is a wildcard algorithm encoding.
1495 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1496 * an operation).
1497 * \return This macro may return either 0 or 1 if \c alg is not a supported
1498 * algorithm identifier.
1499 */
1500#define PSA_ALG_IS_WILDCARD(alg) \
1501 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1502 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1503 (alg) == PSA_ALG_ANY_HASH)
1504
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001505/**@}*/
1506
1507/** \defgroup key_lifetimes Key lifetimes
1508 * @{
1509 */
1510
1511/** A volatile key only exists as long as the handle to it is not closed.
1512 * The key material is guaranteed to be erased on a power reset.
1513 */
1514#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1515
1516/** The default storage area for persistent keys.
1517 *
1518 * A persistent key remains in storage until it is explicitly destroyed or
1519 * until the corresponding storage area is wiped. This specification does
1520 * not define any mechanism to wipe a storage area, but implementations may
1521 * provide their own mechanism (for example to perform a factory reset,
1522 * to prepare for device refurbishment, or to uninstall an application).
1523 *
1524 * This lifetime value is the default storage area for the calling
1525 * application. Implementations may offer other storage areas designated
1526 * by other lifetime values as implementation-specific extensions.
1527 */
1528#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1529
Gilles Peskine4a231b82019-05-06 18:56:14 +02001530/** The minimum value for a key identifier chosen by the application.
1531 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001532#define PSA_KEY_ID_USER_MIN ((psa_app_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001533/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001534 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001535#define PSA_KEY_ID_USER_MAX ((psa_app_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001536/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001537 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001538#define PSA_KEY_ID_VENDOR_MIN ((psa_app_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001539/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001540 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001541#define PSA_KEY_ID_VENDOR_MAX ((psa_app_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02001542
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001543/**@}*/
1544
1545/** \defgroup policy Key policies
1546 * @{
1547 */
1548
1549/** Whether the key may be exported.
1550 *
1551 * A public key or the public part of a key pair may always be exported
1552 * regardless of the value of this permission flag.
1553 *
1554 * If a key does not have export permission, implementations shall not
1555 * allow the key to be exported in plain form from the cryptoprocessor,
1556 * whether through psa_export_key() or through a proprietary interface.
1557 * The key may however be exportable in a wrapped form, i.e. in a form
1558 * where it is encrypted by another key.
1559 */
1560#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1561
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001562/** Whether the key may be copied.
1563 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001564 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001565 * with the same policy or a more restrictive policy.
1566 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001567 * For lifetimes for which the key is located in a secure element which
1568 * enforce the non-exportability of keys, copying a key outside the secure
1569 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1570 * Copying the key inside the secure element is permitted with just
1571 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1572 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001573 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1574 * is sufficient to permit the copy.
1575 */
1576#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1577
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001578/** Whether the key may be used to encrypt a message.
1579 *
1580 * This flag allows the key to be used for a symmetric encryption operation,
1581 * for an AEAD encryption-and-authentication operation,
1582 * or for an asymmetric encryption operation,
1583 * if otherwise permitted by the key's type and policy.
1584 *
1585 * For a key pair, this concerns the public key.
1586 */
1587#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1588
1589/** Whether the key may be used to decrypt a message.
1590 *
1591 * This flag allows the key to be used for a symmetric decryption operation,
1592 * for an AEAD decryption-and-verification operation,
1593 * or for an asymmetric decryption operation,
1594 * if otherwise permitted by the key's type and policy.
1595 *
1596 * For a key pair, this concerns the private key.
1597 */
1598#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1599
1600/** Whether the key may be used to sign a message.
1601 *
1602 * This flag allows the key to be used for a MAC calculation operation
1603 * or for an asymmetric signature operation,
1604 * if otherwise permitted by the key's type and policy.
1605 *
1606 * For a key pair, this concerns the private key.
1607 */
1608#define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400)
1609
1610/** Whether the key may be used to verify a message signature.
1611 *
1612 * This flag allows the key to be used for a MAC verification operation
1613 * or for an asymmetric signature verification operation,
1614 * if otherwise permitted by by the key's type and policy.
1615 *
1616 * For a key pair, this concerns the public key.
1617 */
1618#define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800)
1619
1620/** Whether the key may be used to derive other keys.
1621 */
1622#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1623
1624/**@}*/
1625
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001626/** \defgroup derivation Key derivation
1627 * @{
1628 */
1629
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001630/** A secret input for key derivation.
1631 *
1632 * This must be a key of type #PSA_KEY_TYPE_DERIVE.
1633 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001634#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001635
1636/** A label for key derivation.
1637 *
1638 * This must be a direct input.
1639 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001640#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001641
1642/** A salt for key derivation.
1643 *
1644 * This must be a direct input.
1645 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001646#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001647
1648/** An information string for key derivation.
1649 *
1650 * This must be a direct input.
1651 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001652#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001653
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001654/** A seed for key derivation.
1655 *
1656 * This must be a direct input.
1657 */
1658#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
1659
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001660/**@}*/
1661
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001662#endif /* PSA_CRYPTO_VALUES_H */