blob: 93b7d2cdcc4445aeacb9ad7f13a68d43a6158aeb [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
18 * Copyright (C) 2018, ARM Limited, All Rights Reserved
19 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
32 *
33 * This file is part of mbed TLS (https://tls.mbed.org)
34 */
35
36#ifndef PSA_CRYPTO_VALUES_H
37#define PSA_CRYPTO_VALUES_H
38
39/** \defgroup error Error codes
40 * @{
41 */
42
David Saadab4ecc272019-02-14 13:48:10 +020043/* PSA error codes */
44
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045/** The action was completed successfully. */
46#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010047
48/** An error occurred that does not correspond to any defined
49 * failure cause.
50 *
51 * Implementations may use this error code if none of the other standard
52 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020053#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010054
55/** The requested operation or a parameter is not supported
56 * by this implementation.
57 *
58 * Implementations should return this error code when an enumeration
59 * parameter such as a key type, algorithm, etc. is not recognized.
60 * If a combination of parameters is recognized and identified as
61 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020062#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010063
64/** The requested action is denied by a policy.
65 *
66 * Implementations should return this error code when the parameters
67 * are recognized as valid and supported, and a policy explicitly
68 * denies the requested operation.
69 *
70 * If a subset of the parameters of a function call identify a
71 * forbidden operation, and another subset of the parameters are
72 * not valid or not supported, it is unspecified whether the function
73 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
74 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020075#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010076
77/** An output buffer is too small.
78 *
79 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
80 * description to determine a sufficient buffer size.
81 *
82 * Implementations should preferably return this error code only
83 * in cases when performing the operation with a larger output
84 * buffer would succeed. However implementations may return this
85 * error if a function has invalid or unsupported parameters in addition
86 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020087#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088
David Saadab4ecc272019-02-14 13:48:10 +020089/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010090 *
David Saadab4ecc272019-02-14 13:48:10 +020091 * Implementations should return this error, when attempting
92 * to write an item (like a key) that already exists. */
93#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094
David Saadab4ecc272019-02-14 13:48:10 +020095/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010096 *
David Saadab4ecc272019-02-14 13:48:10 +020097 * Implementations should return this error, if a requested item (like
98 * a key) does not exist. */
99#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100
101/** The requested action cannot be performed in the current state.
102 *
103 * Multipart operations return this error when one of the
104 * functions is called out of sequence. Refer to the function
105 * descriptions for permitted sequencing of functions.
106 *
107 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100108 * that a key either exists or not,
109 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100110 * as applicable.
111 *
112 * Implementations shall not return this error code to indicate that a
113 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
114 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200115#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100116
117/** The parameters passed to the function are invalid.
118 *
119 * Implementations may return this error any time a parameter or
120 * combination of parameters are recognized as invalid.
121 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100122 * Implementations shall not return this error code to indicate that a
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
124 * instead.
125 */
David Saadab4ecc272019-02-14 13:48:10 +0200126#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100127
128/** There is not enough runtime memory.
129 *
130 * If the action is carried out across multiple security realms, this
131 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200132#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100133
134/** There is not enough persistent storage.
135 *
136 * Functions that modify the key storage return this error code if
137 * there is insufficient storage space on the host media. In addition,
138 * many functions that do not otherwise access storage may return this
139 * error code if the implementation requires a mandatory log entry for
140 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200141#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100142
143/** There was a communication failure inside the implementation.
144 *
145 * This can indicate a communication failure between the application
146 * and an external cryptoprocessor or between the cryptoprocessor and
147 * an external volatile or persistent memory. A communication failure
148 * may be transient or permanent depending on the cause.
149 *
150 * \warning If a function returns this error, it is undetermined
151 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200152 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100153 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
154 * if the requested action was completed successfully in an external
155 * cryptoprocessor but there was a breakdown of communication before
156 * the cryptoprocessor could report the status to the application.
157 */
David Saadab4ecc272019-02-14 13:48:10 +0200158#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100159
160/** There was a storage failure that may have led to data loss.
161 *
162 * This error indicates that some persistent storage is corrupted.
163 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200164 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100165 * between the cryptoprocessor and its external storage (use
166 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
167 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
168 *
169 * Note that a storage failure does not indicate that any data that was
170 * previously read is invalid. However this previously read data may no
171 * longer be readable from storage.
172 *
173 * When a storage failure occurs, it is no longer possible to ensure
174 * the global integrity of the keystore. Depending on the global
175 * integrity guarantees offered by the implementation, access to other
176 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100177 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100178 *
179 * Implementations should only use this error code to report a
180 * permanent storage corruption. However application writers should
181 * keep in mind that transient errors while reading the storage may be
182 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200183#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100184
185/** A hardware failure was detected.
186 *
187 * A hardware failure may be transient or permanent depending on the
188 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200189#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100190
191/** A tampering attempt was detected.
192 *
193 * If an application receives this error code, there is no guarantee
194 * that previously accessed or computed data was correct and remains
195 * confidential. Applications should not perform any security function
196 * and should enter a safe failure state.
197 *
198 * Implementations may return this error code if they detect an invalid
199 * state that cannot happen during normal operation and that indicates
200 * that the implementation's security guarantees no longer hold. Depending
201 * on the implementation architecture and on its security and safety goals,
202 * the implementation may forcibly terminate the application.
203 *
204 * This error code is intended as a last resort when a security breach
205 * is detected and it is unsure whether the keystore data is still
206 * protected. Implementations shall only return this error code
207 * to report an alarm from a tampering detector, to indicate that
208 * the confidentiality of stored data can no longer be guaranteed,
209 * or to indicate that the integrity of previously returned data is now
210 * considered compromised. Implementations shall not use this error code
211 * to indicate a hardware failure that merely makes it impossible to
212 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
213 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
214 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
215 * instead).
216 *
217 * This error indicates an attack against the application. Implementations
218 * shall not return this error code as a consequence of the behavior of
219 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200220#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100221
222/** There is not enough entropy to generate random data needed
223 * for the requested action.
224 *
225 * This error indicates a failure of a hardware random generator.
