blob: 87ad15f0321aaa46bd6be0936ddeb05e53504e7e [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
18 * Copyright (C) 2018, ARM Limited, All Rights Reserved
19 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
32 *
33 * This file is part of mbed TLS (https://tls.mbed.org)
34 */
35
36#ifndef PSA_CRYPTO_VALUES_H
37#define PSA_CRYPTO_VALUES_H
38
39/** \defgroup error Error codes
40 * @{
41 */
42
David Saadab4ecc272019-02-14 13:48:10 +020043/* PSA error codes */
44
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045/** The action was completed successfully. */
46#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010047
48/** An error occurred that does not correspond to any defined
49 * failure cause.
50 *
51 * Implementations may use this error code if none of the other standard
52 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020053#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010054
55/** The requested operation or a parameter is not supported
56 * by this implementation.
57 *
58 * Implementations should return this error code when an enumeration
59 * parameter such as a key type, algorithm, etc. is not recognized.
60 * If a combination of parameters is recognized and identified as
61 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020062#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010063
64/** The requested action is denied by a policy.
65 *
66 * Implementations should return this error code when the parameters
67 * are recognized as valid and supported, and a policy explicitly
68 * denies the requested operation.
69 *
70 * If a subset of the parameters of a function call identify a
71 * forbidden operation, and another subset of the parameters are
72 * not valid or not supported, it is unspecified whether the function
73 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
74 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020075#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010076
77/** An output buffer is too small.
78 *
79 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
80 * description to determine a sufficient buffer size.
81 *
82 * Implementations should preferably return this error code only
83 * in cases when performing the operation with a larger output
84 * buffer would succeed. However implementations may return this
85 * error if a function has invalid or unsupported parameters in addition
86 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020087#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088
David Saadab4ecc272019-02-14 13:48:10 +020089/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010090 *
David Saadab4ecc272019-02-14 13:48:10 +020091 * Implementations should return this error, when attempting
92 * to write an item (like a key) that already exists. */
93#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094
David Saadab4ecc272019-02-14 13:48:10 +020095/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010096 *
David Saadab4ecc272019-02-14 13:48:10 +020097 * Implementations should return this error, if a requested item (like
98 * a key) does not exist. */
99#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100
101/** The requested action cannot be performed in the current state.
102 *
103 * Multipart operations return this error when one of the
104 * functions is called out of sequence. Refer to the function
105 * descriptions for permitted sequencing of functions.
106 *
107 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100108 * that a key either exists or not,
109 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100110 * as applicable.
111 *
112 * Implementations shall not return this error code to indicate that a
113 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
114 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200115#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100116
117/** The parameters passed to the function are invalid.
118 *
119 * Implementations may return this error any time a parameter or
120 * combination of parameters are recognized as invalid.
121 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100122 * Implementations shall not return this error code to indicate that a
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
124 * instead.
125 */
David Saadab4ecc272019-02-14 13:48:10 +0200126#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100127
128/** There is not enough runtime memory.
129 *
130 * If the action is carried out across multiple security realms, this
131 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200132#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100133
134/** There is not enough persistent storage.
135 *
136 * Functions that modify the key storage return this error code if
137 * there is insufficient storage space on the host media. In addition,
138 * many functions that do not otherwise access storage may return this
139 * error code if the implementation requires a mandatory log entry for
140 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200141#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100142
143/** There was a communication failure inside the implementation.
144 *
145 * This can indicate a communication failure between the application
146 * and an external cryptoprocessor or between the cryptoprocessor and
147 * an external volatile or persistent memory. A communication failure
148 * may be transient or permanent depending on the cause.
149 *
150 * \warning If a function returns this error, it is undetermined
151 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200152 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100153 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
154 * if the requested action was completed successfully in an external
155 * cryptoprocessor but there was a breakdown of communication before
156 * the cryptoprocessor could report the status to the application.
157 */
David Saadab4ecc272019-02-14 13:48:10 +0200158#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100159
160/** There was a storage failure that may have led to data loss.
161 *
162 * This error indicates that some persistent storage is corrupted.
163 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200164 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100165 * between the cryptoprocessor and its external storage (use
166 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
167 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
168 *
169 * Note that a storage failure does not indicate that any data that was
170 * previously read is invalid. However this previously read data may no
171 * longer be readable from storage.
172 *
173 * When a storage failure occurs, it is no longer possible to ensure
174 * the global integrity of the keystore. Depending on the global
175 * integrity guarantees offered by the implementation, access to other
176 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100177 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100178 *
179 * Implementations should only use this error code to report a
180 * permanent storage corruption. However application writers should
181 * keep in mind that transient errors while reading the storage may be
182 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200183#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100184
185/** A hardware failure was detected.
186 *
187 * A hardware failure may be transient or permanent depending on the
188 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200189#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100190
191/** A tampering attempt was detected.
192 *
193 * If an application receives this error code, there is no guarantee
194 * that previously accessed or computed data was correct and remains
195 * confidential. Applications should not perform any security function
196 * and should enter a safe failure state.
197 *
198 * Implementations may return this error code if they detect an invalid
199 * state that cannot happen during normal operation and that indicates
200 * that the implementation's security guarantees no longer hold. Depending
201 * on the implementation architecture and on its security and safety goals,
202 * the implementation may forcibly terminate the application.
203 *
204 * This error code is intended as a last resort when a security breach
205 * is detected and it is unsure whether the keystore data is still
206 * protected. Implementations shall only return this error code
207 * to report an alarm from a tampering detector, to indicate that
208 * the confidentiality of stored data can no longer be guaranteed,
209 * or to indicate that the integrity of previously returned data is now
210 * considered compromised. Implementations shall not use this error code
211 * to indicate a hardware failure that merely makes it impossible to
212 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
213 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
214 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
215 * instead).
