blob: 81a85755c790cdf2cad97a3e1386e62270579fe9 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
36
37/** \defgroup error Error codes
38 * @{
39 */
40
David Saadab4ecc272019-02-14 13:48:10 +020041/* PSA error codes */
42
Gilles Peskinef3b731e2018-12-12 13:38:31 +010043/** The action was completed successfully. */
44#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045
46/** An error occurred that does not correspond to any defined
47 * failure cause.
48 *
49 * Implementations may use this error code if none of the other standard
50 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020051#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010052
53/** The requested operation or a parameter is not supported
54 * by this implementation.
55 *
56 * Implementations should return this error code when an enumeration
57 * parameter such as a key type, algorithm, etc. is not recognized.
58 * If a combination of parameters is recognized and identified as
59 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020060#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010061
62/** The requested action is denied by a policy.
63 *
64 * Implementations should return this error code when the parameters
65 * are recognized as valid and supported, and a policy explicitly
66 * denies the requested operation.
67 *
68 * If a subset of the parameters of a function call identify a
69 * forbidden operation, and another subset of the parameters are
70 * not valid or not supported, it is unspecified whether the function
71 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
72 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020073#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010074
75/** An output buffer is too small.
76 *
77 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
78 * description to determine a sufficient buffer size.
79 *
80 * Implementations should preferably return this error code only
81 * in cases when performing the operation with a larger output
82 * buffer would succeed. However implementations may return this
83 * error if a function has invalid or unsupported parameters in addition
84 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
David Saadab4ecc272019-02-14 13:48:10 +020087/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088 *
David Saadab4ecc272019-02-14 13:48:10 +020089 * Implementations should return this error, when attempting
90 * to write an item (like a key) that already exists. */
91#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010092
David Saadab4ecc272019-02-14 13:48:10 +020093/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094 *
David Saadab4ecc272019-02-14 13:48:10 +020095 * Implementations should return this error, if a requested item (like
96 * a key) does not exist. */
97#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
99/** The requested action cannot be performed in the current state.
100 *
101 * Multipart operations return this error when one of the
102 * functions is called out of sequence. Refer to the function
103 * descriptions for permitted sequencing of functions.
104 *
105 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100106 * that a key either exists or not,
107 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100108 * as applicable.
109 *
110 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200111 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100112 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200113#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100114
115/** The parameters passed to the function are invalid.
116 *
117 * Implementations may return this error any time a parameter or
118 * combination of parameters are recognized as invalid.
119 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100120 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200121 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100122 * instead.
123 */
David Saadab4ecc272019-02-14 13:48:10 +0200124#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100125
126/** There is not enough runtime memory.
127 *
128 * If the action is carried out across multiple security realms, this
129 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200130#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100131
132/** There is not enough persistent storage.
133 *
134 * Functions that modify the key storage return this error code if
135 * there is insufficient storage space on the host media. In addition,
136 * many functions that do not otherwise access storage may return this
137 * error code if the implementation requires a mandatory log entry for
138 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200139#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100140
141/** There was a communication failure inside the implementation.
142 *
143 * This can indicate a communication failure between the application
144 * and an external cryptoprocessor or between the cryptoprocessor and
145 * an external volatile or persistent memory. A communication failure
146 * may be transient or permanent depending on the cause.
147 *
148 * \warning If a function returns this error, it is undetermined
149 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200150 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100151 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
152 * if the requested action was completed successfully in an external
153 * cryptoprocessor but there was a breakdown of communication before
154 * the cryptoprocessor could report the status to the application.
155 */
David Saadab4ecc272019-02-14 13:48:10 +0200156#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100157
158/** There was a storage failure that may have led to data loss.
159 *
160 * This error indicates that some persistent storage is corrupted.
161 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200162 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100163 * between the cryptoprocessor and its external storage (use
164 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
165 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
166 *
167 * Note that a storage failure does not indicate that any data that was
168 * previously read is invalid. However this previously read data may no
169 * longer be readable from storage.
170 *
171 * When a storage failure occurs, it is no longer possible to ensure
172 * the global integrity of the keystore. Depending on the global
173 * integrity guarantees offered by the implementation, access to other
174 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100175 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 *
177 * Implementations should only use this error code to report a
178 * permanent storage corruption. However application writers should
179 * keep in mind that transient errors while reading the storage may be
180 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200181#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100182
183/** A hardware failure was detected.
184 *
185 * A hardware failure may be transient or permanent depending on the
186 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200187#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188
189/** A tampering attempt was detected.
190 *
191 * If an application receives this error code, there is no guarantee
192 * that previously accessed or computed data was correct and remains
193 * confidential. Applications should not perform any security function
194 * and should enter a safe failure state.
195 *
196 * Implementations may return this error code if they detect an invalid
197 * state that cannot happen during normal operation and that indicates
198 * that the implementation's security guarantees no longer hold. Depending
199 * on the implementation architecture and on its security and safety goals,
200 * the implementation may forcibly terminate the application.
201 *
202 * This error code is intended as a last resort when a security breach
203 * is detected and it is unsure whether the keystore data is still
204 * protected. Implementations shall only return this error code
205 * to report an alarm from a tampering detector, to indicate that
206 * the confidentiality of stored data can no longer be guaranteed,
207 * or to indicate that the integrity of previously returned data is now
208 * considered compromised. Implementations shall not use this error code
209 * to indicate a hardware failure that merely makes it impossible to
210 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
211 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
212 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
213 * instead).
214 *
215 * This error indicates an attack against the application. Implementations
216 * shall not return this error code as a consequence of the behavior of
217 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200218#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100219
220/** There is not enough entropy to generate random data needed
221 * for the requested action.
222 *
223 * This error indicates a failure of a hardware random generator.
224 * Application writers should note that this error can be returned not
225 * only by functions whose purpose is to generate random data, such
226 * as key, IV or nonce generation, but also by functions that execute
227 * an algorithm with a randomized result, as well as functions that
228 * use randomization of intermediate computations as a countermeasure
229 * to certain attacks.
