blob: d53a484cba6ff3f98d8b25c75f003d2fb2e112be [file] [log] [blame]
Paul Bakker5121ce52009-01-03 21:22:43 +00001/*
2 * Multi-precision integer library
3 *
Bence Szépkúti1e148272020-08-07 13:07:28 +02004 * Copyright The Mbed TLS Contributors
Manuel Pégourié-Gonnard37ff1402015-09-04 14:21:07 +02005 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
Paul Bakker5121ce52009-01-03 21:22:43 +000018 */
Simon Butcher15b15d12015-11-26 19:35:03 +000019
Paul Bakker5121ce52009-01-03 21:22:43 +000020/*
Simon Butcher15b15d12015-11-26 19:35:03 +000021 * The following sources were referenced in the design of this Multi-precision
22 * Integer library:
Paul Bakker5121ce52009-01-03 21:22:43 +000023 *
Simon Butcher15b15d12015-11-26 19:35:03 +000024 * [1] Handbook of Applied Cryptography - 1997
25 * Menezes, van Oorschot and Vanstone
26 *
27 * [2] Multi-Precision Math
28 * Tom St Denis
29 * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
30 *
31 * [3] GNU Multi-Precision Arithmetic Library
32 * https://gmplib.org/manual/index.html
33 *
Simon Butcherf5ba0452015-12-27 23:01:55 +000034 */
Paul Bakker5121ce52009-01-03 21:22:43 +000035
Gilles Peskinedb09ef62020-06-03 01:43:33 +020036#include "common.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000037
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020038#if defined(MBEDTLS_BIGNUM_C)
Paul Bakker5121ce52009-01-03 21:22:43 +000039
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000040#include "mbedtls/bignum.h"
Janos Follath4614b9a2022-07-21 15:34:47 +010041#include "bignum_core.h"
Chris Jones4c5819c2021-03-03 17:45:34 +000042#include "bn_mul.h"
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050043#include "mbedtls/platform_util.h"
Janos Follath24eed8d2019-11-22 13:21:35 +000044#include "mbedtls/error.h"
Gabor Mezei22c9a6f2021-10-20 12:09:35 +020045#include "constant_time_internal.h"
Paul Bakker5121ce52009-01-03 21:22:43 +000046
Dave Rodgman351c71b2021-12-06 17:50:53 +000047#include <limits.h>
Rich Evans00ab4702015-02-06 13:43:58 +000048#include <string.h>
49
Manuel Pégourié-Gonnard7f809972015-03-09 17:05:11 +000050#include "mbedtls/platform.h"
Paul Bakker6e339b52013-07-03 13:37:05 +020051
Gilles Peskine449bd832023-01-11 14:50:10 +010052#define MPI_VALIDATE_RET(cond) \
53 MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
54#define MPI_VALIDATE(cond) \
55 MBEDTLS_INTERNAL_VALIDATE(cond)
Gabor Mezei66669142022-08-03 12:52:26 +020056
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050057/* Implementation that should never be optimized out by the compiler */
Tom Cosgrovebc345e82023-07-25 15:17:39 +010058#define mbedtls_mpi_zeroize_and_free(v, n) mbedtls_zeroize_and_free(v, ciL * (n))
Andres Amaya Garcia1f6301b2018-04-17 09:51:09 -050059
Paul Bakker5121ce52009-01-03 21:22:43 +000060/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000061 * Initialize one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000062 */
Gilles Peskine449bd832023-01-11 14:50:10 +010063void mbedtls_mpi_init(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000064{
Gilles Peskine449bd832023-01-11 14:50:10 +010065 MPI_VALIDATE(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +000066
Paul Bakker6c591fa2011-05-05 11:49:20 +000067 X->s = 1;
68 X->n = 0;
69 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000070}
71
72/*
Paul Bakker6c591fa2011-05-05 11:49:20 +000073 * Unallocate one MPI
Paul Bakker5121ce52009-01-03 21:22:43 +000074 */
Gilles Peskine449bd832023-01-11 14:50:10 +010075void mbedtls_mpi_free(mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +000076{
Gilles Peskine449bd832023-01-11 14:50:10 +010077 if (X == NULL) {
Paul Bakker6c591fa2011-05-05 11:49:20 +000078 return;
Gilles Peskine449bd832023-01-11 14:50:10 +010079 }
Paul Bakker5121ce52009-01-03 21:22:43 +000080
Gilles Peskine449bd832023-01-11 14:50:10 +010081 if (X->p != NULL) {
Tom Cosgrove46259f62023-07-18 16:44:14 +010082 mbedtls_mpi_zeroize_and_free(X->p, X->n);
Paul Bakker5121ce52009-01-03 21:22:43 +000083 }
84
Paul Bakker6c591fa2011-05-05 11:49:20 +000085 X->s = 1;
86 X->n = 0;
87 X->p = NULL;
Paul Bakker5121ce52009-01-03 21:22:43 +000088}
89
90/*
91 * Enlarge to the specified number of limbs
92 */
Gilles Peskine449bd832023-01-11 14:50:10 +010093int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
Paul Bakker5121ce52009-01-03 21:22:43 +000094{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +020095 mbedtls_mpi_uint *p;
Gilles Peskine449bd832023-01-11 14:50:10 +010096 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +000097
Gilles Peskine449bd832023-01-11 14:50:10 +010098 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
99 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
100 }
Paul Bakkerf9688572011-05-05 10:00:45 +0000101
Gilles Peskine449bd832023-01-11 14:50:10 +0100102 if (X->n < nblimbs) {
103 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
104 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
105 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000106
Gilles Peskine449bd832023-01-11 14:50:10 +0100107 if (X->p != NULL) {
108 memcpy(p, X->p, X->n * ciL);
Tom Cosgrove46259f62023-07-18 16:44:14 +0100109 mbedtls_mpi_zeroize_and_free(X->p, X->n);
Paul Bakker5121ce52009-01-03 21:22:43 +0000110 }
111
Gilles Peskine053022f2023-06-29 19:26:48 +0200112 /* nblimbs fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
113 * fits, and we've checked that nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
114 X->n = (unsigned short) nblimbs;
Paul Bakker5121ce52009-01-03 21:22:43 +0000115 X->p = p;
116 }
117
Gilles Peskine449bd832023-01-11 14:50:10 +0100118 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000119}
120
121/*
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100122 * Resize down as much as possible,
123 * while keeping at least the specified number of limbs
124 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100125int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100126{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200127 mbedtls_mpi_uint *p;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100128 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100129 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000130
Gilles Peskine449bd832023-01-11 14:50:10 +0100131 if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
132 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
133 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100134
Gilles Peskinee2f563e2020-01-20 21:17:43 +0100135 /* Actually resize up if there are currently fewer than nblimbs limbs. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100136 if (X->n <= nblimbs) {
137 return mbedtls_mpi_grow(X, nblimbs);
138 }
Gilles Peskine322752b2020-01-21 13:59:51 +0100139 /* After this point, then X->n > nblimbs and in particular X->n > 0. */
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100140
Gilles Peskine449bd832023-01-11 14:50:10 +0100141 for (i = X->n - 1; i > 0; i--) {
142 if (X->p[i] != 0) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100143 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100144 }
145 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100146 i++;
147
Gilles Peskine449bd832023-01-11 14:50:10 +0100148 if (i < nblimbs) {
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100149 i = nblimbs;
Gilles Peskine449bd832023-01-11 14:50:10 +0100150 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100151
Gilles Peskine449bd832023-01-11 14:50:10 +0100152 if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
153 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
154 }
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100155
Gilles Peskine449bd832023-01-11 14:50:10 +0100156 if (X->p != NULL) {
157 memcpy(p, X->p, i * ciL);
Tom Cosgrove46259f62023-07-18 16:44:14 +0100158 mbedtls_mpi_zeroize_and_free(X->p, X->n);
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100159 }
160
Gilles Peskine053022f2023-06-29 19:26:48 +0200161 /* i fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
162 * fits, and we've checked that i <= nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
163 X->n = (unsigned short) i;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100164 X->p = p;
165
Gilles Peskine449bd832023-01-11 14:50:10 +0100166 return 0;
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100167}
168
Gilles Peskineed32b572021-06-02 22:17:52 +0200169/* Resize X to have exactly n limbs and set it to 0. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100170static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
Gilles Peskineed32b572021-06-02 22:17:52 +0200171{
Gilles Peskine449bd832023-01-11 14:50:10 +0100172 if (limbs == 0) {
173 mbedtls_mpi_free(X);
174 return 0;
175 } else if (X->n == limbs) {
176 memset(X->p, 0, limbs * ciL);
Gilles Peskineed32b572021-06-02 22:17:52 +0200177 X->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100178 return 0;
179 } else {
180 mbedtls_mpi_free(X);
181 return mbedtls_mpi_grow(X, limbs);
Gilles Peskineed32b572021-06-02 22:17:52 +0200182 }
183}
184
Manuel Pégourié-Gonnard58681632013-11-21 10:39:37 +0100185/*
Gilles Peskine3da1a8f2021-06-08 23:17:42 +0200186 * Copy the contents of Y into X.
187 *
188 * This function is not constant-time. Leading zeros in Y may be removed.
189 *
190 * Ensure that X does not shrink. This is not guaranteed by the public API,
191 * but some code in the bignum module relies on this property, for example
192 * in mbedtls_mpi_exp_mod().
Paul Bakker5121ce52009-01-03 21:22:43 +0000193 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100194int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000195{
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100196 int ret = 0;
Paul Bakker23986e52011-04-24 08:57:21 +0000197 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100198 MPI_VALIDATE_RET(X != NULL);
199 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000200
Gilles Peskine449bd832023-01-11 14:50:10 +0100201 if (X == Y) {
202 return 0;
Manuel Pégourié-Gonnardf4999932013-08-12 17:02:59 +0200203 }
204
Gilles Peskine449bd832023-01-11 14:50:10 +0100205 if (Y->n == 0) {
206 if (X->n != 0) {
207 X->s = 1;
208 memset(X->p, 0, X->n * ciL);
209 }
210 return 0;
211 }
212
213 for (i = Y->n - 1; i > 0; i--) {
214 if (Y->p[i] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000215 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100216 }
217 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000218 i++;
219
220 X->s = Y->s;
221
Gilles Peskine449bd832023-01-11 14:50:10 +0100222 if (X->n < i) {
223 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
224 } else {
225 memset(X->p + i, 0, (X->n - i) * ciL);
Gilles Peskine4e4be7c2018-03-21 16:29:03 +0100226 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000227
Gilles Peskine449bd832023-01-11 14:50:10 +0100228 memcpy(X->p, Y->p, i * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000229
230cleanup:
231
Gilles Peskine449bd832023-01-11 14:50:10 +0100232 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000233}
234
235/*
236 * Swap the contents of X and Y
237 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100238void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000239{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200240 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100241 MPI_VALIDATE(X != NULL);
242 MPI_VALIDATE(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000243
Gilles Peskine449bd832023-01-11 14:50:10 +0100244 memcpy(&T, X, sizeof(mbedtls_mpi));
245 memcpy(X, Y, sizeof(mbedtls_mpi));
246 memcpy(Y, &T, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +0000247}
248
Gilles Peskine449bd832023-01-11 14:50:10 +0100249static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100250{
Gilles Peskine449bd832023-01-11 14:50:10 +0100251 if (z >= 0) {
252 return z;
253 }
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100254 /* Take care to handle the most negative value (-2^(biL-1)) correctly.
255 * A naive -z would have undefined behavior.
256 * Write this in a way that makes popular compilers happy (GCC, Clang,
257 * MSVC). */
Gilles Peskine449bd832023-01-11 14:50:10 +0100258 return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
Gilles Peskineef7f4e42022-11-15 23:25:27 +0100259}
260
Dave Rodgmanf3df1052023-08-09 18:55:41 +0100261/* Convert x to a sign, i.e. to 1, if x is positive, or -1, if x is negative.
