blob: 105762cdc9d168943d16797800dca517a3fe9f3c [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
36
37/** \defgroup error Error codes
38 * @{
39 */
40
David Saadab4ecc272019-02-14 13:48:10 +020041/* PSA error codes */
42
Gilles Peskinef3b731e2018-12-12 13:38:31 +010043/** The action was completed successfully. */
44#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045
46/** An error occurred that does not correspond to any defined
47 * failure cause.
48 *
49 * Implementations may use this error code if none of the other standard
50 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020051#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010052
53/** The requested operation or a parameter is not supported
54 * by this implementation.
55 *
56 * Implementations should return this error code when an enumeration
57 * parameter such as a key type, algorithm, etc. is not recognized.
58 * If a combination of parameters is recognized and identified as
59 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020060#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010061
62/** The requested action is denied by a policy.
63 *
64 * Implementations should return this error code when the parameters
65 * are recognized as valid and supported, and a policy explicitly
66 * denies the requested operation.
67 *
68 * If a subset of the parameters of a function call identify a
69 * forbidden operation, and another subset of the parameters are
70 * not valid or not supported, it is unspecified whether the function
71 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
72 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020073#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010074
75/** An output buffer is too small.
76 *
77 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
78 * description to determine a sufficient buffer size.
79 *
80 * Implementations should preferably return this error code only
81 * in cases when performing the operation with a larger output
82 * buffer would succeed. However implementations may return this
83 * error if a function has invalid or unsupported parameters in addition
84 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
David Saadab4ecc272019-02-14 13:48:10 +020087/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088 *
David Saadab4ecc272019-02-14 13:48:10 +020089 * Implementations should return this error, when attempting
90 * to write an item (like a key) that already exists. */
91#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010092
David Saadab4ecc272019-02-14 13:48:10 +020093/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094 *
David Saadab4ecc272019-02-14 13:48:10 +020095 * Implementations should return this error, if a requested item (like
96 * a key) does not exist. */
97#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
99/** The requested action cannot be performed in the current state.
100 *
101 * Multipart operations return this error when one of the
102 * functions is called out of sequence. Refer to the function
103 * descriptions for permitted sequencing of functions.
104 *
105 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100106 * that a key either exists or not,
107 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100108 * as applicable.
109 *
110 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200111 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100112 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200113#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100114
115/** The parameters passed to the function are invalid.
116 *
117 * Implementations may return this error any time a parameter or
118 * combination of parameters are recognized as invalid.
119 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100120 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200121 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100122 * instead.
123 */
David Saadab4ecc272019-02-14 13:48:10 +0200124#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100125
126/** There is not enough runtime memory.
127 *
128 * If the action is carried out across multiple security realms, this
129 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200130#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100131
132/** There is not enough persistent storage.
133 *
134 * Functions that modify the key storage return this error code if
135 * there is insufficient storage space on the host media. In addition,
136 * many functions that do not otherwise access storage may return this
137 * error code if the implementation requires a mandatory log entry for
138 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200139#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100140
141/** There was a communication failure inside the implementation.
142 *
143 * This can indicate a communication failure between the application
144 * and an external cryptoprocessor or between the cryptoprocessor and
145 * an external volatile or persistent memory. A communication failure
146 * may be transient or permanent depending on the cause.
147 *
148 * \warning If a function returns this error, it is undetermined
149 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200150 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100151 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
152 * if the requested action was completed successfully in an external
153 * cryptoprocessor but there was a breakdown of communication before
154 * the cryptoprocessor could report the status to the application.
155 */
David Saadab4ecc272019-02-14 13:48:10 +0200156#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100157
158/** There was a storage failure that may have led to data loss.
159 *
160 * This error indicates that some persistent storage is corrupted.
161 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200162 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100163 * between the cryptoprocessor and its external storage (use
164 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
165 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
166 *
167 * Note that a storage failure does not indicate that any data that was
168 * previously read is invalid. However this previously read data may no
169 * longer be readable from storage.
170 *
171 * When a storage failure occurs, it is no longer possible to ensure
172 * the global integrity of the keystore. Depending on the global
173 * integrity guarantees offered by the implementation, access to other
174 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100175 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 *
177 * Implementations should only use this error code to report a
178 * permanent storage corruption. However application writers should
179 * keep in mind that transient errors while reading the storage may be
180 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200181#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100182
183/** A hardware failure was detected.
184 *
185 * A hardware failure may be transient or permanent depending on the
186 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200187#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188
189/** A tampering attempt was detected.
190 *
191 * If an application receives this error code, there is no guarantee
192 * that previously accessed or computed data was correct and remains
193 * confidential. Applications should not perform any security function
194 * and should enter a safe failure state.
195 *
196 * Implementations may return this error code if they detect an invalid
197 * state that cannot happen during normal operation and that indicates
198 * that the implementation's security guarantees no longer hold. Depending
199 * on the implementation architecture and on its security and safety goals,
200 * the implementation may forcibly terminate the application.
201 *
202 * This error code is intended as a last resort when a security breach
203 * is detected and it is unsure whether the keystore data is still
204 * protected. Implementations shall only return this error code
205 * to report an alarm from a tampering detector, to indicate that
206 * the confidentiality of stored data can no longer be guaranteed,
207 * or to indicate that the integrity of previously returned data is now
208 * considered compromised. Implementations shall not use this error code
209 * to indicate a hardware failure that merely makes it impossible to
210 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
211 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
212 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
213 * instead).
214 *
215 * This error indicates an attack against the application. Implementations
216 * shall not return this error code as a consequence of the behavior of
217 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200218#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100219
220/** There is not enough entropy to generate random data needed
221 * for the requested action.
222 *
223 * This error indicates a failure of a hardware random generator.
224 * Application writers should note that this error can be returned not
225 * only by functions whose purpose is to generate random data, such
226 * as key, IV or nonce generation, but also by functions that execute
227 * an algorithm with a randomized result, as well as functions that
228 * use randomization of intermediate computations as a countermeasure
229 * to certain attacks.
230 *
231 * Implementations should avoid returning this error after psa_crypto_init()
232 * has succeeded. Implementations should generate sufficient
233 * entropy during initialization and subsequently use a cryptographically
234 * secure pseudorandom generator (PRNG). However implementations may return
235 * this error at any time if a policy requires the PRNG to be reseeded
236 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200237#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100238
239/** The signature, MAC or hash is incorrect.