230 *
231 * Implementations should avoid returning this error after psa_crypto_init()
232 * has succeeded. Implementations should generate sufficient
233 * entropy during initialization and subsequently use a cryptographically
234 * secure pseudorandom generator (PRNG). However implementations may return
235 * this error at any time if a policy requires the PRNG to be reseeded
236 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200237#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100238
239/** The signature, MAC or hash is incorrect.
240 *
241 * Verification functions return this error if the verification
242 * calculations completed successfully, and the value to be verified
243 * was determined to be incorrect.
244 *
245 * If the value to verify has an invalid size, implementations may return
246 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200247#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100248
249/** The decrypted padding is incorrect.
250 *
251 * \warning In some protocols, when decrypting data, it is essential that
252 * the behavior of the application does not depend on whether the padding
253 * is correct, down to precise timing. Applications should prefer
254 * protocols that use authenticated encryption rather than plain
255 * encryption. If the application must perform a decryption of
256 * unauthenticated data, the application writer should take care not
257 * to reveal whether the padding is invalid.
258 *
259 * Implementations should strive to make valid and invalid padding
260 * as close as possible to indistinguishable to an external observer.
261 * In particular, the timing of a decryption operation should not
262 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200263#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100264
David Saadab4ecc272019-02-14 13:48:10 +0200265/** Return this error when there's insufficient data when attempting
266 * to read from a resource. */
267#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100268
Ronald Croncf56a0a2020-08-04 09:51:30 +0200269/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270 */
David Saadab4ecc272019-02-14 13:48:10 +0200271#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272
273/**@}*/
274
275/** \defgroup crypto_types Key and algorithm types
276 * @{
277 */
278
279/** An invalid key type value.
280 *
281 * Zero is not the encoding of any key type.
282 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100283#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100284
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100285/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100286 *
287 * Key types defined by this standard will never have the
288 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
289 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
290 * respect the bitwise structure used by standard encodings whenever practical.
291 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100292#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100293
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100294#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100295#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
296#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
297#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100298#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100299
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100300#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100301
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100302/** Whether a key type is vendor-defined.
303 *
304 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
305 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100306#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
307 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
308
309/** Whether a key type is an unstructured array of bytes.
310 *
311 * This encompasses both symmetric keys and non-key data.
312 */
313#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100314 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
315 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100316
317/** Whether a key type is asymmetric: either a key pair or a public key. */
318#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
319 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
320 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
321 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
322/** Whether a key type is the public part of a key pair. */
323#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
324 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
325/** Whether a key type is a key pair containing a private part and a public
326 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200327#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100328 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
329/** The key pair type corresponding to a public key type.
330 *
331 * You may also pass a key pair type as \p type, it will be left unchanged.
332 *
333 * \param type A public key type or key pair type.
334 *
335 * \return The corresponding key pair type.
336 * If \p type is not a public key or a key pair,
337 * the return value is undefined.
338 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200339#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100340 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
341/** The public key type corresponding to a key pair type.
342 *
343 * You may also pass a key pair type as \p type, it will be left unchanged.
344 *
345 * \param type A public key type or key pair type.
346 *
347 * \return The corresponding public key type.
348 * If \p type is not a public key or a key pair,
349 * the return value is undefined.
350 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200351#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100352 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
353
354/** Raw data.
355 *
356 * A "key" of this type cannot be used for any cryptographic operation.
357 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100358#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100359
360/** HMAC key.
361 *
362 * The key policy determines which underlying hash algorithm the key can be
363 * used for.
364 *
365 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100366 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100367 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100368#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100369
370/** A secret for key derivation.
371 *
372 * The key policy determines which key derivation algorithm the key
373 * can be used for.
374 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100375#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100376
Gilles Peskine737c6be2019-05-21 16:01:06 +0200377/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100378 *
379 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
380 * 32 bytes (AES-256).
381 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100382#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100383
384/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
385 *
386 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
387 * 24 bytes (3-key 3DES).
388 *
389 * Note that single DES and 2-key 3DES are weak and strongly
390 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
391 * is weak and deprecated and should only be used in legacy protocols.
392 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100393#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100394
Gilles Peskine737c6be2019-05-21 16:01:06 +0200395/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100396 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100397#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100398
399/** Key for the RC4 stream cipher.
400 *
401 * Note that RC4 is weak and deprecated and should only be used in
402 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100403#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100404
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200405/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
406 *
407 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
408 *
409 * Implementations must support 12-byte nonces, may support 8-byte nonces,
410 * and should reject other sizes.
411 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100412#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200413
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100414/** RSA public key. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100415#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100416/** RSA key pair (private and public key). */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100417#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100418/** Whether a key type is an RSA key (pair or public-only). */
419#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200420 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100421
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100422#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100423#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
424#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100425/** Elliptic curve key pair.
426 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100427 * \param curve A value of type ::psa_ecc_family_t that
428 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100429 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200430#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
431 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100432/** Elliptic curve public key.
433 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100434 * \param curve A value of type ::psa_ecc_family_t that
435 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100436 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100437#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
438 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
439
440/** Whether a key type is an elliptic curve key (pair or public-only). */
441#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200442 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100443 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100444/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200445#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100446 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200447 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100448/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100449#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
450 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
451 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
452
453/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100454#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
455 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100456 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
457 0))
458
Gilles Peskine228abc52019-12-03 17:24:19 +0100459/** SEC Koblitz curves over prime fields.
460 *
461 * This family comprises the following curves:
462 * secp192k1, secp224k1, secp256k1.
463 * They are defined in _Standards for Efficient Cryptography_,
464 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
465 * https://www.secg.org/sec2-v2.pdf
466 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100467#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100468
469/** SEC random curves over prime fields.
470 *
471 * This family comprises the following curves:
472 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
473 * They are defined in _Standards for Efficient Cryptography_,
474 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
475 * https://www.secg.org/sec2-v2.pdf
476 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100477#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100478/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100479#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100480
481/** SEC Koblitz curves over binary fields.