226 * Application writers should note that this error can be returned not
227 * only by functions whose purpose is to generate random data, such
228 * as key, IV or nonce generation, but also by functions that execute
229 * an algorithm with a randomized result, as well as functions that
230 * use randomization of intermediate computations as a countermeasure
231 * to certain attacks.
232 *
233 * Implementations should avoid returning this error after psa_crypto_init()
234 * has succeeded. Implementations should generate sufficient
235 * entropy during initialization and subsequently use a cryptographically
236 * secure pseudorandom generator (PRNG). However implementations may return
237 * this error at any time if a policy requires the PRNG to be reseeded
238 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200239#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100240
241/** The signature, MAC or hash is incorrect.
242 *
243 * Verification functions return this error if the verification
244 * calculations completed successfully, and the value to be verified
245 * was determined to be incorrect.
246 *
247 * If the value to verify has an invalid size, implementations may return
248 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200249#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100250
251/** The decrypted padding is incorrect.
252 *
253 * \warning In some protocols, when decrypting data, it is essential that
254 * the behavior of the application does not depend on whether the padding
255 * is correct, down to precise timing. Applications should prefer
256 * protocols that use authenticated encryption rather than plain
257 * encryption. If the application must perform a decryption of
258 * unauthenticated data, the application writer should take care not
259 * to reveal whether the padding is invalid.
260 *
261 * Implementations should strive to make valid and invalid padding
262 * as close as possible to indistinguishable to an external observer.
263 * In particular, the timing of a decryption operation should not
264 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200265#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100266
David Saadab4ecc272019-02-14 13:48:10 +0200267/** Return this error when there's insufficient data when attempting
268 * to read from a resource. */
269#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270
Andrew Thoelke3c2b8032019-08-22 12:20:12 +0100271/** The key handle is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272 */
David Saadab4ecc272019-02-14 13:48:10 +0200273#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100274
275/**@}*/
276
277/** \defgroup crypto_types Key and algorithm types
278 * @{
279 */
280
281/** An invalid key type value.
282 *
283 * Zero is not the encoding of any key type.
284 */
285#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
286
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100287/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100288 *
289 * Key types defined by this standard will never have the
290 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
291 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
292 * respect the bitwise structure used by standard encodings whenever practical.
293 */
294#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
295
296#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000)
297#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000)
298#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000)
299#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000)
300#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000)
301
302#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000)
303
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100304/** Whether a key type is vendor-defined.
305 *
306 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
307 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100308#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
309 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
310
311/** Whether a key type is an unstructured array of bytes.
312 *
313 * This encompasses both symmetric keys and non-key data.
314 */
315#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
316 (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \
317 PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
318
319/** Whether a key type is asymmetric: either a key pair or a public key. */
320#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
321 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
322 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
323 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
324/** Whether a key type is the public part of a key pair. */
325#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
326 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
327/** Whether a key type is a key pair containing a private part and a public
328 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200329#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100330 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
331/** The key pair type corresponding to a public key type.
332 *
333 * You may also pass a key pair type as \p type, it will be left unchanged.
334 *
335 * \param type A public key type or key pair type.
336 *
337 * \return The corresponding key pair type.
338 * If \p type is not a public key or a key pair,
339 * the return value is undefined.
340 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200341#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100342 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
343/** The public key type corresponding to a key pair type.
344 *
345 * You may also pass a key pair type as \p type, it will be left unchanged.
346 *
347 * \param type A public key type or key pair type.
348 *
349 * \return The corresponding public key type.
350 * If \p type is not a public key or a key pair,
351 * the return value is undefined.
352 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200353#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100354 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
355
356/** Raw data.
357 *
358 * A "key" of this type cannot be used for any cryptographic operation.
359 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine8fe6e0d2019-12-02 16:58:13 +0100360#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50010000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100361
362/** HMAC key.
363 *
364 * The key policy determines which underlying hash algorithm the key can be
365 * used for.
366 *
367 * HMAC keys should generally have the same size as the underlying hash.
368 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
369 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
370#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000)
371
372/** A secret for key derivation.
373 *
374 * The key policy determines which key derivation algorithm the key
375 * can be used for.
376 */
377#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000)
378
Gilles Peskine737c6be2019-05-21 16:01:06 +0200379/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100380 *
381 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
382 * 32 bytes (AES-256).
383 */
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100384#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x44020000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100385
386/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
387 *
388 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
389 * 24 bytes (3-key 3DES).
390 *
391 * Note that single DES and 2-key 3DES are weak and strongly
392 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
393 * is weak and deprecated and should only be used in legacy protocols.
394 */
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100395#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x43020000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100396
Gilles Peskine737c6be2019-05-21 16:01:06 +0200397/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100398 * Camellia block cipher. */
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100399#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x44040000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100400
401/** Key for the RC4 stream cipher.
402 *
403 * Note that RC4 is weak and deprecated and should only be used in
404 * legacy protocols. */
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100405#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40020000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100406
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200407/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
408 *
409 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
410 *
411 * Implementations must support 12-byte nonces, may support 8-byte nonces,
412 * and should reject other sizes.
413 */
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100414#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x40040000)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200415
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100416/** RSA public key. */
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100417#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60020000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100418/** RSA key pair (private and public key). */
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100419#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x70020000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100420/** Whether a key type is an RSA key (pair or public-only). */
421#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200422 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100424#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x61000000)
425#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x71000000)
Gilles Peskine025fccd2019-12-02 19:12:00 +0100426#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ffffff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100427/** Elliptic curve key pair.
428 *
429 * \param curve A value of type ::psa_ecc_curve_t that identifies the
430 * ECC curve to be used.
431 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200432#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
433 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100434/** Elliptic curve public key.
435 *
436 * \param curve A value of type ::psa_ecc_curve_t that identifies the
437 * ECC curve to be used.
438 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100439#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
440 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
441
442/** Whether a key type is an elliptic curve key (pair or public-only). */
443#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200444 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100445 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100446/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200447#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100448 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200449 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100450/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100451#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
452 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
453 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
454
455/** Extract the curve from an elliptic curve key type. */
456#define PSA_KEY_TYPE_GET_CURVE(type) \
457 ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
458 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
459 0))
460
Gilles Peskine228abc52019-12-03 17:24:19 +0100461/** SEC Koblitz curves over prime fields.