262 * This looks awkward but generates smaller code than (x < 0 ? -1 : 1) */
263#define TO_SIGN(x) ((((mbedtls_mpi_uint)x) >> (biL - 1)) * -2 + 1)
264
Paul Bakker5121ce52009-01-03 21:22:43 +0000265/*
266 * Set value from integer
267 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100268int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +0000269{
Janos Follath24eed8d2019-11-22 13:21:35 +0000270 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100271 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000272
Gilles Peskine449bd832023-01-11 14:50:10 +0100273 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
274 memset(X->p, 0, X->n * ciL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000275
Gilles Peskine449bd832023-01-11 14:50:10 +0100276 X->p[0] = mpi_sint_abs(z);
Dave Rodgmanf3df1052023-08-09 18:55:41 +0100277 X->s = TO_SIGN(z);
Paul Bakker5121ce52009-01-03 21:22:43 +0000278
279cleanup:
280
Gilles Peskine449bd832023-01-11 14:50:10 +0100281 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000282}
283
284/*
Paul Bakker2f5947e2011-05-18 15:47:11 +0000285 * Get a specific bit
286 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100287int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000288{
Gilles Peskine449bd832023-01-11 14:50:10 +0100289 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000290
Gilles Peskine449bd832023-01-11 14:50:10 +0100291 if (X->n * biL <= pos) {
292 return 0;
293 }
Paul Bakker2f5947e2011-05-18 15:47:11 +0000294
Gilles Peskine449bd832023-01-11 14:50:10 +0100295 return (X->p[pos / biL] >> (pos % biL)) & 0x01;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000296}
297
298/*
299 * Set a bit to a specific value of 0 or 1
300 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100301int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
Paul Bakker2f5947e2011-05-18 15:47:11 +0000302{
303 int ret = 0;
304 size_t off = pos / biL;
305 size_t idx = pos % biL;
Gilles Peskine449bd832023-01-11 14:50:10 +0100306 MPI_VALIDATE_RET(X != NULL);
Paul Bakker2f5947e2011-05-18 15:47:11 +0000307
Gilles Peskine449bd832023-01-11 14:50:10 +0100308 if (val != 0 && val != 1) {
309 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000310 }
311
Gilles Peskine449bd832023-01-11 14:50:10 +0100312 if (X->n * biL <= pos) {
313 if (val == 0) {
314 return 0;
315 }
316
317 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
318 }
319
320 X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200321 X->p[off] |= (mbedtls_mpi_uint) val << idx;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000322
323cleanup:
Paul Bakker9af723c2014-05-01 13:03:14 +0200324
Gilles Peskine449bd832023-01-11 14:50:10 +0100325 return ret;
Paul Bakker2f5947e2011-05-18 15:47:11 +0000326}
327
328/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200329 * Return the number of less significant zero-bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000330 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100331size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000332{
Dave Rodgmanfa703e32023-08-09 18:56:07 +0100333 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100334 MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000335
Dave Rodgmanfa703e32023-08-09 18:56:07 +0100336#if defined(__has_builtin)
337#if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_ctz)
338 #define mbedtls_mpi_uint_ctz __builtin_ctz
339#elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_ctzl)
340 #define mbedtls_mpi_uint_ctz __builtin_ctzl
341#elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_ctzll)
342 #define mbedtls_mpi_uint_ctz __builtin_ctzll
343#endif
344#endif
345
346#if defined(mbedtls_mpi_uint_ctz)
Gilles Peskine449bd832023-01-11 14:50:10 +0100347 for (i = 0; i < X->n; i++) {
Dave Rodgmanfa703e32023-08-09 18:56:07 +0100348 if (X->p[i] != 0) return i * biL + mbedtls_mpi_uint_ctz(X->p[i]);
349 }
350#else
351 size_t count = 0;
352 for (i = 0; i < X->n; i++) {
353 for (size_t j = 0; j < biL; j++, count++) {
Gilles Peskine449bd832023-01-11 14:50:10 +0100354 if (((X->p[i] >> j) & 1) != 0) {
355 return count;
356 }
357 }
358 }
Dave Rodgmanfa703e32023-08-09 18:56:07 +0100359#endif
Paul Bakker5121ce52009-01-03 21:22:43 +0000360
Gilles Peskine449bd832023-01-11 14:50:10 +0100361 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000362}
363
364/*
Manuel Pégourié-Gonnardc0696c22015-06-18 16:47:17 +0200365 * Return the number of bits
Paul Bakker5121ce52009-01-03 21:22:43 +0000366 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100367size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000368{
Gilles Peskine449bd832023-01-11 14:50:10 +0100369 return mbedtls_mpi_core_bitlen(X->p, X->n);
Paul Bakker5121ce52009-01-03 21:22:43 +0000370}
371
372/*
373 * Return the total size in bytes
374 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100375size_t mbedtls_mpi_size(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +0000376{
Gilles Peskine449bd832023-01-11 14:50:10 +0100377 return (mbedtls_mpi_bitlen(X) + 7) >> 3;
Paul Bakker5121ce52009-01-03 21:22:43 +0000378}
379
380/*
381 * Convert an ASCII character to digit value
382 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100383static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
Paul Bakker5121ce52009-01-03 21:22:43 +0000384{
385 *d = 255;
386
Gilles Peskine449bd832023-01-11 14:50:10 +0100387 if (c >= 0x30 && c <= 0x39) {
388 *d = c - 0x30;
389 }
390 if (c >= 0x41 && c <= 0x46) {
391 *d = c - 0x37;
392 }
393 if (c >= 0x61 && c <= 0x66) {
394 *d = c - 0x57;
395 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000396
Gilles Peskine449bd832023-01-11 14:50:10 +0100397 if (*d >= (mbedtls_mpi_uint) radix) {
398 return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
399 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000400
Gilles Peskine449bd832023-01-11 14:50:10 +0100401 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000402}
403
404/*
405 * Import from an ASCII string
406 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100407int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
Paul Bakker5121ce52009-01-03 21:22:43 +0000408{
Janos Follath24eed8d2019-11-22 13:21:35 +0000409 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000410 size_t i, j, slen, n;
Gilles Peskine80f56732021-04-03 18:26:13 +0200411 int sign = 1;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200412 mbedtls_mpi_uint d;
413 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100414 MPI_VALIDATE_RET(X != NULL);
415 MPI_VALIDATE_RET(s != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000416
Gilles Peskine449bd832023-01-11 14:50:10 +0100417 if (radix < 2 || radix > 16) {
418 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Gilles Peskine7cba8592021-06-08 18:32:34 +0200419 }
420
Gilles Peskine449bd832023-01-11 14:50:10 +0100421 mbedtls_mpi_init(&T);
422
423 if (s[0] == 0) {
424 mbedtls_mpi_free(X);
425 return 0;
426 }
427
428 if (s[0] == '-') {
Gilles Peskine80f56732021-04-03 18:26:13 +0200429 ++s;
430 sign = -1;
431 }
432
Gilles Peskine449bd832023-01-11 14:50:10 +0100433 slen = strlen(s);
Paul Bakkerff60ee62010-03-16 21:09:09 +0000434
Gilles Peskine449bd832023-01-11 14:50:10 +0100435 if (radix == 16) {
Dave Rodgman68ef1d62023-05-18 20:49:03 +0100436 if (slen > SIZE_MAX >> 2) {
Gilles Peskine449bd832023-01-11 14:50:10 +0100437 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
Paul Bakker5121ce52009-01-03 21:22:43 +0000438 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000439
Gilles Peskine449bd832023-01-11 14:50:10 +0100440 n = BITS_TO_LIMBS(slen << 2);
441
442 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
443 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
444
445 for (i = slen, j = 0; i > 0; i--, j++) {
446 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
447 X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
448 }
449 } else {
450 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
451
452 for (i = 0; i < slen; i++) {
453 MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
454 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
455 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
Paul Bakker5121ce52009-01-03 21:22:43 +0000456 }
457 }
458
Gilles Peskine449bd832023-01-11 14:50:10 +0100459 if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
Gilles Peskine80f56732021-04-03 18:26:13 +0200460 X->s = -1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100461 }
Gilles Peskine80f56732021-04-03 18:26:13 +0200462
Paul Bakker5121ce52009-01-03 21:22:43 +0000463cleanup:
464
Gilles Peskine449bd832023-01-11 14:50:10 +0100465 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000466
Gilles Peskine449bd832023-01-11 14:50:10 +0100467 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000468}
469
470/*
Ron Eldora16fa292018-11-20 14:07:01 +0200471 * Helper to write the digits high-order first.
Paul Bakker5121ce52009-01-03 21:22:43 +0000472 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100473static int mpi_write_hlp(mbedtls_mpi *X, int radix,
474 char **p, const size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000475{
Janos Follath24eed8d2019-11-22 13:21:35 +0000476 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200477 mbedtls_mpi_uint r;
Ron Eldora16fa292018-11-20 14:07:01 +0200478 size_t length = 0;
479 char *p_end = *p + buflen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000480
Gilles Peskine449bd832023-01-11 14:50:10 +0100481 do {
482 if (length >= buflen) {
483 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Ron Eldora16fa292018-11-20 14:07:01 +0200484 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000485
Gilles Peskine449bd832023-01-11 14:50:10 +0100486 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
487 MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
Ron Eldora16fa292018-11-20 14:07:01 +0200488 /*
489 * Write the residue in the current position, as an ASCII character.
490 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100491 if (r < 0xA) {
492 *(--p_end) = (char) ('0' + r);
493 } else {
494 *(--p_end) = (char) ('A' + (r - 0xA));
495 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000496
Ron Eldora16fa292018-11-20 14:07:01 +0200497 length++;
Gilles Peskine449bd832023-01-11 14:50:10 +0100498 } while (mbedtls_mpi_cmp_int(X, 0) != 0);
Paul Bakker5121ce52009-01-03 21:22:43 +0000499
Gilles Peskine449bd832023-01-11 14:50:10 +0100500 memmove(*p, p_end, length);
Ron Eldora16fa292018-11-20 14:07:01 +0200501 *p += length;
Paul Bakker5121ce52009-01-03 21:22:43 +0000502
503cleanup:
504
Gilles Peskine449bd832023-01-11 14:50:10 +0100505 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000506}
507
508/*
509 * Export into an ASCII string
510 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100511int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
512 char *buf, size_t buflen, size_t *olen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000513{
Paul Bakker23986e52011-04-24 08:57:21 +0000514 int ret = 0;
515 size_t n;
Paul Bakker5121ce52009-01-03 21:22:43 +0000516 char *p;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200517 mbedtls_mpi T;
Gilles Peskine449bd832023-01-11 14:50:10 +0100518 MPI_VALIDATE_RET(X != NULL);
519 MPI_VALIDATE_RET(olen != NULL);
520 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000521
Gilles Peskine449bd832023-01-11 14:50:10 +0100522 if (radix < 2 || radix > 16) {
523 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
524 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000525
Gilles Peskine449bd832023-01-11 14:50:10 +0100526 n = mbedtls_mpi_bitlen(X); /* Number of bits necessary to present `n`. */
527 if (radix >= 4) {
528 n >>= 1; /* Number of 4-adic digits necessary to present
Hanno Becker23cfea02019-02-04 09:45:07 +0000529 * `n`. If radix > 4, this might be a strict
530 * overapproximation of the number of
531 * radix-adic digits needed to present `n`. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100532 }
533 if (radix >= 16) {
534 n >>= 1; /* Number of hexadecimal digits necessary to
Hanno Becker23cfea02019-02-04 09:45:07 +0000535 * present `n`. */
536
Gilles Peskine449bd832023-01-11 14:50:10 +0100537 }
Janos Follath80470622019-03-06 13:43:02 +0000538 n += 1; /* Terminating null byte */
Hanno Becker23cfea02019-02-04 09:45:07 +0000539 n += 1; /* Compensate for the divisions above, which round down `n`
540 * in case it's not even. */
541 n += 1; /* Potential '-'-sign. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100542 n += (n & 1); /* Make n even to have enough space for hexadecimal writing,
Hanno Becker23cfea02019-02-04 09:45:07 +0000543 * which always uses an even number of hex-digits. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000544
Gilles Peskine449bd832023-01-11 14:50:10 +0100545 if (buflen < n) {
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100546 *olen = n;
Gilles Peskine449bd832023-01-11 14:50:10 +0100547 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
Paul Bakker5121ce52009-01-03 21:22:43 +0000548 }
549
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100550 p = buf;
Gilles Peskine449bd832023-01-11 14:50:10 +0100551 mbedtls_mpi_init(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000552
Gilles Peskine449bd832023-01-11 14:50:10 +0100553 if (X->s == -1) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000554 *p++ = '-';
Hanno Beckerc983c812019-02-01 16:41:30 +0000555 buflen--;
556 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000557
Gilles Peskine449bd832023-01-11 14:50:10 +0100558 if (radix == 16) {
Paul Bakker23986e52011-04-24 08:57:21 +0000559 int c;
560 size_t i, j, k;
Paul Bakker5121ce52009-01-03 21:22:43 +0000561
Gilles Peskine449bd832023-01-11 14:50:10 +0100562 for (i = X->n, k = 0; i > 0; i--) {
563 for (j = ciL; j > 0; j--) {
564 c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
Paul Bakker5121ce52009-01-03 21:22:43 +0000565
Gilles Peskine449bd832023-01-11 14:50:10 +0100566 if (c == 0 && k == 0 && (i + j) != 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000567 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +0100568 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000569
Paul Bakker98fe5ea2012-10-24 11:17:48 +0000570 *(p++) = "0123456789ABCDEF" [c / 16];
Paul Bakkerd2c167e2012-10-30 07:49:19 +0000571 *(p++) = "0123456789ABCDEF" [c % 16];
Paul Bakker5121ce52009-01-03 21:22:43 +0000572 k = 1;
573 }
574 }
Gilles Peskine449bd832023-01-11 14:50:10 +0100575 } else {
576 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000577
Gilles Peskine449bd832023-01-11 14:50:10 +0100578 if (T.s == -1) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000579 T.s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +0100580 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +0000581
Gilles Peskine449bd832023-01-11 14:50:10 +0100582 MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
Paul Bakker5121ce52009-01-03 21:22:43 +0000583 }
584
585 *p++ = '\0';
Manuel Pégourié-Gonnardf79b4252015-06-02 15:41:48 +0100586 *olen = p - buf;
Paul Bakker5121ce52009-01-03 21:22:43 +0000587
588cleanup:
589
Gilles Peskine449bd832023-01-11 14:50:10 +0100590 mbedtls_mpi_free(&T);
Paul Bakker5121ce52009-01-03 21:22:43 +0000591
Gilles Peskine449bd832023-01-11 14:50:10 +0100592 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000593}
594
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200595#if defined(MBEDTLS_FS_IO)
Paul Bakker5121ce52009-01-03 21:22:43 +0000596/*
597 * Read X from an opened file
598 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100599int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
Paul Bakker5121ce52009-01-03 21:22:43 +0000600{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200601 mbedtls_mpi_uint d;
Paul Bakker23986e52011-04-24 08:57:21 +0000602 size_t slen;
Paul Bakker5121ce52009-01-03 21:22:43 +0000603 char *p;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000604 /*
Paul Bakkercb37aa52011-11-30 16:00:20 +0000605 * Buffer should have space for (short) label and decimal formatted MPI,
606 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000607 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100608 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
Paul Bakker5121ce52009-01-03 21:22:43 +0000609
Gilles Peskine449bd832023-01-11 14:50:10 +0100610 MPI_VALIDATE_RET(X != NULL);
611 MPI_VALIDATE_RET(fin != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000612
Gilles Peskine449bd832023-01-11 14:50:10 +0100613 if (radix < 2 || radix > 16) {
614 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
615 }
Hanno Becker73d7d792018-12-11 10:35:51 +0000616
Gilles Peskine449bd832023-01-11 14:50:10 +0100617 memset(s, 0, sizeof(s));
618 if (fgets(s, sizeof(s) - 1, fin) == NULL) {
619 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
620 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000621
Gilles Peskine449bd832023-01-11 14:50:10 +0100622 slen = strlen(s);
623 if (slen == sizeof(s) - 2) {
624 return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
625 }
Paul Bakkercb37aa52011-11-30 16:00:20 +0000626
Gilles Peskine449bd832023-01-11 14:50:10 +0100627 if (slen > 0 && s[slen - 1] == '\n') {
628 slen--; s[slen] = '\0';
629 }
630 if (slen > 0 && s[slen - 1] == '\r') {
631 slen--; s[slen] = '\0';
632 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000633
634 p = s + slen;
Gilles Peskine449bd832023-01-11 14:50:10 +0100635 while (p-- > s) {
636 if (mpi_get_digit(&d, radix, *p) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000637 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100638 }
639 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000640
Gilles Peskine449bd832023-01-11 14:50:10 +0100641 return mbedtls_mpi_read_string(X, radix, p + 1);
Paul Bakker5121ce52009-01-03 21:22:43 +0000642}
643
644/*
645 * Write X into an opened file (or stdout if fout == NULL)
646 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100647int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
Paul Bakker5121ce52009-01-03 21:22:43 +0000648{
Janos Follath24eed8d2019-11-22 13:21:35 +0000649 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000650 size_t n, slen, plen;
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000651 /*
Paul Bakker5531c6d2012-09-26 19:20:46 +0000652 * Buffer should have space for (short) label and decimal formatted MPI,
653 * newline characters and '\0'
Paul Bakkerfe3256e2011-11-25 12:11:43 +0000654 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100655 char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
656 MPI_VALIDATE_RET(X != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000657
Gilles Peskine449bd832023-01-11 14:50:10 +0100658 if (radix < 2 || radix > 16) {
659 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
660 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000661
Gilles Peskine449bd832023-01-11 14:50:10 +0100662 memset(s, 0, sizeof(s));
Paul Bakker5121ce52009-01-03 21:22:43 +0000663
Gilles Peskine449bd832023-01-11 14:50:10 +0100664 MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
Paul Bakker5121ce52009-01-03 21:22:43 +0000665
Gilles Peskine449bd832023-01-11 14:50:10 +0100666 if (p == NULL) {
667 p = "";
668 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000669
Gilles Peskine449bd832023-01-11 14:50:10 +0100670 plen = strlen(p);
671 slen = strlen(s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000672 s[slen++] = '\r';
673 s[slen++] = '\n';
674
Gilles Peskine449bd832023-01-11 14:50:10 +0100675 if (fout != NULL) {
676 if (fwrite(p, 1, plen, fout) != plen ||
677 fwrite(s, 1, slen, fout) != slen) {
678 return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
679 }
680 } else {
681 mbedtls_printf("%s%s", p, s);
Paul Bakker5121ce52009-01-03 21:22:43 +0000682 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000683
684cleanup:
685
Gilles Peskine449bd832023-01-11 14:50:10 +0100686 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000687}
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200688#endif /* MBEDTLS_FS_IO */
Paul Bakker5121ce52009-01-03 21:22:43 +0000689
690/*
Janos Follatha778a942019-02-13 10:28:28 +0000691 * Import X from unsigned binary data, little endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100692 *
693 * This function is guaranteed to return an MPI with exactly the necessary
694 * number of limbs (in particular, it does not skip 0s in the input).
