blob: df159c44bb8356ce9218aadb0d05533427fb6e3b [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
36
37/** \defgroup error Error codes
38 * @{
39 */
40
David Saadab4ecc272019-02-14 13:48:10 +020041/* PSA error codes */
42
Gilles Peskinef3b731e2018-12-12 13:38:31 +010043/** The action was completed successfully. */
44#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045
46/** An error occurred that does not correspond to any defined
47 * failure cause.
48 *
49 * Implementations may use this error code if none of the other standard
50 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020051#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010052
53/** The requested operation or a parameter is not supported
54 * by this implementation.
55 *
56 * Implementations should return this error code when an enumeration
57 * parameter such as a key type, algorithm, etc. is not recognized.
58 * If a combination of parameters is recognized and identified as
59 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020060#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010061
62/** The requested action is denied by a policy.
63 *
64 * Implementations should return this error code when the parameters
65 * are recognized as valid and supported, and a policy explicitly
66 * denies the requested operation.
67 *
68 * If a subset of the parameters of a function call identify a
69 * forbidden operation, and another subset of the parameters are
70 * not valid or not supported, it is unspecified whether the function
71 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
72 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020073#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010074
75/** An output buffer is too small.
76 *
77 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
78 * description to determine a sufficient buffer size.
79 *
80 * Implementations should preferably return this error code only
81 * in cases when performing the operation with a larger output
82 * buffer would succeed. However implementations may return this
83 * error if a function has invalid or unsupported parameters in addition
84 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
David Saadab4ecc272019-02-14 13:48:10 +020087/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088 *
David Saadab4ecc272019-02-14 13:48:10 +020089 * Implementations should return this error, when attempting
90 * to write an item (like a key) that already exists. */
91#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010092
David Saadab4ecc272019-02-14 13:48:10 +020093/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094 *
David Saadab4ecc272019-02-14 13:48:10 +020095 * Implementations should return this error, if a requested item (like
96 * a key) does not exist. */
97#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
99/** The requested action cannot be performed in the current state.
100 *
101 * Multipart operations return this error when one of the
102 * functions is called out of sequence. Refer to the function
103 * descriptions for permitted sequencing of functions.
104 *
105 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100106 * that a key either exists or not,
107 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100108 * as applicable.
109 *
110 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200111 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100112 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200113#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100114
115/** The parameters passed to the function are invalid.
116 *
117 * Implementations may return this error any time a parameter or
118 * combination of parameters are recognized as invalid.
119 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100120 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200121 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100122 * instead.
123 */
David Saadab4ecc272019-02-14 13:48:10 +0200124#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100125
126/** There is not enough runtime memory.
127 *
128 * If the action is carried out across multiple security realms, this
129 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200130#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100131
132/** There is not enough persistent storage.
133 *
134 * Functions that modify the key storage return this error code if
135 * there is insufficient storage space on the host media. In addition,
136 * many functions that do not otherwise access storage may return this
137 * error code if the implementation requires a mandatory log entry for
138 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200139#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100140
141/** There was a communication failure inside the implementation.
142 *
143 * This can indicate a communication failure between the application
144 * and an external cryptoprocessor or between the cryptoprocessor and
145 * an external volatile or persistent memory. A communication failure
146 * may be transient or permanent depending on the cause.
147 *
148 * \warning If a function returns this error, it is undetermined
149 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200150 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100151 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
152 * if the requested action was completed successfully in an external
153 * cryptoprocessor but there was a breakdown of communication before
154 * the cryptoprocessor could report the status to the application.
155 */
David Saadab4ecc272019-02-14 13:48:10 +0200156#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100157
158/** There was a storage failure that may have led to data loss.
159 *
160 * This error indicates that some persistent storage is corrupted.
161 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200162 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100163 * between the cryptoprocessor and its external storage (use
164 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
165 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
166 *
167 * Note that a storage failure does not indicate that any data that was
168 * previously read is invalid. However this previously read data may no
169 * longer be readable from storage.
170 *
171 * When a storage failure occurs, it is no longer possible to ensure
172 * the global integrity of the keystore. Depending on the global
173 * integrity guarantees offered by the implementation, access to other
174 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100175 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 *
177 * Implementations should only use this error code to report a
178 * permanent storage corruption. However application writers should
179 * keep in mind that transient errors while reading the storage may be
180 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200181#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100182
183/** A hardware failure was detected.
184 *
185 * A hardware failure may be transient or permanent depending on the
186 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200187#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188
189/** A tampering attempt was detected.
190 *
191 * If an application receives this error code, there is no guarantee
192 * that previously accessed or computed data was correct and remains
193 * confidential. Applications should not perform any security function
194 * and should enter a safe failure state.
195 *
196 * Implementations may return this error code if they detect an invalid
197 * state that cannot happen during normal operation and that indicates
198 * that the implementation's security guarantees no longer hold. Depending
199 * on the implementation architecture and on its security and safety goals,
200 * the implementation may forcibly terminate the application.
201 *
202 * This error code is intended as a last resort when a security breach
203 * is detected and it is unsure whether the keystore data is still
204 * protected. Implementations shall only return this error code
205 * to report an alarm from a tampering detector, to indicate that
206 * the confidentiality of stored data can no longer be guaranteed,
207 * or to indicate that the integrity of previously returned data is now
208 * considered compromised. Implementations shall not use this error code
209 * to indicate a hardware failure that merely makes it impossible to
210 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
211 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
212 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
213 * instead).
214 *
215 * This error indicates an attack against the application. Implementations
216 * shall not return this error code as a consequence of the behavior of
217 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200218#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100219
220/** There is not enough entropy to generate random data needed
221 * for the requested action.
222 *
223 * This error indicates a failure of a hardware random generator.
224 * Application writers should note that this error can be returned not
225 * only by functions whose purpose is to generate random data, such
226 * as key, IV or nonce generation, but also by functions that execute
227 * an algorithm with a randomized result, as well as functions that
228 * use randomization of intermediate computations as a countermeasure
229 * to certain attacks.
230 *
231 * Implementations should avoid returning this error after psa_crypto_init()
232 * has succeeded. Implementations should generate sufficient
233 * entropy during initialization and subsequently use a cryptographically
234 * secure pseudorandom generator (PRNG). However implementations may return
235 * this error at any time if a policy requires the PRNG to be reseeded
236 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200237#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100238
239/** The signature, MAC or hash is incorrect.
240 *
241 * Verification functions return this error if the verification
242 * calculations completed successfully, and the value to be verified
243 * was determined to be incorrect.
