blob: e804dc4be6a67dac5b41cce12020509e5029629d [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
36
37/** \defgroup error Error codes
38 * @{
39 */
40
David Saadab4ecc272019-02-14 13:48:10 +020041/* PSA error codes */
42
Gilles Peskinef3b731e2018-12-12 13:38:31 +010043/** The action was completed successfully. */
44#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045
46/** An error occurred that does not correspond to any defined
47 * failure cause.
48 *
49 * Implementations may use this error code if none of the other standard
50 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020051#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010052
53/** The requested operation or a parameter is not supported
54 * by this implementation.
55 *
56 * Implementations should return this error code when an enumeration
57 * parameter such as a key type, algorithm, etc. is not recognized.
58 * If a combination of parameters is recognized and identified as
59 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020060#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010061
62/** The requested action is denied by a policy.
63 *
64 * Implementations should return this error code when the parameters
65 * are recognized as valid and supported, and a policy explicitly
66 * denies the requested operation.
67 *
68 * If a subset of the parameters of a function call identify a
69 * forbidden operation, and another subset of the parameters are
70 * not valid or not supported, it is unspecified whether the function
71 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
72 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020073#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010074
75/** An output buffer is too small.
76 *
77 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
78 * description to determine a sufficient buffer size.
79 *
80 * Implementations should preferably return this error code only
81 * in cases when performing the operation with a larger output
82 * buffer would succeed. However implementations may return this
83 * error if a function has invalid or unsupported parameters in addition
84 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
David Saadab4ecc272019-02-14 13:48:10 +020087/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088 *
David Saadab4ecc272019-02-14 13:48:10 +020089 * Implementations should return this error, when attempting
90 * to write an item (like a key) that already exists. */
91#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010092
David Saadab4ecc272019-02-14 13:48:10 +020093/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094 *
David Saadab4ecc272019-02-14 13:48:10 +020095 * Implementations should return this error, if a requested item (like
96 * a key) does not exist. */
97#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
99/** The requested action cannot be performed in the current state.
100 *
101 * Multipart operations return this error when one of the
102 * functions is called out of sequence. Refer to the function
103 * descriptions for permitted sequencing of functions.
104 *
105 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100106 * that a key either exists or not,
107 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100108 * as applicable.
109 *
110 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200111 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100112 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200113#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100114
115/** The parameters passed to the function are invalid.
116 *
117 * Implementations may return this error any time a parameter or
118 * combination of parameters are recognized as invalid.
119 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100120 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200121 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100122 * instead.
123 */
David Saadab4ecc272019-02-14 13:48:10 +0200124#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100125
126/** There is not enough runtime memory.
127 *
128 * If the action is carried out across multiple security realms, this
129 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200130#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100131
132/** There is not enough persistent storage.
133 *
134 * Functions that modify the key storage return this error code if
135 * there is insufficient storage space on the host media. In addition,
136 * many functions that do not otherwise access storage may return this
137 * error code if the implementation requires a mandatory log entry for
138 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200139#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100140
141/** There was a communication failure inside the implementation.
142 *
143 * This can indicate a communication failure between the application
144 * and an external cryptoprocessor or between the cryptoprocessor and
145 * an external volatile or persistent memory. A communication failure
146 * may be transient or permanent depending on the cause.
147 *
148 * \warning If a function returns this error, it is undetermined
149 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200150 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100151 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
152 * if the requested action was completed successfully in an external
153 * cryptoprocessor but there was a breakdown of communication before
154 * the cryptoprocessor could report the status to the application.
155 */
David Saadab4ecc272019-02-14 13:48:10 +0200156#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100157
158/** There was a storage failure that may have led to data loss.
159 *
160 * This error indicates that some persistent storage is corrupted.
161 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200162 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100163 * between the cryptoprocessor and its external storage (use
164 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
165 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
166 *
167 * Note that a storage failure does not indicate that any data that was
168 * previously read is invalid. However this previously read data may no
169 * longer be readable from storage.
170 *
171 * When a storage failure occurs, it is no longer possible to ensure
172 * the global integrity of the keystore. Depending on the global
173 * integrity guarantees offered by the implementation, access to other
174 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100175 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 *
177 * Implementations should only use this error code to report a
178 * permanent storage corruption. However application writers should
179 * keep in mind that transient errors while reading the storage may be
180 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200181#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100182
183/** A hardware failure was detected.
184 *
185 * A hardware failure may be transient or permanent depending on the
186 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200187#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188
189/** A tampering attempt was detected.
190 *
191 * If an application receives this error code, there is no guarantee
192 * that previously accessed or computed data was correct and remains
193 * confidential. Applications should not perform any security function
194 * and should enter a safe failure state.
195 *
196 * Implementations may return this error code if they detect an invalid
197 * state that cannot happen during normal operation and that indicates
198 * that the implementation's security guarantees no longer hold. Depending
199 * on the implementation architecture and on its security and safety goals,
200 * the implementation may forcibly terminate the application.