462 *
463 * This family comprises the following curves:
464 * secp192k1, secp224k1, secp256k1.
465 * They are defined in _Standards for Efficient Cryptography_,
466 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
467 * https://www.secg.org/sec2-v2.pdf
468 */
469#define PSA_ECC_CURVE_SECP_K1 ((psa_ecc_curve_t) 0x160000)
470
471/** SEC random curves over prime fields.
472 *
473 * This family comprises the following curves:
474 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
475 * They are defined in _Standards for Efficient Cryptography_,
476 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
477 * https://www.secg.org/sec2-v2.pdf
478 */
479#define PSA_ECC_CURVE_SECP_R1 ((psa_ecc_curve_t) 0x120000)
480/* SECP160R2 (SEC2 v1, obsolete) */
481#define PSA_ECC_CURVE_SECP_R2 ((psa_ecc_curve_t) 0x1a0000)
482
483/** SEC Koblitz curves over binary fields.
484 *
485 * This family comprises the following curves:
486 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
487 * They are defined in _Standards for Efficient Cryptography_,
488 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
489 * https://www.secg.org/sec2-v2.pdf
490 */
491#define PSA_ECC_CURVE_SECT_K1 ((psa_ecc_curve_t) 0x260000)
492
493/** SEC random curves over binary fields.
494 *
495 * This family comprises the following curves:
496 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
497 * They are defined in _Standards for Efficient Cryptography_,
498 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
499 * https://www.secg.org/sec2-v2.pdf
500 */
501#define PSA_ECC_CURVE_SECT_R1 ((psa_ecc_curve_t) 0x220000)
502
503/** SEC additional random curves over binary fields.
504 *
505 * This family comprises the following curve:
506 * sect163r2.
507 * It is defined in _Standards for Efficient Cryptography_,
508 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
509 * https://www.secg.org/sec2-v2.pdf
510 */
511#define PSA_ECC_CURVE_SECT_R2 ((psa_ecc_curve_t) 0x2a0000)
512
513/** Brainpool P random curves.
514 *
515 * This family comprises the following curves:
516 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
517 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
518 * It is defined in RFC 5639.
519 */
520#define PSA_ECC_CURVE_BRAINPOOL_P_R1 ((psa_ecc_curve_t) 0x300000)
521
522/** Curve25519 and Curve448.
523 *
524 * This family comprises the following Montgomery curves:
525 * - 255-bit: Bernstein et al.,
526 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
527 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
528 * - 448-bit: Hamburg,
529 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
530 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
531 */
532#define PSA_ECC_CURVE_MONTGOMERY ((psa_ecc_curve_t) 0x400000)
533
Gilles Peskine025fccd2019-12-02 19:12:00 +0100534#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x1600a0)
535#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x1600c0)
536#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x1600e0)
537#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x160100)
538#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x1200a0)
539#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x1200c0)
540#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x1200e0)
541#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x120100)
542#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x120180)
543#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x120209)
544#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x1a00a0)
545#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x2600a3)
546#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x2600e9)
547#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x2600ef)
548#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x26011b)
549#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x260199)
550#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x26023b)
551#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x2200a3)
552#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x2200c1)
553#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x2200e9)
554#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x22011b)
555#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x220199)
556#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x22023b)
557#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x2a00a3)
558#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x2a00c1)
559#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x300100)
560#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x300180)
561#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x300200)
Gilles Peskinea9b9cf72019-05-21 19:18:33 +0200562/** Curve25519.
563 *
564 * This is the curve defined in Bernstein et al.,
565 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
566 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
567 */
Gilles Peskine025fccd2019-12-02 19:12:00 +0100568#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x0200ff)
Gilles Peskinea9b9cf72019-05-21 19:18:33 +0200569/** Curve448
570 *
571 * This is the curve defined in Hamburg,
572 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
573 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
574 */
Gilles Peskine025fccd2019-12-02 19:12:00 +0100575#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x0201c0)
Andrew Thoelkefd368e52019-09-25 22:14:29 +0100576
Gilles Peskine7bfcfac2019-12-02 17:22:26 +0100577#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x62000000)
578#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x72000000)
Gilles Peskine025fccd2019-12-02 19:12:00 +0100579#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ffffff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100580/** Diffie-Hellman key pair.
581 *
582 * \param group A value of type ::psa_dh_group_t that identifies the
583 * Diffie-Hellman group to be used.
584 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200585#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
586 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100587/** Diffie-Hellman public key.
588 *
589 * \param group A value of type ::psa_dh_group_t that identifies the
590 * Diffie-Hellman group to be used.
591 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200592#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
593 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
594
595/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
596#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200597 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200598 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
599/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200600#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200601 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200602 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200603/** Whether a key type is a Diffie-Hellman public key. */
604#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
605 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
606 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
607
608/** Extract the group from a Diffie-Hellman key type. */
609#define PSA_KEY_TYPE_GET_GROUP(type) \
610 ((psa_dh_group_t) (PSA_KEY_TYPE_IS_DH(type) ? \
611 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
612 0))
613
Gilles Peskine228abc52019-12-03 17:24:19 +0100614/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
615 *
616 * This family includes groups with the following key sizes (in bits):
617 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
618 * all of these sizes or only a subset.
619 */
620#define PSA_DH_GROUP_RFC7919 ((psa_dh_group_t) 0x020000)
621
Gilles Peskine025fccd2019-12-02 19:12:00 +0100622#define PSA_DH_GROUP_FFDHE2048 ((psa_dh_group_t) 0x020800)
623#define PSA_DH_GROUP_FFDHE3072 ((psa_dh_group_t) 0x020c00)
624#define PSA_DH_GROUP_FFDHE4096 ((psa_dh_group_t) 0x021000)
625#define PSA_DH_GROUP_FFDHE6144 ((psa_dh_group_t) 0x021800)
626#define PSA_DH_GROUP_FFDHE8192 ((psa_dh_group_t) 0x022000)
Andrew Thoelkefd368e52019-09-25 22:14:29 +0100627
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100628#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
629 (((type) >> 24) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100630/** The block size of a block cipher.