240 *
241 * Verification functions return this error if the verification
242 * calculations completed successfully, and the value to be verified
243 * was determined to be incorrect.
244 *
245 * If the value to verify has an invalid size, implementations may return
246 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200247#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100248
249/** The decrypted padding is incorrect.
250 *
251 * \warning In some protocols, when decrypting data, it is essential that
252 * the behavior of the application does not depend on whether the padding
253 * is correct, down to precise timing. Applications should prefer
254 * protocols that use authenticated encryption rather than plain
255 * encryption. If the application must perform a decryption of
256 * unauthenticated data, the application writer should take care not
257 * to reveal whether the padding is invalid.
258 *
259 * Implementations should strive to make valid and invalid padding
260 * as close as possible to indistinguishable to an external observer.
261 * In particular, the timing of a decryption operation should not
262 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200263#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100264
David Saadab4ecc272019-02-14 13:48:10 +0200265/** Return this error when there's insufficient data when attempting
266 * to read from a resource. */
267#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100268
Ronald Croncf56a0a2020-08-04 09:51:30 +0200269/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270 */
David Saadab4ecc272019-02-14 13:48:10 +0200271#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100273/** Stored data has been corrupted.
274 *
275 * This error indicates that some persistent storage has suffered corruption.
276 * It does not indicate the following situations, which have specific error
277 * codes:
278 *
279 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
280 * - A communication error between the cryptoprocessor and its external
281 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
282 * - When the storage is in a valid state but is full - use
283 * #PSA_ERROR_INSUFFICIENT_STORAGE.
284 * - When the storage fails for other reasons - use
285 * #PSA_ERROR_STORAGE_FAILURE.
286 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
287 *
288 * \note A storage corruption does not indicate that any data that was
289 * previously read is invalid. However this previously read data might no
290 * longer be readable from storage.
291 *
292 * When a storage failure occurs, it is no longer possible to ensure the
293 * global integrity of the keystore.
294 */
295#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
296
gabor-mezei-armfe309242020-11-09 17:39:56 +0100297/** Data read from storage is not valid for the implementation.
298 *
299 * This error indicates that some data read from storage does not have a valid
300 * format. It does not indicate the following situations, which have specific
301 * error codes:
302 *
303 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
304 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
305 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
306 *
307 * This error is typically a result of either storage corruption on a
308 * cleartext storage backend, or an attempt to read data that was
309 * written by an incompatible version of the library.
310 */
311#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
312
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100313/**@}*/
314
315/** \defgroup crypto_types Key and algorithm types
316 * @{
317 */
318
319/** An invalid key type value.
320 *
321 * Zero is not the encoding of any key type.
322 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100323#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100324
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100325/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100326 *
327 * Key types defined by this standard will never have the
328 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
329 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
330 * respect the bitwise structure used by standard encodings whenever practical.
331 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100332#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100333
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100334#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100335#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
336#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
337#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100338#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100340#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100341
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100342/** Whether a key type is vendor-defined.
343 *
344 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
345 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100346#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
347 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
348
349/** Whether a key type is an unstructured array of bytes.
350 *
351 * This encompasses both symmetric keys and non-key data.
352 */
353#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100354 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
355 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100356
357/** Whether a key type is asymmetric: either a key pair or a public key. */
358#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
359 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
360 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
361 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
362/** Whether a key type is the public part of a key pair. */
363#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
364 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
365/** Whether a key type is a key pair containing a private part and a public
366 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200367#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100368 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
369/** The key pair type corresponding to a public key type.
370 *
371 * You may also pass a key pair type as \p type, it will be left unchanged.
372 *
373 * \param type A public key type or key pair type.
374 *
375 * \return The corresponding key pair type.
376 * If \p type is not a public key or a key pair,
377 * the return value is undefined.
378 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200379#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100380 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
381/** The public key type corresponding to a key pair type.
382 *
383 * You may also pass a key pair type as \p type, it will be left unchanged.
384 *
385 * \param type A public key type or key pair type.
386 *
387 * \return The corresponding public key type.
388 * If \p type is not a public key or a key pair,
389 * the return value is undefined.
390 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200391#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100392 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
393
394/** Raw data.
395 *
396 * A "key" of this type cannot be used for any cryptographic operation.
397 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100398#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100399
400/** HMAC key.
401 *
402 * The key policy determines which underlying hash algorithm the key can be
403 * used for.
404 *
405 * HMAC keys should generally have the same size as the underlying hash.
406 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
407 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100408#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100409
410/** A secret for key derivation.
411 *
412 * The key policy determines which key derivation algorithm the key
413 * can be used for.
414 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100415#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100416
Gilles Peskine737c6be2019-05-21 16:01:06 +0200417/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100418 *
419 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
420 * 32 bytes (AES-256).
421 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100422#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
424/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
425 *
426 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
427 * 24 bytes (3-key 3DES).
428 *
429 * Note that single DES and 2-key 3DES are weak and strongly
430 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
431 * is weak and deprecated and should only be used in legacy protocols.
432 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100433#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100434
Gilles Peskine737c6be2019-05-21 16:01:06 +0200435/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100436 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100437#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100438
439/** Key for the RC4 stream cipher.
440 *
441 * Note that RC4 is weak and deprecated and should only be used in
442 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100443#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100444
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200445/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
446 *
447 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
448 *
449 * Implementations must support 12-byte nonces, may support 8-byte nonces,
450 * and should reject other sizes.
451 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100452#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200453
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100454/** RSA public key. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100455#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100456/** RSA key pair (private and public key). */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100457#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100458/** Whether a key type is an RSA key (pair or public-only). */
459#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200460 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100461
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100462#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100463#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
464#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100465/** Elliptic curve key pair.
466 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100467 * \param curve A value of type ::psa_ecc_family_t that
468 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100469 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200470#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
471 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100472/** Elliptic curve public key.
473 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100474 * \param curve A value of type ::psa_ecc_family_t that
475 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100476 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100477#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
478 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
479
480/** Whether a key type is an elliptic curve key (pair or public-only). */
481#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200482 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100483 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100484/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200485#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100486 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200487 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100488/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100489#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
490 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
491 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
492
493/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100494#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
495 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100496 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
497 0))
498
Gilles Peskine228abc52019-12-03 17:24:19 +0100499/** SEC Koblitz curves over prime fields.