201 *
202 * This error code is intended as a last resort when a security breach
203 * is detected and it is unsure whether the keystore data is still
204 * protected. Implementations shall only return this error code
205 * to report an alarm from a tampering detector, to indicate that
206 * the confidentiality of stored data can no longer be guaranteed,
207 * or to indicate that the integrity of previously returned data is now
208 * considered compromised. Implementations shall not use this error code
209 * to indicate a hardware failure that merely makes it impossible to
210 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
211 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
212 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
213 * instead).
214 *
215 * This error indicates an attack against the application. Implementations
216 * shall not return this error code as a consequence of the behavior of
217 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200218#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100219
220/** There is not enough entropy to generate random data needed
221 * for the requested action.
222 *
223 * This error indicates a failure of a hardware random generator.
224 * Application writers should note that this error can be returned not
225 * only by functions whose purpose is to generate random data, such
226 * as key, IV or nonce generation, but also by functions that execute
227 * an algorithm with a randomized result, as well as functions that
228 * use randomization of intermediate computations as a countermeasure
229 * to certain attacks.
230 *
231 * Implementations should avoid returning this error after psa_crypto_init()
232 * has succeeded. Implementations should generate sufficient
233 * entropy during initialization and subsequently use a cryptographically
234 * secure pseudorandom generator (PRNG). However implementations may return
235 * this error at any time if a policy requires the PRNG to be reseeded
236 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200237#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100238
239/** The signature, MAC or hash is incorrect.
240 *
241 * Verification functions return this error if the verification
242 * calculations completed successfully, and the value to be verified
243 * was determined to be incorrect.
244 *
245 * If the value to verify has an invalid size, implementations may return
246 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200247#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100248
249/** The decrypted padding is incorrect.
250 *
251 * \warning In some protocols, when decrypting data, it is essential that
252 * the behavior of the application does not depend on whether the padding
253 * is correct, down to precise timing. Applications should prefer
254 * protocols that use authenticated encryption rather than plain
255 * encryption. If the application must perform a decryption of
256 * unauthenticated data, the application writer should take care not
257 * to reveal whether the padding is invalid.
258 *
259 * Implementations should strive to make valid and invalid padding
260 * as close as possible to indistinguishable to an external observer.
261 * In particular, the timing of a decryption operation should not
262 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200263#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100264
David Saadab4ecc272019-02-14 13:48:10 +0200265/** Return this error when there's insufficient data when attempting
266 * to read from a resource. */
267#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100268
Ronald Croncf56a0a2020-08-04 09:51:30 +0200269/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270 */
David Saadab4ecc272019-02-14 13:48:10 +0200271#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100273/** Stored data has been corrupted.
274 *
275 * This error indicates that some persistent storage has suffered corruption.
276 * It does not indicate the following situations, which have specific error
277 * codes:
278 *
279 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
280 * - A communication error between the cryptoprocessor and its external
281 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
282 * - When the storage is in a valid state but is full - use
283 * #PSA_ERROR_INSUFFICIENT_STORAGE.
284 * - When the storage fails for other reasons - use
285 * #PSA_ERROR_STORAGE_FAILURE.
286 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
287 *
288 * \note A storage corruption does not indicate that any data that was
289 * previously read is invalid. However this previously read data might no
290 * longer be readable from storage.
291 *
292 * When a storage failure occurs, it is no longer possible to ensure the
293 * global integrity of the keystore.
294 */
295#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
296
gabor-mezei-armfe309242020-11-09 17:39:56 +0100297/** Data read from storage is not valid for the implementation.
298 *
299 * This error indicates that some data read from storage does not have a valid
300 * format. It does not indicate the following situations, which have specific
301 * error codes:
302 *
303 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
304 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
305 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
306 *
307 * This error is typically a result of either storage corruption on a
308 * cleartext storage backend, or an attempt to read data that was
309 * written by an incompatible version of the library.
310 */
311#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
312
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100313/**@}*/
314
315/** \defgroup crypto_types Key and algorithm types
316 * @{
317 */
318
319/** An invalid key type value.
320 *
321 * Zero is not the encoding of any key type.
322 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100323#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100324
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100325/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100326 *
327 * Key types defined by this standard will never have the
328 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
329 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
330 * respect the bitwise structure used by standard encodings whenever practical.
331 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100332#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100333
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100334#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100335#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
336#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
337#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100338#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100340#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100341
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100342/** Whether a key type is vendor-defined.
343 *
344 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
345 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100346#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
347 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
348
349/** Whether a key type is an unstructured array of bytes.
350 *
351 * This encompasses both symmetric keys and non-key data.
352 */
353#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100354 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
355 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100356
357/** Whether a key type is asymmetric: either a key pair or a public key. */
358#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
359 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
360 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
361 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
362/** Whether a key type is the public part of a key pair. */
363#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
364 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
365/** Whether a key type is a key pair containing a private part and a public
366 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200367#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100368 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
369/** The key pair type corresponding to a public key type.
370 *
371 * You may also pass a key pair type as \p type, it will be left unchanged.
372 *
373 * \param type A public key type or key pair type.
374 *
375 * \return The corresponding key pair type.
376 * If \p type is not a public key or a key pair,
377 * the return value is undefined.
378 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200379#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100380 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
381/** The public key type corresponding to a key pair type.
382 *
383 * You may also pass a key pair type as \p type, it will be left unchanged.
384 *
385 * \param type A public key type or key pair type.