Janos Follatha778a942019-02-13 10:28:28 +0000695 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100696int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
697 const unsigned char *buf, size_t buflen)
Janos Follatha778a942019-02-13 10:28:28 +0000698{
Janos Follath24eed8d2019-11-22 13:21:35 +0000699 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100700 const size_t limbs = CHARS_TO_LIMBS(buflen);
Janos Follatha778a942019-02-13 10:28:28 +0000701
702 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +0100703 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Janos Follatha778a942019-02-13 10:28:28 +0000704
Gilles Peskine449bd832023-01-11 14:50:10 +0100705 MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
Janos Follatha778a942019-02-13 10:28:28 +0000706
707cleanup:
708
Janos Follath171a7ef2019-02-15 16:17:45 +0000709 /*
710 * This function is also used to import keys. However, wiping the buffers
711 * upon failure is not necessary because failure only can happen before any
712 * input is copied.
713 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100714 return ret;
Janos Follatha778a942019-02-13 10:28:28 +0000715}
716
717/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000718 * Import X from unsigned binary data, big endian
Przemyslaw Stekiel76960a72022-02-21 13:42:09 +0100719 *
720 * This function is guaranteed to return an MPI with exactly the necessary
721 * number of limbs (in particular, it does not skip 0s in the input).
Paul Bakker5121ce52009-01-03 21:22:43 +0000722 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100723int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000724{
Janos Follath24eed8d2019-11-22 13:21:35 +0000725 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +0100726 const size_t limbs = CHARS_TO_LIMBS(buflen);
Paul Bakker5121ce52009-01-03 21:22:43 +0000727
Gilles Peskine449bd832023-01-11 14:50:10 +0100728 MPI_VALIDATE_RET(X != NULL);
729 MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +0000730
Hanno Becker073c1992017-10-17 15:17:27 +0100731 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +0100732 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
Paul Bakker5121ce52009-01-03 21:22:43 +0000733
Gilles Peskine449bd832023-01-11 14:50:10 +0100734 MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
Paul Bakker5121ce52009-01-03 21:22:43 +0000735
736cleanup:
737
Janos Follath171a7ef2019-02-15 16:17:45 +0000738 /*
739 * This function is also used to import keys. However, wiping the buffers
740 * upon failure is not necessary because failure only can happen before any
741 * input is copied.
742 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100743 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000744}
745
746/*
Janos Follathe344d0f2019-02-19 16:17:40 +0000747 * Export X into unsigned binary data, little endian
748 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100749int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
750 unsigned char *buf, size_t buflen)
Janos Follathe344d0f2019-02-19 16:17:40 +0000751{
Gilles Peskine449bd832023-01-11 14:50:10 +0100752 return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
Janos Follathe344d0f2019-02-19 16:17:40 +0000753}
754
755/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000756 * Export X into unsigned binary data, big endian
757 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100758int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
759 unsigned char *buf, size_t buflen)
Paul Bakker5121ce52009-01-03 21:22:43 +0000760{
Gilles Peskine449bd832023-01-11 14:50:10 +0100761 return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
Paul Bakker5121ce52009-01-03 21:22:43 +0000762}
763
764/*
765 * Left-shift: X <<= count
766 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100767int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000768{
Janos Follath24eed8d2019-11-22 13:21:35 +0000769 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Minos Galanakis0144b352023-05-02 14:02:32 +0100770 size_t i;
Gilles Peskine449bd832023-01-11 14:50:10 +0100771 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000772
Gilles Peskine449bd832023-01-11 14:50:10 +0100773 i = mbedtls_mpi_bitlen(X) + count;
Paul Bakker5121ce52009-01-03 21:22:43 +0000774
Gilles Peskine449bd832023-01-11 14:50:10 +0100775 if (X->n * biL < i) {
776 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
777 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000778
779 ret = 0;
780
Minos Galanakis0144b352023-05-02 14:02:32 +0100781 mbedtls_mpi_core_shift_l(X->p, X->n, count);
Paul Bakker5121ce52009-01-03 21:22:43 +0000782cleanup:
783
Gilles Peskine449bd832023-01-11 14:50:10 +0100784 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000785}
786
787/*
788 * Right-shift: X >>= count
789 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100790int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
Paul Bakker5121ce52009-01-03 21:22:43 +0000791{
Gilles Peskine449bd832023-01-11 14:50:10 +0100792 MPI_VALIDATE_RET(X != NULL);
793 if (X->n != 0) {
794 mbedtls_mpi_core_shift_r(X->p, X->n, count);
795 }
796 return 0;
Gilles Peskine66414202022-09-21 15:36:16 +0200797}
798
Paul Bakker5121ce52009-01-03 21:22:43 +0000799/*
800 * Compare unsigned values
801 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100802int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000803{
Paul Bakker23986e52011-04-24 08:57:21 +0000804 size_t i, j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100805 MPI_VALIDATE_RET(X != NULL);
806 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000807
Gilles Peskine449bd832023-01-11 14:50:10 +0100808 for (i = X->n; i > 0; i--) {
809 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000810 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100811 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000812 }
813
Gilles Peskine449bd832023-01-11 14:50:10 +0100814 for (j = Y->n; j > 0; j--) {
815 if (Y->p[j - 1] != 0) {
816 break;
817 }
818 }
819
Dave Rodgmanebcd7852023-08-09 18:56:42 +0100820 /* If i == j == 0, i.e. abs(X) == abs(Y),
821 * we end up returning 0 at the end of the function. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100822
823 if (i > j) {
824 return 1;
825 }
826 if (j > i) {
827 return -1;
828 }
829
830 for (; i > 0; i--) {
831 if (X->p[i - 1] > Y->p[i - 1]) {
832 return 1;
833 }
834 if (X->p[i - 1] < Y->p[i - 1]) {
835 return -1;
836 }
837 }
838
839 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000840}
841
842/*
843 * Compare signed values
844 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100845int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
Paul Bakker5121ce52009-01-03 21:22:43 +0000846{
Paul Bakker23986e52011-04-24 08:57:21 +0000847 size_t i, j;
Gilles Peskine449bd832023-01-11 14:50:10 +0100848 MPI_VALIDATE_RET(X != NULL);
849 MPI_VALIDATE_RET(Y != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000850
Gilles Peskine449bd832023-01-11 14:50:10 +0100851 for (i = X->n; i > 0; i--) {
852 if (X->p[i - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000853 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100854 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000855 }
856
Gilles Peskine449bd832023-01-11 14:50:10 +0100857 for (j = Y->n; j > 0; j--) {
858 if (Y->p[j - 1] != 0) {
859 break;
860 }
861 }
862
863 if (i == 0 && j == 0) {
864 return 0;
865 }
866
867 if (i > j) {
868 return X->s;
869 }
870 if (j > i) {
871 return -Y->s;
872 }
873
874 if (X->s > 0 && Y->s < 0) {
875 return 1;
876 }
877 if (Y->s > 0 && X->s < 0) {
878 return -1;
879 }
880
881 for (; i > 0; i--) {
882 if (X->p[i - 1] > Y->p[i - 1]) {
883 return X->s;
884 }
885 if (X->p[i - 1] < Y->p[i - 1]) {
886 return -X->s;
887 }
888 }
889
890 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +0000891}
892
Janos Follathee6abce2019-09-05 14:47:19 +0100893/*
Paul Bakker5121ce52009-01-03 21:22:43 +0000894 * Compare signed values
895 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100896int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
Paul Bakker5121ce52009-01-03 21:22:43 +0000897{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200898 mbedtls_mpi Y;
899 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +0100900 MPI_VALIDATE_RET(X != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000901
Gilles Peskine449bd832023-01-11 14:50:10 +0100902 *p = mpi_sint_abs(z);
Dave Rodgmanf3df1052023-08-09 18:55:41 +0100903 Y.s = TO_SIGN(z);
Paul Bakker5121ce52009-01-03 21:22:43 +0000904 Y.n = 1;
905 Y.p = p;
906
Gilles Peskine449bd832023-01-11 14:50:10 +0100907 return mbedtls_mpi_cmp_mpi(X, &Y);
Paul Bakker5121ce52009-01-03 21:22:43 +0000908}
909
910/*
911 * Unsigned addition: X = |A| + |B| (HAC 14.7)
912 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100913int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +0000914{
Janos Follath24eed8d2019-11-22 13:21:35 +0000915 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100916 size_t j;
Agathiyan Bragadeeshc99840a2023-07-12 11:15:46 +0100917 mbedtls_mpi_uint *p;
918 mbedtls_mpi_uint c;
Gilles Peskine449bd832023-01-11 14:50:10 +0100919 MPI_VALIDATE_RET(X != NULL);
920 MPI_VALIDATE_RET(A != NULL);
921 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000922
Gilles Peskine449bd832023-01-11 14:50:10 +0100923 if (X == B) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +0200924 const mbedtls_mpi *T = A; A = X; B = T;
Paul Bakker5121ce52009-01-03 21:22:43 +0000925 }
926
Gilles Peskine449bd832023-01-11 14:50:10 +0100927 if (X != A) {
928 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
929 }
Paul Bakker9af723c2014-05-01 13:03:14 +0200930
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000931 /*
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100932 * X must always be positive as a result of unsigned additions.
Paul Bakkerf7ca7b92009-06-20 10:31:06 +0000933 */
934 X->s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +0000935
Gilles Peskine449bd832023-01-11 14:50:10 +0100936 for (j = B->n; j > 0; j--) {
937 if (B->p[j - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000938 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100939 }
940 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000941
Gilles Peskinedb14a9d2022-11-15 22:59:00 +0100942 /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
943 * and B is 0 (of any size). */
Gilles Peskine449bd832023-01-11 14:50:10 +0100944 if (j == 0) {
945 return 0;
946 }
Gilles Peskinedb14a9d2022-11-15 22:59:00 +0100947
Gilles Peskine449bd832023-01-11 14:50:10 +0100948 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
Paul Bakker5121ce52009-01-03 21:22:43 +0000949
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100950 /* j is the number of non-zero limbs of B. Add those to X. */
Paul Bakker5121ce52009-01-03 21:22:43 +0000951
Agathiyan Bragadeeshc99840a2023-07-12 11:15:46 +0100952 p = X->p;
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100953
Agathiyan Bragadeeshc99840a2023-07-12 11:15:46 +0100954 c = mbedtls_mpi_core_add(p, p, B->p, j);
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100955
956 p += j;
957
958 /* Now propagate any carry */
Paul Bakker5121ce52009-01-03 21:22:43 +0000959
Gilles Peskine449bd832023-01-11 14:50:10 +0100960 while (c != 0) {
961 if (j >= X->n) {
962 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
Tom Cosgroveaf7d44b2022-08-24 14:05:26 +0100963 p = X->p + j;
Paul Bakker5121ce52009-01-03 21:22:43 +0000964 }
965
Gilles Peskine449bd832023-01-11 14:50:10 +0100966 *p += c; c = (*p < c); j++; p++;
Paul Bakker5121ce52009-01-03 21:22:43 +0000967 }
968
969cleanup:
970
Gilles Peskine449bd832023-01-11 14:50:10 +0100971 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +0000972}
973
Paul Bakker5121ce52009-01-03 21:22:43 +0000974/*
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200975 * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
Paul Bakker5121ce52009-01-03 21:22:43 +0000976 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100977int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +0000978{
Janos Follath24eed8d2019-11-22 13:21:35 +0000979 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +0000980 size_t n;
Gilles Peskine0e5faf62020-06-08 22:50:35 +0200981 mbedtls_mpi_uint carry;
Gilles Peskine449bd832023-01-11 14:50:10 +0100982 MPI_VALIDATE_RET(X != NULL);
983 MPI_VALIDATE_RET(A != NULL);
984 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +0000985
Gilles Peskine449bd832023-01-11 14:50:10 +0100986 for (n = B->n; n > 0; n--) {
987 if (B->p[n - 1] != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +0000988 break;
Gilles Peskine449bd832023-01-11 14:50:10 +0100989 }
990 }
991 if (n > A->n) {
Gilles Peskinec8a91772021-01-27 22:30:43 +0100992 /* B >= (2^ciL)^n > A */
993 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
994 goto cleanup;
995 }
Paul Bakker5121ce52009-01-03 21:22:43 +0000996
Gilles Peskine449bd832023-01-11 14:50:10 +0100997 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
Gilles Peskine1acf7cb2020-07-23 01:03:22 +0200998
999 /* Set the high limbs of X to match A. Don't touch the lower limbs
1000 * because X might be aliased to B, and we must not overwrite the
1001 * significant digits of B. */
Aaron M. Uckoaf67d2c2023-01-17 11:52:22 -05001002 if (A->n > n && A != X) {
Gilles Peskine449bd832023-01-11 14:50:10 +01001003 memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
1004 }
1005 if (X->n > A->n) {
1006 memset(X->p + A->n, 0, (X->n - A->n) * ciL);
1007 }
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001008
Gilles Peskine449bd832023-01-11 14:50:10 +01001009 carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
1010 if (carry != 0) {
Tom Cosgrove452c99c2022-08-25 10:07:07 +01001011 /* Propagate the carry through the rest of X. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001012 carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
Tom Cosgrove452c99c2022-08-25 10:07:07 +01001013
1014 /* If we have further carry/borrow, the result is negative. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001015 if (carry != 0) {
Gilles Peskine89b41302020-07-23 01:16:46 +02001016 ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1017 goto cleanup;
1018 }
Gilles Peskinec097e9e2020-06-08 21:58:22 +02001019 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001020
Gilles Peskine1acf7cb2020-07-23 01:03:22 +02001021 /* X should always be positive as a result of unsigned subtractions. */
1022 X->s = 1;
1023
Paul Bakker5121ce52009-01-03 21:22:43 +00001024cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001025 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001026}
1027
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001028/* Common function for signed addition and subtraction.