631 *
632 * \param type A cipher key type (value of type #psa_key_type_t).
633 *
634 * \return The block size for a block cipher, or 1 for a stream cipher.
635 * The return value is undefined if \p type is not a supported
636 * cipher key type.
637 *
638 * \note It is possible to build stream cipher algorithms on top of a block
639 * cipher, for example CTR mode (#PSA_ALG_CTR).
640 * This macro only takes the key type into account, so it cannot be
641 * used to determine the size of the data that #psa_cipher_update()
642 * might buffer for future processing in general.
643 *
644 * \note This macro returns a compile-time constant if its argument is one.
645 *
646 * \warning This macro may evaluate its argument multiple times.
647 */
648#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100649 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
650 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
651 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100652
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100653/** Vendor-defined algorithm flag.
654 *
655 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
656 * bit set. Vendors who define additional algorithms must use an encoding with
657 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
658 * used by standard encodings whenever practical.
659 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100660#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100661
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100662#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
663#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
664#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
665#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
666#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
667#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
668#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100669#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
670#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100671
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100672/** Whether an algorithm is vendor-defined.
673 *
674 * See also #PSA_ALG_VENDOR_FLAG.
675 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100676#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
677 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
678
679/** Whether the specified algorithm is a hash algorithm.
680 *
681 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
682 *
683 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
684 * This macro may return either 0 or 1 if \p alg is not a supported
685 * algorithm identifier.
686 */
687#define PSA_ALG_IS_HASH(alg) \
688 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
689
690/** Whether the specified algorithm is a MAC algorithm.
691 *
692 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
693 *
694 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
695 * This macro may return either 0 or 1 if \p alg is not a supported
696 * algorithm identifier.
697 */
698#define PSA_ALG_IS_MAC(alg) \
699 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
700
701/** Whether the specified algorithm is a symmetric cipher algorithm.
702 *
703 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
704 *
705 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
706 * This macro may return either 0 or 1 if \p alg is not a supported
707 * algorithm identifier.
708 */
709#define PSA_ALG_IS_CIPHER(alg) \
710 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
711
712/** Whether the specified algorithm is an authenticated encryption
713 * with associated data (AEAD) algorithm.
714 *
715 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
716 *
717 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
718 * This macro may return either 0 or 1 if \p alg is not a supported
719 * algorithm identifier.
720 */
721#define PSA_ALG_IS_AEAD(alg) \
722 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
723
724/** Whether the specified algorithm is a public-key signature algorithm.
725 *
726 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
727 *
728 * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise.
729 * This macro may return either 0 or 1 if \p alg is not a supported
730 * algorithm identifier.
731 */
732#define PSA_ALG_IS_SIGN(alg) \
733 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
734
735/** Whether the specified algorithm is a public-key encryption algorithm.
736 *
737 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
738 *
739 * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise.
740 * This macro may return either 0 or 1 if \p alg is not a supported
741 * algorithm identifier.
742 */
743#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
744 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
745
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100746/** Whether the specified algorithm is a key agreement algorithm.
747 *
748 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
749 *
750 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
751 * This macro may return either 0 or 1 if \p alg is not a supported
752 * algorithm identifier.
753 */
754#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100755 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100756
757/** Whether the specified algorithm is a key derivation algorithm.
758 *
759 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
760 *
761 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
762 * This macro may return either 0 or 1 if \p alg is not a supported
763 * algorithm identifier.
764 */
765#define PSA_ALG_IS_KEY_DERIVATION(alg) \
766 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
767
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100768#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100769/** MD2 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100770#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100771/** MD4 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100772#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100773/** MD5 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100774#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100775/** PSA_ALG_RIPEMD160 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100776#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100777/** SHA1 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100778#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
779/** SHA2-224 */
780#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
781/** SHA2-256 */
782#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
783/** SHA2-384 */
784#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
785/** SHA2-512 */
786#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
787/** SHA2-512/224 */
788#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
789/** SHA2-512/256 */
790#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
791/** SHA3-224 */
792#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
793/** SHA3-256 */
794#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
795/** SHA3-384 */
796#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
797/** SHA3-512 */
798#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
799
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100800/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100801 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100802 * This value may be used to form the algorithm usage field of a policy
803 * for a signature algorithm that is parametrized by a hash. The key
804 * may then be used to perform operations using the same signature
805 * algorithm parametrized with any supported hash.
806 *
807 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100808 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100809 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100810 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100811 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
812 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100813 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200814 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100815 * ```
816 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100817 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100818 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
819 * call to sign or verify a message may use a different hash.
820 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100821 * psa_sign_hash(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
822 * psa_sign_hash(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
823 * psa_sign_hash(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100824 * ```
825 *
826 * This value may not be used to build other algorithms that are
827 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100828 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100829 *
830 * This value may not be used to build an algorithm specification to
831 * perform an operation. It is only valid to build policies.
832 */
833#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
834
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100835#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
836#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
837/** Macro to build an HMAC algorithm.
838 *
839 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
840 *
841 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
842 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
843 *
844 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100845 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100846 * hash algorithm.
847 */
848#define PSA_ALG_HMAC(hash_alg) \
849 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
850
851#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
852 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
853
854/** Whether the specified algorithm is an HMAC algorithm.
855 *
856 * HMAC is a family of MAC algorithms that are based on a hash function.
857 *
858 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
859 *
860 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
861 * This macro may return either 0 or 1 if \p alg is not a supported
862 * algorithm identifier.
863 */
864#define PSA_ALG_IS_HMAC(alg) \
865 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
866 PSA_ALG_HMAC_BASE)
867
868/* In the encoding of a MAC algorithm, the bits corresponding to
869 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
870 * truncated. As an exception, the value 0 means the untruncated algorithm,
871 * whatever its length is. The length is encoded in 6 bits, so it can
872 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
873 * to full length is correctly encoded as 0 and any non-trivial truncation
874 * is correctly encoded as a value between 1 and 63. */
875#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
876#define PSA_MAC_TRUNCATION_OFFSET 8
877
878/** Macro to build a truncated MAC algorithm.