386 *
387 * \return The corresponding public key type.
388 * If \p type is not a public key or a key pair,
389 * the return value is undefined.
390 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200391#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100392 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
393
394/** Raw data.
395 *
396 * A "key" of this type cannot be used for any cryptographic operation.
397 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100398#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100399
400/** HMAC key.
401 *
402 * The key policy determines which underlying hash algorithm the key can be
403 * used for.
404 *
405 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100406 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100407 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100408#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100409
410/** A secret for key derivation.
411 *
412 * The key policy determines which key derivation algorithm the key
413 * can be used for.
414 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100415#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100416
Gilles Peskine737c6be2019-05-21 16:01:06 +0200417/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100418 *
419 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
420 * 32 bytes (AES-256).
421 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100422#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
424/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
425 *
426 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
427 * 24 bytes (3-key 3DES).
428 *
429 * Note that single DES and 2-key 3DES are weak and strongly
430 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
431 * is weak and deprecated and should only be used in legacy protocols.
432 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100433#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100434
Gilles Peskine737c6be2019-05-21 16:01:06 +0200435/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100436 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100437#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100438
439/** Key for the RC4 stream cipher.
440 *
441 * Note that RC4 is weak and deprecated and should only be used in
442 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100443#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100444
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200445/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
446 *
447 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
448 *
449 * Implementations must support 12-byte nonces, may support 8-byte nonces,
450 * and should reject other sizes.
451 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100452#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200453
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100454/** RSA public key. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100455#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100456/** RSA key pair (private and public key). */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100457#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100458/** Whether a key type is an RSA key (pair or public-only). */
459#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200460 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100461
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100462#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100463#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
464#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100465/** Elliptic curve key pair.
466 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100467 * \param curve A value of type ::psa_ecc_family_t that
468 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100469 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200470#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
471 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100472/** Elliptic curve public key.
473 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100474 * \param curve A value of type ::psa_ecc_family_t that
475 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100476 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100477#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
478 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
479
480/** Whether a key type is an elliptic curve key (pair or public-only). */
481#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200482 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100483 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100484/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200485#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100486 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200487 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100488/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100489#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
490 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
491 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
492
493/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100494#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
495 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100496 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
497 0))
498
Gilles Peskine228abc52019-12-03 17:24:19 +0100499/** SEC Koblitz curves over prime fields.
500 *
501 * This family comprises the following curves:
502 * secp192k1, secp224k1, secp256k1.
503 * They are defined in _Standards for Efficient Cryptography_,
504 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
505 * https://www.secg.org/sec2-v2.pdf
506 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100507#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100508
509/** SEC random curves over prime fields.
510 *
511 * This family comprises the following curves:
512 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
513 * They are defined in _Standards for Efficient Cryptography_,
514 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
515 * https://www.secg.org/sec2-v2.pdf
516 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100517#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100518/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100519#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100520
521/** SEC Koblitz curves over binary fields.
522 *
523 * This family comprises the following curves:
524 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
525 * They are defined in _Standards for Efficient Cryptography_,
526 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
527 * https://www.secg.org/sec2-v2.pdf
528 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100529#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100530
531/** SEC random curves over binary fields.
532 *
533 * This family comprises the following curves:
534 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
535 * They are defined in _Standards for Efficient Cryptography_,
536 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
537 * https://www.secg.org/sec2-v2.pdf
538 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100539#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100540
541/** SEC additional random curves over binary fields.
542 *
543 * This family comprises the following curve:
544 * sect163r2.
545 * It is defined in _Standards for Efficient Cryptography_,
546 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
547 * https://www.secg.org/sec2-v2.pdf
548 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100549#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100550
551/** Brainpool P random curves.
552 *
553 * This family comprises the following curves:
554 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
555 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
556 * It is defined in RFC 5639.
557 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100558#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100559
560/** Curve25519 and Curve448.
561 *
562 * This family comprises the following Montgomery curves:
563 * - 255-bit: Bernstein et al.,
564 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
565 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
566 * - 448-bit: Hamburg,
567 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
568 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
569 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100570#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100571
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100572#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100573#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
574#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100575/** Diffie-Hellman key pair.
576 *
Paul Elliott75e27032020-06-03 15:17:39 +0100577 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100578 * Diffie-Hellman group to be used.
579 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200580#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
581 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100582/** Diffie-Hellman public key.
583 *
Paul Elliott75e27032020-06-03 15:17:39 +0100584 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100585 * Diffie-Hellman group to be used.
586 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200587#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
588 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
589
590/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
591#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200592 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200593 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
594/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200595#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200596 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200597 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200598/** Whether a key type is a Diffie-Hellman public key. */
599#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
600 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
601 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
602
603/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100604#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
605 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200606 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
607 0))
608
Gilles Peskine228abc52019-12-03 17:24:19 +0100609/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
610 *
611 * This family includes groups with the following key sizes (in bits):
612 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
613 * all of these sizes or only a subset.
614 */
Paul Elliott75e27032020-06-03 15:17:39 +0100615#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100616
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100617#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100618 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100619/** The block size of a block cipher.
620 *
621 * \param type A cipher key type (value of type #psa_key_type_t).