216 *
217 * This error indicates an attack against the application. Implementations
218 * shall not return this error code as a consequence of the behavior of
219 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200220#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100221
222/** There is not enough entropy to generate random data needed
223 * for the requested action.
224 *
225 * This error indicates a failure of a hardware random generator.
226 * Application writers should note that this error can be returned not
227 * only by functions whose purpose is to generate random data, such
228 * as key, IV or nonce generation, but also by functions that execute
229 * an algorithm with a randomized result, as well as functions that
230 * use randomization of intermediate computations as a countermeasure
231 * to certain attacks.
232 *
233 * Implementations should avoid returning this error after psa_crypto_init()
234 * has succeeded. Implementations should generate sufficient
235 * entropy during initialization and subsequently use a cryptographically
236 * secure pseudorandom generator (PRNG). However implementations may return
237 * this error at any time if a policy requires the PRNG to be reseeded
238 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200239#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100240
241/** The signature, MAC or hash is incorrect.
242 *
243 * Verification functions return this error if the verification
244 * calculations completed successfully, and the value to be verified
245 * was determined to be incorrect.
246 *
247 * If the value to verify has an invalid size, implementations may return
248 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200249#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100250
251/** The decrypted padding is incorrect.
252 *
253 * \warning In some protocols, when decrypting data, it is essential that
254 * the behavior of the application does not depend on whether the padding
255 * is correct, down to precise timing. Applications should prefer
256 * protocols that use authenticated encryption rather than plain
257 * encryption. If the application must perform a decryption of
258 * unauthenticated data, the application writer should take care not
259 * to reveal whether the padding is invalid.
260 *
261 * Implementations should strive to make valid and invalid padding
262 * as close as possible to indistinguishable to an external observer.
263 * In particular, the timing of a decryption operation should not
264 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200265#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100266
David Saadab4ecc272019-02-14 13:48:10 +0200267/** Return this error when there's insufficient data when attempting
268 * to read from a resource. */
269#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270
Andrew Thoelke3c2b8032019-08-22 12:20:12 +0100271/** The key handle is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272 */
David Saadab4ecc272019-02-14 13:48:10 +0200273#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100274
275/**@}*/
276
277/** \defgroup crypto_types Key and algorithm types
278 * @{
279 */
280
281/** An invalid key type value.
282 *
283 * Zero is not the encoding of any key type.
284 */
285#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
286
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100287/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100288 *
289 * Key types defined by this standard will never have the
290 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
291 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
292 * respect the bitwise structure used by standard encodings whenever practical.
293 */
294#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
295
296#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000)
297#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000)
298#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000)
299#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000)
300#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000)
301
302#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000)
303
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100304/** Whether a key type is vendor-defined.
305 *
306 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
307 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100308#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
309 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
310
311/** Whether a key type is an unstructured array of bytes.
312 *
313 * This encompasses both symmetric keys and non-key data.
314 */
315#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
316 (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \
317 PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
318
319/** Whether a key type is asymmetric: either a key pair or a public key. */
320#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
321 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
322 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
323 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
324/** Whether a key type is the public part of a key pair. */
325#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
326 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
327/** Whether a key type is a key pair containing a private part and a public
328 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200329#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100330 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
331/** The key pair type corresponding to a public key type.
332 *
333 * You may also pass a key pair type as \p type, it will be left unchanged.
334 *
335 * \param type A public key type or key pair type.
336 *
337 * \return The corresponding key pair type.
338 * If \p type is not a public key or a key pair,
339 * the return value is undefined.
340 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200341#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100342 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
343/** The public key type corresponding to a key pair type.
344 *
345 * You may also pass a key pair type as \p type, it will be left unchanged.
346 *
347 * \param type A public key type or key pair type.
348 *
349 * \return The corresponding public key type.
350 * If \p type is not a public key or a key pair,
351 * the return value is undefined.
352 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200353#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100354 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
355
356/** Raw data.
357 *
358 * A "key" of this type cannot be used for any cryptographic operation.
359 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine8fe6e0d2019-12-02 16:58:13 +0100360#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50010000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100361
362/** HMAC key.
363 *
364 * The key policy determines which underlying hash algorithm the key can be
365 * used for.
366 *
367 * HMAC keys should generally have the same size as the underlying hash.
368 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
369 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
370#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000)
371
372/** A secret for key derivation.
373 *
374 * The key policy determines which key derivation algorithm the key
375 * can be used for.
376 */
377#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000)
378
Gilles Peskine737c6be2019-05-21 16:01:06 +0200379/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100380 *
381 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
382 * 32 bytes (AES-256).
383 */
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100384#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x44020000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100385
386/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
387 *
388 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
389 * 24 bytes (3-key 3DES).
390 *
391 * Note that single DES and 2-key 3DES are weak and strongly
392 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
393 * is weak and deprecated and should only be used in legacy protocols.
394 */
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100395#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x43020000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100396
Gilles Peskine737c6be2019-05-21 16:01:06 +0200397/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100398 * Camellia block cipher. */
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100399#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x44040000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100400
401/** Key for the RC4 stream cipher.
402 *
403 * Note that RC4 is weak and deprecated and should only be used in
404 * legacy protocols. */
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100405#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40020000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100406
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200407/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
408 *
409 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
410 *
411 * Implementations must support 12-byte nonces, may support 8-byte nonces,
412 * and should reject other sizes.