500 *
501 * This family comprises the following curves:
502 * secp192k1, secp224k1, secp256k1.
503 * They are defined in _Standards for Efficient Cryptography_,
504 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
505 * https://www.secg.org/sec2-v2.pdf
506 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100507#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100508
509/** SEC random curves over prime fields.
510 *
511 * This family comprises the following curves:
512 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
513 * They are defined in _Standards for Efficient Cryptography_,
514 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
515 * https://www.secg.org/sec2-v2.pdf
516 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100517#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100518/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100519#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100520
521/** SEC Koblitz curves over binary fields.
522 *
523 * This family comprises the following curves:
524 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
525 * They are defined in _Standards for Efficient Cryptography_,
526 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
527 * https://www.secg.org/sec2-v2.pdf
528 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100529#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100530
531/** SEC random curves over binary fields.
532 *
533 * This family comprises the following curves:
534 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
535 * They are defined in _Standards for Efficient Cryptography_,
536 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
537 * https://www.secg.org/sec2-v2.pdf
538 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100539#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100540
541/** SEC additional random curves over binary fields.
542 *
543 * This family comprises the following curve:
544 * sect163r2.
545 * It is defined in _Standards for Efficient Cryptography_,
546 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
547 * https://www.secg.org/sec2-v2.pdf
548 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100549#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100550
551/** Brainpool P random curves.
552 *
553 * This family comprises the following curves:
554 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
555 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
556 * It is defined in RFC 5639.
557 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100558#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100559
560/** Curve25519 and Curve448.
561 *
562 * This family comprises the following Montgomery curves:
563 * - 255-bit: Bernstein et al.,
564 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
565 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
566 * - 448-bit: Hamburg,
567 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
568 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
569 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100570#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100571
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100572#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100573#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
574#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100575/** Diffie-Hellman key pair.
576 *
Paul Elliott75e27032020-06-03 15:17:39 +0100577 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100578 * Diffie-Hellman group to be used.
579 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200580#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
581 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100582/** Diffie-Hellman public key.
583 *
Paul Elliott75e27032020-06-03 15:17:39 +0100584 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100585 * Diffie-Hellman group to be used.
586 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200587#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
588 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
589
590/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
591#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200592 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200593 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
594/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200595#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200596 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200597 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200598/** Whether a key type is a Diffie-Hellman public key. */
599#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
600 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
601 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
602
603/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100604#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
605 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200606 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
607 0))
608
Gilles Peskine228abc52019-12-03 17:24:19 +0100609/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
610 *
611 * This family includes groups with the following key sizes (in bits):
612 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
613 * all of these sizes or only a subset.
614 */
Paul Elliott75e27032020-06-03 15:17:39 +0100615#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100616
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100617#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100618 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100619/** The block size of a block cipher.
620 *
621 * \param type A cipher key type (value of type #psa_key_type_t).
622 *
623 * \return The block size for a block cipher, or 1 for a stream cipher.
624 * The return value is undefined if \p type is not a supported
625 * cipher key type.
626 *
627 * \note It is possible to build stream cipher algorithms on top of a block
628 * cipher, for example CTR mode (#PSA_ALG_CTR).
629 * This macro only takes the key type into account, so it cannot be
630 * used to determine the size of the data that #psa_cipher_update()
631 * might buffer for future processing in general.
632 *
633 * \note This macro returns a compile-time constant if its argument is one.
634 *
635 * \warning This macro may evaluate its argument multiple times.
636 */
637#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100638 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
639 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
640 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100641
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100642/** Vendor-defined algorithm flag.
643 *
644 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
645 * bit set. Vendors who define additional algorithms must use an encoding with
646 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
647 * used by standard encodings whenever practical.
648 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100649#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100650
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100651#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
652#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
653#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
654#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
655#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
656#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
657#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100658#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
659#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100660
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100661/** Whether an algorithm is vendor-defined.
662 *
663 * See also #PSA_ALG_VENDOR_FLAG.
664 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100665#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
666 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
667
668/** Whether the specified algorithm is a hash algorithm.
669 *
670 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
671 *
672 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
673 * This macro may return either 0 or 1 if \p alg is not a supported
674 * algorithm identifier.
675 */
676#define PSA_ALG_IS_HASH(alg) \
677 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
678
679/** Whether the specified algorithm is a MAC algorithm.
680 *
681 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
682 *
683 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
684 * This macro may return either 0 or 1 if \p alg is not a supported
685 * algorithm identifier.
686 */
687#define PSA_ALG_IS_MAC(alg) \
688 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
689
690/** Whether the specified algorithm is a symmetric cipher algorithm.
691 *
692 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
693 *
694 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
695 * This macro may return either 0 or 1 if \p alg is not a supported
696 * algorithm identifier.
697 */
698#define PSA_ALG_IS_CIPHER(alg) \
699 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
700
701/** Whether the specified algorithm is an authenticated encryption
702 * with associated data (AEAD) algorithm.
703 *
704 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
705 *
706 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
707 * This macro may return either 0 or 1 if \p alg is not a supported
708 * algorithm identifier.
709 */
710#define PSA_ALG_IS_AEAD(alg) \
711 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
712
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200713/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200714 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100715 *
716 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
717 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200718 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100719 * This macro may return either 0 or 1 if \p alg is not a supported
720 * algorithm identifier.
721 */
722#define PSA_ALG_IS_SIGN(alg) \
723 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
724
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200725/** Whether the specified algorithm is an asymmetric encryption algorithm,
726 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100727 *
728 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
729 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200730 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100731 * This macro may return either 0 or 1 if \p alg is not a supported
732 * algorithm identifier.
733 */
734#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
735 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
736
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100737/** Whether the specified algorithm is a key agreement algorithm.
738 *
739 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
740 *
741 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
742 * This macro may return either 0 or 1 if \p alg is not a supported
743 * algorithm identifier.
744 */
745#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100746 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100747
748/** Whether the specified algorithm is a key derivation algorithm.
749 *
750 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
751 *
752 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
753 * This macro may return either 0 or 1 if \p alg is not a supported
754 * algorithm identifier.