622 *
623 * \return The block size for a block cipher, or 1 for a stream cipher.
624 * The return value is undefined if \p type is not a supported
625 * cipher key type.
626 *
627 * \note It is possible to build stream cipher algorithms on top of a block
628 * cipher, for example CTR mode (#PSA_ALG_CTR).
629 * This macro only takes the key type into account, so it cannot be
630 * used to determine the size of the data that #psa_cipher_update()
631 * might buffer for future processing in general.
632 *
633 * \note This macro returns a compile-time constant if its argument is one.
634 *
635 * \warning This macro may evaluate its argument multiple times.
636 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100637#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100638 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100639 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100640 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100641
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100642/** Vendor-defined algorithm flag.
643 *
644 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
645 * bit set. Vendors who define additional algorithms must use an encoding with
646 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
647 * used by standard encodings whenever practical.
648 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100649#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100650
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100651#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100652#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
653#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100654#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100655#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
656#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
657#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
658#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
659#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100660
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100661/** Whether an algorithm is vendor-defined.
662 *
663 * See also #PSA_ALG_VENDOR_FLAG.
664 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100665#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
666 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
667
668/** Whether the specified algorithm is a hash algorithm.
669 *
670 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
671 *
672 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
673 * This macro may return either 0 or 1 if \p alg is not a supported
674 * algorithm identifier.
675 */
676#define PSA_ALG_IS_HASH(alg) \
677 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
678
679/** Whether the specified algorithm is a MAC algorithm.
680 *
681 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
682 *
683 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
684 * This macro may return either 0 or 1 if \p alg is not a supported
685 * algorithm identifier.
686 */
687#define PSA_ALG_IS_MAC(alg) \
688 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
689
690/** Whether the specified algorithm is a symmetric cipher algorithm.
691 *
692 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
693 *
694 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
695 * This macro may return either 0 or 1 if \p alg is not a supported
696 * algorithm identifier.
697 */
698#define PSA_ALG_IS_CIPHER(alg) \
699 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
700
701/** Whether the specified algorithm is an authenticated encryption
702 * with associated data (AEAD) algorithm.
703 *
704 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
705 *
706 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
707 * This macro may return either 0 or 1 if \p alg is not a supported
708 * algorithm identifier.
709 */
710#define PSA_ALG_IS_AEAD(alg) \
711 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
712
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200713/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200714 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100715 *
716 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
717 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200718 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100719 * This macro may return either 0 or 1 if \p alg is not a supported
720 * algorithm identifier.
721 */
722#define PSA_ALG_IS_SIGN(alg) \
723 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
724
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200725/** Whether the specified algorithm is an asymmetric encryption algorithm,
726 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100727 *
728 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
729 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200730 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100731 * This macro may return either 0 or 1 if \p alg is not a supported
732 * algorithm identifier.
733 */
734#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
735 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
736
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100737/** Whether the specified algorithm is a key agreement algorithm.
738 *
739 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
740 *
741 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
742 * This macro may return either 0 or 1 if \p alg is not a supported
743 * algorithm identifier.
744 */
745#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100746 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100747
748/** Whether the specified algorithm is a key derivation algorithm.
749 *
750 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
751 *
752 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
753 * This macro may return either 0 or 1 if \p alg is not a supported
754 * algorithm identifier.
755 */
756#define PSA_ALG_IS_KEY_DERIVATION(alg) \
757 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
758
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100759#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100760/** MD2 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100761#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100762/** MD4 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100763#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100764/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100765#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100766/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100767#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100768/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100769#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100770/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100771#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100772/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100773#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100774/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100775#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100776/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100777#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100778/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100779#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100780/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100781#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100782/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100783#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100784/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100785#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100786/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100787#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100788/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100789#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100790
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100791/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100792 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100793 * This value may be used to form the algorithm usage field of a policy
794 * for a signature algorithm that is parametrized by a hash. The key
795 * may then be used to perform operations using the same signature
796 * algorithm parametrized with any supported hash.
797 *
798 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100799 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100800 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100801 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100802 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
803 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100804 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200805 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100806 * ```
807 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100808 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100809 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
810 * call to sign or verify a message may use a different hash.
811 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200812 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
813 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
814 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100815 * ```
816 *
817 * This value may not be used to build other algorithms that are
818 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100819 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100820 *
821 * This value may not be used to build an algorithm specification to
822 * perform an operation. It is only valid to build policies.
823 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100824#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100825
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100826#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100827#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100828/** Macro to build an HMAC algorithm.
829 *
830 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
831 *
832 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
833 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
834 *
835 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100836 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100837 * hash algorithm.
838 */
839#define PSA_ALG_HMAC(hash_alg) \
840 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
841
842#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
843 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
844
845/** Whether the specified algorithm is an HMAC algorithm.
846 *
847 * HMAC is a family of MAC algorithms that are based on a hash function.
848 *
849 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
850 *
851 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
852 * This macro may return either 0 or 1 if \p alg is not a supported
853 * algorithm identifier.