413 */
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100414#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x40040000)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200415
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100416/** RSA public key. */
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100417#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60020000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100418/** RSA key pair (private and public key). */
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100419#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x70020000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100420/** Whether a key type is an RSA key (pair or public-only). */
421#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200422 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100424#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x61000000)
425#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x71000000)
Gilles Peskine025fccd2019-12-02 19:12:00 +0100426#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ffffff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100427/** Elliptic curve key pair.
428 *
429 * \param curve A value of type ::psa_ecc_curve_t that identifies the
430 * ECC curve to be used.
431 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200432#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
433 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100434/** Elliptic curve public key.
435 *
436 * \param curve A value of type ::psa_ecc_curve_t that identifies the
437 * ECC curve to be used.
438 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100439#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
440 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
441
442/** Whether a key type is an elliptic curve key (pair or public-only). */
443#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200444 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100445 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100446/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200447#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100448 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200449 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100450/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100451#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
452 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
453 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
454
455/** Extract the curve from an elliptic curve key type. */
456#define PSA_KEY_TYPE_GET_CURVE(type) \
457 ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
458 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
459 0))
460
Gilles Peskine025fccd2019-12-02 19:12:00 +0100461#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x1600a0)
462#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x1600c0)
463#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x1600e0)
464#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x160100)
465#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x1200a0)
466#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x1200c0)
467#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x1200e0)
468#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x120100)
469#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x120180)
470#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x120209)
471#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x1a00a0)
472#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x2600a3)
473#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x2600e9)
474#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x2600ef)
475#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x26011b)
476#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x260199)
477#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x26023b)
478#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x2200a3)
479#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x2200c1)
480#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x2200e9)
481#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x22011b)
482#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x220199)
483#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x22023b)
484#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x2a00a3)
485#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x2a00c1)
486#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x300100)
487#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x300180)
488#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x300200)
Gilles Peskinea9b9cf72019-05-21 19:18:33 +0200489/** Curve25519.
490 *
491 * This is the curve defined in Bernstein et al.,
492 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
493 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
494 */
Gilles Peskine025fccd2019-12-02 19:12:00 +0100495#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x0200ff)
Gilles Peskinea9b9cf72019-05-21 19:18:33 +0200496/** Curve448
497 *
498 * This is the curve defined in Hamburg,
499 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
500 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
501 */
Gilles Peskine025fccd2019-12-02 19:12:00 +0100502#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x0201c0)
Andrew Thoelkefd368e52019-09-25 22:14:29 +0100503
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100504#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x62000000)
505#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x72000000)
Gilles Peskine025fccd2019-12-02 19:12:00 +0100506#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ffffff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100507/** Diffie-Hellman key pair.
508 *
509 * \param group A value of type ::psa_dh_group_t that identifies the
510 * Diffie-Hellman group to be used.
511 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200512#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
513 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100514/** Diffie-Hellman public key.
515 *
516 * \param group A value of type ::psa_dh_group_t that identifies the
517 * Diffie-Hellman group to be used.
518 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200519#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
520 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
521
522/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
523#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200524 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200525 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
526/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200527#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200528 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200529 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200530/** Whether a key type is a Diffie-Hellman public key. */
531#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
532 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
533 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
534
535/** Extract the group from a Diffie-Hellman key type. */
536#define PSA_KEY_TYPE_GET_GROUP(type) \
537 ((psa_dh_group_t) (PSA_KEY_TYPE_IS_DH(type) ? \
538 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
539 0))
540
Gilles Peskine025fccd2019-12-02 19:12:00 +0100541#define PSA_DH_GROUP_FFDHE2048 ((psa_dh_group_t) 0x020800)
542#define PSA_DH_GROUP_FFDHE3072 ((psa_dh_group_t) 0x020c00)
543#define PSA_DH_GROUP_FFDHE4096 ((psa_dh_group_t) 0x021000)
544#define PSA_DH_GROUP_FFDHE6144 ((psa_dh_group_t) 0x021800)
545#define PSA_DH_GROUP_FFDHE8192 ((psa_dh_group_t) 0x022000)
Andrew Thoelkefd368e52019-09-25 22:14:29 +0100546
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100547#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
548 (((type) >> 24) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100549/** The block size of a block cipher.
550 *
551 * \param type A cipher key type (value of type #psa_key_type_t).
552 *
553 * \return The block size for a block cipher, or 1 for a stream cipher.
554 * The return value is undefined if \p type is not a supported
555 * cipher key type.
556 *
557 * \note It is possible to build stream cipher algorithms on top of a block
558 * cipher, for example CTR mode (#PSA_ALG_CTR).
559 * This macro only takes the key type into account, so it cannot be
560 * used to determine the size of the data that #psa_cipher_update()
561 * might buffer for future processing in general.
562 *
563 * \note This macro returns a compile-time constant if its argument is one.
564 *
565 * \warning This macro may evaluate its argument multiple times.
566 */
567#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100568 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
569 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
570 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100571
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100572/** Vendor-defined algorithm flag.
573 *
574 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
575 * bit set. Vendors who define additional algorithms must use an encoding with
576 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
577 * used by standard encodings whenever practical.
578 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100579#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100580
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100581#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
582#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
583#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
584#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
585#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
586#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
587#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100588#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
589#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100590
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100591/** Whether an algorithm is vendor-defined.
592 *
593 * See also #PSA_ALG_VENDOR_FLAG.
594 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100595#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
596 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
597
598/** Whether the specified algorithm is a hash algorithm.
599 *
600 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
601 *
602 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
603 * This macro may return either 0 or 1 if \p alg is not a supported
604 * algorithm identifier.
605 */
606#define PSA_ALG_IS_HASH(alg) \
607 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
608
609/** Whether the specified algorithm is a MAC algorithm.
610 *
611 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
612 *
613 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
614 * This macro may return either 0 or 1 if \p alg is not a supported
615 * algorithm identifier.
