blob: db5188743fa0e8544fd7ecf72a9ef330449adb27 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
18 * Copyright (C) 2018, ARM Limited, All Rights Reserved
19 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
32 *
33 * This file is part of mbed TLS (https://tls.mbed.org)
34 */
35
36#ifndef PSA_CRYPTO_VALUES_H
37#define PSA_CRYPTO_VALUES_H
38
39/** \defgroup error Error codes
40 * @{
41 */
42
David Saadab4ecc272019-02-14 13:48:10 +020043/* PSA error codes */
44
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045/** The action was completed successfully. */
46#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010047
48/** An error occurred that does not correspond to any defined
49 * failure cause.
50 *
51 * Implementations may use this error code if none of the other standard
52 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020053#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010054
55/** The requested operation or a parameter is not supported
56 * by this implementation.
57 *
58 * Implementations should return this error code when an enumeration
59 * parameter such as a key type, algorithm, etc. is not recognized.
60 * If a combination of parameters is recognized and identified as
61 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020062#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010063
64/** The requested action is denied by a policy.
65 *
66 * Implementations should return this error code when the parameters
67 * are recognized as valid and supported, and a policy explicitly
68 * denies the requested operation.
69 *
70 * If a subset of the parameters of a function call identify a
71 * forbidden operation, and another subset of the parameters are
72 * not valid or not supported, it is unspecified whether the function
73 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
74 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020075#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010076
77/** An output buffer is too small.
78 *
79 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
80 * description to determine a sufficient buffer size.
81 *
82 * Implementations should preferably return this error code only
83 * in cases when performing the operation with a larger output
84 * buffer would succeed. However implementations may return this
85 * error if a function has invalid or unsupported parameters in addition
86 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020087#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088
David Saadab4ecc272019-02-14 13:48:10 +020089/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010090 *
David Saadab4ecc272019-02-14 13:48:10 +020091 * Implementations should return this error, when attempting
92 * to write an item (like a key) that already exists. */
93#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094
David Saadab4ecc272019-02-14 13:48:10 +020095/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010096 *
David Saadab4ecc272019-02-14 13:48:10 +020097 * Implementations should return this error, if a requested item (like
98 * a key) does not exist. */
99#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100
101/** The requested action cannot be performed in the current state.
102 *
103 * Multipart operations return this error when one of the
104 * functions is called out of sequence. Refer to the function
105 * descriptions for permitted sequencing of functions.
106 *
107 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100108 * that a key either exists or not,
109 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100110 * as applicable.
111 *
112 * Implementations shall not return this error code to indicate that a
113 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
114 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200115#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100116
117/** The parameters passed to the function are invalid.
118 *
119 * Implementations may return this error any time a parameter or
120 * combination of parameters are recognized as invalid.
121 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100122 * Implementations shall not return this error code to indicate that a
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
124 * instead.
125 */
David Saadab4ecc272019-02-14 13:48:10 +0200126#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100127
128/** There is not enough runtime memory.
129 *
130 * If the action is carried out across multiple security realms, this
131 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200132#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100133
134/** There is not enough persistent storage.
135 *
136 * Functions that modify the key storage return this error code if
137 * there is insufficient storage space on the host media. In addition,
138 * many functions that do not otherwise access storage may return this
139 * error code if the implementation requires a mandatory log entry for
140 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200141#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100142
143/** There was a communication failure inside the implementation.
144 *
145 * This can indicate a communication failure between the application
146 * and an external cryptoprocessor or between the cryptoprocessor and
147 * an external volatile or persistent memory. A communication failure
148 * may be transient or permanent depending on the cause.
149 *
150 * \warning If a function returns this error, it is undetermined
151 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200152 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100153 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
154 * if the requested action was completed successfully in an external
155 * cryptoprocessor but there was a breakdown of communication before
156 * the cryptoprocessor could report the status to the application.
157 */
David Saadab4ecc272019-02-14 13:48:10 +0200158#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100159
160/** There was a storage failure that may have led to data loss.
161 *
162 * This error indicates that some persistent storage is corrupted.
163 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200164 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100165 * between the cryptoprocessor and its external storage (use
166 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
167 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
168 *
169 * Note that a storage failure does not indicate that any data that was
170 * previously read is invalid. However this previously read data may no
171 * longer be readable from storage.
172 *
173 * When a storage failure occurs, it is no longer possible to ensure
174 * the global integrity of the keystore. Depending on the global
175 * integrity guarantees offered by the implementation, access to other
176 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100177 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100178 *
179 * Implementations should only use this error code to report a
180 * permanent storage corruption. However application writers should
181 * keep in mind that transient errors while reading the storage may be
182 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200183#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100184
185/** A hardware failure was detected.
186 *
187 * A hardware failure may be transient or permanent depending on the
188 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200189#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100190
191/** A tampering attempt was detected.
192 *
193 * If an application receives this error code, there is no guarantee
194 * that previously accessed or computed data was correct and remains
195 * confidential. Applications should not perform any security function
196 * and should enter a safe failure state.
197 *
198 * Implementations may return this error code if they detect an invalid
199 * state that cannot happen during normal operation and that indicates
200 * that the implementation's security guarantees no longer hold. Depending
201 * on the implementation architecture and on its security and safety goals,
202 * the implementation may forcibly terminate the application.
203 *
204 * This error code is intended as a last resort when a security breach
205 * is detected and it is unsure whether the keystore data is still
206 * protected. Implementations shall only return this error code
207 * to report an alarm from a tampering detector, to indicate that
208 * the confidentiality of stored data can no longer be guaranteed,
209 * or to indicate that the integrity of previously returned data is now
210 * considered compromised. Implementations shall not use this error code
211 * to indicate a hardware failure that merely makes it impossible to
212 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
213 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
214 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
215 * instead).
216 *
217 * This error indicates an attack against the application. Implementations
218 * shall not return this error code as a consequence of the behavior of
219 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200220#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100221
222/** There is not enough entropy to generate random data needed
223 * for the requested action.
224 *
225 * This error indicates a failure of a hardware random generator.