482 *
483 * This family comprises the following curves:
484 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
485 * They are defined in _Standards for Efficient Cryptography_,
486 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
487 * https://www.secg.org/sec2-v2.pdf
488 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100489#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100490
491/** SEC random curves over binary fields.
492 *
493 * This family comprises the following curves:
494 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
495 * They are defined in _Standards for Efficient Cryptography_,
496 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
497 * https://www.secg.org/sec2-v2.pdf
498 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100499#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100500
501/** SEC additional random curves over binary fields.
502 *
503 * This family comprises the following curve:
504 * sect163r2.
505 * It is defined in _Standards for Efficient Cryptography_,
506 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
507 * https://www.secg.org/sec2-v2.pdf
508 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100509#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100510
511/** Brainpool P random curves.
512 *
513 * This family comprises the following curves:
514 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
515 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
516 * It is defined in RFC 5639.
517 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100518#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100519
520/** Curve25519 and Curve448.
521 *
522 * This family comprises the following Montgomery curves:
523 * - 255-bit: Bernstein et al.,
524 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
525 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
526 * - 448-bit: Hamburg,
527 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
528 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
529 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100530#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100531
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100532#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100533#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
534#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100535/** Diffie-Hellman key pair.
536 *
Paul Elliott75e27032020-06-03 15:17:39 +0100537 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100538 * Diffie-Hellman group to be used.
539 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200540#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
541 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100542/** Diffie-Hellman public key.
543 *
Paul Elliott75e27032020-06-03 15:17:39 +0100544 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100545 * Diffie-Hellman group to be used.
546 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200547#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
548 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
549
550/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
551#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200552 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200553 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
554/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200555#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200556 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200557 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200558/** Whether a key type is a Diffie-Hellman public key. */
559#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
560 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
561 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
562
563/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100564#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
565 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200566 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
567 0))
568
Gilles Peskine228abc52019-12-03 17:24:19 +0100569/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
570 *
571 * This family includes groups with the following key sizes (in bits):
572 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
573 * all of these sizes or only a subset.
574 */
Paul Elliott75e27032020-06-03 15:17:39 +0100575#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100576
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100577#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100578 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100579/** The block size of a block cipher.
580 *
581 * \param type A cipher key type (value of type #psa_key_type_t).
582 *
583 * \return The block size for a block cipher, or 1 for a stream cipher.
584 * The return value is undefined if \p type is not a supported
585 * cipher key type.
586 *
587 * \note It is possible to build stream cipher algorithms on top of a block
588 * cipher, for example CTR mode (#PSA_ALG_CTR).
589 * This macro only takes the key type into account, so it cannot be
590 * used to determine the size of the data that #psa_cipher_update()
591 * might buffer for future processing in general.
592 *
593 * \note This macro returns a compile-time constant if its argument is one.
594 *
595 * \warning This macro may evaluate its argument multiple times.
596 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100597#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100598 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100599 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100600 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100601
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100602/** Vendor-defined algorithm flag.
603 *
604 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
605 * bit set. Vendors who define additional algorithms must use an encoding with
606 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
607 * used by standard encodings whenever practical.
608 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100609#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100610
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100611#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100612#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
613#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100614#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100615#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
616#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
617#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
618#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
619#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100620
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100621/** Whether an algorithm is vendor-defined.
622 *
623 * See also #PSA_ALG_VENDOR_FLAG.
624 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100625#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
626 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
627
628/** Whether the specified algorithm is a hash algorithm.
629 *
630 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
631 *
632 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
633 * This macro may return either 0 or 1 if \p alg is not a supported
634 * algorithm identifier.
635 */
636#define PSA_ALG_IS_HASH(alg) \
637 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
638
639/** Whether the specified algorithm is a MAC algorithm.
640 *
641 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
642 *
643 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
644 * This macro may return either 0 or 1 if \p alg is not a supported
645 * algorithm identifier.
646 */
647#define PSA_ALG_IS_MAC(alg) \
648 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
649
650/** Whether the specified algorithm is a symmetric cipher algorithm.
651 *
652 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
653 *
654 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
655 * This macro may return either 0 or 1 if \p alg is not a supported
656 * algorithm identifier.
657 */
658#define PSA_ALG_IS_CIPHER(alg) \
659 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
660
661/** Whether the specified algorithm is an authenticated encryption
662 * with associated data (AEAD) algorithm.
663 *
664 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
665 *
666 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
667 * This macro may return either 0 or 1 if \p alg is not a supported
668 * algorithm identifier.
669 */
670#define PSA_ALG_IS_AEAD(alg) \
671 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
672
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200673/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200674 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100675 *
676 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
677 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200678 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100679 * This macro may return either 0 or 1 if \p alg is not a supported
680 * algorithm identifier.
681 */
682#define PSA_ALG_IS_SIGN(alg) \
683 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
684
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200685/** Whether the specified algorithm is an asymmetric encryption algorithm,
686 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100687 *
688 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
689 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200690 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100691 * This macro may return either 0 or 1 if \p alg is not a supported
692 * algorithm identifier.
693 */
694#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
695 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
696
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100697/** Whether the specified algorithm is a key agreement algorithm.
698 *
699 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
700 *
701 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
702 * This macro may return either 0 or 1 if \p alg is not a supported
703 * algorithm identifier.
704 */
705#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100706 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100707
708/** Whether the specified algorithm is a key derivation algorithm.
709 *
710 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
711 *
712 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
713 * This macro may return either 0 or 1 if \p alg is not a supported
714 * algorithm identifier.
715 */
716#define PSA_ALG_IS_KEY_DERIVATION(alg) \
717 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
718
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100719#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100720/** MD2 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100721#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100722/** MD4 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100723#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100724/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100725#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100726/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100727#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100728/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100729#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100730/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100731#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100732/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100733#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100734/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100735#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100736/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100737#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100738/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100739#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100740/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100741#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100742/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100743#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100744/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100745#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100746/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100747#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100748/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100749#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100750
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100751/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100752 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100753 * This value may be used to form the algorithm usage field of a policy
754 * for a signature algorithm that is parametrized by a hash. The key
755 * may then be used to perform operations using the same signature
756 * algorithm parametrized with any supported hash.