879 *
880 * A truncated MAC algorithm is identical to the corresponding MAC
881 * algorithm except that the MAC value for the truncated algorithm
882 * consists of only the first \p mac_length bytes of the MAC value
883 * for the untruncated algorithm.
884 *
885 * \note This macro may allow constructing algorithm identifiers that
886 * are not valid, either because the specified length is larger
887 * than the untruncated MAC or because the specified length is
888 * smaller than permitted by the implementation.
889 *
890 * \note It is implementation-defined whether a truncated MAC that
891 * is truncated to the same length as the MAC of the untruncated
892 * algorithm is considered identical to the untruncated algorithm
893 * for policy comparison purposes.
894 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200895 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100896 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
897 * is true). This may be a truncated or untruncated
898 * MAC algorithm.
899 * \param mac_length Desired length of the truncated MAC in bytes.
900 * This must be at most the full length of the MAC
901 * and must be at least an implementation-specified
902 * minimum. The implementation-specified minimum
903 * shall not be zero.
904 *
905 * \return The corresponding MAC algorithm with the specified
906 * length.
907 * \return Unspecified if \p alg is not a supported
908 * MAC algorithm or if \p mac_length is too small or
909 * too large for the specified MAC algorithm.
910 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200911#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
912 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100913 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
914
915/** Macro to build the base MAC algorithm corresponding to a truncated
916 * MAC algorithm.
917 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200918 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100919 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
920 * is true). This may be a truncated or untruncated
921 * MAC algorithm.
922 *
923 * \return The corresponding base MAC algorithm.
924 * \return Unspecified if \p alg is not a supported
925 * MAC algorithm.
926 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200927#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
928 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100929
930/** Length to which a MAC algorithm is truncated.
931 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200932 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100933 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
934 * is true).
935 *
936 * \return Length of the truncated MAC in bytes.
937 * \return 0 if \p alg is a non-truncated MAC algorithm.
938 * \return Unspecified if \p alg is not a supported
939 * MAC algorithm.
940 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200941#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
942 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100943
944#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100945/** The CBC-MAC construction over a block cipher
946 *
947 * \warning CBC-MAC is insecure in many cases.
948 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
949 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100950#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100951/** The CMAC construction over a block cipher */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100952#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100953
954/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
955 *
956 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
957 *
958 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
959 * This macro may return either 0 or 1 if \p alg is not a supported
960 * algorithm identifier.
961 */
962#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
963 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
964 PSA_ALG_CIPHER_MAC_BASE)
965
966#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
967#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
968
969/** Whether the specified algorithm is a stream cipher.
970 *
971 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
972 * by applying a bitwise-xor with a stream of bytes that is generated
973 * from a key.
974 *
975 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
976 *
977 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
978 * This macro may return either 0 or 1 if \p alg is not a supported
979 * algorithm identifier or if it is not a symmetric cipher algorithm.
980 */
981#define PSA_ALG_IS_STREAM_CIPHER(alg) \
982 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
983 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
984
985/** The ARC4 stream cipher algorithm.
986 */
987#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
988
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200989/** The ChaCha20 stream cipher.
990 *
991 * ChaCha20 is defined in RFC 7539.
992 *
993 * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv()
994 * must be 12.
995 *
996 * The initial block counter is always 0.
997 *
998 */
999#define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005)
1000
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001001/** The CTR stream cipher mode.
1002 *
1003 * CTR is a stream cipher which is built from a block cipher.
1004 * The underlying block cipher is determined by the key type.
1005 * For example, to use AES-128-CTR, use this algorithm with
1006 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1007 */
1008#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
1009
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001010/** The CFB stream cipher mode.
1011 *
1012 * The underlying block cipher is determined by the key type.
1013 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001014#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
1015
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001016/** The OFB stream cipher mode.
1017 *
1018 * The underlying block cipher is determined by the key type.
1019 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001020#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
1021
1022/** The XTS cipher mode.
1023 *
1024 * XTS is a cipher mode which is built from a block cipher. It requires at
1025 * least one full block of input, but beyond this minimum the input
1026 * does not need to be a whole number of blocks.
1027 */
1028#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
1029
1030/** The CBC block cipher chaining mode, with no padding.
1031 *
1032 * The underlying block cipher is determined by the key type.
1033 *
1034 * This symmetric cipher mode can only be used with messages whose lengths
1035 * are whole number of blocks for the chosen block cipher.
1036 */
1037#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
1038
1039/** The CBC block cipher chaining mode with PKCS#7 padding.
1040 *
1041 * The underlying block cipher is determined by the key type.
1042 *
1043 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1044 */
1045#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
1046
Gilles Peskine679693e2019-05-06 15:10:16 +02001047#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1048
1049/** Whether the specified algorithm is an AEAD mode on a block cipher.
1050 *
1051 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1052 *
1053 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1054 * a block cipher, 0 otherwise.
1055 * This macro may return either 0 or 1 if \p alg is not a supported
1056 * algorithm identifier.
1057 */
1058#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1059 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1060 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1061
Gilles Peskine9153ec02019-02-15 13:02:02 +01001062/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001063 *
1064 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001065 */
Gilles Peskine679693e2019-05-06 15:10:16 +02001066#define PSA_ALG_CCM ((psa_algorithm_t)0x06401001)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001067
1068/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001069 *
1070 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001071 */
Gilles Peskine679693e2019-05-06 15:10:16 +02001072#define PSA_ALG_GCM ((psa_algorithm_t)0x06401002)
1073
1074/** The Chacha20-Poly1305 AEAD algorithm.
1075 *
1076 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001077 *
1078 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1079 * and should reject other sizes.
1080 *
1081 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001082 */
1083#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001084
1085/* In the encoding of a AEAD algorithm, the bits corresponding to
1086 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1087 * The constants for default lengths follow this encoding.