226 * Application writers should note that this error can be returned not
227 * only by functions whose purpose is to generate random data, such
228 * as key, IV or nonce generation, but also by functions that execute
229 * an algorithm with a randomized result, as well as functions that
230 * use randomization of intermediate computations as a countermeasure
231 * to certain attacks.
232 *
233 * Implementations should avoid returning this error after psa_crypto_init()
234 * has succeeded. Implementations should generate sufficient
235 * entropy during initialization and subsequently use a cryptographically
236 * secure pseudorandom generator (PRNG). However implementations may return
237 * this error at any time if a policy requires the PRNG to be reseeded
238 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200239#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100240
241/** The signature, MAC or hash is incorrect.
242 *
243 * Verification functions return this error if the verification
244 * calculations completed successfully, and the value to be verified
245 * was determined to be incorrect.
246 *
247 * If the value to verify has an invalid size, implementations may return
248 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200249#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100250
251/** The decrypted padding is incorrect.
252 *
253 * \warning In some protocols, when decrypting data, it is essential that
254 * the behavior of the application does not depend on whether the padding
255 * is correct, down to precise timing. Applications should prefer
256 * protocols that use authenticated encryption rather than plain
257 * encryption. If the application must perform a decryption of
258 * unauthenticated data, the application writer should take care not
259 * to reveal whether the padding is invalid.
260 *
261 * Implementations should strive to make valid and invalid padding
262 * as close as possible to indistinguishable to an external observer.
263 * In particular, the timing of a decryption operation should not
264 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200265#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100266
David Saadab4ecc272019-02-14 13:48:10 +0200267/** Return this error when there's insufficient data when attempting
268 * to read from a resource. */
269#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270
Andrew Thoelke3c2b8032019-08-22 12:20:12 +0100271/** The key handle is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272 */
David Saadab4ecc272019-02-14 13:48:10 +0200273#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100274
275/**@}*/
276
277/** \defgroup crypto_types Key and algorithm types
278 * @{
279 */
280
281/** An invalid key type value.
282 *
283 * Zero is not the encoding of any key type.
284 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100285#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100286
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100287/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100288 *
289 * Key types defined by this standard will never have the
290 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
291 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
292 * respect the bitwise structure used by standard encodings whenever practical.
293 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100294#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100295
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100296#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100297#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
298#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
299#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100300#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100301
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100302#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100303
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100304/** Whether a key type is vendor-defined.
305 *
306 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
307 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100308#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
309 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
310
311/** Whether a key type is an unstructured array of bytes.
312 *
313 * This encompasses both symmetric keys and non-key data.
314 */
315#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100316 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
317 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100318
319/** Whether a key type is asymmetric: either a key pair or a public key. */
320#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
321 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
322 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
323 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
324/** Whether a key type is the public part of a key pair. */
325#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
326 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
327/** Whether a key type is a key pair containing a private part and a public
328 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200329#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100330 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
331/** The key pair type corresponding to a public key type.
332 *
333 * You may also pass a key pair type as \p type, it will be left unchanged.
334 *
335 * \param type A public key type or key pair type.
336 *
337 * \return The corresponding key pair type.
338 * If \p type is not a public key or a key pair,
339 * the return value is undefined.
340 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200341#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100342 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
343/** The public key type corresponding to a key pair type.
344 *
345 * You may also pass a key pair type as \p type, it will be left unchanged.
346 *
347 * \param type A public key type or key pair type.
348 *
349 * \return The corresponding public key type.
350 * If \p type is not a public key or a key pair,
351 * the return value is undefined.
352 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200353#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100354 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
355
356/** Raw data.
357 *
358 * A "key" of this type cannot be used for any cryptographic operation.
359 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100360#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100361
362/** HMAC key.
363 *
364 * The key policy determines which underlying hash algorithm the key can be
365 * used for.
366 *
367 * HMAC keys should generally have the same size as the underlying hash.
368 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
369 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100370#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100371
372/** A secret for key derivation.
373 *
374 * The key policy determines which key derivation algorithm the key
375 * can be used for.
376 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100377#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100378
Gilles Peskine737c6be2019-05-21 16:01:06 +0200379/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100380 *
381 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
382 * 32 bytes (AES-256).
383 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100384#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100385
386/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
387 *
388 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
389 * 24 bytes (3-key 3DES).
390 *
391 * Note that single DES and 2-key 3DES are weak and strongly
392 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
393 * is weak and deprecated and should only be used in legacy protocols.
394 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100395#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100396
Gilles Peskine737c6be2019-05-21 16:01:06 +0200397/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100398 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100399#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100400
401/** Key for the RC4 stream cipher.
402 *
403 * Note that RC4 is weak and deprecated and should only be used in
404 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100405#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100406
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200407/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
408 *
409 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
410 *
411 * Implementations must support 12-byte nonces, may support 8-byte nonces,
412 * and should reject other sizes.
413 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100414#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200415
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100416/** RSA public key. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100417#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100418/** RSA key pair (private and public key). */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100419#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100420/** Whether a key type is an RSA key (pair or public-only). */
421#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200422 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100424#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100425#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
426#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100427/** Elliptic curve key pair.
428 *
429 * \param curve A value of type ::psa_ecc_curve_t that identifies the
430 * ECC curve to be used.
431 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200432#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
433 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100434/** Elliptic curve public key.
435 *
436 * \param curve A value of type ::psa_ecc_curve_t that identifies the
437 * ECC curve to be used.
438 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100439#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
440 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
441
442/** Whether a key type is an elliptic curve key (pair or public-only). */
443#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200444 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100445 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100446/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200447#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100448 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200449 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100450/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100451#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
452 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
453 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
454
455/** Extract the curve from an elliptic curve key type. */
456#define PSA_KEY_TYPE_GET_CURVE(type) \
457 ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
458 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
459 0))
460
Gilles Peskine228abc52019-12-03 17:24:19 +0100461/** SEC Koblitz curves over prime fields.
462 *
463 * This family comprises the following curves:
464 * secp192k1, secp224k1, secp256k1.