1029 * Calculate A + B * flip_B where flip_B is 1 or -1.
Paul Bakker5121ce52009-01-03 21:22:43 +00001030 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001031static int add_sub_mpi(mbedtls_mpi *X,
1032 const mbedtls_mpi *A, const mbedtls_mpi *B,
1033 int flip_B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001034{
Hanno Becker73d7d792018-12-11 10:35:51 +00001035 int ret, s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001036 MPI_VALIDATE_RET(X != NULL);
1037 MPI_VALIDATE_RET(A != NULL);
1038 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001039
Hanno Becker73d7d792018-12-11 10:35:51 +00001040 s = A->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001041 if (A->s * B->s * flip_B < 0) {
1042 int cmp = mbedtls_mpi_cmp_abs(A, B);
1043 if (cmp >= 0) {
1044 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
Gilles Peskine4a768dd2022-11-09 22:02:16 +01001045 /* If |A| = |B|, the result is 0 and we must set the sign bit
1046 * to +1 regardless of which of A or B was negative. Otherwise,
1047 * since |A| > |B|, the sign is the sign of A. */
1048 X->s = cmp == 0 ? 1 : s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001049 } else {
1050 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
Gilles Peskine4a768dd2022-11-09 22:02:16 +01001051 /* Since |A| < |B|, the sign is the opposite of A. */
Paul Bakker5121ce52009-01-03 21:22:43 +00001052 X->s = -s;
1053 }
Gilles Peskine449bd832023-01-11 14:50:10 +01001054 } else {
1055 MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001056 X->s = s;
1057 }
1058
1059cleanup:
1060
Gilles Peskine449bd832023-01-11 14:50:10 +01001061 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001062}
1063
1064/*
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001065 * Signed addition: X = A + B
1066 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001067int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001068{
Gilles Peskine449bd832023-01-11 14:50:10 +01001069 return add_sub_mpi(X, A, B, 1);
Gilles Peskine72ee1e32022-11-09 21:34:09 +01001070}
1071
1072/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001073 * Signed subtraction: X = A - B
Paul Bakker5121ce52009-01-03 21:22:43 +00001074 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001075int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001076{
Gilles Peskine449bd832023-01-11 14:50:10 +01001077 return add_sub_mpi(X, A, B, -1);
Paul Bakker5121ce52009-01-03 21:22:43 +00001078}
1079
1080/*
1081 * Signed addition: X = A + b
1082 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001083int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001084{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001085 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001086 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001087 MPI_VALIDATE_RET(X != NULL);
1088 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001089
Gilles Peskine449bd832023-01-11 14:50:10 +01001090 p[0] = mpi_sint_abs(b);
Dave Rodgmanf3df1052023-08-09 18:55:41 +01001091 B.s = TO_SIGN(b);
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001092 B.n = 1;
1093 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001094
Gilles Peskine449bd832023-01-11 14:50:10 +01001095 return mbedtls_mpi_add_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001096}
1097
1098/*
Paul Bakker60b1d102013-10-29 10:02:51 +01001099 * Signed subtraction: X = A - b
Paul Bakker5121ce52009-01-03 21:22:43 +00001100 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001101int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001102{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001103 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001104 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001105 MPI_VALIDATE_RET(X != NULL);
1106 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001107
Gilles Peskine449bd832023-01-11 14:50:10 +01001108 p[0] = mpi_sint_abs(b);
Dave Rodgmanf3df1052023-08-09 18:55:41 +01001109 B.s = TO_SIGN(b);
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001110 B.n = 1;
1111 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001112
Gilles Peskine449bd832023-01-11 14:50:10 +01001113 return mbedtls_mpi_sub_mpi(X, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001114}
1115
Paul Bakker5121ce52009-01-03 21:22:43 +00001116/*
1117 * Baseline multiplication: X = A * B (HAC 14.12)
1118 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001119int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001120{
Janos Follath24eed8d2019-11-22 13:21:35 +00001121 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Hanno Becker1772e052022-04-13 06:51:40 +01001122 size_t i, j;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001123 mbedtls_mpi TA, TB;
Hanno Beckerda763de2022-04-13 06:50:02 +01001124 int result_is_zero = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001125 MPI_VALIDATE_RET(X != NULL);
1126 MPI_VALIDATE_RET(A != NULL);
1127 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001128
Tom Cosgrove6af26f32022-08-24 16:40:55 +01001129 mbedtls_mpi_init(&TA);
1130 mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00001131
Gilles Peskine449bd832023-01-11 14:50:10 +01001132 if (X == A) {
1133 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
1134 }
1135 if (X == B) {
1136 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
1137 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001138
Gilles Peskine449bd832023-01-11 14:50:10 +01001139 for (i = A->n; i > 0; i--) {
1140 if (A->p[i - 1] != 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001141 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001142 }
1143 }
1144 if (i == 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001145 result_is_zero = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001146 }
Hanno Beckerda763de2022-04-13 06:50:02 +01001147
Gilles Peskine449bd832023-01-11 14:50:10 +01001148 for (j = B->n; j > 0; j--) {
1149 if (B->p[j - 1] != 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001150 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001151 }
1152 }
1153 if (j == 0) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001154 result_is_zero = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001155 }
Hanno Beckerda763de2022-04-13 06:50:02 +01001156
Gilles Peskine449bd832023-01-11 14:50:10 +01001157 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
1158 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
Paul Bakker5121ce52009-01-03 21:22:43 +00001159
Tom Cosgrove6af26f32022-08-24 16:40:55 +01001160 mbedtls_mpi_core_mul(X->p, A->p, i, B->p, j);
Paul Bakker5121ce52009-01-03 21:22:43 +00001161
Hanno Beckerda763de2022-04-13 06:50:02 +01001162 /* If the result is 0, we don't shortcut the operation, which reduces
1163 * but does not eliminate side channels leaking the zero-ness. We do
1164 * need to take care to set the sign bit properly since the library does
1165 * not fully support an MPI object with a value of 0 and s == -1. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001166 if (result_is_zero) {
Hanno Beckerda763de2022-04-13 06:50:02 +01001167 X->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001168 } else {
Hanno Beckerda763de2022-04-13 06:50:02 +01001169 X->s = A->s * B->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001170 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001171
1172cleanup:
1173
Gilles Peskine449bd832023-01-11 14:50:10 +01001174 mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
Paul Bakker5121ce52009-01-03 21:22:43 +00001175
Gilles Peskine449bd832023-01-11 14:50:10 +01001176 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001177}
1178
1179/*
1180 * Baseline multiplication: X = A * b
1181 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001182int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001183{
Gilles Peskine449bd832023-01-11 14:50:10 +01001184 MPI_VALIDATE_RET(X != NULL);
1185 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001186
Hanno Becker35771312022-04-14 11:52:11 +01001187 size_t n = A->n;
Gilles Peskine449bd832023-01-11 14:50:10 +01001188 while (n > 0 && A->p[n - 1] == 0) {
Hanno Becker35771312022-04-14 11:52:11 +01001189 --n;
Gilles Peskine449bd832023-01-11 14:50:10 +01001190 }
Hanno Becker35771312022-04-14 11:52:11 +01001191
Hanno Becker74a11a32022-04-06 06:27:00 +01001192 /* The general method below doesn't work if b==0. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001193 if (b == 0 || n == 0) {
1194 return mbedtls_mpi_lset(X, 0);
1195 }
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001196
Hanno Beckeraef9cc42022-04-11 06:36:29 +01001197 /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001198 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001199 /* In general, A * b requires 1 limb more than b. If
1200 * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
1201 * number of limbs as A and the call to grow() is not required since
Gilles Peskinee1bba7c2021-03-10 23:44:10 +01001202 * copy() will take care of the growth if needed. However, experimentally,
1203 * making the call to grow() unconditional causes slightly fewer
Gilles Peskinecd0dbf32020-07-24 00:09:04 +02001204 * calls to calloc() in ECP code, presumably because it reuses the
1205 * same mpi for a while and this way the mpi is more likely to directly
Hanno Becker9137b9c2022-04-12 10:51:54 +01001206 * grow to its final size.
1207 *
1208 * Note that calculating A*b as 0 + A*b doesn't work as-is because
1209 * A,X can be the same. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001210 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
1211 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
1212 mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
Gilles Peskine8fd95c62020-07-23 21:58:50 +02001213
1214cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001215 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001216}
1217
1218/*
Simon Butcherf5ba0452015-12-27 23:01:55 +00001219 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
1220 * mbedtls_mpi_uint divisor, d
Simon Butcher15b15d12015-11-26 19:35:03 +00001221 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001222static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
1223 mbedtls_mpi_uint u0,
1224 mbedtls_mpi_uint d,
1225 mbedtls_mpi_uint *r)
Simon Butcher15b15d12015-11-26 19:35:03 +00001226{
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001227#if defined(MBEDTLS_HAVE_UDBL)
1228 mbedtls_t_udbl dividend, quotient;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001229#else
Simon Butcher9803d072016-01-03 00:24:34 +00001230 const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
Gilles Peskine449bd832023-01-11 14:50:10 +01001231 const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
Simon Butcherf5ba0452015-12-27 23:01:55 +00001232 mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
1233 mbedtls_mpi_uint u0_msw, u0_lsw;
Simon Butcher9803d072016-01-03 00:24:34 +00001234 size_t s;
Manuel Pégourié-Gonnard16308882015-12-01 10:27:00 +01001235#endif
1236
Simon Butcher15b15d12015-11-26 19:35:03 +00001237 /*
1238 * Check for overflow
1239 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001240 if (0 == d || u1 >= d) {
1241 if (r != NULL) {
1242 *r = ~(mbedtls_mpi_uint) 0u;
1243 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001244
Gilles Peskine449bd832023-01-11 14:50:10 +01001245 return ~(mbedtls_mpi_uint) 0u;
Simon Butcher15b15d12015-11-26 19:35:03 +00001246 }
1247
1248#if defined(MBEDTLS_HAVE_UDBL)
Simon Butcher15b15d12015-11-26 19:35:03 +00001249 dividend = (mbedtls_t_udbl) u1 << biL;
1250 dividend |= (mbedtls_t_udbl) u0;
1251 quotient = dividend / d;
Gilles Peskine449bd832023-01-11 14:50:10 +01001252 if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
1253 quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
1254 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001255
Gilles Peskine449bd832023-01-11 14:50:10 +01001256 if (r != NULL) {
1257 *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
1258 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001259
1260 return (mbedtls_mpi_uint) quotient;
1261#else
Simon Butcher15b15d12015-11-26 19:35:03 +00001262
1263 /*
1264 * Algorithm D, Section 4.3.1 - The Art of Computer Programming
1265 * Vol. 2 - Seminumerical Algorithms, Knuth
1266 */
1267
1268 /*
1269 * Normalize the divisor, d, and dividend, u0, u1
1270 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001271 s = mbedtls_mpi_core_clz(d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001272 d = d << s;
1273
1274 u1 = u1 << s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001275 u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
Simon Butcher15b15d12015-11-26 19:35:03 +00001276 u0 = u0 << s;
1277
1278 d1 = d >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001279 d0 = d & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001280
1281 u0_msw = u0 >> biH;
Simon Butcher9803d072016-01-03 00:24:34 +00001282 u0_lsw = u0 & uint_halfword_mask;
Simon Butcher15b15d12015-11-26 19:35:03 +00001283
1284 /*
1285 * Find the first quotient and remainder
1286 */
1287 q1 = u1 / d1;
1288 r0 = u1 - d1 * q1;
1289
Gilles Peskine449bd832023-01-11 14:50:10 +01001290 while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001291 q1 -= 1;
1292 r0 += d1;
1293
Gilles Peskine449bd832023-01-11 14:50:10 +01001294 if (r0 >= radix) {
1295 break;
1296 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001297 }
1298
Gilles Peskine449bd832023-01-11 14:50:10 +01001299 rAX = (u1 * radix) + (u0_msw - q1 * d);
Simon Butcher15b15d12015-11-26 19:35:03 +00001300 q0 = rAX / d1;
1301 r0 = rAX - q0 * d1;
1302
Gilles Peskine449bd832023-01-11 14:50:10 +01001303 while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
Simon Butcher15b15d12015-11-26 19:35:03 +00001304 q0 -= 1;
1305 r0 += d1;
1306
Gilles Peskine449bd832023-01-11 14:50:10 +01001307 if (r0 >= radix) {
1308 break;
1309 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001310 }
1311
Gilles Peskine449bd832023-01-11 14:50:10 +01001312 if (r != NULL) {
1313 *r = (rAX * radix + u0_lsw - q0 * d) >> s;
1314 }
Simon Butcher15b15d12015-11-26 19:35:03 +00001315
1316 quotient = q1 * radix + q0;
1317
1318 return quotient;
1319#endif
1320}
1321
1322/*
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001323 * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
Paul Bakker5121ce52009-01-03 21:22:43 +00001324 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001325int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
1326 const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001327{
Janos Follath24eed8d2019-11-22 13:21:35 +00001328 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001329 size_t i, n, t, k;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001330 mbedtls_mpi X, Y, Z, T1, T2;
Alexander Kd19a1932019-11-01 18:20:42 +03001331 mbedtls_mpi_uint TP2[3];
Gilles Peskine449bd832023-01-11 14:50:10 +01001332 MPI_VALIDATE_RET(A != NULL);
1333 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001334
Gilles Peskine449bd832023-01-11 14:50:10 +01001335 if (mbedtls_mpi_cmp_int(B, 0) == 0) {
1336 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1337 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001338
Gilles Peskine449bd832023-01-11 14:50:10 +01001339 mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
1340 mbedtls_mpi_init(&T1);
Alexander Kd19a1932019-11-01 18:20:42 +03001341 /*
1342 * Avoid dynamic memory allocations for constant-size T2.
1343 *
1344 * T2 is used for comparison only and the 3 limbs are assigned explicitly,
1345 * so nobody increase the size of the MPI and we're safe to use an on-stack
1346 * buffer.