616 */
617#define PSA_ALG_IS_MAC(alg) \
618 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
619
620/** Whether the specified algorithm is a symmetric cipher algorithm.
621 *
622 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
623 *
624 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
625 * This macro may return either 0 or 1 if \p alg is not a supported
626 * algorithm identifier.
627 */
628#define PSA_ALG_IS_CIPHER(alg) \
629 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
630
631/** Whether the specified algorithm is an authenticated encryption
632 * with associated data (AEAD) algorithm.
633 *
634 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
635 *
636 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
637 * This macro may return either 0 or 1 if \p alg is not a supported
638 * algorithm identifier.
639 */
640#define PSA_ALG_IS_AEAD(alg) \
641 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
642
643/** Whether the specified algorithm is a public-key signature algorithm.
644 *
645 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
646 *
647 * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise.
648 * This macro may return either 0 or 1 if \p alg is not a supported
649 * algorithm identifier.
650 */
651#define PSA_ALG_IS_SIGN(alg) \
652 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
653
654/** Whether the specified algorithm is a public-key encryption algorithm.
655 *
656 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
657 *
658 * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise.
659 * This macro may return either 0 or 1 if \p alg is not a supported
660 * algorithm identifier.
661 */
662#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
663 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
664
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100665/** Whether the specified algorithm is a key agreement algorithm.
666 *
667 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
668 *
669 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
670 * This macro may return either 0 or 1 if \p alg is not a supported
671 * algorithm identifier.
672 */
673#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100674 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100675
676/** Whether the specified algorithm is a key derivation algorithm.
677 *
678 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
679 *
680 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
681 * This macro may return either 0 or 1 if \p alg is not a supported
682 * algorithm identifier.
683 */
684#define PSA_ALG_IS_KEY_DERIVATION(alg) \
685 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
686
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100687#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100688/** MD2 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100689#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100690/** MD4 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100691#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100692/** MD5 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100693#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100694/** PSA_ALG_RIPEMD160 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100695#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100696/** SHA1 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100697#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
698/** SHA2-224 */
699#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
700/** SHA2-256 */
701#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
702/** SHA2-384 */
703#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
704/** SHA2-512 */
705#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
706/** SHA2-512/224 */
707#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
708/** SHA2-512/256 */
709#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
710/** SHA3-224 */
711#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
712/** SHA3-256 */
713#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
714/** SHA3-384 */
715#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
716/** SHA3-512 */
717#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
718
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100719/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100720 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100721 * This value may be used to form the algorithm usage field of a policy
722 * for a signature algorithm that is parametrized by a hash. The key
723 * may then be used to perform operations using the same signature
724 * algorithm parametrized with any supported hash.
725 *
726 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100727 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100728 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100729 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100730 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
731 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100732 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200733 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100734 * ```
735 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100736 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100737 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
738 * call to sign or verify a message may use a different hash.
739 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100740 * psa_sign_hash(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
741 * psa_sign_hash(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
742 * psa_sign_hash(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100743 * ```
744 *
745 * This value may not be used to build other algorithms that are
746 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100747 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100748 *
749 * This value may not be used to build an algorithm specification to
750 * perform an operation. It is only valid to build policies.
751 */
752#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
753
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100754#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
755#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
756/** Macro to build an HMAC algorithm.
757 *
758 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
759 *
760 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
761 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
762 *
763 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100764 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100765 * hash algorithm.
766 */
767#define PSA_ALG_HMAC(hash_alg) \
768 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
769
770#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
771 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
772
773/** Whether the specified algorithm is an HMAC algorithm.
774 *
775 * HMAC is a family of MAC algorithms that are based on a hash function.
776 *
777 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
778 *
779 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
780 * This macro may return either 0 or 1 if \p alg is not a supported
781 * algorithm identifier.
782 */
783#define PSA_ALG_IS_HMAC(alg) \
784 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
785 PSA_ALG_HMAC_BASE)
786
787/* In the encoding of a MAC algorithm, the bits corresponding to
788 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
789 * truncated. As an exception, the value 0 means the untruncated algorithm,
790 * whatever its length is. The length is encoded in 6 bits, so it can
791 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
792 * to full length is correctly encoded as 0 and any non-trivial truncation
793 * is correctly encoded as a value between 1 and 63. */
794#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
795#define PSA_MAC_TRUNCATION_OFFSET 8
796
797/** Macro to build a truncated MAC algorithm.
798 *
799 * A truncated MAC algorithm is identical to the corresponding MAC
800 * algorithm except that the MAC value for the truncated algorithm
801 * consists of only the first \p mac_length bytes of the MAC value
802 * for the untruncated algorithm.
803 *
804 * \note This macro may allow constructing algorithm identifiers that
805 * are not valid, either because the specified length is larger
806 * than the untruncated MAC or because the specified length is
807 * smaller than permitted by the implementation.
808 *
809 * \note It is implementation-defined whether a truncated MAC that
810 * is truncated to the same length as the MAC of the untruncated
811 * algorithm is considered identical to the untruncated algorithm
812 * for policy comparison purposes.
813 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200814 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100815 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
816 * is true). This may be a truncated or untruncated
817 * MAC algorithm.
818 * \param mac_length Desired length of the truncated MAC in bytes.
819 * This must be at most the full length of the MAC
820 * and must be at least an implementation-specified
821 * minimum. The implementation-specified minimum
822 * shall not be zero.
823 *
824 * \return The corresponding MAC algorithm with the specified
825 * length.
826 * \return Unspecified if \p alg is not a supported
827 * MAC algorithm or if \p mac_length is too small or
828 * too large for the specified MAC algorithm.