465 * They are defined in _Standards for Efficient Cryptography_,
466 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
467 * https://www.secg.org/sec2-v2.pdf
468 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100469#define PSA_ECC_CURVE_SECP_K1 ((psa_ecc_curve_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100470
471/** SEC random curves over prime fields.
472 *
473 * This family comprises the following curves:
474 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
475 * They are defined in _Standards for Efficient Cryptography_,
476 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
477 * https://www.secg.org/sec2-v2.pdf
478 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100479#define PSA_ECC_CURVE_SECP_R1 ((psa_ecc_curve_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100480/* SECP160R2 (SEC2 v1, obsolete) */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100481#define PSA_ECC_CURVE_SECP_R2 ((psa_ecc_curve_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100482
483/** SEC Koblitz curves over binary fields.
484 *
485 * This family comprises the following curves:
486 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
487 * They are defined in _Standards for Efficient Cryptography_,
488 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
489 * https://www.secg.org/sec2-v2.pdf
490 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100491#define PSA_ECC_CURVE_SECT_K1 ((psa_ecc_curve_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100492
493/** SEC random curves over binary fields.
494 *
495 * This family comprises the following curves:
496 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
497 * They are defined in _Standards for Efficient Cryptography_,
498 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
499 * https://www.secg.org/sec2-v2.pdf
500 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100501#define PSA_ECC_CURVE_SECT_R1 ((psa_ecc_curve_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100502
503/** SEC additional random curves over binary fields.
504 *
505 * This family comprises the following curve:
506 * sect163r2.
507 * It is defined in _Standards for Efficient Cryptography_,
508 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
509 * https://www.secg.org/sec2-v2.pdf
510 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100511#define PSA_ECC_CURVE_SECT_R2 ((psa_ecc_curve_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100512
513/** Brainpool P random curves.
514 *
515 * This family comprises the following curves:
516 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
517 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
518 * It is defined in RFC 5639.
519 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100520#define PSA_ECC_CURVE_BRAINPOOL_P_R1 ((psa_ecc_curve_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100521
522/** Curve25519 and Curve448.
523 *
524 * This family comprises the following Montgomery curves:
525 * - 255-bit: Bernstein et al.,
526 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
527 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
528 * - 448-bit: Hamburg,
529 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
530 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
531 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100532#define PSA_ECC_CURVE_MONTGOMERY ((psa_ecc_curve_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100533
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100534#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100535#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
536#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100537/** Diffie-Hellman key pair.
538 *
539 * \param group A value of type ::psa_dh_group_t that identifies the
540 * Diffie-Hellman group to be used.
541 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200542#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
543 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100544/** Diffie-Hellman public key.
545 *
546 * \param group A value of type ::psa_dh_group_t that identifies the
547 * Diffie-Hellman group to be used.
548 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200549#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
550 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
551
552/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
553#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200554 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200555 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
556/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200557#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200558 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200559 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200560/** Whether a key type is a Diffie-Hellman public key. */
561#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
562 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
563 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
564
565/** Extract the group from a Diffie-Hellman key type. */
566#define PSA_KEY_TYPE_GET_GROUP(type) \
567 ((psa_dh_group_t) (PSA_KEY_TYPE_IS_DH(type) ? \
568 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
569 0))
570
Gilles Peskine228abc52019-12-03 17:24:19 +0100571/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
572 *
573 * This family includes groups with the following key sizes (in bits):
574 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
575 * all of these sizes or only a subset.
576 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100577#define PSA_DH_GROUP_RFC7919 ((psa_dh_group_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100578
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100579#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100580 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100581/** The block size of a block cipher.
582 *
583 * \param type A cipher key type (value of type #psa_key_type_t).
584 *
585 * \return The block size for a block cipher, or 1 for a stream cipher.
586 * The return value is undefined if \p type is not a supported
587 * cipher key type.
588 *
589 * \note It is possible to build stream cipher algorithms on top of a block
590 * cipher, for example CTR mode (#PSA_ALG_CTR).
591 * This macro only takes the key type into account, so it cannot be
592 * used to determine the size of the data that #psa_cipher_update()
593 * might buffer for future processing in general.
594 *
595 * \note This macro returns a compile-time constant if its argument is one.
596 *
597 * \warning This macro may evaluate its argument multiple times.
598 */
599#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100600 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
601 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
602 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100603
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100604/** Vendor-defined algorithm flag.
605 *
606 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
607 * bit set. Vendors who define additional algorithms must use an encoding with
608 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
609 * used by standard encodings whenever practical.
610 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100611#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100612
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100613#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
614#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
615#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
616#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
617#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
618#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
619#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100620#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
621#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100622
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100623/** Whether an algorithm is vendor-defined.
624 *
625 * See also #PSA_ALG_VENDOR_FLAG.
626 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100627#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
628 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
629
630/** Whether the specified algorithm is a hash algorithm.
631 *
632 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
633 *
634 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
635 * This macro may return either 0 or 1 if \p alg is not a supported
636 * algorithm identifier.
637 */
638#define PSA_ALG_IS_HASH(alg) \
639 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
640
641/** Whether the specified algorithm is a MAC algorithm.
642 *
643 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
644 *
645 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
646 * This macro may return either 0 or 1 if \p alg is not a supported
647 * algorithm identifier.
648 */
649#define PSA_ALG_IS_MAC(alg) \
650 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
651
652/** Whether the specified algorithm is a symmetric cipher algorithm.
653 *
654 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
655 *
656 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
657 * This macro may return either 0 or 1 if \p alg is not a supported
658 * algorithm identifier.
659 */
660#define PSA_ALG_IS_CIPHER(alg) \
661 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
662
663/** Whether the specified algorithm is an authenticated encryption
664 * with associated data (AEAD) algorithm.
665 *
666 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
667 *
668 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
669 * This macro may return either 0 or 1 if \p alg is not a supported
670 * algorithm identifier.
671 */
672#define PSA_ALG_IS_AEAD(alg) \
673 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
674
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200675/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200676 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100677 *
678 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
679 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200680 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100681 * This macro may return either 0 or 1 if \p alg is not a supported
682 * algorithm identifier.