244 *
245 * If the value to verify has an invalid size, implementations may return
246 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200247#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100248
249/** The decrypted padding is incorrect.
250 *
251 * \warning In some protocols, when decrypting data, it is essential that
252 * the behavior of the application does not depend on whether the padding
253 * is correct, down to precise timing. Applications should prefer
254 * protocols that use authenticated encryption rather than plain
255 * encryption. If the application must perform a decryption of
256 * unauthenticated data, the application writer should take care not
257 * to reveal whether the padding is invalid.
258 *
259 * Implementations should strive to make valid and invalid padding
260 * as close as possible to indistinguishable to an external observer.
261 * In particular, the timing of a decryption operation should not
262 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200263#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100264
David Saadab4ecc272019-02-14 13:48:10 +0200265/** Return this error when there's insufficient data when attempting
266 * to read from a resource. */
267#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100268
Ronald Croncf56a0a2020-08-04 09:51:30 +0200269/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270 */
David Saadab4ecc272019-02-14 13:48:10 +0200271#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100273/** Stored data has been corrupted.
274 *
275 * This error indicates that some persistent storage has suffered corruption.
276 * It does not indicate the following situations, which have specific error
277 * codes:
278 *
279 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
280 * - A communication error between the cryptoprocessor and its external
281 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
282 * - When the storage is in a valid state but is full - use
283 * #PSA_ERROR_INSUFFICIENT_STORAGE.
284 * - When the storage fails for other reasons - use
285 * #PSA_ERROR_STORAGE_FAILURE.
286 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
287 *
288 * \note A storage corruption does not indicate that any data that was
289 * previously read is invalid. However this previously read data might no
290 * longer be readable from storage.
291 *
292 * When a storage failure occurs, it is no longer possible to ensure the
293 * global integrity of the keystore.
294 */
295#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
296
gabor-mezei-armfe309242020-11-09 17:39:56 +0100297/** Data read from storage is not valid for the implementation.
298 *
299 * This error indicates that some data read from storage does not have a valid
300 * format. It does not indicate the following situations, which have specific
301 * error codes:
302 *
303 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
304 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
305 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
306 *
307 * This error is typically a result of either storage corruption on a
308 * cleartext storage backend, or an attempt to read data that was
309 * written by an incompatible version of the library.
310 */
311#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
312
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100313/**@}*/
314
315/** \defgroup crypto_types Key and algorithm types
316 * @{
317 */
318
319/** An invalid key type value.
320 *
321 * Zero is not the encoding of any key type.
322 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100323#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100324
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100325/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100326 *
327 * Key types defined by this standard will never have the
328 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
329 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
330 * respect the bitwise structure used by standard encodings whenever practical.
331 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100332#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100333
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100334#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100335#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
336#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
337#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100338#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100340#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100341
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100342/** Whether a key type is vendor-defined.
343 *
344 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
345 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100346#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
347 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
348
349/** Whether a key type is an unstructured array of bytes.
350 *
351 * This encompasses both symmetric keys and non-key data.
352 */
353#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100354 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
355 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100356
357/** Whether a key type is asymmetric: either a key pair or a public key. */
358#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
359 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
360 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
361 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
362/** Whether a key type is the public part of a key pair. */
363#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
364 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
365/** Whether a key type is a key pair containing a private part and a public
366 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200367#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100368 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
369/** The key pair type corresponding to a public key type.
370 *
371 * You may also pass a key pair type as \p type, it will be left unchanged.
372 *
373 * \param type A public key type or key pair type.
374 *
375 * \return The corresponding key pair type.
376 * If \p type is not a public key or a key pair,
377 * the return value is undefined.
378 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200379#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100380 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
381/** The public key type corresponding to a key pair type.
382 *
383 * You may also pass a key pair type as \p type, it will be left unchanged.
384 *
385 * \param type A public key type or key pair type.
386 *
387 * \return The corresponding public key type.
388 * If \p type is not a public key or a key pair,
389 * the return value is undefined.
390 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200391#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100392 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
393
394/** Raw data.
395 *
396 * A "key" of this type cannot be used for any cryptographic operation.
397 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100398#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100399
400/** HMAC key.
401 *
402 * The key policy determines which underlying hash algorithm the key can be
403 * used for.
404 *
405 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100406 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100407 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100408#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100409
410/** A secret for key derivation.
411 *
412 * The key policy determines which key derivation algorithm the key
413 * can be used for.
414 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100415#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100416
Gilles Peskine737c6be2019-05-21 16:01:06 +0200417/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100418 *
419 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
420 * 32 bytes (AES-256).
421 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100422#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
424/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
425 *
426 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
427 * 24 bytes (3-key 3DES).
428 *
429 * Note that single DES and 2-key 3DES are weak and strongly
430 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
431 * is weak and deprecated and should only be used in legacy protocols.
432 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100433#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100434
Gilles Peskine737c6be2019-05-21 16:01:06 +0200435/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100436 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100437#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100438
439/** Key for the RC4 stream cipher.
440 *
441 * Note that RC4 is weak and deprecated and should only be used in
442 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100443#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100444
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200445/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
446 *
447 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
448 *
449 * Implementations must support 12-byte nonces, may support 8-byte nonces,
450 * and should reject other sizes.
451 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100452#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200453
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100454/** RSA public key. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100455#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100456/** RSA key pair (private and public key). */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100457#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100458/** Whether a key type is an RSA key (pair or public-only). */
459#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200460 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100461
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100462#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100463#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
464#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100465/** Elliptic curve key pair.
466 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100467 * \param curve A value of type ::psa_ecc_family_t that
468 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100469 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200470#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
471 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100472/** Elliptic curve public key.
473 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100474 * \param curve A value of type ::psa_ecc_family_t that
475 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100476 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100477#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
478 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
479
480/** Whether a key type is an elliptic curve key (pair or public-only). */
481#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200482 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100483 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100484/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200485#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100486 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200487 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100488/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100489#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
490 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
491 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
492
493/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100494#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
495 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100496 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
497 0))
498
Gilles Peskine228abc52019-12-03 17:24:19 +0100499/** SEC Koblitz curves over prime fields.
500 *
501 * This family comprises the following curves:
502 * secp192k1, secp224k1, secp256k1.
503 * They are defined in _Standards for Efficient Cryptography_,
504 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
505 * https://www.secg.org/sec2-v2.pdf
506 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100507#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100508
509/** SEC random curves over prime fields.