757 *
758 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100759 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100760 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100761 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100762 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
763 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100764 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200765 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100766 * ```
767 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100768 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100769 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
770 * call to sign or verify a message may use a different hash.
771 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200772 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
773 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
774 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100775 * ```
776 *
777 * This value may not be used to build other algorithms that are
778 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100779 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100780 *
781 * This value may not be used to build an algorithm specification to
782 * perform an operation. It is only valid to build policies.
783 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100784#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100785
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100786#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100787#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100788/** Macro to build an HMAC algorithm.
789 *
790 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
791 *
792 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
793 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
794 *
795 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100796 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100797 * hash algorithm.
798 */
799#define PSA_ALG_HMAC(hash_alg) \
800 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
801
802#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
803 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
804
805/** Whether the specified algorithm is an HMAC algorithm.
806 *
807 * HMAC is a family of MAC algorithms that are based on a hash function.
808 *
809 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
810 *
811 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
812 * This macro may return either 0 or 1 if \p alg is not a supported
813 * algorithm identifier.
814 */
815#define PSA_ALG_IS_HMAC(alg) \
816 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
817 PSA_ALG_HMAC_BASE)
818
819/* In the encoding of a MAC algorithm, the bits corresponding to
820 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
821 * truncated. As an exception, the value 0 means the untruncated algorithm,
822 * whatever its length is. The length is encoded in 6 bits, so it can
823 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
824 * to full length is correctly encoded as 0 and any non-trivial truncation
825 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100826#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
827#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100828
829/** Macro to build a truncated MAC algorithm.
830 *
831 * A truncated MAC algorithm is identical to the corresponding MAC
832 * algorithm except that the MAC value for the truncated algorithm
833 * consists of only the first \p mac_length bytes of the MAC value
834 * for the untruncated algorithm.
835 *
836 * \note This macro may allow constructing algorithm identifiers that
837 * are not valid, either because the specified length is larger
838 * than the untruncated MAC or because the specified length is
839 * smaller than permitted by the implementation.
840 *
841 * \note It is implementation-defined whether a truncated MAC that
842 * is truncated to the same length as the MAC of the untruncated
843 * algorithm is considered identical to the untruncated algorithm
844 * for policy comparison purposes.
845 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200846 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100847 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
848 * is true). This may be a truncated or untruncated
849 * MAC algorithm.
850 * \param mac_length Desired length of the truncated MAC in bytes.
851 * This must be at most the full length of the MAC
852 * and must be at least an implementation-specified
853 * minimum. The implementation-specified minimum
854 * shall not be zero.
855 *
856 * \return The corresponding MAC algorithm with the specified
857 * length.
858 * \return Unspecified if \p alg is not a supported
859 * MAC algorithm or if \p mac_length is too small or
860 * too large for the specified MAC algorithm.
861 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200862#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
863 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100864 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
865
866/** Macro to build the base MAC algorithm corresponding to a truncated
867 * MAC algorithm.
868 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200869 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100870 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
871 * is true). This may be a truncated or untruncated
872 * MAC algorithm.
873 *
874 * \return The corresponding base MAC algorithm.
875 * \return Unspecified if \p alg is not a supported
876 * MAC algorithm.
877 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200878#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
879 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100880
881/** Length to which a MAC algorithm is truncated.
882 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200883 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100884 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
885 * is true).
886 *
887 * \return Length of the truncated MAC in bytes.
888 * \return 0 if \p alg is a non-truncated MAC algorithm.
889 * \return Unspecified if \p alg is not a supported
890 * MAC algorithm.
891 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200892#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
893 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100894
Bence Szépkútia2945512020-12-03 21:40:17 +0100895#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100896/** The CBC-MAC construction over a block cipher
897 *
898 * \warning CBC-MAC is insecure in many cases.
899 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
900 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100901#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100902/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +0100903#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100904
905/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
906 *
907 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
908 *
909 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
910 * This macro may return either 0 or 1 if \p alg is not a supported
911 * algorithm identifier.
912 */
913#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
914 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
915 PSA_ALG_CIPHER_MAC_BASE)
916
917#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
918#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
919
920/** Whether the specified algorithm is a stream cipher.
921 *
922 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
923 * by applying a bitwise-xor with a stream of bytes that is generated
924 * from a key.
925 *
926 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
927 *
928 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
929 * This macro may return either 0 or 1 if \p alg is not a supported
930 * algorithm identifier or if it is not a symmetric cipher algorithm.
931 */
932#define PSA_ALG_IS_STREAM_CIPHER(alg) \
933 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
934 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
935
Bence Szépkúti1de907d2020-12-07 18:20:28 +0100936/** The stream cipher mode of a stream cipher algorithm.
937 *
938 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +0100939 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
940 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100941 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +0100942#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200943
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100944/** The CTR stream cipher mode.
945 *
946 * CTR is a stream cipher which is built from a block cipher.
947 * The underlying block cipher is determined by the key type.
948 * For example, to use AES-128-CTR, use this algorithm with
949 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
950 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100951#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100952
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100953/** The CFB stream cipher mode.
954 *
955 * The underlying block cipher is determined by the key type.
956 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100957#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100958
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100959/** The OFB stream cipher mode.
960 *
961 * The underlying block cipher is determined by the key type.
962 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100963#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100964
965/** The XTS cipher mode.
966 *
967 * XTS is a cipher mode which is built from a block cipher. It requires at
968 * least one full block of input, but beyond this minimum the input
969 * does not need to be a whole number of blocks.
970 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100971#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100972
Steven Cooremaned3c9ec2020-07-06 14:08:59 +0200973/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
974 *
Steven Cooremana6033e92020-08-25 11:47:50 +0200975 * \warning ECB mode does not protect the confidentiality of the encrypted data
976 * except in extremely narrow circumstances. It is recommended that applications
977 * only use ECB if they need to construct an operating mode that the
978 * implementation does not provide. Implementations are encouraged to provide
979 * the modes that applications need in preference to supporting direct access
980 * to ECB.