683 */
684#define PSA_ALG_IS_SIGN(alg) \
685 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
686
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200687/** Whether the specified algorithm is an asymmetric encryption algorithm,
688 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100689 *
690 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
691 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200692 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100693 * This macro may return either 0 or 1 if \p alg is not a supported
694 * algorithm identifier.
695 */
696#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
697 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
698
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100699/** Whether the specified algorithm is a key agreement algorithm.
700 *
701 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
702 *
703 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
704 * This macro may return either 0 or 1 if \p alg is not a supported
705 * algorithm identifier.
706 */
707#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100708 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100709
710/** Whether the specified algorithm is a key derivation algorithm.
711 *
712 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
713 *
714 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
715 * This macro may return either 0 or 1 if \p alg is not a supported
716 * algorithm identifier.
717 */
718#define PSA_ALG_IS_KEY_DERIVATION(alg) \
719 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
720
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100721#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100722/** MD2 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100723#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100724/** MD4 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100725#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100726/** MD5 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100727#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100728/** PSA_ALG_RIPEMD160 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100729#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100730/** SHA1 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100731#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
732/** SHA2-224 */
733#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
734/** SHA2-256 */
735#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
736/** SHA2-384 */
737#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
738/** SHA2-512 */
739#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
740/** SHA2-512/224 */
741#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
742/** SHA2-512/256 */
743#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
744/** SHA3-224 */
745#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
746/** SHA3-256 */
747#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
748/** SHA3-384 */
749#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
750/** SHA3-512 */
751#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
752
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100753/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100754 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100755 * This value may be used to form the algorithm usage field of a policy
756 * for a signature algorithm that is parametrized by a hash. The key
757 * may then be used to perform operations using the same signature
758 * algorithm parametrized with any supported hash.
759 *
760 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100761 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100762 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100763 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100764 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
765 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100766 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200767 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100768 * ```
769 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100770 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100771 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
772 * call to sign or verify a message may use a different hash.
773 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100774 * psa_sign_hash(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
775 * psa_sign_hash(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
776 * psa_sign_hash(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100777 * ```
778 *
779 * This value may not be used to build other algorithms that are
780 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100781 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100782 *
783 * This value may not be used to build an algorithm specification to
784 * perform an operation. It is only valid to build policies.
785 */
786#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
787
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100788#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
789#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
790/** Macro to build an HMAC algorithm.
791 *
792 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
793 *
794 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
795 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
796 *
797 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100798 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100799 * hash algorithm.
800 */
801#define PSA_ALG_HMAC(hash_alg) \
802 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
803
804#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
805 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
806
807/** Whether the specified algorithm is an HMAC algorithm.
808 *
809 * HMAC is a family of MAC algorithms that are based on a hash function.
810 *
811 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
812 *
813 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
814 * This macro may return either 0 or 1 if \p alg is not a supported
815 * algorithm identifier.
816 */
817#define PSA_ALG_IS_HMAC(alg) \
818 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
819 PSA_ALG_HMAC_BASE)
820
821/* In the encoding of a MAC algorithm, the bits corresponding to
822 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
823 * truncated. As an exception, the value 0 means the untruncated algorithm,
824 * whatever its length is. The length is encoded in 6 bits, so it can
825 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
826 * to full length is correctly encoded as 0 and any non-trivial truncation
827 * is correctly encoded as a value between 1 and 63. */
828#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
829#define PSA_MAC_TRUNCATION_OFFSET 8
830
831/** Macro to build a truncated MAC algorithm.
832 *
833 * A truncated MAC algorithm is identical to the corresponding MAC
834 * algorithm except that the MAC value for the truncated algorithm
835 * consists of only the first \p mac_length bytes of the MAC value
836 * for the untruncated algorithm.
837 *
838 * \note This macro may allow constructing algorithm identifiers that
839 * are not valid, either because the specified length is larger
840 * than the untruncated MAC or because the specified length is
841 * smaller than permitted by the implementation.
842 *
843 * \note It is implementation-defined whether a truncated MAC that
844 * is truncated to the same length as the MAC of the untruncated
845 * algorithm is considered identical to the untruncated algorithm
846 * for policy comparison purposes.
847 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200848 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100849 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
850 * is true). This may be a truncated or untruncated
851 * MAC algorithm.
852 * \param mac_length Desired length of the truncated MAC in bytes.
853 * This must be at most the full length of the MAC
854 * and must be at least an implementation-specified
855 * minimum. The implementation-specified minimum
856 * shall not be zero.
857 *
858 * \return The corresponding MAC algorithm with the specified
859 * length.
860 * \return Unspecified if \p alg is not a supported
861 * MAC algorithm or if \p mac_length is too small or
862 * too large for the specified MAC algorithm.
863 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200864#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
865 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100866 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
867
868/** Macro to build the base MAC algorithm corresponding to a truncated
869 * MAC algorithm.
870 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200871 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100872 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
873 * is true). This may be a truncated or untruncated
874 * MAC algorithm.
875 *
876 * \return The corresponding base MAC algorithm.
877 * \return Unspecified if \p alg is not a supported
878 * MAC algorithm.
879 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200880#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
881 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100882
883/** Length to which a MAC algorithm is truncated.
884 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200885 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100886 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
887 * is true).
888 *
889 * \return Length of the truncated MAC in bytes.
890 * \return 0 if \p alg is a non-truncated MAC algorithm.
891 * \return Unspecified if \p alg is not a supported
892 * MAC algorithm.
893 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200894#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
895 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100896
897#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100898/** The CBC-MAC construction over a block cipher
899 *
900 * \warning CBC-MAC is insecure in many cases.
901 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
902 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100903#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100904/** The CMAC construction over a block cipher */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100905#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100906
907/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
908 *
909 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
910 *
911 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
912 * This macro may return either 0 or 1 if \p alg is not a supported
913 * algorithm identifier.
914 */
915#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
916 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
917 PSA_ALG_CIPHER_MAC_BASE)
918
919#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
920#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
921
922/** Whether the specified algorithm is a stream cipher.
923 *
924 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
925 * by applying a bitwise-xor with a stream of bytes that is generated
926 * from a key.