1347 */
Alexander K35d6d462019-10-31 14:46:45 +03001348 T2.s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001349 T2.n = sizeof(TP2) / sizeof(*TP2);
Alexander Kd19a1932019-11-01 18:20:42 +03001350 T2.p = TP2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001351
Gilles Peskine449bd832023-01-11 14:50:10 +01001352 if (mbedtls_mpi_cmp_abs(A, B) < 0) {
1353 if (Q != NULL) {
1354 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
1355 }
1356 if (R != NULL) {
1357 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
1358 }
1359 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001360 }
1361
Gilles Peskine449bd832023-01-11 14:50:10 +01001362 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
1363 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001364 X.s = Y.s = 1;
1365
Gilles Peskine449bd832023-01-11 14:50:10 +01001366 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
1367 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z, 0));
1368 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001369
Gilles Peskine449bd832023-01-11 14:50:10 +01001370 k = mbedtls_mpi_bitlen(&Y) % biL;
1371 if (k < biL - 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001372 k = biL - 1 - k;
Gilles Peskine449bd832023-01-11 14:50:10 +01001373 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
1374 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
1375 } else {
1376 k = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001377 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001378
1379 n = X.n - 1;
1380 t = Y.n - 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001381 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001382
Gilles Peskine449bd832023-01-11 14:50:10 +01001383 while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001384 Z.p[n - t]++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001385 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
Paul Bakker5121ce52009-01-03 21:22:43 +00001386 }
Gilles Peskine449bd832023-01-11 14:50:10 +01001387 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
Paul Bakker5121ce52009-01-03 21:22:43 +00001388
Gilles Peskine449bd832023-01-11 14:50:10 +01001389 for (i = n; i > t; i--) {
1390 if (X.p[i] >= Y.p[t]) {
1391 Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
1392 } else {
1393 Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
1394 Y.p[t], NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001395 }
1396
Gilles Peskine449bd832023-01-11 14:50:10 +01001397 T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
1398 T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
Alexander K35d6d462019-10-31 14:46:45 +03001399 T2.p[2] = X.p[i];
1400
Paul Bakker5121ce52009-01-03 21:22:43 +00001401 Z.p[i - t - 1]++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001402 do {
Paul Bakker5121ce52009-01-03 21:22:43 +00001403 Z.p[i - t - 1]--;
1404
Gilles Peskine449bd832023-01-11 14:50:10 +01001405 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
1406 T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
Paul Bakker5121ce52009-01-03 21:22:43 +00001407 T1.p[1] = Y.p[t];
Gilles Peskine449bd832023-01-11 14:50:10 +01001408 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
1409 } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00001410
Gilles Peskine449bd832023-01-11 14:50:10 +01001411 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
1412 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1413 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001414
Gilles Peskine449bd832023-01-11 14:50:10 +01001415 if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
1416 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
1417 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
1418 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
Paul Bakker5121ce52009-01-03 21:22:43 +00001419 Z.p[i - t - 1]--;
1420 }
1421 }
1422
Gilles Peskine449bd832023-01-11 14:50:10 +01001423 if (Q != NULL) {
1424 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
Paul Bakker5121ce52009-01-03 21:22:43 +00001425 Q->s = A->s * B->s;
1426 }
1427
Gilles Peskine449bd832023-01-11 14:50:10 +01001428 if (R != NULL) {
1429 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
Paul Bakkerf02c5642012-11-13 10:25:21 +00001430 X.s = A->s;
Gilles Peskine449bd832023-01-11 14:50:10 +01001431 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
Paul Bakker5121ce52009-01-03 21:22:43 +00001432
Gilles Peskine449bd832023-01-11 14:50:10 +01001433 if (mbedtls_mpi_cmp_int(R, 0) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001434 R->s = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001435 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001436 }
1437
1438cleanup:
1439
Gilles Peskine449bd832023-01-11 14:50:10 +01001440 mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
1441 mbedtls_mpi_free(&T1);
1442 mbedtls_platform_zeroize(TP2, sizeof(TP2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001443
Gilles Peskine449bd832023-01-11 14:50:10 +01001444 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001445}
1446
1447/*
1448 * Division by int: A = Q * b + R
Paul Bakker5121ce52009-01-03 21:22:43 +00001449 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001450int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
1451 const mbedtls_mpi *A,
1452 mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001453{
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001454 mbedtls_mpi B;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001455 mbedtls_mpi_uint p[1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001456 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001457
Gilles Peskine449bd832023-01-11 14:50:10 +01001458 p[0] = mpi_sint_abs(b);
Dave Rodgmanf3df1052023-08-09 18:55:41 +01001459 B.s = TO_SIGN(b);
Yuto Takano36c8ddc2021-07-05 09:10:52 +01001460 B.n = 1;
1461 B.p = p;
Paul Bakker5121ce52009-01-03 21:22:43 +00001462
Gilles Peskine449bd832023-01-11 14:50:10 +01001463 return mbedtls_mpi_div_mpi(Q, R, A, &B);
Paul Bakker5121ce52009-01-03 21:22:43 +00001464}
1465
1466/*
1467 * Modulo: R = A mod B
1468 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001469int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001470{
Janos Follath24eed8d2019-11-22 13:21:35 +00001471 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +01001472 MPI_VALIDATE_RET(R != NULL);
1473 MPI_VALIDATE_RET(A != NULL);
1474 MPI_VALIDATE_RET(B != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001475
Gilles Peskine449bd832023-01-11 14:50:10 +01001476 if (mbedtls_mpi_cmp_int(B, 0) < 0) {
1477 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1478 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001479
Gilles Peskine449bd832023-01-11 14:50:10 +01001480 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001481
Gilles Peskine449bd832023-01-11 14:50:10 +01001482 while (mbedtls_mpi_cmp_int(R, 0) < 0) {
1483 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
1484 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001485
Gilles Peskine449bd832023-01-11 14:50:10 +01001486 while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
1487 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
1488 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001489
1490cleanup:
1491
Gilles Peskine449bd832023-01-11 14:50:10 +01001492 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001493}
1494
1495/*
1496 * Modulo: r = A mod b
1497 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001498int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
Paul Bakker5121ce52009-01-03 21:22:43 +00001499{
Paul Bakker23986e52011-04-24 08:57:21 +00001500 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001501 mbedtls_mpi_uint x, y, z;
Gilles Peskine449bd832023-01-11 14:50:10 +01001502 MPI_VALIDATE_RET(r != NULL);
1503 MPI_VALIDATE_RET(A != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00001504
Gilles Peskine449bd832023-01-11 14:50:10 +01001505 if (b == 0) {
1506 return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
1507 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001508
Gilles Peskine449bd832023-01-11 14:50:10 +01001509 if (b < 0) {
1510 return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
1511 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001512
1513 /*
1514 * handle trivial cases
1515 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001516 if (b == 1 || A->n == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001517 *r = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001518 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001519 }
1520
Gilles Peskine449bd832023-01-11 14:50:10 +01001521 if (b == 2) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001522 *r = A->p[0] & 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001523 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001524 }
1525
1526 /*
1527 * general case
1528 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001529 for (i = A->n, y = 0; i > 0; i--) {
Paul Bakker23986e52011-04-24 08:57:21 +00001530 x = A->p[i - 1];
Gilles Peskine449bd832023-01-11 14:50:10 +01001531 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001532 z = y / b;
1533 y -= z * b;
1534
1535 x <<= biH;
Gilles Peskine449bd832023-01-11 14:50:10 +01001536 y = (y << biH) | (x >> biH);
Paul Bakker5121ce52009-01-03 21:22:43 +00001537 z = y / b;
1538 y -= z * b;
1539 }
1540
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001541 /*
1542 * If A is negative, then the current y represents a negative value.
1543 * Flipping it to the positive side.
1544 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001545 if (A->s < 0 && y != 0) {
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001546 y = b - y;
Gilles Peskine449bd832023-01-11 14:50:10 +01001547 }
Paul Bakkerce40a6d2009-06-23 19:46:08 +00001548
Paul Bakker5121ce52009-01-03 21:22:43 +00001549 *r = y;
1550
Gilles Peskine449bd832023-01-11 14:50:10 +01001551 return 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001552}
1553
Gilles Peskine449bd832023-01-11 14:50:10 +01001554static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00001555{
Gilles Peskine449bd832023-01-11 14:50:10 +01001556 *mm = mbedtls_mpi_core_montmul_init(N->p);
Paul Bakker5121ce52009-01-03 21:22:43 +00001557}
1558
Tom Cosgrove93842842022-08-05 16:59:43 +01001559/** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
1560 *
1561 * \param[in,out] A One of the numbers to multiply.
1562 * It must have at least as many limbs as N
1563 * (A->n >= N->n), and any limbs beyond n are ignored.
1564 * On successful completion, A contains the result of
1565 * the multiplication A * B * R^-1 mod N where
1566 * R = (2^ciL)^n.
1567 * \param[in] B One of the numbers to multiply.
1568 * It must be nonzero and must not have more limbs than N
1569 * (B->n <= N->n).
Tom Cosgrove40d22942022-08-17 06:42:44 +01001570 * \param[in] N The modulus. \p N must be odd.
Tom Cosgrove93842842022-08-05 16:59:43 +01001571 * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
1572 * This is -N^-1 mod 2^ciL.
1573 * \param[in,out] T A bignum for temporary storage.
1574 * It must be at least twice the limb size of N plus 1
1575 * (T->n >= 2 * N->n + 1).
1576 * Its initial content is unused and
1577 * its final content is indeterminate.
Tom Cosgrove5dd97e62022-08-30 14:31:49 +01001578 * It does not get reallocated.
Tom Cosgrove93842842022-08-05 16:59:43 +01001579 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001580static void mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B,
1581 const mbedtls_mpi *N, mbedtls_mpi_uint mm,
1582 mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00001583{
Gilles Peskine449bd832023-01-11 14:50:10 +01001584 mbedtls_mpi_core_montmul(A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p);
Paul Bakker5121ce52009-01-03 21:22:43 +00001585}
1586
1587/*
1588 * Montgomery reduction: A = A * R^-1 mod N
Gilles Peskine2a82f722020-06-04 15:00:49 +02001589 *
Tom Cosgrove93842842022-08-05 16:59:43 +01001590 * See mpi_montmul() regarding constraints and guarantees on the parameters.
Paul Bakker5121ce52009-01-03 21:22:43 +00001591 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001592static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N,
1593 mbedtls_mpi_uint mm, mbedtls_mpi *T)
Paul Bakker5121ce52009-01-03 21:22:43 +00001594{
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001595 mbedtls_mpi_uint z = 1;
1596 mbedtls_mpi U;
Gilles Peskine053022f2023-06-29 19:26:48 +02001597 U.n = 1;
1598 U.s = 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001599 U.p = &z;
1600
Gilles Peskine449bd832023-01-11 14:50:10 +01001601 mpi_montmul(A, &U, N, mm, T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001602}
1603
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001604/**
1605 * Select an MPI from a table without leaking the index.
1606 *
1607 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
1608 * reads the entire table in order to avoid leaking the value of idx to an
1609 * attacker able to observe memory access patterns.
1610 *
1611 * \param[out] R Where to write the selected MPI.
1612 * \param[in] T The table to read from.
1613 * \param[in] T_size The number of elements in the table.
1614 * \param[in] idx The index of the element to select;
1615 * this must satisfy 0 <= idx < T_size.
1616 *
1617 * \return \c 0 on success, or a negative error code.
1618 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001619static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx)
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001620{
1621 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1622
Gilles Peskine449bd832023-01-11 14:50:10 +01001623 for (size_t i = 0; i < T_size; i++) {
1624 MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i],
1625 (unsigned char) mbedtls_ct_size_bool_eq(i,
1626 idx)));
Manuel Pégourié-Gonnard92413ef2021-06-03 10:42:46 +02001627 }
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001628
1629cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01001630 return ret;
Manuel Pégourié-Gonnard1297ef32021-03-09 11:22:20 +01001631}
1632
Paul Bakker5121ce52009-01-03 21:22:43 +00001633/*
1634 * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
1635 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001636int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
1637 const mbedtls_mpi *E, const mbedtls_mpi *N,
1638 mbedtls_mpi *prec_RR)
Paul Bakker5121ce52009-01-03 21:22:43 +00001639{
Janos Follath24eed8d2019-11-22 13:21:35 +00001640 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Janos Follath74601202022-11-21 15:54:20 +00001641 size_t window_bitsize;
Paul Bakker23986e52011-04-24 08:57:21 +00001642 size_t i, j, nblimbs;
1643 size_t bufsize, nbits;
Paul Elliott1748de12023-02-13 15:35:35 +00001644 size_t exponent_bits_in_window = 0;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02001645 mbedtls_mpi_uint ei, mm, state;
Gilles Peskine449bd832023-01-11 14:50:10 +01001646 mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos;
Paul Bakkerf6198c12012-05-16 08:02:29 +00001647 int neg;
Paul Bakker5121ce52009-01-03 21:22:43 +00001648
Gilles Peskine449bd832023-01-11 14:50:10 +01001649 MPI_VALIDATE_RET(X != NULL);
1650 MPI_VALIDATE_RET(A != NULL);
1651 MPI_VALIDATE_RET(E != NULL);
1652 MPI_VALIDATE_RET(N != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00001653
Gilles Peskine449bd832023-01-11 14:50:10 +01001654 if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
1655 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1656 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001657
Gilles Peskine449bd832023-01-11 14:50:10 +01001658 if (mbedtls_mpi_cmp_int(E, 0) < 0) {
1659 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1660 }
Paul Bakkerf6198c12012-05-16 08:02:29 +00001661
Gilles Peskine449bd832023-01-11 14:50:10 +01001662 if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
1663 mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
1664 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1665 }
Chris Jones9246d042020-11-25 15:12:39 +00001666
Paul Bakkerf6198c12012-05-16 08:02:29 +00001667 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001668 * Init temps and window size
1669 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001670 mpi_montg_init(&mm, N);
1671 mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T);
1672 mbedtls_mpi_init(&Apos);
1673 mbedtls_mpi_init(&WW);
1674 memset(W, 0, sizeof(W));
Paul Bakker5121ce52009-01-03 21:22:43 +00001675
Gilles Peskine449bd832023-01-11 14:50:10 +01001676 i = mbedtls_mpi_bitlen(E);
Paul Bakker5121ce52009-01-03 21:22:43 +00001677
Gilles Peskine449bd832023-01-11 14:50:10 +01001678 window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 :
1679 (i > 79) ? 4 : (i > 23) ? 3 : 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001680
Gilles Peskine449bd832023-01-11 14:50:10 +01001681#if (MBEDTLS_MPI_WINDOW_SIZE < 6)
1682 if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) {
Janos Follath7fa11b82022-11-21 14:48:02 +00001683 window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
Gilles Peskine449bd832023-01-11 14:50:10 +01001684 }
Peter Kolbuse6bcad32018-12-11 14:01:44 -06001685#endif
Paul Bakkerb6d5f082011-11-25 11:52:11 +00001686
Janos Follathc8d66d52022-11-22 10:47:10 +00001687 const size_t w_table_used_size = (size_t) 1 << window_bitsize;
Janos Follath06000952022-11-22 10:18:06 +00001688
Paul Bakker5121ce52009-01-03 21:22:43 +00001689 /*
Janos Follathbe54ca72022-11-21 16:14:54 +00001690 * This function is not constant-trace: its memory accesses depend on the
1691 * exponent value. To defend against timing attacks, callers (such as RSA
1692 * and DHM) should use exponent blinding. However this is not enough if the
1693 * adversary can find the exponent in a single trace, so this function
1694 * takes extra precautions against adversaries who can observe memory
1695 * access patterns.