510 *
511 * This family comprises the following curves:
512 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
513 * They are defined in _Standards for Efficient Cryptography_,
514 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
515 * https://www.secg.org/sec2-v2.pdf
516 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100517#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100518/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100519#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100520
521/** SEC Koblitz curves over binary fields.
522 *
523 * This family comprises the following curves:
524 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
525 * They are defined in _Standards for Efficient Cryptography_,
526 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
527 * https://www.secg.org/sec2-v2.pdf
528 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100529#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100530
531/** SEC random curves over binary fields.
532 *
533 * This family comprises the following curves:
534 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
535 * They are defined in _Standards for Efficient Cryptography_,
536 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
537 * https://www.secg.org/sec2-v2.pdf
538 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100539#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100540
541/** SEC additional random curves over binary fields.
542 *
543 * This family comprises the following curve:
544 * sect163r2.
545 * It is defined in _Standards for Efficient Cryptography_,
546 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
547 * https://www.secg.org/sec2-v2.pdf
548 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100549#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100550
551/** Brainpool P random curves.
552 *
553 * This family comprises the following curves:
554 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
555 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
556 * It is defined in RFC 5639.
557 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100558#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100559
560/** Curve25519 and Curve448.
561 *
562 * This family comprises the following Montgomery curves:
563 * - 255-bit: Bernstein et al.,
564 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
565 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
566 * - 448-bit: Hamburg,
567 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
568 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
569 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100570#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100571
Gilles Peskine67546802021-02-24 21:49:40 +0100572/** The twisted Edwards curves Ed25519 and Ed448.
573 *
574 * These curves are suitable for EdDSA.
575 *
576 * This family comprises the following twisted Edwards curves:
577 * - 256-bit: Edwards25519, the twisted Edwards curve birationally equivalent
578 * to Curve25519.
579 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
580 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
581 * to Curve448.
582 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
583 */
584#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
585
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100586#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100587#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
588#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100589/** Diffie-Hellman key pair.
590 *
Paul Elliott75e27032020-06-03 15:17:39 +0100591 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100592 * Diffie-Hellman group to be used.
593 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200594#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
595 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100596/** Diffie-Hellman public key.
597 *
Paul Elliott75e27032020-06-03 15:17:39 +0100598 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100599 * Diffie-Hellman group to be used.
600 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200601#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
602 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
603
604/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
605#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200606 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200607 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
608/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200609#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200610 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200611 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200612/** Whether a key type is a Diffie-Hellman public key. */
613#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
614 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
615 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
616
617/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100618#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
619 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200620 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
621 0))
622
Gilles Peskine228abc52019-12-03 17:24:19 +0100623/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
624 *
625 * This family includes groups with the following key sizes (in bits):
626 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
627 * all of these sizes or only a subset.
628 */
Paul Elliott75e27032020-06-03 15:17:39 +0100629#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100630
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100631#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100632 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100633/** The block size of a block cipher.
634 *
635 * \param type A cipher key type (value of type #psa_key_type_t).
636 *
637 * \return The block size for a block cipher, or 1 for a stream cipher.
638 * The return value is undefined if \p type is not a supported
639 * cipher key type.
640 *
641 * \note It is possible to build stream cipher algorithms on top of a block
642 * cipher, for example CTR mode (#PSA_ALG_CTR).
643 * This macro only takes the key type into account, so it cannot be
644 * used to determine the size of the data that #psa_cipher_update()
645 * might buffer for future processing in general.
646 *
647 * \note This macro returns a compile-time constant if its argument is one.
648 *
649 * \warning This macro may evaluate its argument multiple times.
650 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100651#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100652 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100653 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100654 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100655
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100656/** Vendor-defined algorithm flag.
657 *
658 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
659 * bit set. Vendors who define additional algorithms must use an encoding with
660 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
661 * used by standard encodings whenever practical.
662 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100663#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100664
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100665#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100666#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
667#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100668#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100669#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
670#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
671#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
672#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
673#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100674
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100675/** Whether an algorithm is vendor-defined.
676 *
677 * See also #PSA_ALG_VENDOR_FLAG.
678 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100679#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
680 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
681
682/** Whether the specified algorithm is a hash algorithm.
683 *
684 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
685 *
686 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
687 * This macro may return either 0 or 1 if \p alg is not a supported
688 * algorithm identifier.
689 */
690#define PSA_ALG_IS_HASH(alg) \
691 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
692
693/** Whether the specified algorithm is a MAC algorithm.
694 *
695 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
696 *
697 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
698 * This macro may return either 0 or 1 if \p alg is not a supported
699 * algorithm identifier.
700 */
701#define PSA_ALG_IS_MAC(alg) \
702 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
703
704/** Whether the specified algorithm is a symmetric cipher algorithm.
705 *
706 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
707 *
708 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
709 * This macro may return either 0 or 1 if \p alg is not a supported
710 * algorithm identifier.
711 */
712#define PSA_ALG_IS_CIPHER(alg) \
713 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
714
715/** Whether the specified algorithm is an authenticated encryption
716 * with associated data (AEAD) algorithm.
717 *
718 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
719 *
720 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
721 * This macro may return either 0 or 1 if \p alg is not a supported
722 * algorithm identifier.
723 */
724#define PSA_ALG_IS_AEAD(alg) \
725 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
726
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200727/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200728 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100729 *
730 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
731 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200732 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100733 * This macro may return either 0 or 1 if \p alg is not a supported
734 * algorithm identifier.
735 */
736#define PSA_ALG_IS_SIGN(alg) \
737 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
738
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200739/** Whether the specified algorithm is an asymmetric encryption algorithm,
740 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100741 *
742 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
743 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200744 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100745 * This macro may return either 0 or 1 if \p alg is not a supported
746 * algorithm identifier.
747 */
748#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
749 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
750
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100751/** Whether the specified algorithm is a key agreement algorithm.
752 *
753 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
754 *
755 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
756 * This macro may return either 0 or 1 if \p alg is not a supported
757 * algorithm identifier.
758 */
759#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100760 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100761
762/** Whether the specified algorithm is a key derivation algorithm.
763 *
764 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
765 *
766 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
767 * This macro may return either 0 or 1 if \p alg is not a supported
768 * algorithm identifier.