927 *
928 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
929 *
930 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
931 * This macro may return either 0 or 1 if \p alg is not a supported
932 * algorithm identifier or if it is not a symmetric cipher algorithm.
933 */
934#define PSA_ALG_IS_STREAM_CIPHER(alg) \
935 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
936 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
937
938/** The ARC4 stream cipher algorithm.
939 */
940#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
941
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200942/** The ChaCha20 stream cipher.
943 *
944 * ChaCha20 is defined in RFC 7539.
945 *
946 * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv()
947 * must be 12.
948 *
949 * The initial block counter is always 0.
950 *
951 */
952#define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005)
953
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100954/** The CTR stream cipher mode.
955 *
956 * CTR is a stream cipher which is built from a block cipher.
957 * The underlying block cipher is determined by the key type.
958 * For example, to use AES-128-CTR, use this algorithm with
959 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
960 */
961#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
962
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100963/** The CFB stream cipher mode.
964 *
965 * The underlying block cipher is determined by the key type.
966 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100967#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
968
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100969/** The OFB stream cipher mode.
970 *
971 * The underlying block cipher is determined by the key type.
972 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100973#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
974
975/** The XTS cipher mode.
976 *
977 * XTS is a cipher mode which is built from a block cipher. It requires at
978 * least one full block of input, but beyond this minimum the input
979 * does not need to be a whole number of blocks.
980 */
981#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
982
Steven Cooremaned3c9ec2020-07-06 14:08:59 +0200983/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
984 *
Steven Cooremana6033e92020-08-25 11:47:50 +0200985 * \warning ECB mode does not protect the confidentiality of the encrypted data
986 * except in extremely narrow circumstances. It is recommended that applications
987 * only use ECB if they need to construct an operating mode that the
988 * implementation does not provide. Implementations are encouraged to provide
989 * the modes that applications need in preference to supporting direct access
990 * to ECB.
991 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +0200992 * The underlying block cipher is determined by the key type.
993 *
Steven Cooremana6033e92020-08-25 11:47:50 +0200994 * This symmetric cipher mode can only be used with messages whose lengths are a
995 * multiple of the block size of the chosen block cipher.
996 *
997 * ECB mode does not accept an initialization vector (IV). When using a
998 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
999 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001000 */
1001#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1002
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001003/** The CBC block cipher chaining mode, with no padding.
1004 *
1005 * The underlying block cipher is determined by the key type.
1006 *
1007 * This symmetric cipher mode can only be used with messages whose lengths
1008 * are whole number of blocks for the chosen block cipher.
1009 */
1010#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
1011
1012/** The CBC block cipher chaining mode with PKCS#7 padding.
1013 *
1014 * The underlying block cipher is determined by the key type.
1015 *
1016 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1017 */
1018#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
1019
Gilles Peskine679693e2019-05-06 15:10:16 +02001020#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1021
1022/** Whether the specified algorithm is an AEAD mode on a block cipher.
1023 *
1024 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1025 *
1026 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1027 * a block cipher, 0 otherwise.
1028 * This macro may return either 0 or 1 if \p alg is not a supported
1029 * algorithm identifier.
1030 */
1031#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1032 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1033 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1034
Gilles Peskine9153ec02019-02-15 13:02:02 +01001035/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001036 *
1037 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001038 */
Gilles Peskine679693e2019-05-06 15:10:16 +02001039#define PSA_ALG_CCM ((psa_algorithm_t)0x06401001)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001040
1041/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001042 *
1043 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001044 */
Gilles Peskine679693e2019-05-06 15:10:16 +02001045#define PSA_ALG_GCM ((psa_algorithm_t)0x06401002)
1046
1047/** The Chacha20-Poly1305 AEAD algorithm.
1048 *
1049 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001050 *
1051 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1052 * and should reject other sizes.
1053 *
1054 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001055 */
1056#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001057
1058/* In the encoding of a AEAD algorithm, the bits corresponding to
1059 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1060 * The constants for default lengths follow this encoding.
1061 */
1062#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
1063#define PSA_AEAD_TAG_LENGTH_OFFSET 8
1064
1065/** Macro to build a shortened AEAD algorithm.
1066 *
1067 * A shortened AEAD algorithm is similar to the corresponding AEAD
1068 * algorithm, but has an authentication tag that consists of fewer bytes.
1069 * Depending on the algorithm, the tag length may affect the calculation
1070 * of the ciphertext.
1071 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001072 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001073 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
1074 * is true).
1075 * \param tag_length Desired length of the authentication tag in bytes.
1076 *
1077 * \return The corresponding AEAD algorithm with the specified
1078 * length.
1079 * \return Unspecified if \p alg is not a supported
1080 * AEAD algorithm or if \p tag_length is not valid
1081 * for the specified AEAD algorithm.
1082 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001083#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
1084 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001085 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1086 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1087
1088/** Calculate the corresponding AEAD algorithm with the default tag length.
1089 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001090 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
1091 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001092 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001093 * \return The corresponding AEAD algorithm with the default
1094 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001095 */
Unknowne2e19952019-08-21 03:33:04 -04001096#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
1097 ( \
1098 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CCM) \
1099 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_GCM) \
1100 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001101 0)
Unknowne2e19952019-08-21 03:33:04 -04001102#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, ref) \
1103 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
1104 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001105 ref :
1106
1107#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
1108/** RSA PKCS#1 v1.5 signature with hashing.
1109 *
1110 * This is the signature scheme defined by RFC 8017
1111 * (PKCS#1: RSA Cryptography Specifications) under the name
1112 * RSASSA-PKCS1-v1_5.
1113 *
1114 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1115 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001116 * This includes #PSA_ALG_ANY_HASH
1117 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001118 *
1119 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001120 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001121 * hash algorithm.
1122 */
1123#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1124 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1125/** Raw PKCS#1 v1.5 signature.
1126 *
1127 * The input to this algorithm is the DigestInfo structure used by
1128 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1129 * steps 3&ndash;6.
1130 */
1131#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1132#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1133 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1134
1135#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
1136/** RSA PSS signature with hashing.