829 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200830#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
831 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100832 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
833
834/** Macro to build the base MAC algorithm corresponding to a truncated
835 * MAC algorithm.
836 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200837 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100838 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
839 * is true). This may be a truncated or untruncated
840 * MAC algorithm.
841 *
842 * \return The corresponding base MAC algorithm.
843 * \return Unspecified if \p alg is not a supported
844 * MAC algorithm.
845 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200846#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
847 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100848
849/** Length to which a MAC algorithm is truncated.
850 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200851 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100852 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
853 * is true).
854 *
855 * \return Length of the truncated MAC in bytes.
856 * \return 0 if \p alg is a non-truncated MAC algorithm.
857 * \return Unspecified if \p alg is not a supported
858 * MAC algorithm.
859 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200860#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
861 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100862
863#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100864/** The CBC-MAC construction over a block cipher
865 *
866 * \warning CBC-MAC is insecure in many cases.
867 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
868 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100869#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100870/** The CMAC construction over a block cipher */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100871#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100872
873/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
874 *
875 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
876 *
877 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
878 * This macro may return either 0 or 1 if \p alg is not a supported
879 * algorithm identifier.
880 */
881#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
882 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
883 PSA_ALG_CIPHER_MAC_BASE)
884
885#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
886#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
887
888/** Whether the specified algorithm is a stream cipher.
889 *
890 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
891 * by applying a bitwise-xor with a stream of bytes that is generated
892 * from a key.
893 *
894 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
895 *
896 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
897 * This macro may return either 0 or 1 if \p alg is not a supported
898 * algorithm identifier or if it is not a symmetric cipher algorithm.
899 */
900#define PSA_ALG_IS_STREAM_CIPHER(alg) \
901 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
902 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
903
904/** The ARC4 stream cipher algorithm.
905 */
906#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
907
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200908/** The ChaCha20 stream cipher.
909 *
910 * ChaCha20 is defined in RFC 7539.
911 *
912 * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv()
913 * must be 12.
914 *
915 * The initial block counter is always 0.
916 *
917 */
918#define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005)
919
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100920/** The CTR stream cipher mode.
921 *
922 * CTR is a stream cipher which is built from a block cipher.
923 * The underlying block cipher is determined by the key type.
924 * For example, to use AES-128-CTR, use this algorithm with
925 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
926 */
927#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
928
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100929/** The CFB stream cipher mode.
930 *
931 * The underlying block cipher is determined by the key type.
932 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100933#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
934
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100935/** The OFB stream cipher mode.
936 *
937 * The underlying block cipher is determined by the key type.
938 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100939#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
940
941/** The XTS cipher mode.
942 *
943 * XTS is a cipher mode which is built from a block cipher. It requires at
944 * least one full block of input, but beyond this minimum the input
945 * does not need to be a whole number of blocks.
946 */
947#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
948
949/** The CBC block cipher chaining mode, with no padding.
950 *
951 * The underlying block cipher is determined by the key type.
952 *
953 * This symmetric cipher mode can only be used with messages whose lengths
954 * are whole number of blocks for the chosen block cipher.
955 */
956#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
957
958/** The CBC block cipher chaining mode with PKCS#7 padding.
959 *
960 * The underlying block cipher is determined by the key type.
961 *
962 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
963 */
964#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
965
Gilles Peskine679693e2019-05-06 15:10:16 +0200966#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
967
968/** Whether the specified algorithm is an AEAD mode on a block cipher.
969 *
970 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
971 *
972 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
973 * a block cipher, 0 otherwise.
974 * This macro may return either 0 or 1 if \p alg is not a supported
975 * algorithm identifier.
976 */
977#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
978 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
979 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
980
Gilles Peskine9153ec02019-02-15 13:02:02 +0100981/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100982 *
983 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +0100984 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200985#define PSA_ALG_CCM ((psa_algorithm_t)0x06401001)
Gilles Peskine9153ec02019-02-15 13:02:02 +0100986
987/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100988 *
989 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +0100990 */
Gilles Peskine679693e2019-05-06 15:10:16 +0200991#define PSA_ALG_GCM ((psa_algorithm_t)0x06401002)
992
993/** The Chacha20-Poly1305 AEAD algorithm.
994 *
995 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200996 *
997 * Implementations must support 12-byte nonces, may support 8-byte nonces,
998 * and should reject other sizes.
999 *
1000 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001001 */
1002#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001003
1004/* In the encoding of a AEAD algorithm, the bits corresponding to
1005 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1006 * The constants for default lengths follow this encoding.
1007 */
1008#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
1009#define PSA_AEAD_TAG_LENGTH_OFFSET 8
1010
1011/** Macro to build a shortened AEAD algorithm.
1012 *
1013 * A shortened AEAD algorithm is similar to the corresponding AEAD
1014 * algorithm, but has an authentication tag that consists of fewer bytes.
1015 * Depending on the algorithm, the tag length may affect the calculation
1016 * of the ciphertext.
1017 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001018 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001019 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
1020 * is true).
1021 * \param tag_length Desired length of the authentication tag in bytes.
1022 *
1023 * \return The corresponding AEAD algorithm with the specified
1024 * length.
1025 * \return Unspecified if \p alg is not a supported
1026 * AEAD algorithm or if \p tag_length is not valid
1027 * for the specified AEAD algorithm.
1028 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001029#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
1030 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001031 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1032 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1033
1034/** Calculate the corresponding AEAD algorithm with the default tag length.
1035 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001036 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
1037 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001038 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001039 * \return The corresponding AEAD algorithm with the default
1040 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001041 */
Unknowne2e19952019-08-21 03:33:04 -04001042#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
1043 ( \
1044 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CCM) \
1045 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_GCM) \
1046 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001047 0)
Unknowne2e19952019-08-21 03:33:04 -04001048#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, ref) \
1049 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
1050 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001051 ref :
1052
1053#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
1054/** RSA PKCS#1 v1.5 signature with hashing.