755 */
756#define PSA_ALG_IS_KEY_DERIVATION(alg) \
757 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
758
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100759#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100760/** MD2 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100761#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100762/** MD4 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100763#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100764/** MD5 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100765#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100766/** PSA_ALG_RIPEMD160 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100767#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100768/** SHA1 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100769#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
770/** SHA2-224 */
771#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
772/** SHA2-256 */
773#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
774/** SHA2-384 */
775#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
776/** SHA2-512 */
777#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
778/** SHA2-512/224 */
779#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
780/** SHA2-512/256 */
781#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
782/** SHA3-224 */
783#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
784/** SHA3-256 */
785#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
786/** SHA3-384 */
787#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
788/** SHA3-512 */
789#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
790
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100791/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100792 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100793 * This value may be used to form the algorithm usage field of a policy
794 * for a signature algorithm that is parametrized by a hash. The key
795 * may then be used to perform operations using the same signature
796 * algorithm parametrized with any supported hash.
797 *
798 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100799 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100800 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100801 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100802 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
803 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100804 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200805 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100806 * ```
807 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100808 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100809 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
810 * call to sign or verify a message may use a different hash.
811 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200812 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
813 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
814 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100815 * ```
816 *
817 * This value may not be used to build other algorithms that are
818 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100819 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100820 *
821 * This value may not be used to build an algorithm specification to
822 * perform an operation. It is only valid to build policies.
823 */
824#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
825
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100826#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
827#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
828/** Macro to build an HMAC algorithm.
829 *
830 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
831 *
832 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
833 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
834 *
835 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100836 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100837 * hash algorithm.
838 */
839#define PSA_ALG_HMAC(hash_alg) \
840 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
841
842#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
843 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
844
845/** Whether the specified algorithm is an HMAC algorithm.
846 *
847 * HMAC is a family of MAC algorithms that are based on a hash function.
848 *
849 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
850 *
851 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
852 * This macro may return either 0 or 1 if \p alg is not a supported
853 * algorithm identifier.
854 */
855#define PSA_ALG_IS_HMAC(alg) \
856 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
857 PSA_ALG_HMAC_BASE)
858
859/* In the encoding of a MAC algorithm, the bits corresponding to
860 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
861 * truncated. As an exception, the value 0 means the untruncated algorithm,
862 * whatever its length is. The length is encoded in 6 bits, so it can
863 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
864 * to full length is correctly encoded as 0 and any non-trivial truncation
865 * is correctly encoded as a value between 1 and 63. */
866#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
867#define PSA_MAC_TRUNCATION_OFFSET 8
868
869/** Macro to build a truncated MAC algorithm.
870 *
871 * A truncated MAC algorithm is identical to the corresponding MAC
872 * algorithm except that the MAC value for the truncated algorithm
873 * consists of only the first \p mac_length bytes of the MAC value
874 * for the untruncated algorithm.
875 *
876 * \note This macro may allow constructing algorithm identifiers that
877 * are not valid, either because the specified length is larger
878 * than the untruncated MAC or because the specified length is
879 * smaller than permitted by the implementation.
880 *
881 * \note It is implementation-defined whether a truncated MAC that
882 * is truncated to the same length as the MAC of the untruncated
883 * algorithm is considered identical to the untruncated algorithm
884 * for policy comparison purposes.
885 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200886 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100887 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
888 * is true). This may be a truncated or untruncated
889 * MAC algorithm.
890 * \param mac_length Desired length of the truncated MAC in bytes.
891 * This must be at most the full length of the MAC
892 * and must be at least an implementation-specified
893 * minimum. The implementation-specified minimum
894 * shall not be zero.
895 *
896 * \return The corresponding MAC algorithm with the specified
897 * length.
898 * \return Unspecified if \p alg is not a supported
899 * MAC algorithm or if \p mac_length is too small or
900 * too large for the specified MAC algorithm.
901 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200902#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
903 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100904 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
905
906/** Macro to build the base MAC algorithm corresponding to a truncated
907 * MAC algorithm.
908 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200909 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100910 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
911 * is true). This may be a truncated or untruncated
912 * MAC algorithm.
913 *
914 * \return The corresponding base MAC algorithm.
915 * \return Unspecified if \p alg is not a supported
916 * MAC algorithm.
917 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200918#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
919 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100920
921/** Length to which a MAC algorithm is truncated.
922 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200923 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100924 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
925 * is true).
926 *
927 * \return Length of the truncated MAC in bytes.
928 * \return 0 if \p alg is a non-truncated MAC algorithm.
929 * \return Unspecified if \p alg is not a supported
930 * MAC algorithm.
931 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200932#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
933 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100934
935#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100936/** The CBC-MAC construction over a block cipher
937 *
938 * \warning CBC-MAC is insecure in many cases.
939 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
940 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100941#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100942/** The CMAC construction over a block cipher */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100943#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100944
945/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
946 *
947 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
948 *
949 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
950 * This macro may return either 0 or 1 if \p alg is not a supported
951 * algorithm identifier.
952 */
953#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
954 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
955 PSA_ALG_CIPHER_MAC_BASE)
956
957#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
958#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
959
960/** Whether the specified algorithm is a stream cipher.
961 *
962 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
963 * by applying a bitwise-xor with a stream of bytes that is generated
964 * from a key.
965 *
966 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
967 *
968 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
969 * This macro may return either 0 or 1 if \p alg is not a supported
970 * algorithm identifier or if it is not a symmetric cipher algorithm.
971 */
972#define PSA_ALG_IS_STREAM_CIPHER(alg) \
973 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
974 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
975
976/** The ARC4 stream cipher algorithm.
977 */
978#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
979
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200980/** The ChaCha20 stream cipher.
981 *
982 * ChaCha20 is defined in RFC 7539.
983 *
984 * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv()
985 * must be 12.
986 *
987 * The initial block counter is always 0.
988 *
989 */
990#define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005)
991
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100992/** The CTR stream cipher mode.
993 *
994 * CTR is a stream cipher which is built from a block cipher.
995 * The underlying block cipher is determined by the key type.
996 * For example, to use AES-128-CTR, use this algorithm with
997 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
998 */
999#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
1000
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001001/** The CFB stream cipher mode.
1002 *
1003 * The underlying block cipher is determined by the key type.