1137 *
1138 * This is the signature scheme defined by RFC 8017
1139 * (PKCS#1: RSA Cryptography Specifications) under the name
1140 * RSASSA-PSS, with the message generation function MGF1, and with
1141 * a salt length equal to the length of the hash. The specified
1142 * hash algorithm is used to hash the input message, to create the
1143 * salted hash, and for the mask generation.
1144 *
1145 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1146 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001147 * This includes #PSA_ALG_ANY_HASH
1148 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001149 *
1150 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001151 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001152 * hash algorithm.
1153 */
1154#define PSA_ALG_RSA_PSS(hash_alg) \
1155 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1156#define PSA_ALG_IS_RSA_PSS(alg) \
1157 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1158
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001159#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1160/** ECDSA signature with hashing.
1161 *
1162 * This is the ECDSA signature scheme defined by ANSI X9.62,
1163 * with a random per-message secret number (*k*).
1164 *
1165 * The representation of the signature as a byte string consists of
1166 * the concatentation of the signature values *r* and *s*. Each of
1167 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1168 * of the base point of the curve in octets. Each value is represented
1169 * in big-endian order (most significant octet first).
1170 *
1171 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1172 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001173 * This includes #PSA_ALG_ANY_HASH
1174 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001175 *
1176 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001177 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001178 * hash algorithm.
1179 */
1180#define PSA_ALG_ECDSA(hash_alg) \
1181 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1182/** ECDSA signature without hashing.
1183 *
1184 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1185 * without specifying a hash algorithm. This algorithm may only be
1186 * used to sign or verify a sequence of bytes that should be an
1187 * already-calculated hash. Note that the input is padded with
1188 * zeros on the left or truncated on the left as required to fit
1189 * the curve size.
1190 */
1191#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1192#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1193/** Deterministic ECDSA signature with hashing.
1194 *
1195 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1196 *
1197 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1198 *
1199 * Note that when this algorithm is used for verification, signatures
1200 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1201 * same private key are accepted. In other words,
1202 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1203 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1204 *
1205 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1206 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001207 * This includes #PSA_ALG_ANY_HASH
1208 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001209 *
1210 * \return The corresponding deterministic ECDSA signature
1211 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001212 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001213 * hash algorithm.
1214 */
1215#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1216 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine972630e2019-11-29 11:55:48 +01001217#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00010000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001218#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001219 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001220 PSA_ALG_ECDSA_BASE)
1221#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001222 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001223#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1224 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1225#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1226 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1227
Gilles Peskined35b4892019-01-14 16:02:15 +01001228/** Whether the specified algorithm is a hash-and-sign algorithm.
1229 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001230 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1231 * structured in two parts: first the calculation of a hash in a way that
1232 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001233 * hash value and the key.
1234 *
1235 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1236 *
1237 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1238 * This macro may return either 0 or 1 if \p alg is not a supported
1239 * algorithm identifier.
1240 */
1241#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1242 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskinee38ab1a2019-05-16 13:51:50 +02001243 PSA_ALG_IS_ECDSA(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001244
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001245/** Get the hash used by a hash-and-sign signature algorithm.
1246 *
1247 * A hash-and-sign algorithm is a signature algorithm which is
1248 * composed of two phases: first a hashing phase which does not use
1249 * the key and produces a hash of the input message, then a signing
1250 * phase which only uses the hash and the key and not the message
1251 * itself.
1252 *
1253 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1254 * #PSA_ALG_IS_SIGN(\p alg) is true).
1255 *
1256 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1257 * algorithm.
1258 * \return 0 if \p alg is a signature algorithm that does not
1259 * follow the hash-and-sign structure.
1260 * \return Unspecified if \p alg is not a signature algorithm or
1261 * if it is not supported by the implementation.
1262 */
1263#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001264 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001265 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1266 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1267 0)
1268
1269/** RSA PKCS#1 v1.5 encryption.
1270 */
1271#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1272
1273#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1274/** RSA OAEP encryption.
1275 *
1276 * This is the encryption scheme defined by RFC 8017
1277 * (PKCS#1: RSA Cryptography Specifications) under the name
1278 * RSAES-OAEP, with the message generation function MGF1.
1279 *
1280 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1281 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1282 * for MGF1.
1283 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001284 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001285 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001286 * hash algorithm.
1287 */
1288#define PSA_ALG_RSA_OAEP(hash_alg) \
1289 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1290#define PSA_ALG_IS_RSA_OAEP(alg) \
1291 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1292#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1293 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1294 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1295 0)
1296
Gilles Peskine6843c292019-01-18 16:44:49 +01001297#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001298/** Macro to build an HKDF algorithm.
1299 *
1300 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1301 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001302 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001303 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001304 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001305 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1306 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1307 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1308 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001309 * starting to generate output.
1310 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001311 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1312 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1313 *
1314 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001315 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001316 * hash algorithm.
1317 */
1318#define PSA_ALG_HKDF(hash_alg) \
1319 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1320/** Whether the specified algorithm is an HKDF algorithm.
1321 *
1322 * HKDF is a family of key derivation algorithms that are based on a hash
1323 * function and the HMAC construction.
1324 *
1325 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1326 *
1327 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1328 * This macro may return either 0 or 1 if \c alg is not a supported
1329 * key derivation algorithm identifier.
1330 */
1331#define PSA_ALG_IS_HKDF(alg) \
1332 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1333#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1334 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1335
Gilles Peskine6843c292019-01-18 16:44:49 +01001336#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001337/** Macro to build a TLS-1.2 PRF algorithm.
1338 *
1339 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1340 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1341 * used with either SHA-256 or SHA-384.
1342 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001343 * This key derivation algorithm uses the following inputs, which must be
1344 * passed in the order given here:
1345 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001346 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1347 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001348 *
1349 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001350 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001351 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001352 *
1353 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1354 * TLS 1.2 PRF using HMAC-SHA-256.
1355 *
1356 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1357 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1358 *
1359 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001360 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001361 * hash algorithm.