854 */
855#define PSA_ALG_IS_HMAC(alg) \
856 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
857 PSA_ALG_HMAC_BASE)
858
859/* In the encoding of a MAC algorithm, the bits corresponding to
860 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
861 * truncated. As an exception, the value 0 means the untruncated algorithm,
862 * whatever its length is. The length is encoded in 6 bits, so it can
863 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
864 * to full length is correctly encoded as 0 and any non-trivial truncation
865 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100866#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
867#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100868
869/** Macro to build a truncated MAC algorithm.
870 *
871 * A truncated MAC algorithm is identical to the corresponding MAC
872 * algorithm except that the MAC value for the truncated algorithm
873 * consists of only the first \p mac_length bytes of the MAC value
874 * for the untruncated algorithm.
875 *
876 * \note This macro may allow constructing algorithm identifiers that
877 * are not valid, either because the specified length is larger
878 * than the untruncated MAC or because the specified length is
879 * smaller than permitted by the implementation.
880 *
881 * \note It is implementation-defined whether a truncated MAC that
882 * is truncated to the same length as the MAC of the untruncated
883 * algorithm is considered identical to the untruncated algorithm
884 * for policy comparison purposes.
885 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200886 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100887 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
888 * is true). This may be a truncated or untruncated
889 * MAC algorithm.
890 * \param mac_length Desired length of the truncated MAC in bytes.
891 * This must be at most the full length of the MAC
892 * and must be at least an implementation-specified
893 * minimum. The implementation-specified minimum
894 * shall not be zero.
895 *
896 * \return The corresponding MAC algorithm with the specified
897 * length.
898 * \return Unspecified if \p alg is not a supported
899 * MAC algorithm or if \p mac_length is too small or
900 * too large for the specified MAC algorithm.
901 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200902#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100903 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | PSA_ALG_MAC_MINIMUM_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100904 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
905
906/** Macro to build the base MAC algorithm corresponding to a truncated
907 * MAC algorithm.
908 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200909 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100910 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
911 * is true). This may be a truncated or untruncated
912 * MAC algorithm.
913 *
914 * \return The corresponding base MAC algorithm.
915 * \return Unspecified if \p alg is not a supported
916 * MAC algorithm.
917 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200918#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100919 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | PSA_ALG_MAC_MINIMUM_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100920
921/** Length to which a MAC algorithm is truncated.
922 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200923 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100924 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
925 * is true).
926 *
927 * \return Length of the truncated MAC in bytes.
928 * \return 0 if \p alg is a non-truncated MAC algorithm.
929 * \return Unspecified if \p alg is not a supported
930 * MAC algorithm.
931 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200932#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
933 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100934
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100935/* In the encoding of a MAC algorithm, the bit corresponding to
Steven Cooremanee18b1f2021-02-08 11:44:21 +0100936 * #PSA_ALG_MAC_MINIMUM_LENGTH_FLAG encodes the fact that the algorithm is
937 * a wildcard algorithm, which allows any algorithm corresponding to the same
938 * base class and having a (potentially truncated) MAC length greater or equal
939 * than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100940#define PSA_ALG_MAC_MINIMUM_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
941
Steven Cooremanee18b1f2021-02-08 11:44:21 +0100942/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100943 *
Steven Cooremanee18b1f2021-02-08 11:44:21 +0100944 * A mininimum-MAC-length MAC wildcard algorithm contains all MAC algorithms
945 * sharing the same base algorithm, and where the (potentially truncated) MAC
946 * length of the specific algorithm is equal to or larger then the wildcard
947 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100948 *
949 * \param mac_alg A MAC algorithm identifier (value of type
Steven Cooremanee18b1f2021-02-08 11:44:21 +0100950 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100951 * is true).
Steven Cooremanee18b1f2021-02-08 11:44:21 +0100952 * \param mac_length Desired minimum length of the message authentication
953 * code in bytes. This must be at most the full length of
954 * the MAC and must be at least an implementation-specified
955 * minimum. The implementation-specified minimum
956 * shall not be zero.
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100957 *
Steven Cooremanee18b1f2021-02-08 11:44:21 +0100958 * \return The corresponding MAC wildcard algorithm with the
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100959 * specified minimum length.
Steven Cooremanee18b1f2021-02-08 11:44:21 +0100960 * \return Unspecified if \p mac_alg is not a supported MAC
961 * algorithm or if \p mac_length is too small or too large
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100962 * for the specified MAC algorithm.
963 */
Steven Cooremanee18b1f2021-02-08 11:44:21 +0100964#define PSA_ALG_MAC_WITH_MINIMUM_LENGTH_TAG(mac_alg, mac_length) \
965 ( PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) | PSA_ALG_MAC_MINIMUM_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100966
Bence Szépkútia2945512020-12-03 21:40:17 +0100967#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100968/** The CBC-MAC construction over a block cipher
969 *
970 * \warning CBC-MAC is insecure in many cases.
971 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
972 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100973#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100974/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +0100975#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100976
977/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
978 *
979 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
980 *
981 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
982 * This macro may return either 0 or 1 if \p alg is not a supported
983 * algorithm identifier.
984 */
985#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
986 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
987 PSA_ALG_CIPHER_MAC_BASE)
988
989#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
990#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
991
992/** Whether the specified algorithm is a stream cipher.
993 *
994 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
995 * by applying a bitwise-xor with a stream of bytes that is generated
996 * from a key.