981 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +0200982 * The underlying block cipher is determined by the key type.
983 *
Steven Cooremana6033e92020-08-25 11:47:50 +0200984 * This symmetric cipher mode can only be used with messages whose lengths are a
985 * multiple of the block size of the chosen block cipher.
986 *
987 * ECB mode does not accept an initialization vector (IV). When using a
988 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
989 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +0200990 */
991#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
992
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100993/** The CBC block cipher chaining mode, with no padding.
994 *
995 * The underlying block cipher is determined by the key type.
996 *
997 * This symmetric cipher mode can only be used with messages whose lengths
998 * are whole number of blocks for the chosen block cipher.
999 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001000#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001001
1002/** The CBC block cipher chaining mode with PKCS#7 padding.
1003 *
1004 * The underlying block cipher is determined by the key type.
1005 *
1006 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1007 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001008#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001009
Gilles Peskine679693e2019-05-06 15:10:16 +02001010#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1011
1012/** Whether the specified algorithm is an AEAD mode on a block cipher.
1013 *
1014 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1015 *
1016 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1017 * a block cipher, 0 otherwise.
1018 * This macro may return either 0 or 1 if \p alg is not a supported
1019 * algorithm identifier.
1020 */
1021#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1022 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1023 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1024
Gilles Peskine9153ec02019-02-15 13:02:02 +01001025/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001026 *
1027 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001028 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001029#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001030
1031/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001032 *
1033 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001034 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001035#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001036
1037/** The Chacha20-Poly1305 AEAD algorithm.
1038 *
1039 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001040 *
1041 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1042 * and should reject other sizes.
1043 *
1044 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001045 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001046#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001047
1048/* In the encoding of a AEAD algorithm, the bits corresponding to
1049 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1050 * The constants for default lengths follow this encoding.
1051 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001052#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1053#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001054
1055/** Macro to build a shortened AEAD algorithm.
1056 *
1057 * A shortened AEAD algorithm is similar to the corresponding AEAD
1058 * algorithm, but has an authentication tag that consists of fewer bytes.
1059 * Depending on the algorithm, the tag length may affect the calculation
1060 * of the ciphertext.
1061 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001062 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001063 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
1064 * is true).
1065 * \param tag_length Desired length of the authentication tag in bytes.
1066 *
1067 * \return The corresponding AEAD algorithm with the specified
1068 * length.
1069 * \return Unspecified if \p alg is not a supported
1070 * AEAD algorithm or if \p tag_length is not valid
1071 * for the specified AEAD algorithm.
1072 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001073#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
1074 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001075 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1076 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1077
1078/** Calculate the corresponding AEAD algorithm with the default tag length.
1079 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001080 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
1081 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001082 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001083 * \return The corresponding AEAD algorithm with the default
1084 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001085 */
Unknowne2e19952019-08-21 03:33:04 -04001086#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
1087 ( \
1088 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CCM) \
1089 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_GCM) \
1090 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001091 0)
Unknowne2e19952019-08-21 03:33:04 -04001092#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, ref) \
1093 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
1094 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001095 ref :
1096
Bence Szépkútia2945512020-12-03 21:40:17 +01001097#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001098/** RSA PKCS#1 v1.5 signature with hashing.
1099 *
1100 * This is the signature scheme defined by RFC 8017
1101 * (PKCS#1: RSA Cryptography Specifications) under the name
1102 * RSASSA-PKCS1-v1_5.
1103 *
1104 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1105 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001106 * This includes #PSA_ALG_ANY_HASH
1107 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001108 *
1109 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001110 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001111 * hash algorithm.
1112 */
1113#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1114 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1115/** Raw PKCS#1 v1.5 signature.
1116 *
1117 * The input to this algorithm is the DigestInfo structure used by
1118 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1119 * steps 3&ndash;6.
1120 */
1121#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1122#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1123 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1124
Bence Szépkútia2945512020-12-03 21:40:17 +01001125#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001126/** RSA PSS signature with hashing.
1127 *
1128 * This is the signature scheme defined by RFC 8017
1129 * (PKCS#1: RSA Cryptography Specifications) under the name
1130 * RSASSA-PSS, with the message generation function MGF1, and with
1131 * a salt length equal to the length of the hash. The specified
1132 * hash algorithm is used to hash the input message, to create the
1133 * salted hash, and for the mask generation.
1134 *
1135 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1136 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001137 * This includes #PSA_ALG_ANY_HASH
1138 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001139 *
1140 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001141 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001142 * hash algorithm.
1143 */
1144#define PSA_ALG_RSA_PSS(hash_alg) \
1145 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1146#define PSA_ALG_IS_RSA_PSS(alg) \
1147 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1148
Bence Szépkútia2945512020-12-03 21:40:17 +01001149#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001150/** ECDSA signature with hashing.
1151 *
1152 * This is the ECDSA signature scheme defined by ANSI X9.62,
1153 * with a random per-message secret number (*k*).
1154 *
1155 * The representation of the signature as a byte string consists of
1156 * the concatentation of the signature values *r* and *s*. Each of
1157 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1158 * of the base point of the curve in octets. Each value is represented
1159 * in big-endian order (most significant octet first).
1160 *
1161 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1162 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001163 * This includes #PSA_ALG_ANY_HASH
1164 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001165 *
1166 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001167 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001168 * hash algorithm.
1169 */
1170#define PSA_ALG_ECDSA(hash_alg) \
1171 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1172/** ECDSA signature without hashing.
1173 *
1174 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1175 * without specifying a hash algorithm. This algorithm may only be
1176 * used to sign or verify a sequence of bytes that should be an
1177 * already-calculated hash. Note that the input is padded with
1178 * zeros on the left or truncated on the left as required to fit
1179 * the curve size.