1362 */
1363#define PSA_ALG_TLS12_PRF(hash_alg) \
1364 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1365
1366/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1367 *
1368 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1369 *
1370 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1371 * This macro may return either 0 or 1 if \c alg is not a supported
1372 * key derivation algorithm identifier.
1373 */
1374#define PSA_ALG_IS_TLS12_PRF(alg) \
1375 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1376#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1377 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1378
Gilles Peskine6843c292019-01-18 16:44:49 +01001379#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001380/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1381 *
1382 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1383 * from the PreSharedKey (PSK) through the application of padding
1384 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1385 * The latter is based on HMAC and can be used with either SHA-256
1386 * or SHA-384.
1387 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001388 * This key derivation algorithm uses the following inputs, which must be
1389 * passed in the order given here:
1390 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001391 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1392 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001393 *
1394 * For the application to TLS-1.2, the seed (which is
1395 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1396 * ClientHello.Random + ServerHello.Random,
1397 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001398 *
1399 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1400 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1401 *
1402 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1403 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1404 *
1405 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001406 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001407 * hash algorithm.
1408 */
1409#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1410 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1411
1412/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1413 *
1414 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1415 *
1416 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1417 * This macro may return either 0 or 1 if \c alg is not a supported
1418 * key derivation algorithm identifier.
1419 */
1420#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1421 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1422#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1423 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1424
Gilles Peskinea52460c2019-04-12 00:11:21 +02001425#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff)
1426#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001427
Gilles Peskine6843c292019-01-18 16:44:49 +01001428/** Macro to build a combined algorithm that chains a key agreement with
1429 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001430 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001431 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1432 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1433 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1434 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001435 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001436 * \return The corresponding key agreement and derivation
1437 * algorithm.
1438 * \return Unspecified if \p ka_alg is not a supported
1439 * key agreement algorithm or \p kdf_alg is not a
1440 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001441 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001442#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1443 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001444
1445#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1446 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1447
Gilles Peskine6843c292019-01-18 16:44:49 +01001448#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1449 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001450
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001451/** Whether the specified algorithm is a raw key agreement algorithm.
1452 *
1453 * A raw key agreement algorithm is one that does not specify
1454 * a key derivation function.
1455 * Usually, raw key agreement algorithms are constructed directly with
1456 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
1457 * constructed with PSA_ALG_KEY_AGREEMENT().
1458 *
1459 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1460 *
1461 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1462 * This macro may return either 0 or 1 if \p alg is not a supported
1463 * algorithm identifier.
1464 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001465#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001466 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1467 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001468
1469#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1470 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1471
1472/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001473 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001474 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001475 * `g^{ab}` in big-endian format.
1476 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1477 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001478 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001479#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1480
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001481/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1482 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001483 * This includes the raw finite field Diffie-Hellman algorithm as well as
1484 * finite-field Diffie-Hellman followed by any supporter key derivation
1485 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001486 *
1487 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1488 *
1489 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1490 * This macro may return either 0 or 1 if \c alg is not a supported
1491 * key agreement algorithm identifier.
1492 */
1493#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001494 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001495
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001496/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1497 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001498 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001499 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1500 * `m` is the bit size associated with the curve, i.e. the bit size of the
1501 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1502 * the byte containing the most significant bit of the shared secret
1503 * is padded with zero bits. The byte order is either little-endian
1504 * or big-endian depending on the curve type.
1505 *
1506 * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`),
1507 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1508 * in little-endian byte order.
1509 * The bit size is 448 for Curve448 and 255 for Curve25519.
1510 * - For Weierstrass curves over prime fields (curve types
1511 * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`),
1512 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1513 * in big-endian byte order.
1514 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1515 * - For Weierstrass curves over binary fields (curve types
1516 * `PSA_ECC_CURVE_SECTXXX`),
1517 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1518 * in big-endian byte order.
1519 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001520 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001521#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1522
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001523/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1524 * algorithm.
1525 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001526 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1527 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1528 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001529 *
1530 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1531 *
1532 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1533 * 0 otherwise.
1534 * This macro may return either 0 or 1 if \c alg is not a supported
1535 * key agreement algorithm identifier.
1536 */
1537#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001538 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001539
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001540/** Whether the specified algorithm encoding is a wildcard.
1541 *
1542 * Wildcard values may only be used to set the usage algorithm field in
1543 * a policy, not to perform an operation.
1544 *
1545 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1546 *
1547 * \return 1 if \c alg is a wildcard algorithm encoding.
1548 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1549 * an operation).
1550 * \return This macro may return either 0 or 1 if \c alg is not a supported
1551 * algorithm identifier.
1552 */
1553#define PSA_ALG_IS_WILDCARD(alg) \
1554 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1555 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1556 (alg) == PSA_ALG_ANY_HASH)
1557
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001558/**@}*/
1559
1560/** \defgroup key_lifetimes Key lifetimes
1561 * @{
1562 */
1563
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001564/** The default lifetime for volatile keys.
1565 *
1566 * A volatile key only exists as long as the handle to it is not closed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001567 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001568 *
1569 * A key with this lifetime is typically stored in the RAM area of the
1570 * PSA Crypto subsystem. However this is an implementation choice.
1571 * If an implementation stores data about the key in a non-volatile memory,
1572 * it must release all the resources associated with the key and erase the
1573 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001574 */
1575#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1576
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001577/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001578 *
1579 * A persistent key remains in storage until it is explicitly destroyed or
1580 * until the corresponding storage area is wiped. This specification does
1581 * not define any mechanism to wipe a storage area, but implementations may
1582 * provide their own mechanism (for example to perform a factory reset,
1583 * to prepare for device refurbishment, or to uninstall an application).
1584 *
1585 * This lifetime value is the default storage area for the calling
1586 * application. Implementations may offer other storage areas designated
1587 * by other lifetime values as implementation-specific extensions.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001588 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001589 */
1590#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1591
Gilles Peskineaff11812020-05-04 19:03:10 +02001592/** The persistence level of volatile keys.
1593 *
1594 * See ::psa_key_persistence_t for more information.
1595 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001596#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001597
1598/** The default persistence level for persistent keys.