1055 *
1056 * This is the signature scheme defined by RFC 8017
1057 * (PKCS#1: RSA Cryptography Specifications) under the name
1058 * RSASSA-PKCS1-v1_5.
1059 *
1060 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1061 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001062 * This includes #PSA_ALG_ANY_HASH
1063 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001064 *
1065 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001066 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001067 * hash algorithm.
1068 */
1069#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1070 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1071/** Raw PKCS#1 v1.5 signature.
1072 *
1073 * The input to this algorithm is the DigestInfo structure used by
1074 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1075 * steps 3&ndash;6.
1076 */
1077#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1078#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1079 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1080
1081#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
1082/** RSA PSS signature with hashing.
1083 *
1084 * This is the signature scheme defined by RFC 8017
1085 * (PKCS#1: RSA Cryptography Specifications) under the name
1086 * RSASSA-PSS, with the message generation function MGF1, and with
1087 * a salt length equal to the length of the hash. The specified
1088 * hash algorithm is used to hash the input message, to create the
1089 * salted hash, and for the mask generation.
1090 *
1091 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1092 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001093 * This includes #PSA_ALG_ANY_HASH
1094 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001095 *
1096 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001097 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001098 * hash algorithm.
1099 */
1100#define PSA_ALG_RSA_PSS(hash_alg) \
1101 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1102#define PSA_ALG_IS_RSA_PSS(alg) \
1103 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1104
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001105#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1106/** ECDSA signature with hashing.
1107 *
1108 * This is the ECDSA signature scheme defined by ANSI X9.62,
1109 * with a random per-message secret number (*k*).
1110 *
1111 * The representation of the signature as a byte string consists of
1112 * the concatentation of the signature values *r* and *s*. Each of
1113 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1114 * of the base point of the curve in octets. Each value is represented
1115 * in big-endian order (most significant octet first).
1116 *
1117 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1118 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001119 * This includes #PSA_ALG_ANY_HASH
1120 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001121 *
1122 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001123 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001124 * hash algorithm.
1125 */
1126#define PSA_ALG_ECDSA(hash_alg) \
1127 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1128/** ECDSA signature without hashing.
1129 *
1130 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1131 * without specifying a hash algorithm. This algorithm may only be
1132 * used to sign or verify a sequence of bytes that should be an
1133 * already-calculated hash. Note that the input is padded with
1134 * zeros on the left or truncated on the left as required to fit
1135 * the curve size.
1136 */
1137#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1138#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1139/** Deterministic ECDSA signature with hashing.
1140 *
1141 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1142 *
1143 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1144 *
1145 * Note that when this algorithm is used for verification, signatures
1146 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1147 * same private key are accepted. In other words,
1148 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1149 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1150 *
1151 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1152 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001153 * This includes #PSA_ALG_ANY_HASH
1154 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001155 *
1156 * \return The corresponding deterministic ECDSA signature
1157 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001158 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001159 * hash algorithm.
1160 */
1161#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1162 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine972630e2019-11-29 11:55:48 +01001163#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00010000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001164#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001165 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001166 PSA_ALG_ECDSA_BASE)
1167#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001168 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001169#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1170 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1171#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1172 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1173
Gilles Peskined35b4892019-01-14 16:02:15 +01001174/** Whether the specified algorithm is a hash-and-sign algorithm.
1175 *
1176 * Hash-and-sign algorithms are public-key signature algorithms structured
1177 * in two parts: first the calculation of a hash in a way that does not
1178 * depend on the key, then the calculation of a signature from the
1179 * hash value and the key.
1180 *
1181 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1182 *
1183 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1184 * This macro may return either 0 or 1 if \p alg is not a supported
1185 * algorithm identifier.
1186 */
1187#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1188 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskinee38ab1a2019-05-16 13:51:50 +02001189 PSA_ALG_IS_ECDSA(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001190
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001191/** Get the hash used by a hash-and-sign signature algorithm.
1192 *
1193 * A hash-and-sign algorithm is a signature algorithm which is
1194 * composed of two phases: first a hashing phase which does not use
1195 * the key and produces a hash of the input message, then a signing
1196 * phase which only uses the hash and the key and not the message
1197 * itself.
1198 *
1199 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1200 * #PSA_ALG_IS_SIGN(\p alg) is true).
1201 *
1202 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1203 * algorithm.
1204 * \return 0 if \p alg is a signature algorithm that does not
1205 * follow the hash-and-sign structure.
1206 * \return Unspecified if \p alg is not a signature algorithm or
1207 * if it is not supported by the implementation.
1208 */
1209#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001210 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001211 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1212 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1213 0)
1214
1215/** RSA PKCS#1 v1.5 encryption.
1216 */
1217#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1218
1219#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1220/** RSA OAEP encryption.
1221 *
1222 * This is the encryption scheme defined by RFC 8017
1223 * (PKCS#1: RSA Cryptography Specifications) under the name
1224 * RSAES-OAEP, with the message generation function MGF1.
1225 *
1226 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1227 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1228 * for MGF1.
1229 *
1230 * \return The corresponding RSA OAEP signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001231 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001232 * hash algorithm.
1233 */
1234#define PSA_ALG_RSA_OAEP(hash_alg) \
1235 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1236#define PSA_ALG_IS_RSA_OAEP(alg) \
1237 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1238#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1239 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1240 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1241 0)
1242
Gilles Peskine6843c292019-01-18 16:44:49 +01001243#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001244/** Macro to build an HKDF algorithm.