Janos Follathf08b40e2022-11-11 15:56:38 +00001696 *
Janos Follathbe54ca72022-11-21 16:14:54 +00001697 * This function performs a series of multiplications by table elements and
1698 * squarings, and we want the prevent the adversary from finding out which
1699 * table element was used, and from distinguishing between multiplications
1700 * and squarings. Firstly, when multiplying by an element of the window
1701 * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
1702 * squarings as having a different memory access patterns from other
1703 * multiplications. So secondly, we put the accumulator X in the table as
1704 * well, and also do a constant-trace table lookup to multiply by X.
1705 *
1706 * This way, all multiplications take the form of a lookup-and-multiply.
1707 * The number of lookup-and-multiply operations inside each iteration of
1708 * the main loop still depends on the bits of the exponent, but since the
1709 * other operations in the loop don't have an easily recognizable memory
1710 * trace, an adversary is unlikely to be able to observe the exact
1711 * patterns.
1712 *
1713 * An adversary may still be able to recover the exponent if they can
1714 * observe both memory accesses and branches. However, branch prediction
1715 * exploitation typically requires many traces of execution over the same
1716 * data, which is defeated by randomized blinding.
Janos Follath84461482022-11-21 14:31:22 +00001717 *
1718 * To achieve this, we make a copy of X and we use the table entry in each
1719 * calculation from this point on.
Janos Follath8e7d6a02022-10-04 13:27:40 +01001720 */
Janos Follathc8d66d52022-11-22 10:47:10 +00001721 const size_t x_index = 0;
Gilles Peskine449bd832023-01-11 14:50:10 +01001722 mbedtls_mpi_init(&W[x_index]);
1723 mbedtls_mpi_copy(&W[x_index], X);
Janos Follath84461482022-11-21 14:31:22 +00001724
Paul Bakker5121ce52009-01-03 21:22:43 +00001725 j = N->n + 1;
Tom Cosgrove93842842022-08-05 16:59:43 +01001726 /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
Paul Bakker5121ce52009-01-03 21:22:43 +00001727 * and mpi_montred() calls later. Here we ensure that W[1] and X are
1728 * large enough, and later we'll grow other W[i] to the same length.
1729 * They must not be shrunk midway through this function!
1730 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001731 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j));
1732 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], j));
1733 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));
Paul Bakker5121ce52009-01-03 21:22:43 +00001734
1735 /*
Paul Bakker50546922012-05-19 08:40:49 +00001736 * Compensate for negative A (and correct at the end)
1737 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001738 neg = (A->s == -1);
1739 if (neg) {
1740 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));
Paul Bakker50546922012-05-19 08:40:49 +00001741 Apos.s = 1;
1742 A = &Apos;
1743 }
1744
1745 /*
Paul Bakker5121ce52009-01-03 21:22:43 +00001746 * If 1st call, pre-compute R^2 mod N
1747 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001748 if (prec_RR == NULL || prec_RR->p == NULL) {
1749 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1));
1750 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL));
1751 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00001752
Gilles Peskine449bd832023-01-11 14:50:10 +01001753 if (prec_RR != NULL) {
1754 memcpy(prec_RR, &RR, sizeof(mbedtls_mpi));
1755 }
1756 } else {
1757 memcpy(&RR, prec_RR, sizeof(mbedtls_mpi));
Paul Bakker5121ce52009-01-03 21:22:43 +00001758 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001759
1760 /*
1761 * W[1] = A * R^2 * R^-1 mod N = A * R mod N
1762 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001763 if (mbedtls_mpi_cmp_mpi(A, N) >= 0) {
1764 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001765 /* This should be a no-op because W[1] is already that large before
1766 * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
Tom Cosgrove93842842022-08-05 16:59:43 +01001767 * in mpi_montmul() below, so let's make sure. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001768 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1));
1769 } else {
1770 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001771 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001772
Gilles Peskine3da1a8f2021-06-08 23:17:42 +02001773 /* Note that this is safe because W[1] always has at least N->n limbs
1774 * (it grew above and was preserved by mbedtls_mpi_copy()). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001775 mpi_montmul(&W[1], &RR, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001776
1777 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001778 * W[x_index] = R^2 * R^-1 mod N = R mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001779 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001780 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR));
1781 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001782
Janos Follathc8d66d52022-11-22 10:47:10 +00001783
Gilles Peskine449bd832023-01-11 14:50:10 +01001784 if (window_bitsize > 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001785 /*
Janos Follath74601202022-11-21 15:54:20 +00001786 * W[i] = W[1] ^ i
1787 *
1788 * The first bit of the sliding window is always 1 and therefore we
1789 * only need to store the second half of the table.
Janos Follathc8d66d52022-11-22 10:47:10 +00001790 *
1791 * (There are two special elements in the table: W[0] for the
1792 * accumulator/result and W[1] for A in Montgomery form. Both of these
1793 * are already set at this point.)
Paul Bakker5121ce52009-01-03 21:22:43 +00001794 */
Janos Follath74601202022-11-21 15:54:20 +00001795 j = w_table_used_size / 2;
Paul Bakker5121ce52009-01-03 21:22:43 +00001796
Gilles Peskine449bd832023-01-11 14:50:10 +01001797 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));
1798 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00001799
Gilles Peskine449bd832023-01-11 14:50:10 +01001800 for (i = 0; i < window_bitsize - 1; i++) {
1801 mpi_montmul(&W[j], &W[j], N, mm, &T);
1802 }
Paul Bakker0d7702c2013-10-29 16:18:35 +01001803
Paul Bakker5121ce52009-01-03 21:22:43 +00001804 /*
1805 * W[i] = W[i - 1] * W[1]
1806 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001807 for (i = j + 1; i < w_table_used_size; i++) {
1808 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));
1809 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));
Paul Bakker5121ce52009-01-03 21:22:43 +00001810
Gilles Peskine449bd832023-01-11 14:50:10 +01001811 mpi_montmul(&W[i], &W[1], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001812 }
1813 }
1814
1815 nblimbs = E->n;
1816 bufsize = 0;
1817 nbits = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001818 state = 0;
1819
Gilles Peskine449bd832023-01-11 14:50:10 +01001820 while (1) {
1821 if (bufsize == 0) {
1822 if (nblimbs == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001823 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01001824 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001825
Paul Bakker0d7702c2013-10-29 16:18:35 +01001826 nblimbs--;
1827
Gilles Peskine449bd832023-01-11 14:50:10 +01001828 bufsize = sizeof(mbedtls_mpi_uint) << 3;
Paul Bakker5121ce52009-01-03 21:22:43 +00001829 }
1830
1831 bufsize--;
1832
1833 ei = (E->p[nblimbs] >> bufsize) & 1;
1834
1835 /*
1836 * skip leading 0s
1837 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001838 if (ei == 0 && state == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001839 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +01001840 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001841
Gilles Peskine449bd832023-01-11 14:50:10 +01001842 if (ei == 0 && state == 1) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001843 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001844 * out of window, square W[x_index]
Paul Bakker5121ce52009-01-03 21:22:43 +00001845 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001846 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1847 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001848 continue;
1849 }
1850
1851 /*
1852 * add ei to current window
1853 */
1854 state = 2;
1855
1856 nbits++;
Gilles Peskine449bd832023-01-11 14:50:10 +01001857 exponent_bits_in_window |= (ei << (window_bitsize - nbits));
Paul Bakker5121ce52009-01-03 21:22:43 +00001858
Gilles Peskine449bd832023-01-11 14:50:10 +01001859 if (nbits == window_bitsize) {
Paul Bakker5121ce52009-01-03 21:22:43 +00001860 /*
Janos Follath7fa11b82022-11-21 14:48:02 +00001861 * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001862 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001863 for (i = 0; i < window_bitsize; i++) {
1864 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1865 x_index));
1866 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follathb764ee12022-10-04 14:00:09 +01001867 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001868
1869 /*
Janos Follath7fa11b82022-11-21 14:48:02 +00001870 * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001871 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001872 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
1873 exponent_bits_in_window));
1874 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001875
1876 state--;
1877 nbits = 0;
Janos Follath7fa11b82022-11-21 14:48:02 +00001878 exponent_bits_in_window = 0;
Paul Bakker5121ce52009-01-03 21:22:43 +00001879 }
1880 }
1881
1882 /*
1883 * process the remaining bits
1884 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001885 for (i = 0; i < nbits; i++) {
1886 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
1887 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001888
Janos Follath7fa11b82022-11-21 14:48:02 +00001889 exponent_bits_in_window <<= 1;
Paul Bakker5121ce52009-01-03 21:22:43 +00001890
Gilles Peskine449bd832023-01-11 14:50:10 +01001891 if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) {
1892 MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1));
1893 mpi_montmul(&W[x_index], &WW, N, mm, &T);
Janos Follathb764ee12022-10-04 14:00:09 +01001894 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001895 }
1896
1897 /*
Janos Follath8e7d6a02022-10-04 13:27:40 +01001898 * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
Paul Bakker5121ce52009-01-03 21:22:43 +00001899 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001900 mpi_montred(&W[x_index], N, mm, &T);
Paul Bakker5121ce52009-01-03 21:22:43 +00001901
Gilles Peskine449bd832023-01-11 14:50:10 +01001902 if (neg && E->n != 0 && (E->p[0] & 1) != 0) {
Janos Follath8e7d6a02022-10-04 13:27:40 +01001903 W[x_index].s = -1;
Gilles Peskine449bd832023-01-11 14:50:10 +01001904 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index]));
Paul Bakkerf6198c12012-05-16 08:02:29 +00001905 }
1906
Janos Follath8e7d6a02022-10-04 13:27:40 +01001907 /*
1908 * Load the result in the output variable.
1909 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001910 mbedtls_mpi_copy(X, &W[x_index]);
Janos Follath8e7d6a02022-10-04 13:27:40 +01001911
Paul Bakker5121ce52009-01-03 21:22:43 +00001912cleanup:
1913
Janos Follathb2c2fca2022-11-21 15:05:31 +00001914 /* The first bit of the sliding window is always 1 and therefore the first
1915 * half of the table was unused. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001916 for (i = w_table_used_size/2; i < w_table_used_size; i++) {
1917 mbedtls_mpi_free(&W[i]);
1918 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001919
Gilles Peskine449bd832023-01-11 14:50:10 +01001920 mbedtls_mpi_free(&W[x_index]);
1921 mbedtls_mpi_free(&W[1]);
1922 mbedtls_mpi_free(&T);
1923 mbedtls_mpi_free(&Apos);
1924 mbedtls_mpi_free(&WW);
Paul Bakker6c591fa2011-05-05 11:49:20 +00001925
Gilles Peskine449bd832023-01-11 14:50:10 +01001926 if (prec_RR == NULL || prec_RR->p == NULL) {
1927 mbedtls_mpi_free(&RR);
1928 }
Paul Bakker5121ce52009-01-03 21:22:43 +00001929
Gilles Peskine449bd832023-01-11 14:50:10 +01001930 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00001931}
1932
Paul Bakker5121ce52009-01-03 21:22:43 +00001933/*
1934 * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
1935 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001936int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
Paul Bakker5121ce52009-01-03 21:22:43 +00001937{
Janos Follath24eed8d2019-11-22 13:21:35 +00001938 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Paul Bakker23986e52011-04-24 08:57:21 +00001939 size_t lz, lzt;
Alexander Ke8ad49f2019-08-16 16:16:07 +03001940 mbedtls_mpi TA, TB;
Paul Bakker5121ce52009-01-03 21:22:43 +00001941
Gilles Peskine449bd832023-01-11 14:50:10 +01001942 MPI_VALIDATE_RET(G != NULL);
1943 MPI_VALIDATE_RET(A != NULL);
1944 MPI_VALIDATE_RET(B != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00001945
Gilles Peskine449bd832023-01-11 14:50:10 +01001946 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00001947
Gilles Peskine449bd832023-01-11 14:50:10 +01001948 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
1949 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
Paul Bakker5121ce52009-01-03 21:22:43 +00001950
Gilles Peskine449bd832023-01-11 14:50:10 +01001951 lz = mbedtls_mpi_lsb(&TA);
1952 lzt = mbedtls_mpi_lsb(&TB);
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001953
Gilles Peskine27253bc2021-06-09 13:26:43 +02001954 /* The loop below gives the correct result when A==0 but not when B==0.
1955 * So have a special case for B==0. Leverage the fact that we just
1956 * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
1957 * slightly more efficient than cmp_int(). */
Gilles Peskine449bd832023-01-11 14:50:10 +01001958 if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
1959 ret = mbedtls_mpi_copy(G, A);
Gilles Peskine27253bc2021-06-09 13:26:43 +02001960 goto cleanup;
1961 }
1962
Gilles Peskine449bd832023-01-11 14:50:10 +01001963 if (lzt < lz) {
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001964 lz = lzt;
Gilles Peskine449bd832023-01-11 14:50:10 +01001965 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00001966
Paul Bakker5121ce52009-01-03 21:22:43 +00001967 TA.s = TB.s = 1;
1968
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001969 /* We mostly follow the procedure described in HAC 14.54, but with some
1970 * minor differences:
1971 * - Sequences of multiplications or divisions by 2 are grouped into a
1972 * single shift operation.
Gilles Peskineb09c7ee2021-06-21 18:58:39 +02001973 * - The procedure in HAC assumes that 0 < TB <= TA.
1974 * - The condition TB <= TA is not actually necessary for correctness.
1975 * TA and TB have symmetric roles except for the loop termination
1976 * condition, and the shifts at the beginning of the loop body
1977 * remove any significance from the ordering of TA vs TB before
1978 * the shifts.
1979 * - If TA = 0, the loop goes through 0 iterations and the result is
1980 * correctly TB.
1981 * - The case TB = 0 was short-circuited above.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001982 *
1983 * For the correctness proof below, decompose the original values of
1984 * A and B as
1985 * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
1986 * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
1987 * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
1988 * and gcd(A',B') is odd or 0.
1989 *
1990 * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
1991 * The code maintains the following invariant:
1992 * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
Gilles Peskine4df3f1f2021-06-15 22:09:39 +02001993 */
1994
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02001995 /* Proof that the loop terminates:
1996 * At each iteration, either the right-shift by 1 is made on a nonzero
1997 * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
1998 * by at least 1, or the right-shift by 1 is made on zero and then
1999 * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
2000 * since in that case TB is calculated from TB-TA with the condition TB>TA).
2001 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002002 while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002003 /* Divisions by 2 preserve the invariant (I). */
Gilles Peskine449bd832023-01-11 14:50:10 +01002004 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
2005 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
Paul Bakker5121ce52009-01-03 21:22:43 +00002006
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002007 /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
2008 * TA-TB is even so the division by 2 has an integer result.
2009 * Invariant (I) is preserved since any odd divisor of both TA and TB
2010 * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
Shaun Case8b0ecbc2021-12-20 21:14:10 -08002011 * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002012 * divides TA.