997 *
998 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
999 *
1000 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1001 * This macro may return either 0 or 1 if \p alg is not a supported
1002 * algorithm identifier or if it is not a symmetric cipher algorithm.
1003 */
1004#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1005 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1006 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1007
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001008/** The stream cipher mode of a stream cipher algorithm.
1009 *
1010 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001011 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1012 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001013 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001014#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001015
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001016/** The CTR stream cipher mode.
1017 *
1018 * CTR is a stream cipher which is built from a block cipher.
1019 * The underlying block cipher is determined by the key type.
1020 * For example, to use AES-128-CTR, use this algorithm with
1021 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1022 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001023#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001024
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001025/** The CFB stream cipher mode.
1026 *
1027 * The underlying block cipher is determined by the key type.
1028 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001029#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001030
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001031/** The OFB stream cipher mode.
1032 *
1033 * The underlying block cipher is determined by the key type.
1034 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001035#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001036
1037/** The XTS cipher mode.
1038 *
1039 * XTS is a cipher mode which is built from a block cipher. It requires at
1040 * least one full block of input, but beyond this minimum the input
1041 * does not need to be a whole number of blocks.
1042 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001043#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001044
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001045/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1046 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001047 * \warning ECB mode does not protect the confidentiality of the encrypted data
1048 * except in extremely narrow circumstances. It is recommended that applications
1049 * only use ECB if they need to construct an operating mode that the
1050 * implementation does not provide. Implementations are encouraged to provide
1051 * the modes that applications need in preference to supporting direct access
1052 * to ECB.
1053 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001054 * The underlying block cipher is determined by the key type.
1055 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001056 * This symmetric cipher mode can only be used with messages whose lengths are a
1057 * multiple of the block size of the chosen block cipher.
1058 *
1059 * ECB mode does not accept an initialization vector (IV). When using a
1060 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1061 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001062 */
1063#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1064
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001065/** The CBC block cipher chaining mode, with no padding.
1066 *
1067 * The underlying block cipher is determined by the key type.
1068 *
1069 * This symmetric cipher mode can only be used with messages whose lengths
1070 * are whole number of blocks for the chosen block cipher.
1071 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001072#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001073
1074/** The CBC block cipher chaining mode with PKCS#7 padding.
1075 *
1076 * The underlying block cipher is determined by the key type.
1077 *
1078 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1079 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001080#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001081
Gilles Peskine679693e2019-05-06 15:10:16 +02001082#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1083
1084/** Whether the specified algorithm is an AEAD mode on a block cipher.
1085 *
1086 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1087 *
1088 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1089 * a block cipher, 0 otherwise.
1090 * This macro may return either 0 or 1 if \p alg is not a supported
1091 * algorithm identifier.
1092 */
1093#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1094 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1095 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1096
Gilles Peskine9153ec02019-02-15 13:02:02 +01001097/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001098 *
1099 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001100 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001101#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001102
1103/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001104 *
1105 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001106 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001107#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001108
1109/** The Chacha20-Poly1305 AEAD algorithm.
1110 *
1111 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001112 *
1113 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1114 * and should reject other sizes.
1115 *
1116 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001117 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001118#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001119
1120/* In the encoding of a AEAD algorithm, the bits corresponding to
1121 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1122 * The constants for default lengths follow this encoding.
1123 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001124#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1125#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001126
1127/** Macro to build a shortened AEAD algorithm.
1128 *
1129 * A shortened AEAD algorithm is similar to the corresponding AEAD
1130 * algorithm, but has an authentication tag that consists of fewer bytes.
1131 * Depending on the algorithm, the tag length may affect the calculation
1132 * of the ciphertext.
1133 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001134 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001135 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
1136 * is true).
1137 * \param tag_length Desired length of the authentication tag in bytes.
1138 *
1139 * \return The corresponding AEAD algorithm with the specified
1140 * length.
1141 * \return Unspecified if \p alg is not a supported
1142 * AEAD algorithm or if \p tag_length is not valid
1143 * for the specified AEAD algorithm.
1144 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001145#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001146 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_MINIMUM_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001147 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1148 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1149
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001150/** Retrieve the tag length of a specified AEAD algorithm
1151 *
1152 * \param aead_alg An AEAD algorithm identifier (value of type
1153 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
1154 * is true).
1155 *
1156 * \return The tag length specified by the input algorithm.
1157 * \return Unspecified if \p alg is not a supported
1158 * AEAD algorithm or if \p tag_length is not valid
1159 * for the specified AEAD algorithm.
1160 */
1161#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1162 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1163 PSA_AEAD_TAG_LENGTH_OFFSET )
1164
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001165/** Calculate the corresponding AEAD algorithm with the default tag length.
1166 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001167 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
1168 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001169 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001170 * \return The corresponding AEAD algorithm with the default
1171 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001172 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001173#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001174 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001175 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1176 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1177 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001178 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001179#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1180 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1181 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001182 ref :
1183
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001184/* In the encoding of an AEAD algorithm, the bit corresponding to
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001185 * #PSA_ALG_AEAD_MINIMUM_LENGTH_FLAG encodes the fact that the algorithm is
1186 * a wildcard algorithm, which allows any algorithm corresponding to the same
1187 * base class and having a tag length greater than or equal to the one encoded
1188 * in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001189#define PSA_ALG_AEAD_MINIMUM_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1190
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001191/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001192 *
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001193 * A mininimum-tag-length AEAD wildcard algorithm contains all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001194 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001195 * algorithm is equal to or larger then the minimum tag length specified by the
1196 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001197 *
1198 * \param aead_alg An AEAD algorithm identifier (value of type
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001199 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001200 * is true).