1245 *
1246 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1247 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001248 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001249 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001250 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001251 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1252 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1253 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1254 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001255 * starting to generate output.
1256 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001257 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1258 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1259 *
1260 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001261 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001262 * hash algorithm.
1263 */
1264#define PSA_ALG_HKDF(hash_alg) \
1265 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1266/** Whether the specified algorithm is an HKDF algorithm.
1267 *
1268 * HKDF is a family of key derivation algorithms that are based on a hash
1269 * function and the HMAC construction.
1270 *
1271 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1272 *
1273 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1274 * This macro may return either 0 or 1 if \c alg is not a supported
1275 * key derivation algorithm identifier.
1276 */
1277#define PSA_ALG_IS_HKDF(alg) \
1278 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1279#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1280 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1281
Gilles Peskine6843c292019-01-18 16:44:49 +01001282#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001283/** Macro to build a TLS-1.2 PRF algorithm.
1284 *
1285 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1286 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1287 * used with either SHA-256 or SHA-384.
1288 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001289 * This key derivation algorithm uses the following inputs, which must be
1290 * passed in the order given here:
1291 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001292 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1293 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001294 *
1295 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001296 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001297 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001298 *
1299 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1300 * TLS 1.2 PRF using HMAC-SHA-256.
1301 *
1302 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1303 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1304 *
1305 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001306 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001307 * hash algorithm.
1308 */
1309#define PSA_ALG_TLS12_PRF(hash_alg) \
1310 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1311
1312/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1313 *
1314 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1315 *
1316 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1317 * This macro may return either 0 or 1 if \c alg is not a supported
1318 * key derivation algorithm identifier.
1319 */
1320#define PSA_ALG_IS_TLS12_PRF(alg) \
1321 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1322#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1323 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1324
Gilles Peskine6843c292019-01-18 16:44:49 +01001325#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001326/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1327 *
1328 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1329 * from the PreSharedKey (PSK) through the application of padding
1330 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1331 * The latter is based on HMAC and can be used with either SHA-256
1332 * or SHA-384.
1333 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001334 * This key derivation algorithm uses the following inputs, which must be
1335 * passed in the order given here:
1336 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001337 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1338 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001339 *
1340 * For the application to TLS-1.2, the seed (which is
1341 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1342 * ClientHello.Random + ServerHello.Random,
1343 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001344 *
1345 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1346 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1347 *
1348 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1349 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1350 *
1351 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001352 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001353 * hash algorithm.
1354 */
1355#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1356 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1357
1358/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1359 *
1360 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1361 *
1362 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1363 * This macro may return either 0 or 1 if \c alg is not a supported
1364 * key derivation algorithm identifier.
1365 */
1366#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1367 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1368#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1369 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1370
Gilles Peskinea52460c2019-04-12 00:11:21 +02001371#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff)
1372#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001373
Gilles Peskine6843c292019-01-18 16:44:49 +01001374/** Macro to build a combined algorithm that chains a key agreement with
1375 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001376 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001377 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1378 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1379 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1380 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001381 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001382 * \return The corresponding key agreement and derivation
1383 * algorithm.
1384 * \return Unspecified if \p ka_alg is not a supported
1385 * key agreement algorithm or \p kdf_alg is not a
1386 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001387 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001388#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1389 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001390
1391#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1392 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1393
Gilles Peskine6843c292019-01-18 16:44:49 +01001394#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1395 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001396
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001397/** Whether the specified algorithm is a raw key agreement algorithm.
1398 *
1399 * A raw key agreement algorithm is one that does not specify
1400 * a key derivation function.
1401 * Usually, raw key agreement algorithms are constructed directly with
1402 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
1403 * constructed with PSA_ALG_KEY_AGREEMENT().
1404 *
1405 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1406 *
1407 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1408 * This macro may return either 0 or 1 if \p alg is not a supported
1409 * algorithm identifier.
1410 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001411#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001412 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1413 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001414
1415#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1416 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1417
1418/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001419 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001420 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001421 * `g^{ab}` in big-endian format.
1422 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1423 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001424 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001425#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1426
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001427/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1428 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001429 * This includes the raw finite field Diffie-Hellman algorithm as well as
1430 * finite-field Diffie-Hellman followed by any supporter key derivation
1431 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001432 *
1433 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1434 *
1435 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1436 * This macro may return either 0 or 1 if \c alg is not a supported
1437 * key agreement algorithm identifier.
1438 */
1439#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001440 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001441
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001442/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1443 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001444 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001445 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1446 * `m` is the bit size associated with the curve, i.e. the bit size of the
1447 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1448 * the byte containing the most significant bit of the shared secret
1449 * is padded with zero bits. The byte order is either little-endian
1450 * or big-endian depending on the curve type.
1451 *
1452 * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`),
1453 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1454 * in little-endian byte order.
1455 * The bit size is 448 for Curve448 and 255 for Curve25519.
1456 * - For Weierstrass curves over prime fields (curve types
1457 * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`),
1458 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1459 * in big-endian byte order.
1460 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1461 * - For Weierstrass curves over binary fields (curve types
1462 * `PSA_ECC_CURVE_SECTXXX`),
1463 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1464 * in big-endian byte order.
1465 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001466 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001467#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1468
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001469/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1470 * algorithm.
1471 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001472 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1473 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1474 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001475 *
1476 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1477 *
1478 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1479 * 0 otherwise.
1480 * This macro may return either 0 or 1 if \c alg is not a supported
1481 * key agreement algorithm identifier.
1482 */
1483#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001484 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001485
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001486/** Whether the specified algorithm encoding is a wildcard.