1180 */
1181#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001182#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001183/** Deterministic ECDSA signature with hashing.
1184 *
1185 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1186 *
1187 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1188 *
1189 * Note that when this algorithm is used for verification, signatures
1190 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1191 * same private key are accepted. In other words,
1192 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1193 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1194 *
1195 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1196 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001197 * This includes #PSA_ALG_ANY_HASH
1198 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001199 *
1200 * \return The corresponding deterministic ECDSA signature
1201 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001202 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001203 * hash algorithm.
1204 */
1205#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1206 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001207#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001208#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001209 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001210 PSA_ALG_ECDSA_BASE)
1211#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001212 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001213#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1214 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1215#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1216 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1217
Gilles Peskined35b4892019-01-14 16:02:15 +01001218/** Whether the specified algorithm is a hash-and-sign algorithm.
1219 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001220 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1221 * structured in two parts: first the calculation of a hash in a way that
1222 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001223 * hash value and the key.
1224 *
1225 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1226 *
1227 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1228 * This macro may return either 0 or 1 if \p alg is not a supported
1229 * algorithm identifier.
1230 */
1231#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1232 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskinee38ab1a2019-05-16 13:51:50 +02001233 PSA_ALG_IS_ECDSA(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001234
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001235/** Get the hash used by a hash-and-sign signature algorithm.
1236 *
1237 * A hash-and-sign algorithm is a signature algorithm which is
1238 * composed of two phases: first a hashing phase which does not use
1239 * the key and produces a hash of the input message, then a signing
1240 * phase which only uses the hash and the key and not the message
1241 * itself.
1242 *
1243 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1244 * #PSA_ALG_IS_SIGN(\p alg) is true).
1245 *
1246 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1247 * algorithm.
1248 * \return 0 if \p alg is a signature algorithm that does not
1249 * follow the hash-and-sign structure.
1250 * \return Unspecified if \p alg is not a signature algorithm or
1251 * if it is not supported by the implementation.
1252 */
1253#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001254 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001255 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1256 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1257 0)
1258
1259/** RSA PKCS#1 v1.5 encryption.
1260 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001261#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001262
Bence Szépkútia2945512020-12-03 21:40:17 +01001263#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001264/** RSA OAEP encryption.
1265 *
1266 * This is the encryption scheme defined by RFC 8017
1267 * (PKCS#1: RSA Cryptography Specifications) under the name
1268 * RSAES-OAEP, with the message generation function MGF1.
1269 *
1270 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1271 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1272 * for MGF1.
1273 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001274 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001275 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001276 * hash algorithm.
1277 */
1278#define PSA_ALG_RSA_OAEP(hash_alg) \
1279 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1280#define PSA_ALG_IS_RSA_OAEP(alg) \
1281 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1282#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1283 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1284 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1285 0)
1286
Bence Szépkútia2945512020-12-03 21:40:17 +01001287#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001288/** Macro to build an HKDF algorithm.
1289 *
1290 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1291 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001292 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001293 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001294 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001295 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1296 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1297 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1298 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001299 * starting to generate output.
1300 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001301 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1302 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1303 *
1304 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001305 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001306 * hash algorithm.
1307 */
1308#define PSA_ALG_HKDF(hash_alg) \
1309 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1310/** Whether the specified algorithm is an HKDF algorithm.
1311 *
1312 * HKDF is a family of key derivation algorithms that are based on a hash
1313 * function and the HMAC construction.
1314 *
1315 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1316 *
1317 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1318 * This macro may return either 0 or 1 if \c alg is not a supported
1319 * key derivation algorithm identifier.
1320 */
1321#define PSA_ALG_IS_HKDF(alg) \
1322 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1323#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1324 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1325
Bence Szépkútia2945512020-12-03 21:40:17 +01001326#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001327/** Macro to build a TLS-1.2 PRF algorithm.
1328 *
1329 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1330 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1331 * used with either SHA-256 or SHA-384.
1332 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001333 * This key derivation algorithm uses the following inputs, which must be
1334 * passed in the order given here:
1335 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001336 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1337 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001338 *
1339 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001340 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001341 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001342 *
1343 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1344 * TLS 1.2 PRF using HMAC-SHA-256.
1345 *
1346 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1347 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1348 *
1349 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001350 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001351 * hash algorithm.
1352 */
1353#define PSA_ALG_TLS12_PRF(hash_alg) \
1354 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1355
1356/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1357 *
1358 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1359 *
1360 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1361 * This macro may return either 0 or 1 if \c alg is not a supported
1362 * key derivation algorithm identifier.
1363 */
1364#define PSA_ALG_IS_TLS12_PRF(alg) \
1365 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1366#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1367 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1368
Bence Szépkútia2945512020-12-03 21:40:17 +01001369#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001370/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1371 *
1372 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1373 * from the PreSharedKey (PSK) through the application of padding
1374 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1375 * The latter is based on HMAC and can be used with either SHA-256
1376 * or SHA-384.
1377 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001378 * This key derivation algorithm uses the following inputs, which must be
1379 * passed in the order given here:
1380 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001381 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1382 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001383 *
1384 * For the application to TLS-1.2, the seed (which is
1385 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1386 * ClientHello.Random + ServerHello.Random,
1387 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001388 *
1389 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1390 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1391 *
1392 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1393 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1394 *
1395 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001396 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001397 * hash algorithm.
1398 */
1399#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1400 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1401
1402/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1403 *
1404 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1405 *
1406 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1407 * This macro may return either 0 or 1 if \c alg is not a supported
1408 * key derivation algorithm identifier.
1409 */
1410#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1411 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1412#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1413 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1414
Bence Szépkútia2945512020-12-03 21:40:17 +01001415#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1416#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001417
Gilles Peskine6843c292019-01-18 16:44:49 +01001418/** Macro to build a combined algorithm that chains a key agreement with
1419 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001420 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001421 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1422 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1423 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1424 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001425 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001426 * \return The corresponding key agreement and derivation
1427 * algorithm.