1201 * \param tag_length Desired minimum length of the authentication tag in
1202 * bytes.
1203 *
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001204 * \return The corresponding AEAD wildcard algorithm with the
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001205 * specified minimum length.
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001206 * \return Unspecified if \p aead_alg is not a supported
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001207 * AEAD algorithm or if \p tag_length is not valid
1208 * for the specified AEAD algorithm.
1209 */
1210#define PSA_ALG_AEAD_WITH_MINIMUM_LENGTH_TAG(aead_alg, tag_length) \
1211 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) | PSA_ALG_AEAD_MINIMUM_LENGTH_FLAG )
1212
Bence Szépkútia2945512020-12-03 21:40:17 +01001213#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001214/** RSA PKCS#1 v1.5 signature with hashing.
1215 *
1216 * This is the signature scheme defined by RFC 8017
1217 * (PKCS#1: RSA Cryptography Specifications) under the name
1218 * RSASSA-PKCS1-v1_5.
1219 *
1220 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1221 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001222 * This includes #PSA_ALG_ANY_HASH
1223 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001224 *
1225 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001226 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001227 * hash algorithm.
1228 */
1229#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1230 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1231/** Raw PKCS#1 v1.5 signature.
1232 *
1233 * The input to this algorithm is the DigestInfo structure used by
1234 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1235 * steps 3&ndash;6.
1236 */
1237#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1238#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1239 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1240
Bence Szépkútia2945512020-12-03 21:40:17 +01001241#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001242/** RSA PSS signature with hashing.
1243 *
1244 * This is the signature scheme defined by RFC 8017
1245 * (PKCS#1: RSA Cryptography Specifications) under the name
1246 * RSASSA-PSS, with the message generation function MGF1, and with
1247 * a salt length equal to the length of the hash. The specified
1248 * hash algorithm is used to hash the input message, to create the
1249 * salted hash, and for the mask generation.
1250 *
1251 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1252 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001253 * This includes #PSA_ALG_ANY_HASH
1254 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001255 *
1256 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001257 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001258 * hash algorithm.
1259 */
1260#define PSA_ALG_RSA_PSS(hash_alg) \
1261 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1262#define PSA_ALG_IS_RSA_PSS(alg) \
1263 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1264
Bence Szépkútia2945512020-12-03 21:40:17 +01001265#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001266/** ECDSA signature with hashing.
1267 *
1268 * This is the ECDSA signature scheme defined by ANSI X9.62,
1269 * with a random per-message secret number (*k*).
1270 *
1271 * The representation of the signature as a byte string consists of
1272 * the concatentation of the signature values *r* and *s*. Each of
1273 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1274 * of the base point of the curve in octets. Each value is represented
1275 * in big-endian order (most significant octet first).
1276 *
1277 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1278 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001279 * This includes #PSA_ALG_ANY_HASH
1280 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001281 *
1282 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001283 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001284 * hash algorithm.
1285 */
1286#define PSA_ALG_ECDSA(hash_alg) \
1287 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1288/** ECDSA signature without hashing.
1289 *
1290 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1291 * without specifying a hash algorithm. This algorithm may only be
1292 * used to sign or verify a sequence of bytes that should be an
1293 * already-calculated hash. Note that the input is padded with
1294 * zeros on the left or truncated on the left as required to fit
1295 * the curve size.
1296 */
1297#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001298#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001299/** Deterministic ECDSA signature with hashing.
1300 *
1301 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1302 *
1303 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1304 *
1305 * Note that when this algorithm is used for verification, signatures
1306 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1307 * same private key are accepted. In other words,
1308 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1309 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1310 *
1311 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1312 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001313 * This includes #PSA_ALG_ANY_HASH
1314 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001315 *
1316 * \return The corresponding deterministic ECDSA signature
1317 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001318 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001319 * hash algorithm.
1320 */
1321#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1322 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001323#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001324#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001325 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001326 PSA_ALG_ECDSA_BASE)
1327#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001328 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001329#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1330 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1331#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1332 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1333
Gilles Peskined35b4892019-01-14 16:02:15 +01001334/** Whether the specified algorithm is a hash-and-sign algorithm.
1335 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001336 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1337 * structured in two parts: first the calculation of a hash in a way that
1338 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001339 * hash value and the key.
1340 *
1341 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1342 *
1343 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1344 * This macro may return either 0 or 1 if \p alg is not a supported
1345 * algorithm identifier.
1346 */
1347#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1348 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskinee38ab1a2019-05-16 13:51:50 +02001349 PSA_ALG_IS_ECDSA(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001350
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001351/** Get the hash used by a hash-and-sign signature algorithm.