1487 *
1488 * Wildcard values may only be used to set the usage algorithm field in
1489 * a policy, not to perform an operation.
1490 *
1491 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1492 *
1493 * \return 1 if \c alg is a wildcard algorithm encoding.
1494 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1495 * an operation).
1496 * \return This macro may return either 0 or 1 if \c alg is not a supported
1497 * algorithm identifier.
1498 */
1499#define PSA_ALG_IS_WILDCARD(alg) \
1500 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1501 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1502 (alg) == PSA_ALG_ANY_HASH)
1503
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001504/**@}*/
1505
1506/** \defgroup key_lifetimes Key lifetimes
1507 * @{
1508 */
1509
1510/** A volatile key only exists as long as the handle to it is not closed.
1511 * The key material is guaranteed to be erased on a power reset.
1512 */
1513#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1514
1515/** The default storage area for persistent keys.
1516 *
1517 * A persistent key remains in storage until it is explicitly destroyed or
1518 * until the corresponding storage area is wiped. This specification does
1519 * not define any mechanism to wipe a storage area, but implementations may
1520 * provide their own mechanism (for example to perform a factory reset,
1521 * to prepare for device refurbishment, or to uninstall an application).
1522 *
1523 * This lifetime value is the default storage area for the calling
1524 * application. Implementations may offer other storage areas designated
1525 * by other lifetime values as implementation-specific extensions.
1526 */
1527#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1528
Gilles Peskine4a231b82019-05-06 18:56:14 +02001529/** The minimum value for a key identifier chosen by the application.
1530 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001531#define PSA_KEY_ID_USER_MIN ((psa_app_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001532/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001533 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001534#define PSA_KEY_ID_USER_MAX ((psa_app_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001535/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001536 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001537#define PSA_KEY_ID_VENDOR_MIN ((psa_app_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001538/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001539 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001540#define PSA_KEY_ID_VENDOR_MAX ((psa_app_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02001541
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001542/**@}*/
1543
1544/** \defgroup policy Key policies
1545 * @{
1546 */
1547
1548/** Whether the key may be exported.
1549 *
1550 * A public key or the public part of a key pair may always be exported
1551 * regardless of the value of this permission flag.
1552 *
1553 * If a key does not have export permission, implementations shall not
1554 * allow the key to be exported in plain form from the cryptoprocessor,
1555 * whether through psa_export_key() or through a proprietary interface.
1556 * The key may however be exportable in a wrapped form, i.e. in a form
1557 * where it is encrypted by another key.
1558 */
1559#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1560
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001561/** Whether the key may be copied.
1562 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001563 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001564 * with the same policy or a more restrictive policy.
1565 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001566 * For lifetimes for which the key is located in a secure element which
1567 * enforce the non-exportability of keys, copying a key outside the secure
1568 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1569 * Copying the key inside the secure element is permitted with just
1570 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1571 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001572 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1573 * is sufficient to permit the copy.
1574 */
1575#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1576
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001577/** Whether the key may be used to encrypt a message.
1578 *
1579 * This flag allows the key to be used for a symmetric encryption operation,
1580 * for an AEAD encryption-and-authentication operation,
1581 * or for an asymmetric encryption operation,
1582 * if otherwise permitted by the key's type and policy.
1583 *
1584 * For a key pair, this concerns the public key.
1585 */
1586#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1587
1588/** Whether the key may be used to decrypt a message.
1589 *
1590 * This flag allows the key to be used for a symmetric decryption operation,
1591 * for an AEAD decryption-and-verification operation,
1592 * or for an asymmetric decryption operation,
1593 * if otherwise permitted by the key's type and policy.
1594 *
1595 * For a key pair, this concerns the private key.
1596 */
1597#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1598
1599/** Whether the key may be used to sign a message.
1600 *
1601 * This flag allows the key to be used for a MAC calculation operation
1602 * or for an asymmetric signature operation,
1603 * if otherwise permitted by the key's type and policy.
1604 *
1605 * For a key pair, this concerns the private key.
1606 */
Gilles Peskine89d8c5c2019-11-26 17:01:59 +01001607#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00000400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001608
1609/** Whether the key may be used to verify a message signature.
1610 *
1611 * This flag allows the key to be used for a MAC verification operation
1612 * or for an asymmetric signature verification operation,
1613 * if otherwise permitted by by the key's type and policy.
1614 *
1615 * For a key pair, this concerns the public key.
1616 */
Gilles Peskine89d8c5c2019-11-26 17:01:59 +01001617#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00000800)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001618
1619/** Whether the key may be used to derive other keys.
1620 */
1621#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1622
1623/**@}*/
1624
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001625/** \defgroup derivation Key derivation
1626 * @{
1627 */
1628
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001629/** A secret input for key derivation.
1630 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001631 * This should be a key of type #PSA_KEY_TYPE_DERIVE
1632 * (passed to psa_key_derivation_input_key())
1633 * or the shared secret resulting from a key agreement
1634 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02001635 *
1636 * The secret can also be a direct input (passed to
1637 * key_derivation_input_bytes()). In this case, the derivation operation
1638 * may not be used to derive keys: the operation will only allow
1639 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001640 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001641#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001642
1643/** A label for key derivation.
1644 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001645 * This should be a direct input.
1646 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001647 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001648#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001649
1650/** A salt for key derivation.
1651 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001652 * This should be a direct input.
1653 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001654 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001655#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001656
1657/** An information string for key derivation.
1658 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001659 * This should be a direct input.
1660 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001661 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001662#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001663
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001664/** A seed for key derivation.
1665 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001666 * This should be a direct input.
1667 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001668 */
1669#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
1670
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001671/**@}*/
1672
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001673#endif /* PSA_CRYPTO_VALUES_H */