769 */
770#define PSA_ALG_IS_KEY_DERIVATION(alg) \
771 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
772
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100773#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100774/** MD2 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100775#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100776/** MD4 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100777#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100778/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100779#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100780/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100781#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100782/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100783#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100784/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100785#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100786/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100787#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100788/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100789#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100790/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100791#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100792/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100793#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100794/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100795#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100796/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100797#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100798/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100799#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100800/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100801#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100802/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100803#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100804
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100805/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100806 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100807 * This value may be used to form the algorithm usage field of a policy
808 * for a signature algorithm that is parametrized by a hash. The key
809 * may then be used to perform operations using the same signature
810 * algorithm parametrized with any supported hash.
811 *
812 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100813 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100814 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100815 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100816 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
817 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100818 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200819 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100820 * ```
821 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100822 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100823 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
824 * call to sign or verify a message may use a different hash.
825 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200826 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
827 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
828 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100829 * ```
830 *
831 * This value may not be used to build other algorithms that are
832 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100833 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100834 *
835 * This value may not be used to build an algorithm specification to
836 * perform an operation. It is only valid to build policies.
837 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100838#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100839
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100840#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100841#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100842/** Macro to build an HMAC algorithm.
843 *
844 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
845 *
846 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
847 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
848 *
849 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100850 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100851 * hash algorithm.
852 */
853#define PSA_ALG_HMAC(hash_alg) \
854 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
855
856#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
857 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
858
859/** Whether the specified algorithm is an HMAC algorithm.
860 *
861 * HMAC is a family of MAC algorithms that are based on a hash function.
862 *
863 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
864 *
865 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
866 * This macro may return either 0 or 1 if \p alg is not a supported
867 * algorithm identifier.
868 */
869#define PSA_ALG_IS_HMAC(alg) \
870 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
871 PSA_ALG_HMAC_BASE)
872
873/* In the encoding of a MAC algorithm, the bits corresponding to
874 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
875 * truncated. As an exception, the value 0 means the untruncated algorithm,
876 * whatever its length is. The length is encoded in 6 bits, so it can
877 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
878 * to full length is correctly encoded as 0 and any non-trivial truncation
879 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100880#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
881#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100882
Steven Cooremand927ed72021-02-22 19:59:35 +0100883/* In the encoding of a MAC algorithm, the bit corresponding to
884 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100885 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
886 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100887 * same base class and having a (potentially truncated) MAC length greater or
888 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
889#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
890
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100891/** Macro to build a truncated MAC algorithm.
892 *
893 * A truncated MAC algorithm is identical to the corresponding MAC
894 * algorithm except that the MAC value for the truncated algorithm
895 * consists of only the first \p mac_length bytes of the MAC value
896 * for the untruncated algorithm.
897 *
898 * \note This macro may allow constructing algorithm identifiers that
899 * are not valid, either because the specified length is larger
900 * than the untruncated MAC or because the specified length is
901 * smaller than permitted by the implementation.
902 *
903 * \note It is implementation-defined whether a truncated MAC that
904 * is truncated to the same length as the MAC of the untruncated
905 * algorithm is considered identical to the untruncated algorithm
906 * for policy comparison purposes.
907 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200908 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100909 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100910 * is true). This may be a truncated or untruncated
911 * MAC algorithm.
912 * \param mac_length Desired length of the truncated MAC in bytes.
913 * This must be at most the full length of the MAC
914 * and must be at least an implementation-specified
915 * minimum. The implementation-specified minimum
916 * shall not be zero.
917 *
918 * \return The corresponding MAC algorithm with the specified
919 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100920 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100921 * MAC algorithm or if \p mac_length is too small or
922 * too large for the specified MAC algorithm.
923 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100924#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
925 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
926 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100927 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
928
929/** Macro to build the base MAC algorithm corresponding to a truncated
930 * MAC algorithm.
931 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200932 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100933 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100934 * is true). This may be a truncated or untruncated
935 * MAC algorithm.
936 *
937 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100938 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100939 * MAC algorithm.
940 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100941#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
942 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
943 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100944
945/** Length to which a MAC algorithm is truncated.
946 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200947 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100948 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100949 * is true).
950 *
951 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100952 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
953 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100954 * MAC algorithm.
955 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200956#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
957 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100958
Steven Cooremanee18b1f2021-02-08 11:44:21 +0100959/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100960 *
Steven Cooremana1d83222021-02-25 10:20:29 +0100961 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +0100962 * sharing the same base algorithm, and where the (potentially truncated) MAC
963 * length of the specific algorithm is equal to or larger then the wildcard
964 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100965 *
Steven Cooreman37389c72021-02-18 12:08:41 +0100966 * \note When setting the minimum required MAC length to less than the
967 * smallest MAC length allowed by the base algorithm, this effectively
968 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100969 *
Steven Cooreman37389c72021-02-18 12:08:41 +0100970 * \param mac_alg A MAC algorithm identifier (value of type
971 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
972 * is true).
973 * \param min_mac_length Desired minimum length of the message authentication
974 * code in bytes. This must be at most the untruncated
975 * length of the MAC and must be at least 1.
976 *
977 * \return The corresponding MAC wildcard algorithm with the
978 * specified minimum length.
979 * \return Unspecified if \p mac_alg is not a supported MAC
980 * algorithm or if \p min_mac_length is less than 1 or
981 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100982 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100983#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
984 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
985 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100986
Bence Szépkútia2945512020-12-03 21:40:17 +0100987#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100988/** The CBC-MAC construction over a block cipher
989 *
990 * \warning CBC-MAC is insecure in many cases.
991 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
992 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100993#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100994/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +0100995#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100996
997/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
998 *
999 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1000 *
1001 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1002 * This macro may return either 0 or 1 if \p alg is not a supported
1003 * algorithm identifier.
1004 */
1005#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1006 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1007 PSA_ALG_CIPHER_MAC_BASE)
1008
1009#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1010#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1011
1012/** Whether the specified algorithm is a stream cipher.
1013 *
1014 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1015 * by applying a bitwise-xor with a stream of bytes that is generated
1016 * from a key.
1017 *
1018 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1019 *
1020 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1021 * This macro may return either 0 or 1 if \p alg is not a supported
1022 * algorithm identifier or if it is not a symmetric cipher algorithm.
1023 */
1024#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1025 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1026 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1027
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001028/** The stream cipher mode of a stream cipher algorithm.
1029 *
1030 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001031 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1032 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001033 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001034#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001035
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001036/** The CTR stream cipher mode.
1037 *
1038 * CTR is a stream cipher which is built from a block cipher.
1039 * The underlying block cipher is determined by the key type.
1040 * For example, to use AES-128-CTR, use this algorithm with
1041 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1042 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001043#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001044
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001045/** The CFB stream cipher mode.