1088 */
1089#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
1090#define PSA_AEAD_TAG_LENGTH_OFFSET 8
1091
1092/** Macro to build a shortened AEAD algorithm.
1093 *
1094 * A shortened AEAD algorithm is similar to the corresponding AEAD
1095 * algorithm, but has an authentication tag that consists of fewer bytes.
1096 * Depending on the algorithm, the tag length may affect the calculation
1097 * of the ciphertext.
1098 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001099 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001100 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
1101 * is true).
1102 * \param tag_length Desired length of the authentication tag in bytes.
1103 *
1104 * \return The corresponding AEAD algorithm with the specified
1105 * length.
1106 * \return Unspecified if \p alg is not a supported
1107 * AEAD algorithm or if \p tag_length is not valid
1108 * for the specified AEAD algorithm.
1109 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001110#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
1111 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001112 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1113 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1114
1115/** Calculate the corresponding AEAD algorithm with the default tag length.
1116 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001117 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
1118 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001119 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001120 * \return The corresponding AEAD algorithm with the default
1121 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001122 */
Unknowne2e19952019-08-21 03:33:04 -04001123#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
1124 ( \
1125 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CCM) \
1126 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_GCM) \
1127 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001128 0)
Unknowne2e19952019-08-21 03:33:04 -04001129#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, ref) \
1130 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
1131 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001132 ref :
1133
1134#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
1135/** RSA PKCS#1 v1.5 signature with hashing.
1136 *
1137 * This is the signature scheme defined by RFC 8017
1138 * (PKCS#1: RSA Cryptography Specifications) under the name
1139 * RSASSA-PKCS1-v1_5.
1140 *
1141 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1142 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001143 * This includes #PSA_ALG_ANY_HASH
1144 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001145 *
1146 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001147 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001148 * hash algorithm.
1149 */
1150#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1151 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1152/** Raw PKCS#1 v1.5 signature.
1153 *
1154 * The input to this algorithm is the DigestInfo structure used by
1155 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1156 * steps 3&ndash;6.
1157 */
1158#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1159#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1160 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1161
1162#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
1163/** RSA PSS signature with hashing.
1164 *
1165 * This is the signature scheme defined by RFC 8017
1166 * (PKCS#1: RSA Cryptography Specifications) under the name
1167 * RSASSA-PSS, with the message generation function MGF1, and with
1168 * a salt length equal to the length of the hash. The specified
1169 * hash algorithm is used to hash the input message, to create the
1170 * salted hash, and for the mask generation.
1171 *
1172 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1173 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001174 * This includes #PSA_ALG_ANY_HASH
1175 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001176 *
1177 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001178 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001179 * hash algorithm.
1180 */
1181#define PSA_ALG_RSA_PSS(hash_alg) \
1182 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1183#define PSA_ALG_IS_RSA_PSS(alg) \
1184 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1185
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001186#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1187/** ECDSA signature with hashing.
1188 *
1189 * This is the ECDSA signature scheme defined by ANSI X9.62,
1190 * with a random per-message secret number (*k*).
1191 *
1192 * The representation of the signature as a byte string consists of
1193 * the concatentation of the signature values *r* and *s*. Each of
1194 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1195 * of the base point of the curve in octets. Each value is represented
1196 * in big-endian order (most significant octet first).
1197 *
1198 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1199 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001200 * This includes #PSA_ALG_ANY_HASH
1201 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001202 *
1203 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001204 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001205 * hash algorithm.
1206 */
1207#define PSA_ALG_ECDSA(hash_alg) \
1208 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1209/** ECDSA signature without hashing.
1210 *
1211 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1212 * without specifying a hash algorithm. This algorithm may only be
1213 * used to sign or verify a sequence of bytes that should be an
1214 * already-calculated hash. Note that the input is padded with
1215 * zeros on the left or truncated on the left as required to fit
1216 * the curve size.
1217 */
1218#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1219#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1220/** Deterministic ECDSA signature with hashing.
1221 *
1222 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1223 *
1224 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1225 *
1226 * Note that when this algorithm is used for verification, signatures
1227 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1228 * same private key are accepted. In other words,
1229 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1230 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1231 *
1232 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1233 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001234 * This includes #PSA_ALG_ANY_HASH
1235 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001236 *
1237 * \return The corresponding deterministic ECDSA signature
1238 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001239 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001240 * hash algorithm.
1241 */
1242#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1243 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine972630e2019-11-29 11:55:48 +01001244#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00010000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001245#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001246 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001247 PSA_ALG_ECDSA_BASE)
1248#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001249 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001250#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1251 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1252#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1253 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1254
Gilles Peskined35b4892019-01-14 16:02:15 +01001255/** Whether the specified algorithm is a hash-and-sign algorithm.
1256 *
1257 * Hash-and-sign algorithms are public-key signature algorithms structured
1258 * in two parts: first the calculation of a hash in a way that does not
1259 * depend on the key, then the calculation of a signature from the
1260 * hash value and the key.
1261 *
1262 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1263 *
1264 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1265 * This macro may return either 0 or 1 if \p alg is not a supported
1266 * algorithm identifier.
1267 */
1268#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1269 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskinee38ab1a2019-05-16 13:51:50 +02001270 PSA_ALG_IS_ECDSA(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001271
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001272/** Get the hash used by a hash-and-sign signature algorithm.
1273 *
1274 * A hash-and-sign algorithm is a signature algorithm which is
1275 * composed of two phases: first a hashing phase which does not use
1276 * the key and produces a hash of the input message, then a signing
1277 * phase which only uses the hash and the key and not the message
1278 * itself.
1279 *
1280 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1281 * #PSA_ALG_IS_SIGN(\p alg) is true).
1282 *
1283 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1284 * algorithm.
1285 * \return 0 if \p alg is a signature algorithm that does not
1286 * follow the hash-and-sign structure.
1287 * \return Unspecified if \p alg is not a signature algorithm or
1288 * if it is not supported by the implementation.
1289 */
1290#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001291 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001292 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1293 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1294 0)
1295
1296/** RSA PKCS#1 v1.5 encryption.