2013 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002014 if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
2015 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
2016 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
2017 } else {
2018 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
2019 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002020 }
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002021 /* Note that one of TA or TB is still odd. */
Paul Bakker5121ce52009-01-03 21:22:43 +00002022 }
2023
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002024 /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
2025 * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
2026 * - If there was at least one loop iteration, then one of TA or TB is odd,
2027 * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
2028 * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
2029 * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
Gilles Peskine4d3fd362021-06-21 11:40:38 +02002030 * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
Gilles Peskine2a63c5b2021-06-16 13:42:04 +02002031 */
2032
Gilles Peskine449bd832023-01-11 14:50:10 +01002033 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
2034 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
Paul Bakker5121ce52009-01-03 21:22:43 +00002035
2036cleanup:
2037
Gilles Peskine449bd832023-01-11 14:50:10 +01002038 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
Paul Bakker5121ce52009-01-03 21:22:43 +00002039
Gilles Peskine449bd832023-01-11 14:50:10 +01002040 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002041}
2042
Paul Bakker33dc46b2014-04-30 16:11:39 +02002043/*
2044 * Fill X with size bytes of random.
Gilles Peskine22cdd0c2022-10-27 20:15:13 +02002045 * The bytes returned from the RNG are used in a specific order which
2046 * is suitable for deterministic ECDSA (see the specification of
2047 * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
Paul Bakker33dc46b2014-04-30 16:11:39 +02002048 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002049int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
2050 int (*f_rng)(void *, unsigned char *, size_t),
2051 void *p_rng)
Paul Bakker287781a2011-03-26 13:18:49 +00002052{
Janos Follath24eed8d2019-11-22 13:21:35 +00002053 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Gilles Peskine449bd832023-01-11 14:50:10 +01002054 const size_t limbs = CHARS_TO_LIMBS(size);
Hanno Beckerda1655a2017-10-18 14:21:44 +01002055
Gilles Peskine449bd832023-01-11 14:50:10 +01002056 MPI_VALIDATE_RET(X != NULL);
2057 MPI_VALIDATE_RET(f_rng != NULL);
Paul Bakker33dc46b2014-04-30 16:11:39 +02002058
Hanno Beckerda1655a2017-10-18 14:21:44 +01002059 /* Ensure that target MPI has exactly the necessary number of limbs */
Gilles Peskine449bd832023-01-11 14:50:10 +01002060 MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
2061 if (size == 0) {
2062 return 0;
2063 }
Paul Bakker287781a2011-03-26 13:18:49 +00002064
Gilles Peskine449bd832023-01-11 14:50:10 +01002065 ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
Paul Bakker287781a2011-03-26 13:18:49 +00002066
2067cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002068 return ret;
Paul Bakker287781a2011-03-26 13:18:49 +00002069}
2070
Gilles Peskine449bd832023-01-11 14:50:10 +01002071int mbedtls_mpi_random(mbedtls_mpi *X,
2072 mbedtls_mpi_sint min,
2073 const mbedtls_mpi *N,
2074 int (*f_rng)(void *, unsigned char *, size_t),
2075 void *p_rng)
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002076{
Gilles Peskine449bd832023-01-11 14:50:10 +01002077 if (min < 0) {
2078 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2079 }
2080 if (mbedtls_mpi_cmp_int(N, min) <= 0) {
2081 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2082 }
Gilles Peskine1e918f42021-03-29 22:14:51 +02002083
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002084 /* Ensure that target MPI has exactly the same number of limbs
2085 * as the upper bound, even if the upper bound has leading zeros.
Gilles Peskine6b7ce962022-12-15 15:04:33 +01002086 * This is necessary for mbedtls_mpi_core_random. */
Gilles Peskine449bd832023-01-11 14:50:10 +01002087 int ret = mbedtls_mpi_resize_clear(X, N->n);
2088 if (ret != 0) {
2089 return ret;
2090 }
Gilles Peskine1a7df4e2021-04-01 15:57:18 +02002091
Gilles Peskine449bd832023-01-11 14:50:10 +01002092 return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
Gilles Peskine02ac93a2021-03-29 22:02:55 +02002093}
2094
Paul Bakker5121ce52009-01-03 21:22:43 +00002095/*
2096 * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
2097 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002098int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
Paul Bakker5121ce52009-01-03 21:22:43 +00002099{
Janos Follath24eed8d2019-11-22 13:21:35 +00002100 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002101 mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
Gilles Peskine449bd832023-01-11 14:50:10 +01002102 MPI_VALIDATE_RET(X != NULL);
2103 MPI_VALIDATE_RET(A != NULL);
2104 MPI_VALIDATE_RET(N != NULL);
Paul Bakker5121ce52009-01-03 21:22:43 +00002105
Gilles Peskine449bd832023-01-11 14:50:10 +01002106 if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
2107 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2108 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002109
Gilles Peskine449bd832023-01-11 14:50:10 +01002110 mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
2111 mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
2112 mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002113
Gilles Peskine449bd832023-01-11 14:50:10 +01002114 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002115
Gilles Peskine449bd832023-01-11 14:50:10 +01002116 if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002117 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002118 goto cleanup;
2119 }
2120
Gilles Peskine449bd832023-01-11 14:50:10 +01002121 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
2122 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
2123 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
2124 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002125
Gilles Peskine449bd832023-01-11 14:50:10 +01002126 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
2127 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
2128 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
2129 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002130
Gilles Peskine449bd832023-01-11 14:50:10 +01002131 do {
2132 while ((TU.p[0] & 1) == 0) {
2133 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002134
Gilles Peskine449bd832023-01-11 14:50:10 +01002135 if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
2136 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
2137 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002138 }
2139
Gilles Peskine449bd832023-01-11 14:50:10 +01002140 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
2141 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002142 }
2143
Gilles Peskine449bd832023-01-11 14:50:10 +01002144 while ((TV.p[0] & 1) == 0) {
2145 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002146
Gilles Peskine449bd832023-01-11 14:50:10 +01002147 if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
2148 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
2149 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
Paul Bakker5121ce52009-01-03 21:22:43 +00002150 }
2151
Gilles Peskine449bd832023-01-11 14:50:10 +01002152 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
2153 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002154 }
2155
Gilles Peskine449bd832023-01-11 14:50:10 +01002156 if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
2157 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
2158 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
2159 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
2160 } else {
2161 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
2162 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
2163 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
Paul Bakker5121ce52009-01-03 21:22:43 +00002164 }
Gilles Peskine449bd832023-01-11 14:50:10 +01002165 } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
2166
2167 while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
2168 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002169 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002170
Gilles Peskine449bd832023-01-11 14:50:10 +01002171 while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
2172 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
2173 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002174
Gilles Peskine449bd832023-01-11 14:50:10 +01002175 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
Paul Bakker5121ce52009-01-03 21:22:43 +00002176
2177cleanup:
2178
Gilles Peskine449bd832023-01-11 14:50:10 +01002179 mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
2180 mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
2181 mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
Paul Bakker5121ce52009-01-03 21:22:43 +00002182
Gilles Peskine449bd832023-01-11 14:50:10 +01002183 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002184}
2185
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002186#if defined(MBEDTLS_GENPRIME)
Paul Bakkerd9374b02012-11-02 11:02:58 +00002187
Paul Bakker5121ce52009-01-03 21:22:43 +00002188static const int small_prime[] =
2189{
Gilles Peskine449bd832023-01-11 14:50:10 +01002190 3, 5, 7, 11, 13, 17, 19, 23,
2191 29, 31, 37, 41, 43, 47, 53, 59,
2192 61, 67, 71, 73, 79, 83, 89, 97,
2193 101, 103, 107, 109, 113, 127, 131, 137,
2194 139, 149, 151, 157, 163, 167, 173, 179,
2195 181, 191, 193, 197, 199, 211, 223, 227,
2196 229, 233, 239, 241, 251, 257, 263, 269,
2197 271, 277, 281, 283, 293, 307, 311, 313,
2198 317, 331, 337, 347, 349, 353, 359, 367,
2199 373, 379, 383, 389, 397, 401, 409, 419,
2200 421, 431, 433, 439, 443, 449, 457, 461,
2201 463, 467, 479, 487, 491, 499, 503, 509,
2202 521, 523, 541, 547, 557, 563, 569, 571,
2203 577, 587, 593, 599, 601, 607, 613, 617,
2204 619, 631, 641, 643, 647, 653, 659, 661,
2205 673, 677, 683, 691, 701, 709, 719, 727,
2206 733, 739, 743, 751, 757, 761, 769, 773,
2207 787, 797, 809, 811, 821, 823, 827, 829,
2208 839, 853, 857, 859, 863, 877, 881, 883,
2209 887, 907, 911, 919, 929, 937, 941, 947,
2210 953, 967, 971, 977, 983, 991, 997, -103
Paul Bakker5121ce52009-01-03 21:22:43 +00002211};
2212
2213/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002214 * Small divisors test (X must be positive)
2215 *
2216 * Return values:
2217 * 0: no small factor (possible prime, more tests needed)
2218 * 1: certain prime
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002219 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002220 * other negative: error
Paul Bakker5121ce52009-01-03 21:22:43 +00002221 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002222static int mpi_check_small_factors(const mbedtls_mpi *X)
Paul Bakker5121ce52009-01-03 21:22:43 +00002223{
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002224 int ret = 0;
2225 size_t i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002226 mbedtls_mpi_uint r;
Paul Bakker5121ce52009-01-03 21:22:43 +00002227
Gilles Peskine449bd832023-01-11 14:50:10 +01002228 if ((X->p[0] & 1) == 0) {
2229 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2230 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002231
Gilles Peskine449bd832023-01-11 14:50:10 +01002232 for (i = 0; small_prime[i] > 0; i++) {
2233 if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) {
2234 return 1;
2235 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002236
Gilles Peskine449bd832023-01-11 14:50:10 +01002237 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i]));
Paul Bakker5121ce52009-01-03 21:22:43 +00002238
Gilles Peskine449bd832023-01-11 14:50:10 +01002239 if (r == 0) {
2240 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2241 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002242 }
2243
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002244cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002245 return ret;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002246}
2247
2248/*
2249 * Miller-Rabin pseudo-primality test (HAC 4.24)
2250 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002251static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
2252 int (*f_rng)(void *, unsigned char *, size_t),
2253 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002254{
Pascal Junodb99183d2015-03-11 16:49:45 +01002255 int ret, count;
Janos Follathda31fa12018-09-03 14:45:23 +01002256 size_t i, j, k, s;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002257 mbedtls_mpi W, R, T, A, RR;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002258
Gilles Peskine449bd832023-01-11 14:50:10 +01002259 MPI_VALIDATE_RET(X != NULL);
2260 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002261
Gilles Peskine449bd832023-01-11 14:50:10 +01002262 mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
2263 mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
2264 mbedtls_mpi_init(&RR);
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002265
Paul Bakker5121ce52009-01-03 21:22:43 +00002266 /*
2267 * W = |X| - 1
2268 * R = W >> lsb( W )
2269 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002270 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
2271 s = mbedtls_mpi_lsb(&W);
2272 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
2273 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
Paul Bakker5121ce52009-01-03 21:22:43 +00002274
Gilles Peskine449bd832023-01-11 14:50:10 +01002275 for (i = 0; i < rounds; i++) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002276 /*
2277 * pick a random A, 1 < A < |X| - 1
2278 */
Pascal Junodb99183d2015-03-11 16:49:45 +01002279 count = 0;
2280 do {
Gilles Peskine449bd832023-01-11 14:50:10 +01002281 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
Pascal Junodb99183d2015-03-11 16:49:45 +01002282
Gilles Peskine449bd832023-01-11 14:50:10 +01002283 j = mbedtls_mpi_bitlen(&A);
2284 k = mbedtls_mpi_bitlen(&W);
Pascal Junodb99183d2015-03-11 16:49:45 +01002285 if (j > k) {
Gilles Peskine449bd832023-01-11 14:50:10 +01002286 A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
Pascal Junodb99183d2015-03-11 16:49:45 +01002287 }
2288
2289 if (count++ > 30) {
Jens Wiklanderf08aa3e2019-01-17 13:30:57 +01002290 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
2291 goto cleanup;
Pascal Junodb99183d2015-03-11 16:49:45 +01002292 }
2293
Gilles Peskine449bd832023-01-11 14:50:10 +01002294 } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
2295 mbedtls_mpi_cmp_int(&A, 1) <= 0);
Paul Bakker5121ce52009-01-03 21:22:43 +00002296
2297 /*
2298 * A = A^R mod |X|
2299 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002300 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
Paul Bakker5121ce52009-01-03 21:22:43 +00002301
Gilles Peskine449bd832023-01-11 14:50:10 +01002302 if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
2303 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002304 continue;
Gilles Peskine449bd832023-01-11 14:50:10 +01002305 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002306
2307 j = 1;
Gilles Peskine449bd832023-01-11 14:50:10 +01002308 while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002309 /*
2310 * A = A * A mod |X|
2311 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002312 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
2313 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
Paul Bakker5121ce52009-01-03 21:22:43 +00002314
Gilles Peskine449bd832023-01-11 14:50:10 +01002315 if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002316 break;
Gilles Peskine449bd832023-01-11 14:50:10 +01002317 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002318
2319 j++;
2320 }
2321
2322 /*
2323 * not prime if A != |X| - 1 or A == 1
2324 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002325 if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
2326 mbedtls_mpi_cmp_int(&A, 1) == 0) {
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002327 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker5121ce52009-01-03 21:22:43 +00002328 break;
2329 }
2330 }
2331
2332cleanup:
Gilles Peskine449bd832023-01-11 14:50:10 +01002333 mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
2334 mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
2335 mbedtls_mpi_free(&RR);
Paul Bakker5121ce52009-01-03 21:22:43 +00002336
Gilles Peskine449bd832023-01-11 14:50:10 +01002337 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002338}
2339
2340/*
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002341 * Pseudo-primality test: small factors, then Miller-Rabin
2342 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002343int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
2344 int (*f_rng)(void *, unsigned char *, size_t),