1599 *
1600 * See ::psa_key_persistence_t for more information.
1601 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001602#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02001603
1604/** A persistence level indicating that a key is never destroyed.
1605 *
1606 * See ::psa_key_persistence_t for more information.
1607 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001608#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001609
1610#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001611 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001612
1613#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001614 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001615
1616/** Whether a key lifetime indicates that the key is volatile.
1617 *
1618 * A volatile key is automatically destroyed by the implementation when
1619 * the application instance terminates. In particular, a volatile key
1620 * is automatically destroyed on a power reset of the device.
1621 *
1622 * A key that is not volatile is persistent. Persistent keys are
1623 * preserved until the application explicitly destroys them or until an
1624 * implementation-specific device management event occurs (for example,
1625 * a factory reset).
1626 *
1627 * \param lifetime The lifetime value to query (value of type
1628 * ::psa_key_lifetime_t).
1629 *
1630 * \return \c 1 if the key is volatile, otherwise \c 0.
1631 */
1632#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
1633 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02001634 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001635
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02001636/** Construct a lifetime from a persistence level and a location.
1637 *
1638 * \param persistence The persistence level
1639 * (value of type ::psa_key_persistence_t).
1640 * \param location The location indicator
1641 * (value of type ::psa_key_location_t).
1642 *
1643 * \return The constructed lifetime value.
1644 */
1645#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
1646 ((location) << 8 | (persistence))
1647
Gilles Peskineaff11812020-05-04 19:03:10 +02001648/** The local storage area for persistent keys.
1649 *
1650 * This storage area is available on all systems that can store persistent
1651 * keys without delegating the storage to a third-party cryptoprocessor.
1652 *
1653 * See ::psa_key_location_t for more information.
1654 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001655#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02001656
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001657#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001658
Gilles Peskine4a231b82019-05-06 18:56:14 +02001659/** The minimum value for a key identifier chosen by the application.
1660 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001661#define PSA_KEY_ID_USER_MIN ((psa_app_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001662/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001663 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001664#define PSA_KEY_ID_USER_MAX ((psa_app_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001665/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001666 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001667#define PSA_KEY_ID_VENDOR_MIN ((psa_app_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001668/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001669 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001670#define PSA_KEY_ID_VENDOR_MAX ((psa_app_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02001671
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001672/**@}*/
1673
1674/** \defgroup policy Key policies
1675 * @{
1676 */
1677
1678/** Whether the key may be exported.
1679 *
1680 * A public key or the public part of a key pair may always be exported
1681 * regardless of the value of this permission flag.
1682 *
1683 * If a key does not have export permission, implementations shall not
1684 * allow the key to be exported in plain form from the cryptoprocessor,
1685 * whether through psa_export_key() or through a proprietary interface.
1686 * The key may however be exportable in a wrapped form, i.e. in a form
1687 * where it is encrypted by another key.
1688 */
1689#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1690
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001691/** Whether the key may be copied.
1692 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001693 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001694 * with the same policy or a more restrictive policy.
1695 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001696 * For lifetimes for which the key is located in a secure element which
1697 * enforce the non-exportability of keys, copying a key outside the secure
1698 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1699 * Copying the key inside the secure element is permitted with just
1700 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1701 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001702 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1703 * is sufficient to permit the copy.
1704 */
1705#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1706
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001707/** Whether the key may be used to encrypt a message.
1708 *
1709 * This flag allows the key to be used for a symmetric encryption operation,
1710 * for an AEAD encryption-and-authentication operation,
1711 * or for an asymmetric encryption operation,
1712 * if otherwise permitted by the key's type and policy.
1713 *
1714 * For a key pair, this concerns the public key.
1715 */
1716#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1717
1718/** Whether the key may be used to decrypt a message.
1719 *
1720 * This flag allows the key to be used for a symmetric decryption operation,
1721 * for an AEAD decryption-and-verification operation,
1722 * or for an asymmetric decryption operation,
1723 * if otherwise permitted by the key's type and policy.
1724 *
1725 * For a key pair, this concerns the private key.
1726 */
1727#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1728
1729/** Whether the key may be used to sign a message.
1730 *
1731 * This flag allows the key to be used for a MAC calculation operation
1732 * or for an asymmetric signature operation,
1733 * if otherwise permitted by the key's type and policy.
1734 *
1735 * For a key pair, this concerns the private key.
1736 */
Gilles Peskine89d8c5c2019-11-26 17:01:59 +01001737#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00000400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001738
1739/** Whether the key may be used to verify a message signature.
1740 *
1741 * This flag allows the key to be used for a MAC verification operation
1742 * or for an asymmetric signature verification operation,
1743 * if otherwise permitted by by the key's type and policy.
1744 *
1745 * For a key pair, this concerns the public key.
1746 */
Gilles Peskine89d8c5c2019-11-26 17:01:59 +01001747#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00000800)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001748
1749/** Whether the key may be used to derive other keys.
1750 */
1751#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1752
1753/**@}*/
1754
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001755/** \defgroup derivation Key derivation
1756 * @{
1757 */
1758
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001759/** A secret input for key derivation.
1760 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001761 * This should be a key of type #PSA_KEY_TYPE_DERIVE
1762 * (passed to psa_key_derivation_input_key())
1763 * or the shared secret resulting from a key agreement
1764 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02001765 *
1766 * The secret can also be a direct input (passed to
1767 * key_derivation_input_bytes()). In this case, the derivation operation
1768 * may not be used to derive keys: the operation will only allow
1769 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001770 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001771#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001772
1773/** A label for key derivation.
1774 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001775 * This should be a direct input.
1776 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001777 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001778#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001779
1780/** A salt for key derivation.
1781 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001782 * This should be a direct input.
1783 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001784 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001785#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001786
1787/** An information string for key derivation.
1788 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001789 * This should be a direct input.
1790 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001791 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001792#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001793
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001794/** A seed for key derivation.
1795 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001796 * This should be a direct input.
1797 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001798 */
1799#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
1800
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001801/**@}*/
1802
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001803#endif /* PSA_CRYPTO_VALUES_H */