1297 */
1298#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1299
1300#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1301/** RSA OAEP encryption.
1302 *
1303 * This is the encryption scheme defined by RFC 8017
1304 * (PKCS#1: RSA Cryptography Specifications) under the name
1305 * RSAES-OAEP, with the message generation function MGF1.
1306 *
1307 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1308 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1309 * for MGF1.
1310 *
1311 * \return The corresponding RSA OAEP signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001312 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001313 * hash algorithm.
1314 */
1315#define PSA_ALG_RSA_OAEP(hash_alg) \
1316 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1317#define PSA_ALG_IS_RSA_OAEP(alg) \
1318 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1319#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1320 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1321 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1322 0)
1323
Gilles Peskine6843c292019-01-18 16:44:49 +01001324#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001325/** Macro to build an HKDF algorithm.
1326 *
1327 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1328 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001329 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001330 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001331 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001332 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1333 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1334 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1335 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001336 * starting to generate output.
1337 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001338 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1339 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1340 *
1341 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001342 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001343 * hash algorithm.
1344 */
1345#define PSA_ALG_HKDF(hash_alg) \
1346 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1347/** Whether the specified algorithm is an HKDF algorithm.
1348 *
1349 * HKDF is a family of key derivation algorithms that are based on a hash
1350 * function and the HMAC construction.
1351 *
1352 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1353 *
1354 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1355 * This macro may return either 0 or 1 if \c alg is not a supported
1356 * key derivation algorithm identifier.
1357 */
1358#define PSA_ALG_IS_HKDF(alg) \
1359 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1360#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1361 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1362
Gilles Peskine6843c292019-01-18 16:44:49 +01001363#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001364/** Macro to build a TLS-1.2 PRF algorithm.
1365 *
1366 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1367 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1368 * used with either SHA-256 or SHA-384.
1369 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001370 * This key derivation algorithm uses the following inputs, which must be
1371 * passed in the order given here:
1372 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001373 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1374 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001375 *
1376 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001377 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001378 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001379 *
1380 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1381 * TLS 1.2 PRF using HMAC-SHA-256.
1382 *
1383 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1384 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1385 *
1386 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001387 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001388 * hash algorithm.
1389 */
1390#define PSA_ALG_TLS12_PRF(hash_alg) \
1391 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1392
1393/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1394 *
1395 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1396 *
1397 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1398 * This macro may return either 0 or 1 if \c alg is not a supported
1399 * key derivation algorithm identifier.
1400 */
1401#define PSA_ALG_IS_TLS12_PRF(alg) \
1402 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1403#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1404 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1405
Gilles Peskine6843c292019-01-18 16:44:49 +01001406#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001407/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1408 *
1409 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1410 * from the PreSharedKey (PSK) through the application of padding
1411 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1412 * The latter is based on HMAC and can be used with either SHA-256
1413 * or SHA-384.
1414 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001415 * This key derivation algorithm uses the following inputs, which must be
1416 * passed in the order given here:
1417 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001418 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1419 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001420 *
1421 * For the application to TLS-1.2, the seed (which is
1422 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1423 * ClientHello.Random + ServerHello.Random,
1424 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001425 *
1426 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1427 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1428 *
1429 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1430 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1431 *
1432 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001433 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001434 * hash algorithm.
1435 */
1436#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1437 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1438
1439/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1440 *
1441 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1442 *
1443 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1444 * This macro may return either 0 or 1 if \c alg is not a supported
1445 * key derivation algorithm identifier.
1446 */
1447#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1448 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1449#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1450 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1451
Gilles Peskinea52460c2019-04-12 00:11:21 +02001452#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff)
1453#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001454
Gilles Peskine6843c292019-01-18 16:44:49 +01001455/** Macro to build a combined algorithm that chains a key agreement with
1456 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001457 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001458 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1459 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1460 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1461 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001462 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001463 * \return The corresponding key agreement and derivation
1464 * algorithm.
1465 * \return Unspecified if \p ka_alg is not a supported
1466 * key agreement algorithm or \p kdf_alg is not a
1467 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001468 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001469#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1470 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001471
1472#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1473 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1474
Gilles Peskine6843c292019-01-18 16:44:49 +01001475#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1476 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001477
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001478/** Whether the specified algorithm is a raw key agreement algorithm.
1479 *
1480 * A raw key agreement algorithm is one that does not specify
1481 * a key derivation function.
1482 * Usually, raw key agreement algorithms are constructed directly with
1483 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
1484 * constructed with PSA_ALG_KEY_AGREEMENT().
1485 *
1486 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1487 *
1488 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1489 * This macro may return either 0 or 1 if \p alg is not a supported
1490 * algorithm identifier.
1491 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001492#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001493 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1494 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001495
1496#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1497 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1498
1499/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001500 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001501 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001502 * `g^{ab}` in big-endian format.
1503 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1504 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001505 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001506#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1507
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001508/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1509 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001510 * This includes the raw finite field Diffie-Hellman algorithm as well as
1511 * finite-field Diffie-Hellman followed by any supporter key derivation
1512 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001513 *
1514 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1515 *
1516 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1517 * This macro may return either 0 or 1 if \c alg is not a supported
1518 * key agreement algorithm identifier.
1519 */
1520#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001521 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001522
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001523/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1524 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001525 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001526 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1527 * `m` is the bit size associated with the curve, i.e. the bit size of the
1528 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1529 * the byte containing the most significant bit of the shared secret
1530 * is padded with zero bits. The byte order is either little-endian
1531 * or big-endian depending on the curve type.
1532 *
1533 * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`),
1534 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1535 * in little-endian byte order.
1536 * The bit size is 448 for Curve448 and 255 for Curve25519.
1537 * - For Weierstrass curves over prime fields (curve types
1538 * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`),
1539 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1540 * in big-endian byte order.
1541 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1542 * - For Weierstrass curves over binary fields (curve types
1543 * `PSA_ECC_CURVE_SECTXXX`),
1544 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1545 * in big-endian byte order.
1546 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001547 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001548#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1549
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001550/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1551 * algorithm.