1046 *
1047 * The underlying block cipher is determined by the key type.
1048 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001049#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001050
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001051/** The OFB stream cipher mode.
1052 *
1053 * The underlying block cipher is determined by the key type.
1054 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001055#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001056
1057/** The XTS cipher mode.
1058 *
1059 * XTS is a cipher mode which is built from a block cipher. It requires at
1060 * least one full block of input, but beyond this minimum the input
1061 * does not need to be a whole number of blocks.
1062 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001063#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001064
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001065/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1066 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001067 * \warning ECB mode does not protect the confidentiality of the encrypted data
1068 * except in extremely narrow circumstances. It is recommended that applications
1069 * only use ECB if they need to construct an operating mode that the
1070 * implementation does not provide. Implementations are encouraged to provide
1071 * the modes that applications need in preference to supporting direct access
1072 * to ECB.
1073 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001074 * The underlying block cipher is determined by the key type.
1075 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001076 * This symmetric cipher mode can only be used with messages whose lengths are a
1077 * multiple of the block size of the chosen block cipher.
1078 *
1079 * ECB mode does not accept an initialization vector (IV). When using a
1080 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1081 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001082 */
1083#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1084
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001085/** The CBC block cipher chaining mode, with no padding.
1086 *
1087 * The underlying block cipher is determined by the key type.
1088 *
1089 * This symmetric cipher mode can only be used with messages whose lengths
1090 * are whole number of blocks for the chosen block cipher.
1091 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001092#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001093
1094/** The CBC block cipher chaining mode with PKCS#7 padding.
1095 *
1096 * The underlying block cipher is determined by the key type.
1097 *
1098 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1099 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001100#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001101
Gilles Peskine679693e2019-05-06 15:10:16 +02001102#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1103
1104/** Whether the specified algorithm is an AEAD mode on a block cipher.
1105 *
1106 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1107 *
1108 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1109 * a block cipher, 0 otherwise.
1110 * This macro may return either 0 or 1 if \p alg is not a supported
1111 * algorithm identifier.
1112 */
1113#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1114 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1115 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1116
Gilles Peskine9153ec02019-02-15 13:02:02 +01001117/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001118 *
1119 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001120 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001121#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001122
1123/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001124 *
1125 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001126 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001127#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001128
1129/** The Chacha20-Poly1305 AEAD algorithm.
1130 *
1131 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001132 *
1133 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1134 * and should reject other sizes.
1135 *
1136 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001137 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001138#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001139
1140/* In the encoding of a AEAD algorithm, the bits corresponding to
1141 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1142 * The constants for default lengths follow this encoding.
1143 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001144#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1145#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001146
Steven Cooremand927ed72021-02-22 19:59:35 +01001147/* In the encoding of an AEAD algorithm, the bit corresponding to
1148 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001149 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1150 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001151 * same base class and having a tag length greater than or equal to the one
1152 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1153#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1154
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001155/** Macro to build a shortened AEAD algorithm.
1156 *
1157 * A shortened AEAD algorithm is similar to the corresponding AEAD
1158 * algorithm, but has an authentication tag that consists of fewer bytes.
1159 * Depending on the algorithm, the tag length may affect the calculation
1160 * of the ciphertext.
1161 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001162 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001163 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001164 * is true).
1165 * \param tag_length Desired length of the authentication tag in bytes.
1166 *
1167 * \return The corresponding AEAD algorithm with the specified
1168 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001169 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001170 * AEAD algorithm or if \p tag_length is not valid
1171 * for the specified AEAD algorithm.
1172 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001173#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001174 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1175 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001176 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1177 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1178
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001179/** Retrieve the tag length of a specified AEAD algorithm
1180 *
1181 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001182 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001183 * is true).
1184 *
1185 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001186 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001187 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001188 */
1189#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1190 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1191 PSA_AEAD_TAG_LENGTH_OFFSET )
1192
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001193/** Calculate the corresponding AEAD algorithm with the default tag length.
1194 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001195 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001196 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001197 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001198 * \return The corresponding AEAD algorithm with the default
1199 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001200 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001201#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001202 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001203 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1204 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1205 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001206 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001207#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1208 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1209 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001210 ref :
1211
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001212/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001213 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001214 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001215 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001216 * algorithm is equal to or larger then the minimum tag length specified by the
1217 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001218 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001219 * \note When setting the minimum required tag length to less than the
1220 * smallest tag length allowed by the base algorithm, this effectively
1221 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001222 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001223 * \param aead_alg An AEAD algorithm identifier (value of type
1224 * #psa_algorithm_t such that
1225 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1226 * \param min_tag_length Desired minimum length of the authentication tag in
1227 * bytes. This must be at least 1 and at most the largest
1228 * allowed tag length of the algorithm.
1229 *
1230 * \return The corresponding AEAD wildcard algorithm with the
1231 * specified minimum length.
1232 * \return Unspecified if \p aead_alg is not a supported
1233 * AEAD algorithm or if \p min_tag_length is less than 1
1234 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001235 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001236#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001237 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1238 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001239
Bence Szépkútia2945512020-12-03 21:40:17 +01001240#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001241/** RSA PKCS#1 v1.5 signature with hashing.
1242 *
1243 * This is the signature scheme defined by RFC 8017
1244 * (PKCS#1: RSA Cryptography Specifications) under the name
1245 * RSASSA-PKCS1-v1_5.
1246 *
1247 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1248 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001249 * This includes #PSA_ALG_ANY_HASH
1250 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001251 *
1252 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001253 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001254 * hash algorithm.
1255 */
1256#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1257 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1258/** Raw PKCS#1 v1.5 signature.
1259 *
1260 * The input to this algorithm is the DigestInfo structure used by
1261 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1262 * steps 3&ndash;6.
1263 */
1264#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1265#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1266 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1267
Bence Szépkútia2945512020-12-03 21:40:17 +01001268#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001269/** RSA PSS signature with hashing.
1270 *
1271 * This is the signature scheme defined by RFC 8017
1272 * (PKCS#1: RSA Cryptography Specifications) under the name
1273 * RSASSA-PSS, with the message generation function MGF1, and with
1274 * a salt length equal to the length of the hash. The specified
1275 * hash algorithm is used to hash the input message, to create the
1276 * salted hash, and for the mask generation.
1277 *
1278 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1279 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001280 * This includes #PSA_ALG_ANY_HASH
1281 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001282 *
1283 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001284 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001285 * hash algorithm.