1004 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001005#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
1006
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001007/** The OFB stream cipher mode.
1008 *
1009 * The underlying block cipher is determined by the key type.
1010 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001011#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
1012
1013/** The XTS cipher mode.
1014 *
1015 * XTS is a cipher mode which is built from a block cipher. It requires at
1016 * least one full block of input, but beyond this minimum the input
1017 * does not need to be a whole number of blocks.
1018 */
1019#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
1020
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001021/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1022 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001023 * \warning ECB mode does not protect the confidentiality of the encrypted data
1024 * except in extremely narrow circumstances. It is recommended that applications
1025 * only use ECB if they need to construct an operating mode that the
1026 * implementation does not provide. Implementations are encouraged to provide
1027 * the modes that applications need in preference to supporting direct access
1028 * to ECB.
1029 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001030 * The underlying block cipher is determined by the key type.
1031 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001032 * This symmetric cipher mode can only be used with messages whose lengths are a
1033 * multiple of the block size of the chosen block cipher.
1034 *
1035 * ECB mode does not accept an initialization vector (IV). When using a
1036 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1037 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001038 */
1039#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1040
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001041/** The CBC block cipher chaining mode, with no padding.
1042 *
1043 * The underlying block cipher is determined by the key type.
1044 *
1045 * This symmetric cipher mode can only be used with messages whose lengths
1046 * are whole number of blocks for the chosen block cipher.
1047 */
1048#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
1049
1050/** The CBC block cipher chaining mode with PKCS#7 padding.
1051 *
1052 * The underlying block cipher is determined by the key type.
1053 *
1054 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1055 */
1056#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
1057
Gilles Peskine679693e2019-05-06 15:10:16 +02001058#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1059
1060/** Whether the specified algorithm is an AEAD mode on a block cipher.
1061 *
1062 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1063 *
1064 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1065 * a block cipher, 0 otherwise.
1066 * This macro may return either 0 or 1 if \p alg is not a supported
1067 * algorithm identifier.
1068 */
1069#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1070 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1071 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1072
Gilles Peskine9153ec02019-02-15 13:02:02 +01001073/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001074 *
1075 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001076 */
Gilles Peskine679693e2019-05-06 15:10:16 +02001077#define PSA_ALG_CCM ((psa_algorithm_t)0x06401001)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001078
1079/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001080 *
1081 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001082 */
Gilles Peskine679693e2019-05-06 15:10:16 +02001083#define PSA_ALG_GCM ((psa_algorithm_t)0x06401002)
1084
1085/** The Chacha20-Poly1305 AEAD algorithm.
1086 *
1087 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001088 *
1089 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1090 * and should reject other sizes.
1091 *
1092 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001093 */
1094#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001095
1096/* In the encoding of a AEAD algorithm, the bits corresponding to
1097 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1098 * The constants for default lengths follow this encoding.
1099 */
1100#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
1101#define PSA_AEAD_TAG_LENGTH_OFFSET 8
1102
1103/** Macro to build a shortened AEAD algorithm.
1104 *
1105 * A shortened AEAD algorithm is similar to the corresponding AEAD
1106 * algorithm, but has an authentication tag that consists of fewer bytes.
1107 * Depending on the algorithm, the tag length may affect the calculation
1108 * of the ciphertext.
1109 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001110 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001111 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
1112 * is true).
1113 * \param tag_length Desired length of the authentication tag in bytes.
1114 *
1115 * \return The corresponding AEAD algorithm with the specified
1116 * length.
1117 * \return Unspecified if \p alg is not a supported
1118 * AEAD algorithm or if \p tag_length is not valid
1119 * for the specified AEAD algorithm.
1120 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001121#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
1122 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001123 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1124 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1125
1126/** Calculate the corresponding AEAD algorithm with the default tag length.
1127 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001128 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
1129 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001130 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001131 * \return The corresponding AEAD algorithm with the default
1132 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001133 */
Unknowne2e19952019-08-21 03:33:04 -04001134#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
1135 ( \
1136 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CCM) \
1137 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_GCM) \
1138 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001139 0)
Unknowne2e19952019-08-21 03:33:04 -04001140#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, ref) \
1141 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
1142 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001143 ref :
1144
1145#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
1146/** RSA PKCS#1 v1.5 signature with hashing.
1147 *
1148 * This is the signature scheme defined by RFC 8017
1149 * (PKCS#1: RSA Cryptography Specifications) under the name
1150 * RSASSA-PKCS1-v1_5.
1151 *
1152 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1153 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001154 * This includes #PSA_ALG_ANY_HASH
1155 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001156 *
1157 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001158 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001159 * hash algorithm.
1160 */
1161#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1162 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1163/** Raw PKCS#1 v1.5 signature.
1164 *
1165 * The input to this algorithm is the DigestInfo structure used by
1166 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1167 * steps 3&ndash;6.
1168 */
1169#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1170#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1171 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1172
1173#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
1174/** RSA PSS signature with hashing.
1175 *
1176 * This is the signature scheme defined by RFC 8017
1177 * (PKCS#1: RSA Cryptography Specifications) under the name
1178 * RSASSA-PSS, with the message generation function MGF1, and with
1179 * a salt length equal to the length of the hash. The specified
1180 * hash algorithm is used to hash the input message, to create the
1181 * salted hash, and for the mask generation.
1182 *
1183 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1184 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001185 * This includes #PSA_ALG_ANY_HASH
1186 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001187 *
1188 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001189 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001190 * hash algorithm.
1191 */
1192#define PSA_ALG_RSA_PSS(hash_alg) \
1193 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1194#define PSA_ALG_IS_RSA_PSS(alg) \
1195 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1196
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001197#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1198/** ECDSA signature with hashing.
1199 *
1200 * This is the ECDSA signature scheme defined by ANSI X9.62,
1201 * with a random per-message secret number (*k*).
1202 *
1203 * The representation of the signature as a byte string consists of
1204 * the concatentation of the signature values *r* and *s*. Each of
1205 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1206 * of the base point of the curve in octets. Each value is represented
1207 * in big-endian order (most significant octet first).
1208 *
1209 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1210 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001211 * This includes #PSA_ALG_ANY_HASH
1212 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001213 *
1214 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001215 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001216 * hash algorithm.