1428 * \return Unspecified if \p ka_alg is not a supported
1429 * key agreement algorithm or \p kdf_alg is not a
1430 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001431 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001432#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1433 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001434
1435#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1436 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1437
Gilles Peskine6843c292019-01-18 16:44:49 +01001438#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1439 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001440
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001441/** Whether the specified algorithm is a raw key agreement algorithm.
1442 *
1443 * A raw key agreement algorithm is one that does not specify
1444 * a key derivation function.
1445 * Usually, raw key agreement algorithms are constructed directly with
1446 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001447 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001448 *
1449 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1450 *
1451 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1452 * This macro may return either 0 or 1 if \p alg is not a supported
1453 * algorithm identifier.
1454 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001455#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001456 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1457 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001458
1459#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1460 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1461
1462/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001463 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001464 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001465 * `g^{ab}` in big-endian format.
1466 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1467 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001468 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001469#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001470
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001471/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1472 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001473 * This includes the raw finite field Diffie-Hellman algorithm as well as
1474 * finite-field Diffie-Hellman followed by any supporter key derivation
1475 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001476 *
1477 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1478 *
1479 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1480 * This macro may return either 0 or 1 if \c alg is not a supported
1481 * key agreement algorithm identifier.
1482 */
1483#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001484 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001485
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001486/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1487 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001488 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001489 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1490 * `m` is the bit size associated with the curve, i.e. the bit size of the
1491 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1492 * the byte containing the most significant bit of the shared secret
1493 * is padded with zero bits. The byte order is either little-endian
1494 * or big-endian depending on the curve type.
1495 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001496 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001497 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1498 * in little-endian byte order.
1499 * The bit size is 448 for Curve448 and 255 for Curve25519.
1500 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001501 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001502 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1503 * in big-endian byte order.
1504 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1505 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001506 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001507 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1508 * in big-endian byte order.
1509 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001510 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001511#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001512
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001513/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1514 * algorithm.
1515 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001516 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1517 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1518 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001519 *
1520 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1521 *
1522 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1523 * 0 otherwise.
1524 * This macro may return either 0 or 1 if \c alg is not a supported
1525 * key agreement algorithm identifier.
1526 */
1527#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001528 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001529
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001530/** Whether the specified algorithm encoding is a wildcard.
1531 *
1532 * Wildcard values may only be used to set the usage algorithm field in
1533 * a policy, not to perform an operation.
1534 *
1535 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1536 *
1537 * \return 1 if \c alg is a wildcard algorithm encoding.
1538 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1539 * an operation).
1540 * \return This macro may return either 0 or 1 if \c alg is not a supported
1541 * algorithm identifier.
1542 */
1543#define PSA_ALG_IS_WILDCARD(alg) \
1544 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1545 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1546 (alg) == PSA_ALG_ANY_HASH)
1547
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001548/**@}*/
1549
1550/** \defgroup key_lifetimes Key lifetimes
1551 * @{
1552 */
1553
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001554/** The default lifetime for volatile keys.
1555 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001556 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001557 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001558 *
1559 * A key with this lifetime is typically stored in the RAM area of the
1560 * PSA Crypto subsystem. However this is an implementation choice.
1561 * If an implementation stores data about the key in a non-volatile memory,
1562 * it must release all the resources associated with the key and erase the
1563 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001564 */
1565#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1566
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001567/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001568 *
1569 * A persistent key remains in storage until it is explicitly destroyed or
1570 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001571 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001572 * provide their own mechanism (for example to perform a factory reset,
1573 * to prepare for device refurbishment, or to uninstall an application).
1574 *
1575 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001576 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001577 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001578 */
1579#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1580
Gilles Peskineaff11812020-05-04 19:03:10 +02001581/** The persistence level of volatile keys.
1582 *
1583 * See ::psa_key_persistence_t for more information.
1584 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001585#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001586
1587/** The default persistence level for persistent keys.
1588 *
1589 * See ::psa_key_persistence_t for more information.
1590 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001591#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02001592
1593/** A persistence level indicating that a key is never destroyed.
1594 *
1595 * See ::psa_key_persistence_t for more information.
1596 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001597#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001598
1599#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001600 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001601
1602#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001603 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001604
1605/** Whether a key lifetime indicates that the key is volatile.
1606 *
1607 * A volatile key is automatically destroyed by the implementation when
1608 * the application instance terminates. In particular, a volatile key
1609 * is automatically destroyed on a power reset of the device.
1610 *
1611 * A key that is not volatile is persistent. Persistent keys are
1612 * preserved until the application explicitly destroys them or until an
1613 * implementation-specific device management event occurs (for example,
1614 * a factory reset).
1615 *
1616 * \param lifetime The lifetime value to query (value of type
1617 * ::psa_key_lifetime_t).
1618 *
1619 * \return \c 1 if the key is volatile, otherwise \c 0.
1620 */
1621#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
1622 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02001623 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001624
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02001625/** Construct a lifetime from a persistence level and a location.
1626 *
1627 * \param persistence The persistence level
1628 * (value of type ::psa_key_persistence_t).
1629 * \param location The location indicator
1630 * (value of type ::psa_key_location_t).
1631 *
1632 * \return The constructed lifetime value.
1633 */
1634#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
1635 ((location) << 8 | (persistence))
1636
Gilles Peskineaff11812020-05-04 19:03:10 +02001637/** The local storage area for persistent keys.
1638 *
1639 * This storage area is available on all systems that can store persistent
1640 * keys without delegating the storage to a third-party cryptoprocessor.
1641 *
1642 * See ::psa_key_location_t for more information.
1643 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001644#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02001645
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001646#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001647
Gilles Peskine4a231b82019-05-06 18:56:14 +02001648/** The minimum value for a key identifier chosen by the application.
1649 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001650#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001651/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001652 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001653#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001654/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001655 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001656#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001657/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001658 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001659#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02001660
Ronald Cron7424f0d2020-09-14 16:17:41 +02001661
1662#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
1663
1664#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
1665#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
1666#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
1667
1668/** Utility to initialize a key identifier at runtime.