1286 */
1287#define PSA_ALG_RSA_PSS(hash_alg) \
1288 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1289#define PSA_ALG_IS_RSA_PSS(alg) \
1290 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1291
Bence Szépkútia2945512020-12-03 21:40:17 +01001292#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001293/** ECDSA signature with hashing.
1294 *
1295 * This is the ECDSA signature scheme defined by ANSI X9.62,
1296 * with a random per-message secret number (*k*).
1297 *
1298 * The representation of the signature as a byte string consists of
1299 * the concatentation of the signature values *r* and *s*. Each of
1300 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1301 * of the base point of the curve in octets. Each value is represented
1302 * in big-endian order (most significant octet first).
1303 *
1304 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1305 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001306 * This includes #PSA_ALG_ANY_HASH
1307 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001308 *
1309 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001310 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001311 * hash algorithm.
1312 */
1313#define PSA_ALG_ECDSA(hash_alg) \
1314 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1315/** ECDSA signature without hashing.
1316 *
1317 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1318 * without specifying a hash algorithm. This algorithm may only be
1319 * used to sign or verify a sequence of bytes that should be an
1320 * already-calculated hash. Note that the input is padded with
1321 * zeros on the left or truncated on the left as required to fit
1322 * the curve size.
1323 */
1324#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001325#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001326/** Deterministic ECDSA signature with hashing.
1327 *
1328 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1329 *
1330 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1331 *
1332 * Note that when this algorithm is used for verification, signatures
1333 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1334 * same private key are accepted. In other words,
1335 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1336 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1337 *
1338 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1339 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001340 * This includes #PSA_ALG_ANY_HASH
1341 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001342 *
1343 * \return The corresponding deterministic ECDSA signature
1344 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001345 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001346 * hash algorithm.
1347 */
1348#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1349 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001350#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001351#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001352 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001353 PSA_ALG_ECDSA_BASE)
1354#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001355 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001356#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1357 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1358#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1359 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1360
Gilles Peskine6d400852021-02-24 21:39:52 +01001361/* Default definition, to be overridden if the library is extended with
1362 * more hash-and-sign algorithms that we want to keep out of this header
1363 * file. */
1364#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1365
Gilles Peskined35b4892019-01-14 16:02:15 +01001366/** Whether the specified algorithm is a hash-and-sign algorithm.
1367 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001368 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1369 * structured in two parts: first the calculation of a hash in a way that
1370 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001371 * hash value and the key.
1372 *
1373 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1374 *
1375 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1376 * This macro may return either 0 or 1 if \p alg is not a supported
1377 * algorithm identifier.
1378 */
1379#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1380 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskine6d400852021-02-24 21:39:52 +01001381 PSA_ALG_IS_ECDSA(alg) || \
1382 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001383
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001384/** Get the hash used by a hash-and-sign signature algorithm.
1385 *
1386 * A hash-and-sign algorithm is a signature algorithm which is
1387 * composed of two phases: first a hashing phase which does not use
1388 * the key and produces a hash of the input message, then a signing
1389 * phase which only uses the hash and the key and not the message
1390 * itself.
1391 *
1392 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1393 * #PSA_ALG_IS_SIGN(\p alg) is true).
1394 *
1395 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1396 * algorithm.
1397 * \return 0 if \p alg is a signature algorithm that does not
1398 * follow the hash-and-sign structure.
1399 * \return Unspecified if \p alg is not a signature algorithm or
1400 * if it is not supported by the implementation.
1401 */
1402#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001403 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001404 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1405 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1406 0)
1407
1408/** RSA PKCS#1 v1.5 encryption.
1409 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001410#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001411
Bence Szépkútia2945512020-12-03 21:40:17 +01001412#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001413/** RSA OAEP encryption.
1414 *
1415 * This is the encryption scheme defined by RFC 8017
1416 * (PKCS#1: RSA Cryptography Specifications) under the name
1417 * RSAES-OAEP, with the message generation function MGF1.
1418 *
1419 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1420 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1421 * for MGF1.
1422 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001423 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001424 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001425 * hash algorithm.
1426 */
1427#define PSA_ALG_RSA_OAEP(hash_alg) \
1428 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1429#define PSA_ALG_IS_RSA_OAEP(alg) \
1430 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1431#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1432 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1433 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1434 0)
1435
Bence Szépkútia2945512020-12-03 21:40:17 +01001436#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001437/** Macro to build an HKDF algorithm.
1438 *
1439 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1440 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001441 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001442 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001443 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001444 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1445 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1446 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1447 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001448 * starting to generate output.
1449 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001450 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1451 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1452 *
1453 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001454 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001455 * hash algorithm.
1456 */
1457#define PSA_ALG_HKDF(hash_alg) \
1458 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1459/** Whether the specified algorithm is an HKDF algorithm.
1460 *
1461 * HKDF is a family of key derivation algorithms that are based on a hash
1462 * function and the HMAC construction.
1463 *
1464 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1465 *
1466 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1467 * This macro may return either 0 or 1 if \c alg is not a supported
1468 * key derivation algorithm identifier.
1469 */
1470#define PSA_ALG_IS_HKDF(alg) \
1471 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1472#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1473 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1474
Bence Szépkútia2945512020-12-03 21:40:17 +01001475#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001476/** Macro to build a TLS-1.2 PRF algorithm.
1477 *
1478 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1479 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1480 * used with either SHA-256 or SHA-384.
1481 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001482 * This key derivation algorithm uses the following inputs, which must be
1483 * passed in the order given here:
1484 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001485 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1486 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001487 *
1488 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001489 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001490 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001491 *
1492 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1493 * TLS 1.2 PRF using HMAC-SHA-256.
1494 *
1495 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1496 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1497 *
1498 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001499 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001500 * hash algorithm.
1501 */
1502#define PSA_ALG_TLS12_PRF(hash_alg) \
1503 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1504
1505/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1506 *
1507 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1508 *
1509 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1510 * This macro may return either 0 or 1 if \c alg is not a supported
1511 * key derivation algorithm identifier.
1512 */
1513#define PSA_ALG_IS_TLS12_PRF(alg) \
1514 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1515#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1516 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1517
Bence Szépkútia2945512020-12-03 21:40:17 +01001518#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001519/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1520 *
1521 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1522 * from the PreSharedKey (PSK) through the application of padding
1523 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1524 * The latter is based on HMAC and can be used with either SHA-256
1525 * or SHA-384.