1217 */
1218#define PSA_ALG_ECDSA(hash_alg) \
1219 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1220/** ECDSA signature without hashing.
1221 *
1222 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1223 * without specifying a hash algorithm. This algorithm may only be
1224 * used to sign or verify a sequence of bytes that should be an
1225 * already-calculated hash. Note that the input is padded with
1226 * zeros on the left or truncated on the left as required to fit
1227 * the curve size.
1228 */
1229#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1230#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1231/** Deterministic ECDSA signature with hashing.
1232 *
1233 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1234 *
1235 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1236 *
1237 * Note that when this algorithm is used for verification, signatures
1238 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1239 * same private key are accepted. In other words,
1240 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1241 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1242 *
1243 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1244 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001245 * This includes #PSA_ALG_ANY_HASH
1246 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001247 *
1248 * \return The corresponding deterministic ECDSA signature
1249 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001250 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001251 * hash algorithm.
1252 */
1253#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1254 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine972630e2019-11-29 11:55:48 +01001255#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00010000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001256#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001257 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001258 PSA_ALG_ECDSA_BASE)
1259#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001260 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001261#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1262 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1263#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1264 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1265
Gilles Peskined35b4892019-01-14 16:02:15 +01001266/** Whether the specified algorithm is a hash-and-sign algorithm.
1267 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001268 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1269 * structured in two parts: first the calculation of a hash in a way that
1270 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001271 * hash value and the key.
1272 *
1273 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1274 *
1275 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1276 * This macro may return either 0 or 1 if \p alg is not a supported
1277 * algorithm identifier.
1278 */
1279#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1280 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskinee38ab1a2019-05-16 13:51:50 +02001281 PSA_ALG_IS_ECDSA(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001282
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001283/** Get the hash used by a hash-and-sign signature algorithm.
1284 *
1285 * A hash-and-sign algorithm is a signature algorithm which is
1286 * composed of two phases: first a hashing phase which does not use
1287 * the key and produces a hash of the input message, then a signing
1288 * phase which only uses the hash and the key and not the message
1289 * itself.
1290 *
1291 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1292 * #PSA_ALG_IS_SIGN(\p alg) is true).
1293 *
1294 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1295 * algorithm.
1296 * \return 0 if \p alg is a signature algorithm that does not
1297 * follow the hash-and-sign structure.
1298 * \return Unspecified if \p alg is not a signature algorithm or
1299 * if it is not supported by the implementation.
1300 */
1301#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001302 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001303 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1304 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1305 0)
1306
1307/** RSA PKCS#1 v1.5 encryption.
1308 */
1309#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1310
1311#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1312/** RSA OAEP encryption.
1313 *
1314 * This is the encryption scheme defined by RFC 8017
1315 * (PKCS#1: RSA Cryptography Specifications) under the name
1316 * RSAES-OAEP, with the message generation function MGF1.
1317 *
1318 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1319 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1320 * for MGF1.
1321 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001322 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001323 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001324 * hash algorithm.
1325 */
1326#define PSA_ALG_RSA_OAEP(hash_alg) \
1327 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1328#define PSA_ALG_IS_RSA_OAEP(alg) \
1329 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1330#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1331 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1332 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1333 0)
1334
Gilles Peskine6843c292019-01-18 16:44:49 +01001335#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001336/** Macro to build an HKDF algorithm.
1337 *
1338 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1339 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001340 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001341 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001342 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001343 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1344 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1345 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1346 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001347 * starting to generate output.
1348 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001349 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1350 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1351 *
1352 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001353 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001354 * hash algorithm.
1355 */
1356#define PSA_ALG_HKDF(hash_alg) \
1357 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1358/** Whether the specified algorithm is an HKDF algorithm.
1359 *
1360 * HKDF is a family of key derivation algorithms that are based on a hash
1361 * function and the HMAC construction.
1362 *
1363 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1364 *
1365 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1366 * This macro may return either 0 or 1 if \c alg is not a supported
1367 * key derivation algorithm identifier.
1368 */
1369#define PSA_ALG_IS_HKDF(alg) \
1370 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1371#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1372 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1373
Gilles Peskine6843c292019-01-18 16:44:49 +01001374#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001375/** Macro to build a TLS-1.2 PRF algorithm.
1376 *
1377 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1378 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1379 * used with either SHA-256 or SHA-384.
1380 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001381 * This key derivation algorithm uses the following inputs, which must be
1382 * passed in the order given here:
1383 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001384 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1385 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001386 *
1387 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001388 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001389 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001390 *
1391 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1392 * TLS 1.2 PRF using HMAC-SHA-256.
1393 *
1394 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1395 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1396 *
1397 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001398 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001399 * hash algorithm.
1400 */
1401#define PSA_ALG_TLS12_PRF(hash_alg) \
1402 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1403
1404/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1405 *
1406 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1407 *
1408 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1409 * This macro may return either 0 or 1 if \c alg is not a supported
1410 * key derivation algorithm identifier.
1411 */
1412#define PSA_ALG_IS_TLS12_PRF(alg) \
1413 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1414#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1415 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1416
Gilles Peskine6843c292019-01-18 16:44:49 +01001417#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001418/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1419 *
1420 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1421 * from the PreSharedKey (PSK) through the application of padding
1422 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1423 * The latter is based on HMAC and can be used with either SHA-256
1424 * or SHA-384.
1425 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001426 * This key derivation algorithm uses the following inputs, which must be
1427 * passed in the order given here:
1428 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001429 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1430 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001431 *
1432 * For the application to TLS-1.2, the seed (which is
1433 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1434 * ClientHello.Random + ServerHello.Random,
1435 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001436 *
1437 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1438 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1439 *
1440 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1441 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1442 *
1443 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001444 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001445 * hash algorithm.
1446 */
1447#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1448 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1449
1450/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1451 *
1452 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1453 *
1454 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1455 * This macro may return either 0 or 1 if \c alg is not a supported
1456 * key derivation algorithm identifier.
1457 */
1458#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1459 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1460#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1461 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1462
Gilles Peskinea52460c2019-04-12 00:11:21 +02001463#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff)
1464#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001465
Gilles Peskine6843c292019-01-18 16:44:49 +01001466/** Macro to build a combined algorithm that chains a key agreement with
1467 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001468 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001469 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1470 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1471 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1472 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001473 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001474 * \return The corresponding key agreement and derivation
1475 * algorithm.