1669 *
1670 * \param unused Unused parameter.
1671 * \param key_id Identifier of the key.
1672 */
1673static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
1674 unsigned int unused, psa_key_id_t key_id )
1675{
1676 (void)unused;
1677
1678 return( key_id );
1679}
1680
1681/** Compare two key identifiers.
1682 *
1683 * \param id1 First key identifier.
1684 * \param id2 Second key identifier.
1685 *
1686 * \return Non-zero if the two key identifier are equal, zero otherwise.
1687 */
1688static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
1689 mbedtls_svc_key_id_t id2 )
1690{
1691 return( id1 == id2 );
1692}
1693
Ronald Cronc4d1b512020-07-31 11:26:37 +02001694/** Check whether a key identifier is null.
1695 *
1696 * \param key Key identifier.
1697 *
1698 * \return Non-zero if the key identifier is null, zero otherwise.
1699 */
1700static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
1701{
1702 return( key == 0 );
1703}
1704
Ronald Cron7424f0d2020-09-14 16:17:41 +02001705#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
1706
1707#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
1708#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
1709#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
1710
1711/** Utility to initialize a key identifier at runtime.
1712 *
1713 * \param owner_id Identifier of the key owner.
1714 * \param key_id Identifier of the key.
1715 */
1716static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
1717 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
1718{
1719 return( (mbedtls_svc_key_id_t){ .key_id = key_id,
1720 .owner = owner_id } );
1721}
1722
1723/** Compare two key identifiers.
1724 *
1725 * \param id1 First key identifier.
1726 * \param id2 Second key identifier.
1727 *
1728 * \return Non-zero if the two key identifier are equal, zero otherwise.
1729 */
1730static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
1731 mbedtls_svc_key_id_t id2 )
1732{
1733 return( ( id1.key_id == id2.key_id ) &&
1734 mbedtls_key_owner_id_equal( id1.owner, id2.owner ) );
1735}
1736
Ronald Cronc4d1b512020-07-31 11:26:37 +02001737/** Check whether a key identifier is null.
1738 *
1739 * \param key Key identifier.
1740 *
1741 * \return Non-zero if the key identifier is null, zero otherwise.
1742 */
1743static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
1744{
1745 return( ( key.key_id == 0 ) && ( key.owner == 0 ) );
1746}
1747
Ronald Cron7424f0d2020-09-14 16:17:41 +02001748#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001749
1750/**@}*/
1751
1752/** \defgroup policy Key policies
1753 * @{
1754 */
1755
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001756/** Whether the key may be exported.
1757 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001758 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001759 * regardless of the value of this permission flag.
1760 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001761 * If a key does not have export permission, implementations shall not
1762 * allow the key to be exported in plain form from the cryptoprocessor,
1763 * whether through psa_export_key() or through a proprietary interface.
1764 * The key may however be exportable in a wrapped form, i.e. in a form
1765 * where it is encrypted by another key.
1766 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001767#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1768
1769/** Whether the key may be copied.
1770 *
1771 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001772 * with the same policy or a more restrictive policy.
1773 *
1774 * For lifetimes for which the key is located in a secure element which
1775 * enforce the non-exportability of keys, copying a key outside the secure
1776 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1777 * Copying the key inside the secure element is permitted with just
1778 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1779 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
1780 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1781 * is sufficient to permit the copy.
1782 */
1783#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1784
1785/** Whether the key may be used to encrypt a message.
1786 *
1787 * This flag allows the key to be used for a symmetric encryption operation,
1788 * for an AEAD encryption-and-authentication operation,
1789 * or for an asymmetric encryption operation,
1790 * if otherwise permitted by the key's type and policy.
1791 *
1792 * For a key pair, this concerns the public key.
1793 */
1794#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1795
1796/** Whether the key may be used to decrypt a message.
1797 *
1798 * This flag allows the key to be used for a symmetric decryption operation,
1799 * for an AEAD decryption-and-verification operation,
1800 * or for an asymmetric decryption operation,
1801 * if otherwise permitted by the key's type and policy.
1802 *
1803 * For a key pair, this concerns the private key.
1804 */
1805#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1806
1807/** Whether the key may be used to sign a message.
1808 *
1809 * This flag allows the key to be used for a MAC calculation operation
1810 * or for an asymmetric signature operation,
1811 * if otherwise permitted by the key's type and policy.
1812 *
1813 * For a key pair, this concerns the private key.
1814 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001815#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001816
1817/** Whether the key may be used to verify a message signature.
1818 *
1819 * This flag allows the key to be used for a MAC verification operation
1820 * or for an asymmetric signature verification operation,
1821 * if otherwise permitted by by the key's type and policy.
1822 *
1823 * For a key pair, this concerns the public key.
1824 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001825#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001826
1827/** Whether the key may be used to derive other keys.
1828 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001829#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001830
1831/**@}*/
1832
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001833/** \defgroup derivation Key derivation
1834 * @{
1835 */
1836
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001837/** A secret input for key derivation.
1838 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001839 * This should be a key of type #PSA_KEY_TYPE_DERIVE
1840 * (passed to psa_key_derivation_input_key())
1841 * or the shared secret resulting from a key agreement
1842 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02001843 *
1844 * The secret can also be a direct input (passed to
1845 * key_derivation_input_bytes()). In this case, the derivation operation
1846 * may not be used to derive keys: the operation will only allow
1847 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001848 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001849#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001850
1851/** A label for key derivation.
1852 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001853 * This should be a direct input.
1854 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001855 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001856#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001857
1858/** A salt for key derivation.
1859 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001860 * This should be a direct input.
1861 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001862 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001863#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001864
1865/** An information string for key derivation.
1866 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001867 * This should be a direct input.
1868 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001869 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001870#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001871
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001872/** A seed for key derivation.
1873 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001874 * This should be a direct input.
1875 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001876 */
1877#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
1878
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001879/**@}*/
1880
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001881#endif /* PSA_CRYPTO_VALUES_H */