2345 void *p_rng)
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002346{
Janos Follath24eed8d2019-11-22 13:21:35 +00002347 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002348 mbedtls_mpi XX;
Gilles Peskine449bd832023-01-11 14:50:10 +01002349 MPI_VALIDATE_RET(X != NULL);
2350 MPI_VALIDATE_RET(f_rng != NULL);
Manuel Pégourié-Gonnard7f4ed672014-10-14 20:56:02 +02002351
2352 XX.s = 1;
2353 XX.n = X->n;
2354 XX.p = X->p;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002355
Gilles Peskine449bd832023-01-11 14:50:10 +01002356 if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
2357 mbedtls_mpi_cmp_int(&XX, 1) == 0) {
2358 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002359 }
2360
Gilles Peskine449bd832023-01-11 14:50:10 +01002361 if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
2362 return 0;
2363 }
2364
2365 if ((ret = mpi_check_small_factors(&XX)) != 0) {
2366 if (ret == 1) {
2367 return 0;
2368 }
2369
2370 return ret;
2371 }
2372
2373 return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
Janos Follathf301d232018-08-14 13:34:01 +01002374}
2375
Manuel Pégourié-Gonnard378fb4b2013-11-22 18:39:18 +01002376/*
Paul Bakker5121ce52009-01-03 21:22:43 +00002377 * Prime number generation
Jethro Beekman66689272018-02-14 19:24:10 -08002378 *
Janos Follathf301d232018-08-14 13:34:01 +01002379 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
2380 * be either 1024 bits or 1536 bits long, and flags must contain
2381 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
Paul Bakker5121ce52009-01-03 21:22:43 +00002382 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002383int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
2384 int (*f_rng)(void *, unsigned char *, size_t),
2385 void *p_rng)
Paul Bakker5121ce52009-01-03 21:22:43 +00002386{
Jethro Beekman66689272018-02-14 19:24:10 -08002387#ifdef MBEDTLS_HAVE_INT64
2388// ceil(2^63.5)
2389#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
2390#else
2391// ceil(2^31.5)
2392#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
2393#endif
2394 int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
Paul Bakker23986e52011-04-24 08:57:21 +00002395 size_t k, n;
Janos Follathda31fa12018-09-03 14:45:23 +01002396 int rounds;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002397 mbedtls_mpi_uint r;
2398 mbedtls_mpi Y;
Paul Bakker5121ce52009-01-03 21:22:43 +00002399
Gilles Peskine449bd832023-01-11 14:50:10 +01002400 MPI_VALIDATE_RET(X != NULL);
2401 MPI_VALIDATE_RET(f_rng != NULL);
Hanno Becker73d7d792018-12-11 10:35:51 +00002402
Gilles Peskine449bd832023-01-11 14:50:10 +01002403 if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
2404 return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
2405 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002406
Gilles Peskine449bd832023-01-11 14:50:10 +01002407 mbedtls_mpi_init(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00002408
Gilles Peskine449bd832023-01-11 14:50:10 +01002409 n = BITS_TO_LIMBS(nbits);
Paul Bakker5121ce52009-01-03 21:22:43 +00002410
Gilles Peskine449bd832023-01-11 14:50:10 +01002411 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
Janos Follathda31fa12018-09-03 14:45:23 +01002412 /*
2413 * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
2414 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002415 rounds = ((nbits >= 1300) ? 2 : (nbits >= 850) ? 3 :
2416 (nbits >= 650) ? 4 : (nbits >= 350) ? 8 :
2417 (nbits >= 250) ? 12 : (nbits >= 150) ? 18 : 27);
2418 } else {
Janos Follathda31fa12018-09-03 14:45:23 +01002419 /*
2420 * 2^-100 error probability, number of rounds computed based on HAC,
2421 * fact 4.48
2422 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002423 rounds = ((nbits >= 1450) ? 4 : (nbits >= 1150) ? 5 :
2424 (nbits >= 1000) ? 6 : (nbits >= 850) ? 7 :
2425 (nbits >= 750) ? 8 : (nbits >= 500) ? 13 :
2426 (nbits >= 250) ? 28 : (nbits >= 150) ? 40 : 51);
Janos Follathda31fa12018-09-03 14:45:23 +01002427 }
2428
Gilles Peskine449bd832023-01-11 14:50:10 +01002429 while (1) {
2430 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
Jethro Beekman66689272018-02-14 19:24:10 -08002431 /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
Gilles Peskine449bd832023-01-11 14:50:10 +01002432 if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
2433 continue;
2434 }
Jethro Beekman66689272018-02-14 19:24:10 -08002435
2436 k = n * biL;
Gilles Peskine449bd832023-01-11 14:50:10 +01002437 if (k > nbits) {
2438 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
2439 }
Jethro Beekman66689272018-02-14 19:24:10 -08002440 X->p[0] |= 1;
2441
Gilles Peskine449bd832023-01-11 14:50:10 +01002442 if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
2443 ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
Jethro Beekman66689272018-02-14 19:24:10 -08002444
Gilles Peskine449bd832023-01-11 14:50:10 +01002445 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Paul Bakker5121ce52009-01-03 21:22:43 +00002446 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002447 }
2448 } else {
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002449 /*
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01002450 * A necessary condition for Y and X = 2Y + 1 to be prime
Jethro Beekman66689272018-02-14 19:24:10 -08002451 * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
2452 * Make sure it is satisfied, while keeping X = 3 mod 4
Manuel Pégourié-Gonnardddf76152013-11-22 19:58:22 +01002453 */
Jethro Beekman66689272018-02-14 19:24:10 -08002454
2455 X->p[0] |= 2;
2456
Gilles Peskine449bd832023-01-11 14:50:10 +01002457 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
2458 if (r == 0) {
2459 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
2460 } else if (r == 1) {
2461 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
2462 }
Jethro Beekman66689272018-02-14 19:24:10 -08002463
2464 /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
Gilles Peskine449bd832023-01-11 14:50:10 +01002465 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
2466 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
Jethro Beekman66689272018-02-14 19:24:10 -08002467
Gilles Peskine449bd832023-01-11 14:50:10 +01002468 while (1) {
Jethro Beekman66689272018-02-14 19:24:10 -08002469 /*
2470 * First, check small factors for X and Y
2471 * before doing Miller-Rabin on any of them
2472 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002473 if ((ret = mpi_check_small_factors(X)) == 0 &&
2474 (ret = mpi_check_small_factors(&Y)) == 0 &&
2475 (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
2476 == 0 &&
2477 (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
2478 == 0) {
Jethro Beekman66689272018-02-14 19:24:10 -08002479 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002480 }
Jethro Beekman66689272018-02-14 19:24:10 -08002481
Gilles Peskine449bd832023-01-11 14:50:10 +01002482 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
Jethro Beekman66689272018-02-14 19:24:10 -08002483 goto cleanup;
Gilles Peskine449bd832023-01-11 14:50:10 +01002484 }
Jethro Beekman66689272018-02-14 19:24:10 -08002485
2486 /*
2487 * Next candidates. We want to preserve Y = (X-1) / 2 and
2488 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
2489 * so up Y by 6 and X by 12.
2490 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002491 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 12));
2492 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
Paul Bakker5121ce52009-01-03 21:22:43 +00002493 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002494 }
2495 }
2496
2497cleanup:
2498
Gilles Peskine449bd832023-01-11 14:50:10 +01002499 mbedtls_mpi_free(&Y);
Paul Bakker5121ce52009-01-03 21:22:43 +00002500
Gilles Peskine449bd832023-01-11 14:50:10 +01002501 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002502}
2503
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002504#endif /* MBEDTLS_GENPRIME */
Paul Bakker5121ce52009-01-03 21:22:43 +00002505
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002506#if defined(MBEDTLS_SELF_TEST)
Paul Bakker5121ce52009-01-03 21:22:43 +00002507
Paul Bakker23986e52011-04-24 08:57:21 +00002508#define GCD_PAIR_COUNT 3
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002509
2510static const int gcd_pairs[GCD_PAIR_COUNT][3] =
2511{
2512 { 693, 609, 21 },
2513 { 1764, 868, 28 },
2514 { 768454923, 542167814, 1 }
2515};
2516
Paul Bakker5121ce52009-01-03 21:22:43 +00002517/*
2518 * Checkup routine
2519 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002520int mbedtls_mpi_self_test(int verbose)
Paul Bakker5121ce52009-01-03 21:22:43 +00002521{
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002522 int ret, i;
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002523 mbedtls_mpi A, E, N, X, Y, U, V;
Paul Bakker5121ce52009-01-03 21:22:43 +00002524
Gilles Peskine449bd832023-01-11 14:50:10 +01002525 mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
2526 mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00002527
Gilles Peskine449bd832023-01-11 14:50:10 +01002528 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
2529 "EFE021C2645FD1DC586E69184AF4A31E" \
2530 "D5F53E93B5F123FA41680867BA110131" \
2531 "944FE7952E2517337780CB0DB80E61AA" \
2532 "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002533
Gilles Peskine449bd832023-01-11 14:50:10 +01002534 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
2535 "B2E7EFD37075B9F03FF989C7C5051C20" \
2536 "34D2A323810251127E7BF8625A4F49A5" \
2537 "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
2538 "5B5C25763222FEFCCFC38B832366C29E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002539
Gilles Peskine449bd832023-01-11 14:50:10 +01002540 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
2541 "0066A198186C18C10B2F5ED9B522752A" \
2542 "9830B69916E535C8F047518A889A43A5" \
2543 "94B6BED27A168D31D4A52F88925AA8F5"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002544
Gilles Peskine449bd832023-01-11 14:50:10 +01002545 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002546
Gilles Peskine449bd832023-01-11 14:50:10 +01002547 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2548 "602AB7ECA597A3D6B56FF9829A5E8B85" \
2549 "9E857EA95A03512E2BAE7391688D264A" \
2550 "A5663B0341DB9CCFD2C4C5F421FEC814" \
2551 "8001B72E848A38CAE1C65F78E56ABDEF" \
2552 "E12D3C039B8A02D6BE593F0BBBDA56F1" \
2553 "ECF677152EF804370C1A305CAF3B5BF1" \
2554 "30879B56C61DE584A0F53A2447A51E"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002555
Gilles Peskine449bd832023-01-11 14:50:10 +01002556 if (verbose != 0) {
2557 mbedtls_printf(" MPI test #1 (mul_mpi): ");
2558 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002559
Gilles Peskine449bd832023-01-11 14:50:10 +01002560 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2561 if (verbose != 0) {
2562 mbedtls_printf("failed\n");
2563 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002564
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002565 ret = 1;
2566 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002567 }
2568
Gilles Peskine449bd832023-01-11 14:50:10 +01002569 if (verbose != 0) {
2570 mbedtls_printf("passed\n");
2571 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002572
Gilles Peskine449bd832023-01-11 14:50:10 +01002573 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002574
Gilles Peskine449bd832023-01-11 14:50:10 +01002575 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2576 "256567336059E52CAE22925474705F39A94"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002577
Gilles Peskine449bd832023-01-11 14:50:10 +01002578 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
2579 "6613F26162223DF488E9CD48CC132C7A" \
2580 "0AC93C701B001B092E4E5B9F73BCD27B" \
2581 "9EE50D0657C77F374E903CDFA4C642"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002582
Gilles Peskine449bd832023-01-11 14:50:10 +01002583 if (verbose != 0) {
2584 mbedtls_printf(" MPI test #2 (div_mpi): ");
2585 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002586
Gilles Peskine449bd832023-01-11 14:50:10 +01002587 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
2588 mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
2589 if (verbose != 0) {
2590 mbedtls_printf("failed\n");
2591 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002592
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002593 ret = 1;
2594 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002595 }
2596
Gilles Peskine449bd832023-01-11 14:50:10 +01002597 if (verbose != 0) {
2598 mbedtls_printf("passed\n");
2599 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002600
Gilles Peskine449bd832023-01-11 14:50:10 +01002601 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
Paul Bakker5121ce52009-01-03 21:22:43 +00002602
Gilles Peskine449bd832023-01-11 14:50:10 +01002603 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2604 "36E139AEA55215609D2816998ED020BB" \
2605 "BD96C37890F65171D948E9BC7CBAA4D9" \
2606 "325D24D6A3C12710F10A09FA08AB87"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002607
Gilles Peskine449bd832023-01-11 14:50:10 +01002608 if (verbose != 0) {
2609 mbedtls_printf(" MPI test #3 (exp_mod): ");
2610 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002611
Gilles Peskine449bd832023-01-11 14:50:10 +01002612 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2613 if (verbose != 0) {
2614 mbedtls_printf("failed\n");
2615 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002616
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002617 ret = 1;
2618 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002619 }
2620
Gilles Peskine449bd832023-01-11 14:50:10 +01002621 if (verbose != 0) {
2622 mbedtls_printf("passed\n");
2623 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002624
Gilles Peskine449bd832023-01-11 14:50:10 +01002625 MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
Paul Bakker5121ce52009-01-03 21:22:43 +00002626
Gilles Peskine449bd832023-01-11 14:50:10 +01002627 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
2628 "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
2629 "C3DBA76456363A10869622EAC2DD84EC" \
2630 "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
Paul Bakker5121ce52009-01-03 21:22:43 +00002631
Gilles Peskine449bd832023-01-11 14:50:10 +01002632 if (verbose != 0) {
2633 mbedtls_printf(" MPI test #4 (inv_mod): ");
2634 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002635
Gilles Peskine449bd832023-01-11 14:50:10 +01002636 if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
2637 if (verbose != 0) {
2638 mbedtls_printf("failed\n");
2639 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002640
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002641 ret = 1;
2642 goto cleanup;
Paul Bakker5121ce52009-01-03 21:22:43 +00002643 }
2644
Gilles Peskine449bd832023-01-11 14:50:10 +01002645 if (verbose != 0) {
2646 mbedtls_printf("passed\n");
2647 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002648
Gilles Peskine449bd832023-01-11 14:50:10 +01002649 if (verbose != 0) {
2650 mbedtls_printf(" MPI test #5 (simple gcd): ");
2651 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002652
Gilles Peskine449bd832023-01-11 14:50:10 +01002653 for (i = 0; i < GCD_PAIR_COUNT; i++) {
2654 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
2655 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002656
Gilles Peskine449bd832023-01-11 14:50:10 +01002657 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002658
Gilles Peskine449bd832023-01-11 14:50:10 +01002659 if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
2660 if (verbose != 0) {
2661 mbedtls_printf("failed at %d\n", i);
2662 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002663
Manuel Pégourié-Gonnard9e987ed2014-01-20 10:03:15 +01002664 ret = 1;
2665 goto cleanup;
2666 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002667 }
2668
Gilles Peskine449bd832023-01-11 14:50:10 +01002669 if (verbose != 0) {
2670 mbedtls_printf("passed\n");
2671 }
Paul Bakker4e0d7ca2009-01-29 22:24:33 +00002672
Paul Bakker5121ce52009-01-03 21:22:43 +00002673cleanup:
2674
Gilles Peskine449bd832023-01-11 14:50:10 +01002675 if (ret != 0 && verbose != 0) {
2676 mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
2677 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002678
Gilles Peskine449bd832023-01-11 14:50:10 +01002679 mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
2680 mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
Paul Bakker5121ce52009-01-03 21:22:43 +00002681
Gilles Peskine449bd832023-01-11 14:50:10 +01002682 if (verbose != 0) {
2683 mbedtls_printf("\n");
2684 }
Paul Bakker5121ce52009-01-03 21:22:43 +00002685
Gilles Peskine449bd832023-01-11 14:50:10 +01002686 return ret;
Paul Bakker5121ce52009-01-03 21:22:43 +00002687}
2688
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002689#endif /* MBEDTLS_SELF_TEST */
Paul Bakker5121ce52009-01-03 21:22:43 +00002690
Manuel Pégourié-Gonnard2cf5a7c2015-04-08 12:49:31 +02002691#endif /* MBEDTLS_BIGNUM_C */