1476 * \return Unspecified if \p ka_alg is not a supported
1477 * key agreement algorithm or \p kdf_alg is not a
1478 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001479 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001480#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1481 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001482
1483#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1484 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1485
Gilles Peskine6843c292019-01-18 16:44:49 +01001486#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1487 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001488
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001489/** Whether the specified algorithm is a raw key agreement algorithm.
1490 *
1491 * A raw key agreement algorithm is one that does not specify
1492 * a key derivation function.
1493 * Usually, raw key agreement algorithms are constructed directly with
1494 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001495 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001496 *
1497 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1498 *
1499 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1500 * This macro may return either 0 or 1 if \p alg is not a supported
1501 * algorithm identifier.
1502 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001503#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001504 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1505 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001506
1507#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1508 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1509
1510/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001511 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001512 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001513 * `g^{ab}` in big-endian format.
1514 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1515 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001516 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001517#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1518
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001519/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1520 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001521 * This includes the raw finite field Diffie-Hellman algorithm as well as
1522 * finite-field Diffie-Hellman followed by any supporter key derivation
1523 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001524 *
1525 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1526 *
1527 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1528 * This macro may return either 0 or 1 if \c alg is not a supported
1529 * key agreement algorithm identifier.
1530 */
1531#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001532 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001533
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001534/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1535 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001536 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001537 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1538 * `m` is the bit size associated with the curve, i.e. the bit size of the
1539 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1540 * the byte containing the most significant bit of the shared secret
1541 * is padded with zero bits. The byte order is either little-endian
1542 * or big-endian depending on the curve type.
1543 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001544 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001545 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1546 * in little-endian byte order.
1547 * The bit size is 448 for Curve448 and 255 for Curve25519.
1548 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001549 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001550 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1551 * in big-endian byte order.
1552 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1553 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001554 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001555 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1556 * in big-endian byte order.
1557 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001558 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001559#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1560
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001561/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1562 * algorithm.
1563 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001564 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1565 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1566 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001567 *
1568 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1569 *
1570 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1571 * 0 otherwise.
1572 * This macro may return either 0 or 1 if \c alg is not a supported
1573 * key agreement algorithm identifier.
1574 */
1575#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001576 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001577
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001578/** Whether the specified algorithm encoding is a wildcard.
1579 *
1580 * Wildcard values may only be used to set the usage algorithm field in
1581 * a policy, not to perform an operation.
1582 *
1583 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1584 *
1585 * \return 1 if \c alg is a wildcard algorithm encoding.
1586 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1587 * an operation).
1588 * \return This macro may return either 0 or 1 if \c alg is not a supported
1589 * algorithm identifier.
1590 */
1591#define PSA_ALG_IS_WILDCARD(alg) \
1592 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1593 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1594 (alg) == PSA_ALG_ANY_HASH)
1595
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001596/**@}*/
1597
1598/** \defgroup key_lifetimes Key lifetimes
1599 * @{
1600 */
1601
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001602/** The default lifetime for volatile keys.
1603 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001604 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001605 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001606 *
1607 * A key with this lifetime is typically stored in the RAM area of the
1608 * PSA Crypto subsystem. However this is an implementation choice.
1609 * If an implementation stores data about the key in a non-volatile memory,
1610 * it must release all the resources associated with the key and erase the
1611 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001612 */
1613#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1614
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001615/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001616 *
1617 * A persistent key remains in storage until it is explicitly destroyed or
1618 * until the corresponding storage area is wiped. This specification does
1619 * not define any mechanism to wipe a storage area, but implementations may
1620 * provide their own mechanism (for example to perform a factory reset,
1621 * to prepare for device refurbishment, or to uninstall an application).
1622 *
1623 * This lifetime value is the default storage area for the calling
1624 * application. Implementations may offer other storage areas designated
1625 * by other lifetime values as implementation-specific extensions.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001626 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001627 */
1628#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1629
Gilles Peskineaff11812020-05-04 19:03:10 +02001630/** The persistence level of volatile keys.
1631 *
1632 * See ::psa_key_persistence_t for more information.
1633 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001634#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001635
1636/** The default persistence level for persistent keys.
1637 *
1638 * See ::psa_key_persistence_t for more information.
1639 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001640#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02001641
1642/** A persistence level indicating that a key is never destroyed.
1643 *
1644 * See ::psa_key_persistence_t for more information.
1645 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001646#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001647
1648#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001649 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001650
1651#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001652 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001653
1654/** Whether a key lifetime indicates that the key is volatile.
1655 *
1656 * A volatile key is automatically destroyed by the implementation when
1657 * the application instance terminates. In particular, a volatile key
1658 * is automatically destroyed on a power reset of the device.
1659 *
1660 * A key that is not volatile is persistent. Persistent keys are
1661 * preserved until the application explicitly destroys them or until an
1662 * implementation-specific device management event occurs (for example,
1663 * a factory reset).
1664 *
1665 * \param lifetime The lifetime value to query (value of type
1666 * ::psa_key_lifetime_t).
1667 *
1668 * \return \c 1 if the key is volatile, otherwise \c 0.
1669 */
1670#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
1671 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02001672 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001673
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02001674/** Construct a lifetime from a persistence level and a location.
1675 *
1676 * \param persistence The persistence level
1677 * (value of type ::psa_key_persistence_t).
1678 * \param location The location indicator
1679 * (value of type ::psa_key_location_t).
1680 *
1681 * \return The constructed lifetime value.
1682 */
1683#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
1684 ((location) << 8 | (persistence))
1685
Gilles Peskineaff11812020-05-04 19:03:10 +02001686/** The local storage area for persistent keys.
1687 *
1688 * This storage area is available on all systems that can store persistent
1689 * keys without delegating the storage to a third-party cryptoprocessor.
1690 *
1691 * See ::psa_key_location_t for more information.
1692 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001693#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02001694
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001695#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001696
Gilles Peskine4a231b82019-05-06 18:56:14 +02001697/** The minimum value for a key identifier chosen by the application.
1698 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001699#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001700/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001701 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001702#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001703/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001704 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001705#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001706/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001707 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001708#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02001709
Ronald Cron7424f0d2020-09-14 16:17:41 +02001710
1711#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
1712
1713#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
1714#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
1715#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
1716
1717/** Utility to initialize a key identifier at runtime.