1526 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001527 * This key derivation algorithm uses the following inputs, which must be
1528 * passed in the order given here:
1529 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001530 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1531 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001532 *
1533 * For the application to TLS-1.2, the seed (which is
1534 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1535 * ClientHello.Random + ServerHello.Random,
1536 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001537 *
1538 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1539 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1540 *
1541 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1542 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1543 *
1544 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001545 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001546 * hash algorithm.
1547 */
1548#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1549 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1550
1551/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1552 *
1553 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1554 *
1555 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1556 * This macro may return either 0 or 1 if \c alg is not a supported
1557 * key derivation algorithm identifier.
1558 */
1559#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1560 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1561#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1562 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1563
Bence Szépkútia2945512020-12-03 21:40:17 +01001564#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1565#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001566
Gilles Peskine6843c292019-01-18 16:44:49 +01001567/** Macro to build a combined algorithm that chains a key agreement with
1568 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001569 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001570 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1571 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1572 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1573 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001574 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001575 * \return The corresponding key agreement and derivation
1576 * algorithm.
1577 * \return Unspecified if \p ka_alg is not a supported
1578 * key agreement algorithm or \p kdf_alg is not a
1579 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001580 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001581#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1582 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001583
1584#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1585 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1586
Gilles Peskine6843c292019-01-18 16:44:49 +01001587#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1588 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001589
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001590/** Whether the specified algorithm is a raw key agreement algorithm.
1591 *
1592 * A raw key agreement algorithm is one that does not specify
1593 * a key derivation function.
1594 * Usually, raw key agreement algorithms are constructed directly with
1595 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001596 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001597 *
1598 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1599 *
1600 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1601 * This macro may return either 0 or 1 if \p alg is not a supported
1602 * algorithm identifier.
1603 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001604#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001605 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1606 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001607
1608#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1609 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1610
1611/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001612 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001613 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001614 * `g^{ab}` in big-endian format.
1615 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1616 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001617 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001618#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001619
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001620/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1621 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001622 * This includes the raw finite field Diffie-Hellman algorithm as well as
1623 * finite-field Diffie-Hellman followed by any supporter key derivation
1624 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001625 *
1626 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1627 *
1628 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1629 * This macro may return either 0 or 1 if \c alg is not a supported
1630 * key agreement algorithm identifier.
1631 */
1632#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001633 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001634
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001635/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1636 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001637 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001638 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1639 * `m` is the bit size associated with the curve, i.e. the bit size of the
1640 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1641 * the byte containing the most significant bit of the shared secret
1642 * is padded with zero bits. The byte order is either little-endian
1643 * or big-endian depending on the curve type.
1644 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001645 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001646 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1647 * in little-endian byte order.
1648 * The bit size is 448 for Curve448 and 255 for Curve25519.
1649 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001650 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001651 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1652 * in big-endian byte order.
1653 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1654 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001655 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001656 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1657 * in big-endian byte order.
1658 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001659 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001660#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001661
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001662/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1663 * algorithm.
1664 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001665 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1666 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1667 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001668 *
1669 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1670 *
1671 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1672 * 0 otherwise.
1673 * This macro may return either 0 or 1 if \c alg is not a supported
1674 * key agreement algorithm identifier.
1675 */
1676#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001677 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001678
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001679/** Whether the specified algorithm encoding is a wildcard.
1680 *
1681 * Wildcard values may only be used to set the usage algorithm field in
1682 * a policy, not to perform an operation.
1683 *
1684 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1685 *
1686 * \return 1 if \c alg is a wildcard algorithm encoding.
1687 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1688 * an operation).
1689 * \return This macro may return either 0 or 1 if \c alg is not a supported
1690 * algorithm identifier.
1691 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001692#define PSA_ALG_IS_WILDCARD(alg) \
1693 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1694 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1695 PSA_ALG_IS_MAC(alg) ? \
1696 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1697 PSA_ALG_IS_AEAD(alg) ? \
1698 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001699 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001700
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001701/**@}*/
1702
1703/** \defgroup key_lifetimes Key lifetimes
1704 * @{
1705 */
1706
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001707/** The default lifetime for volatile keys.
1708 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001709 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001710 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001711 *
1712 * A key with this lifetime is typically stored in the RAM area of the
1713 * PSA Crypto subsystem. However this is an implementation choice.
1714 * If an implementation stores data about the key in a non-volatile memory,
1715 * it must release all the resources associated with the key and erase the
1716 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001717 */
1718#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1719
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001720/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001721 *
1722 * A persistent key remains in storage until it is explicitly destroyed or
1723 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001724 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001725 * provide their own mechanism (for example to perform a factory reset,
1726 * to prepare for device refurbishment, or to uninstall an application).
1727 *
1728 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001729 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001730 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001731 */
1732#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1733
Gilles Peskineaff11812020-05-04 19:03:10 +02001734/** The persistence level of volatile keys.
1735 *
1736 * See ::psa_key_persistence_t for more information.
1737 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001738#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001739
1740/** The default persistence level for persistent keys.
1741 *
1742 * See ::psa_key_persistence_t for more information.
1743 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001744#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02001745
1746/** A persistence level indicating that a key is never destroyed.
1747 *
1748 * See ::psa_key_persistence_t for more information.
1749 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001750#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001751
1752#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001753 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001754
1755#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001756 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001757
1758/** Whether a key lifetime indicates that the key is volatile.
1759 *
1760 * A volatile key is automatically destroyed by the implementation when
1761 * the application instance terminates. In particular, a volatile key
1762 * is automatically destroyed on a power reset of the device.
1763 *
1764 * A key that is not volatile is persistent. Persistent keys are
1765 * preserved until the application explicitly destroys them or until an
1766 * implementation-specific device management event occurs (for example,
1767 * a factory reset).
1768 *
1769 * \param lifetime The lifetime value to query (value of type
1770 * ::psa_key_lifetime_t).
1771 *
1772 * \return \c 1 if the key is volatile, otherwise \c 0.
1773 */
1774#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
1775 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02001776 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001777
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02001778/** Construct a lifetime from a persistence level and a location.
1779 *
1780 * \param persistence The persistence level
1781 * (value of type ::psa_key_persistence_t).
1782 * \param location The location indicator
1783 * (value of type ::psa_key_location_t).
1784 *
1785 * \return The constructed lifetime value.
1786 */
1787#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
1788 ((location) << 8 | (persistence))
1789
Gilles Peskineaff11812020-05-04 19:03:10 +02001790/** The local storage area for persistent keys.
1791 *
1792 * This storage area is available on all systems that can store persistent
1793 * keys without delegating the storage to a third-party cryptoprocessor.