1552 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001553 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1554 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1555 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001556 *
1557 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1558 *
1559 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1560 * 0 otherwise.
1561 * This macro may return either 0 or 1 if \c alg is not a supported
1562 * key agreement algorithm identifier.
1563 */
1564#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001565 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001566
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001567/** Whether the specified algorithm encoding is a wildcard.
1568 *
1569 * Wildcard values may only be used to set the usage algorithm field in
1570 * a policy, not to perform an operation.
1571 *
1572 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1573 *
1574 * \return 1 if \c alg is a wildcard algorithm encoding.
1575 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1576 * an operation).
1577 * \return This macro may return either 0 or 1 if \c alg is not a supported
1578 * algorithm identifier.
1579 */
1580#define PSA_ALG_IS_WILDCARD(alg) \
1581 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1582 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1583 (alg) == PSA_ALG_ANY_HASH)
1584
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001585/**@}*/
1586
1587/** \defgroup key_lifetimes Key lifetimes
1588 * @{
1589 */
1590
1591/** A volatile key only exists as long as the handle to it is not closed.
1592 * The key material is guaranteed to be erased on a power reset.
1593 */
1594#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1595
1596/** The default storage area for persistent keys.
1597 *
1598 * A persistent key remains in storage until it is explicitly destroyed or
1599 * until the corresponding storage area is wiped. This specification does
1600 * not define any mechanism to wipe a storage area, but implementations may
1601 * provide their own mechanism (for example to perform a factory reset,
1602 * to prepare for device refurbishment, or to uninstall an application).
1603 *
1604 * This lifetime value is the default storage area for the calling
1605 * application. Implementations may offer other storage areas designated
1606 * by other lifetime values as implementation-specific extensions.
1607 */
1608#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1609
Gilles Peskine4a231b82019-05-06 18:56:14 +02001610/** The minimum value for a key identifier chosen by the application.
1611 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001612#define PSA_KEY_ID_USER_MIN ((psa_app_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001613/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001614 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001615#define PSA_KEY_ID_USER_MAX ((psa_app_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001616/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001617 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001618#define PSA_KEY_ID_VENDOR_MIN ((psa_app_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001619/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001620 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001621#define PSA_KEY_ID_VENDOR_MAX ((psa_app_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02001622
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001623/**@}*/
1624
1625/** \defgroup policy Key policies
1626 * @{
1627 */
1628
1629/** Whether the key may be exported.
1630 *
1631 * A public key or the public part of a key pair may always be exported
1632 * regardless of the value of this permission flag.
1633 *
1634 * If a key does not have export permission, implementations shall not
1635 * allow the key to be exported in plain form from the cryptoprocessor,
1636 * whether through psa_export_key() or through a proprietary interface.
1637 * The key may however be exportable in a wrapped form, i.e. in a form
1638 * where it is encrypted by another key.
1639 */
1640#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1641
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001642/** Whether the key may be copied.
1643 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001644 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001645 * with the same policy or a more restrictive policy.
1646 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001647 * For lifetimes for which the key is located in a secure element which
1648 * enforce the non-exportability of keys, copying a key outside the secure
1649 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1650 * Copying the key inside the secure element is permitted with just
1651 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1652 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001653 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1654 * is sufficient to permit the copy.
1655 */
1656#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1657
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001658/** Whether the key may be used to encrypt a message.
1659 *
1660 * This flag allows the key to be used for a symmetric encryption operation,
1661 * for an AEAD encryption-and-authentication operation,
1662 * or for an asymmetric encryption operation,
1663 * if otherwise permitted by the key's type and policy.
1664 *
1665 * For a key pair, this concerns the public key.
1666 */
1667#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1668
1669/** Whether the key may be used to decrypt a message.
1670 *
1671 * This flag allows the key to be used for a symmetric decryption operation,
1672 * for an AEAD decryption-and-verification operation,
1673 * or for an asymmetric decryption operation,
1674 * if otherwise permitted by the key's type and policy.
1675 *
1676 * For a key pair, this concerns the private key.
1677 */
1678#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1679
1680/** Whether the key may be used to sign a message.
1681 *
1682 * This flag allows the key to be used for a MAC calculation operation
1683 * or for an asymmetric signature operation,
1684 * if otherwise permitted by the key's type and policy.
1685 *
1686 * For a key pair, this concerns the private key.
1687 */
Gilles Peskine89d8c5c2019-11-26 17:01:59 +01001688#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00000400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001689
1690/** Whether the key may be used to verify a message signature.
1691 *
1692 * This flag allows the key to be used for a MAC verification operation
1693 * or for an asymmetric signature verification operation,
1694 * if otherwise permitted by by the key's type and policy.
1695 *
1696 * For a key pair, this concerns the public key.
1697 */
Gilles Peskine89d8c5c2019-11-26 17:01:59 +01001698#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00000800)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001699
1700/** Whether the key may be used to derive other keys.
1701 */
1702#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1703
1704/**@}*/
1705
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001706/** \defgroup derivation Key derivation
1707 * @{
1708 */
1709
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001710/** A secret input for key derivation.
1711 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001712 * This should be a key of type #PSA_KEY_TYPE_DERIVE
1713 * (passed to psa_key_derivation_input_key())
1714 * or the shared secret resulting from a key agreement
1715 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02001716 *
1717 * The secret can also be a direct input (passed to
1718 * key_derivation_input_bytes()). In this case, the derivation operation
1719 * may not be used to derive keys: the operation will only allow
1720 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001721 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001722#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001723
1724/** A label for key derivation.
1725 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001726 * This should be a direct input.
1727 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001728 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001729#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001730
1731/** A salt for key derivation.
1732 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001733 * This should be a direct input.
1734 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001735 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001736#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001737
1738/** An information string for key derivation.
1739 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001740 * This should be a direct input.
1741 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001742 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001743#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001744
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001745/** A seed for key derivation.
1746 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001747 * This should be a direct input.
1748 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001749 */
1750#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
1751
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001752/**@}*/
1753
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001754#endif /* PSA_CRYPTO_VALUES_H */