1718 *
1719 * \param unused Unused parameter.
1720 * \param key_id Identifier of the key.
1721 */
1722static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
1723 unsigned int unused, psa_key_id_t key_id )
1724{
1725 (void)unused;
1726
1727 return( key_id );
1728}
1729
1730/** Compare two key identifiers.
1731 *
1732 * \param id1 First key identifier.
1733 * \param id2 Second key identifier.
1734 *
1735 * \return Non-zero if the two key identifier are equal, zero otherwise.
1736 */
1737static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
1738 mbedtls_svc_key_id_t id2 )
1739{
1740 return( id1 == id2 );
1741}
1742
Ronald Cronc4d1b512020-07-31 11:26:37 +02001743/** Check whether a key identifier is null.
1744 *
1745 * \param key Key identifier.
1746 *
1747 * \return Non-zero if the key identifier is null, zero otherwise.
1748 */
1749static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
1750{
1751 return( key == 0 );
1752}
1753
Ronald Cron7424f0d2020-09-14 16:17:41 +02001754#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
1755
1756#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
1757#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
1758#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
1759
1760/** Utility to initialize a key identifier at runtime.
1761 *
1762 * \param owner_id Identifier of the key owner.
1763 * \param key_id Identifier of the key.
1764 */
1765static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
1766 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
1767{
1768 return( (mbedtls_svc_key_id_t){ .key_id = key_id,
1769 .owner = owner_id } );
1770}
1771
1772/** Compare two key identifiers.
1773 *
1774 * \param id1 First key identifier.
1775 * \param id2 Second key identifier.
1776 *
1777 * \return Non-zero if the two key identifier are equal, zero otherwise.
1778 */
1779static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
1780 mbedtls_svc_key_id_t id2 )
1781{
1782 return( ( id1.key_id == id2.key_id ) &&
1783 mbedtls_key_owner_id_equal( id1.owner, id2.owner ) );
1784}
1785
Ronald Cronc4d1b512020-07-31 11:26:37 +02001786/** Check whether a key identifier is null.
1787 *
1788 * \param key Key identifier.
1789 *
1790 * \return Non-zero if the key identifier is null, zero otherwise.
1791 */
1792static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
1793{
1794 return( ( key.key_id == 0 ) && ( key.owner == 0 ) );
1795}
1796
Ronald Cron7424f0d2020-09-14 16:17:41 +02001797#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001798
1799/**@}*/
1800
1801/** \defgroup policy Key policies
1802 * @{
1803 */
1804
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001805/** Whether the key may be exported.
1806 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001807 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001808 * regardless of the value of this permission flag.
1809 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001810 * If a key does not have export permission, implementations shall not
1811 * allow the key to be exported in plain form from the cryptoprocessor,
1812 * whether through psa_export_key() or through a proprietary interface.
1813 * The key may however be exportable in a wrapped form, i.e. in a form
1814 * where it is encrypted by another key.
1815 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001816#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1817
1818/** Whether the key may be copied.
1819 *
1820 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001821 * with the same policy or a more restrictive policy.
1822 *
1823 * For lifetimes for which the key is located in a secure element which
1824 * enforce the non-exportability of keys, copying a key outside the secure
1825 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1826 * Copying the key inside the secure element is permitted with just
1827 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1828 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
1829 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1830 * is sufficient to permit the copy.
1831 */
1832#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1833
1834/** Whether the key may be used to encrypt a message.
1835 *
1836 * This flag allows the key to be used for a symmetric encryption operation,
1837 * for an AEAD encryption-and-authentication operation,
1838 * or for an asymmetric encryption operation,
1839 * if otherwise permitted by the key's type and policy.
1840 *
1841 * For a key pair, this concerns the public key.
1842 */
1843#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1844
1845/** Whether the key may be used to decrypt a message.
1846 *
1847 * This flag allows the key to be used for a symmetric decryption operation,
1848 * for an AEAD decryption-and-verification operation,
1849 * or for an asymmetric decryption operation,
1850 * if otherwise permitted by the key's type and policy.
1851 *
1852 * For a key pair, this concerns the private key.
1853 */
1854#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1855
1856/** Whether the key may be used to sign a message.
1857 *
1858 * This flag allows the key to be used for a MAC calculation operation
1859 * or for an asymmetric signature operation,
1860 * if otherwise permitted by the key's type and policy.
1861 *
1862 * For a key pair, this concerns the private key.
1863 */
Gilles Peskine89d8c5c2019-11-26 17:01:59 +01001864#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00000400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001865
1866/** Whether the key may be used to verify a message signature.
1867 *
1868 * This flag allows the key to be used for a MAC verification operation
1869 * or for an asymmetric signature verification operation,
1870 * if otherwise permitted by by the key's type and policy.
1871 *
1872 * For a key pair, this concerns the public key.
1873 */
Gilles Peskine89d8c5c2019-11-26 17:01:59 +01001874#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00000800)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001875
1876/** Whether the key may be used to derive other keys.
1877 */
1878#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1879
1880/**@}*/
1881
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001882/** \defgroup derivation Key derivation
1883 * @{
1884 */
1885
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001886/** A secret input for key derivation.
1887 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001888 * This should be a key of type #PSA_KEY_TYPE_DERIVE
1889 * (passed to psa_key_derivation_input_key())
1890 * or the shared secret resulting from a key agreement
1891 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02001892 *
1893 * The secret can also be a direct input (passed to
1894 * key_derivation_input_bytes()). In this case, the derivation operation
1895 * may not be used to derive keys: the operation will only allow
1896 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001897 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001898#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001899
1900/** A label for key derivation.
1901 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001902 * This should be a direct input.
1903 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001904 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001905#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001906
1907/** A salt for key derivation.
1908 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001909 * This should be a direct input.
1910 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001911 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001912#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001913
1914/** An information string for key derivation.
1915 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001916 * This should be a direct input.
1917 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001918 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001919#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001920
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001921/** A seed for key derivation.
1922 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001923 * This should be a direct input.
1924 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001925 */
1926#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
1927
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001928/**@}*/
1929
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001930#endif /* PSA_CRYPTO_VALUES_H */