1794 *
1795 * See ::psa_key_location_t for more information.
1796 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001797#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02001798
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001799#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001800
Gilles Peskine4a231b82019-05-06 18:56:14 +02001801/** The minimum value for a key identifier chosen by the application.
1802 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001803#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001804/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001805 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001806#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001807/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001808 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001809#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001810/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001811 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001812#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02001813
Ronald Cron7424f0d2020-09-14 16:17:41 +02001814
1815#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
1816
1817#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
1818#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
1819#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
1820
1821/** Utility to initialize a key identifier at runtime.
1822 *
1823 * \param unused Unused parameter.
1824 * \param key_id Identifier of the key.
1825 */
1826static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
1827 unsigned int unused, psa_key_id_t key_id )
1828{
1829 (void)unused;
1830
1831 return( key_id );
1832}
1833
1834/** Compare two key identifiers.
1835 *
1836 * \param id1 First key identifier.
1837 * \param id2 Second key identifier.
1838 *
1839 * \return Non-zero if the two key identifier are equal, zero otherwise.
1840 */
1841static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
1842 mbedtls_svc_key_id_t id2 )
1843{
1844 return( id1 == id2 );
1845}
1846
Ronald Cronc4d1b512020-07-31 11:26:37 +02001847/** Check whether a key identifier is null.
1848 *
1849 * \param key Key identifier.
1850 *
1851 * \return Non-zero if the key identifier is null, zero otherwise.
1852 */
1853static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
1854{
1855 return( key == 0 );
1856}
1857
Ronald Cron7424f0d2020-09-14 16:17:41 +02001858#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
1859
1860#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
1861#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
1862#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
1863
1864/** Utility to initialize a key identifier at runtime.
1865 *
1866 * \param owner_id Identifier of the key owner.
1867 * \param key_id Identifier of the key.
1868 */
1869static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
1870 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
1871{
1872 return( (mbedtls_svc_key_id_t){ .key_id = key_id,
1873 .owner = owner_id } );
1874}
1875
1876/** Compare two key identifiers.
1877 *
1878 * \param id1 First key identifier.
1879 * \param id2 Second key identifier.
1880 *
1881 * \return Non-zero if the two key identifier are equal, zero otherwise.
1882 */
1883static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
1884 mbedtls_svc_key_id_t id2 )
1885{
1886 return( ( id1.key_id == id2.key_id ) &&
1887 mbedtls_key_owner_id_equal( id1.owner, id2.owner ) );
1888}
1889
Ronald Cronc4d1b512020-07-31 11:26:37 +02001890/** Check whether a key identifier is null.
1891 *
1892 * \param key Key identifier.
1893 *
1894 * \return Non-zero if the key identifier is null, zero otherwise.
1895 */
1896static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
1897{
1898 return( ( key.key_id == 0 ) && ( key.owner == 0 ) );
1899}
1900
Ronald Cron7424f0d2020-09-14 16:17:41 +02001901#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001902
1903/**@}*/
1904
1905/** \defgroup policy Key policies
1906 * @{
1907 */
1908
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001909/** Whether the key may be exported.
1910 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001911 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001912 * regardless of the value of this permission flag.
1913 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001914 * If a key does not have export permission, implementations shall not
1915 * allow the key to be exported in plain form from the cryptoprocessor,
1916 * whether through psa_export_key() or through a proprietary interface.
1917 * The key may however be exportable in a wrapped form, i.e. in a form
1918 * where it is encrypted by another key.
1919 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001920#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1921
1922/** Whether the key may be copied.
1923 *
1924 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001925 * with the same policy or a more restrictive policy.
1926 *
1927 * For lifetimes for which the key is located in a secure element which
1928 * enforce the non-exportability of keys, copying a key outside the secure
1929 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1930 * Copying the key inside the secure element is permitted with just
1931 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1932 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
1933 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1934 * is sufficient to permit the copy.
1935 */
1936#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1937
1938/** Whether the key may be used to encrypt a message.
1939 *
1940 * This flag allows the key to be used for a symmetric encryption operation,
1941 * for an AEAD encryption-and-authentication operation,
1942 * or for an asymmetric encryption operation,
1943 * if otherwise permitted by the key's type and policy.
1944 *
1945 * For a key pair, this concerns the public key.
1946 */
1947#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1948
1949/** Whether the key may be used to decrypt a message.
1950 *
1951 * This flag allows the key to be used for a symmetric decryption operation,
1952 * for an AEAD decryption-and-verification operation,
1953 * or for an asymmetric decryption operation,
1954 * if otherwise permitted by the key's type and policy.
1955 *
1956 * For a key pair, this concerns the private key.
1957 */
1958#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1959
1960/** Whether the key may be used to sign a message.
1961 *
1962 * This flag allows the key to be used for a MAC calculation operation
1963 * or for an asymmetric signature operation,
1964 * if otherwise permitted by the key's type and policy.
1965 *
1966 * For a key pair, this concerns the private key.
1967 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001968#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001969
1970/** Whether the key may be used to verify a message signature.
1971 *
1972 * This flag allows the key to be used for a MAC verification operation
1973 * or for an asymmetric signature verification operation,
1974 * if otherwise permitted by by the key's type and policy.
1975 *
1976 * For a key pair, this concerns the public key.
1977 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001978#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001979
1980/** Whether the key may be used to derive other keys.
1981 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001982#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001983
1984/**@}*/
1985
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001986/** \defgroup derivation Key derivation
1987 * @{
1988 */
1989
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001990/** A secret input for key derivation.
1991 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001992 * This should be a key of type #PSA_KEY_TYPE_DERIVE
1993 * (passed to psa_key_derivation_input_key())
1994 * or the shared secret resulting from a key agreement
1995 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02001996 *
1997 * The secret can also be a direct input (passed to
1998 * key_derivation_input_bytes()). In this case, the derivation operation
1999 * may not be used to derive keys: the operation will only allow
2000 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002001 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002002#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002003
2004/** A label for key derivation.
2005 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002006 * This should be a direct input.
2007 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002008 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002009#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002010
2011/** A salt for key derivation.
2012 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002013 * This should be a direct input.
2014 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002015 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002016#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002017
2018/** An information string for key derivation.
2019 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002020 * This should be a direct input.
2021 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002022 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002023#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002024
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002025/** A seed for key derivation.
2026 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002027 * This should be a direct input.
2028 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002029 */
2030#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2031
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002032/**@}*/
2033
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002034#endif /* PSA_CRYPTO_VALUES_H */