1352 *
1353 * A hash-and-sign algorithm is a signature algorithm which is
1354 * composed of two phases: first a hashing phase which does not use
1355 * the key and produces a hash of the input message, then a signing
1356 * phase which only uses the hash and the key and not the message
1357 * itself.
1358 *
1359 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1360 * #PSA_ALG_IS_SIGN(\p alg) is true).
1361 *
1362 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1363 * algorithm.
1364 * \return 0 if \p alg is a signature algorithm that does not
1365 * follow the hash-and-sign structure.
1366 * \return Unspecified if \p alg is not a signature algorithm or
1367 * if it is not supported by the implementation.
1368 */
1369#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001370 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001371 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1372 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1373 0)
1374
1375/** RSA PKCS#1 v1.5 encryption.
1376 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001377#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001378
Bence Szépkútia2945512020-12-03 21:40:17 +01001379#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001380/** RSA OAEP encryption.
1381 *
1382 * This is the encryption scheme defined by RFC 8017
1383 * (PKCS#1: RSA Cryptography Specifications) under the name
1384 * RSAES-OAEP, with the message generation function MGF1.
1385 *
1386 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1387 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1388 * for MGF1.
1389 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001390 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001391 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001392 * hash algorithm.
1393 */
1394#define PSA_ALG_RSA_OAEP(hash_alg) \
1395 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1396#define PSA_ALG_IS_RSA_OAEP(alg) \
1397 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1398#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1399 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1400 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1401 0)
1402
Bence Szépkútia2945512020-12-03 21:40:17 +01001403#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001404/** Macro to build an HKDF algorithm.
1405 *
1406 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1407 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001408 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001409 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001410 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001411 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1412 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1413 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1414 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001415 * starting to generate output.
1416 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001417 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1418 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1419 *
1420 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001421 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001422 * hash algorithm.
1423 */
1424#define PSA_ALG_HKDF(hash_alg) \
1425 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1426/** Whether the specified algorithm is an HKDF algorithm.
1427 *
1428 * HKDF is a family of key derivation algorithms that are based on a hash
1429 * function and the HMAC construction.
1430 *
1431 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1432 *
1433 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1434 * This macro may return either 0 or 1 if \c alg is not a supported
1435 * key derivation algorithm identifier.
1436 */
1437#define PSA_ALG_IS_HKDF(alg) \
1438 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1439#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1440 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1441
Bence Szépkútia2945512020-12-03 21:40:17 +01001442#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001443/** Macro to build a TLS-1.2 PRF algorithm.
1444 *
1445 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1446 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1447 * used with either SHA-256 or SHA-384.
1448 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001449 * This key derivation algorithm uses the following inputs, which must be
1450 * passed in the order given here:
1451 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001452 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1453 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001454 *
1455 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001456 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001457 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001458 *
1459 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1460 * TLS 1.2 PRF using HMAC-SHA-256.
1461 *
1462 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1463 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1464 *
1465 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001466 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001467 * hash algorithm.
1468 */
1469#define PSA_ALG_TLS12_PRF(hash_alg) \
1470 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1471
1472/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1473 *
1474 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1475 *
1476 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1477 * This macro may return either 0 or 1 if \c alg is not a supported
1478 * key derivation algorithm identifier.
1479 */
1480#define PSA_ALG_IS_TLS12_PRF(alg) \
1481 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1482#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1483 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1484
Bence Szépkútia2945512020-12-03 21:40:17 +01001485#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001486/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1487 *
1488 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1489 * from the PreSharedKey (PSK) through the application of padding
1490 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1491 * The latter is based on HMAC and can be used with either SHA-256
1492 * or SHA-384.
1493 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001494 * This key derivation algorithm uses the following inputs, which must be
1495 * passed in the order given here:
1496 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001497 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1498 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001499 *
1500 * For the application to TLS-1.2, the seed (which is
1501 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1502 * ClientHello.Random + ServerHello.Random,
1503 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001504 *
1505 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1506 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1507 *
1508 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1509 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1510 *
1511 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001512 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001513 * hash algorithm.
1514 */
1515#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1516 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1517
1518/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1519 *
1520 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1521 *
1522 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1523 * This macro may return either 0 or 1 if \c alg is not a supported
1524 * key derivation algorithm identifier.
1525 */
1526#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1527 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1528#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1529 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1530
Bence Szépkútia2945512020-12-03 21:40:17 +01001531#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1532#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001533
Gilles Peskine6843c292019-01-18 16:44:49 +01001534/** Macro to build a combined algorithm that chains a key agreement with
1535 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001536 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001537 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1538 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1539 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1540 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001541 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001542 * \return The corresponding key agreement and derivation
1543 * algorithm.
1544 * \return Unspecified if \p ka_alg is not a supported
1545 * key agreement algorithm or \p kdf_alg is not a
1546 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001547 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001548#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1549 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001550
1551#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1552 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1553
Gilles Peskine6843c292019-01-18 16:44:49 +01001554#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1555 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001556
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001557/** Whether the specified algorithm is a raw key agreement algorithm.
1558 *
1559 * A raw key agreement algorithm is one that does not specify
1560 * a key derivation function.
1561 * Usually, raw key agreement algorithms are constructed directly with
1562 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001563 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001564 *
1565 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1566 *
1567 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1568 * This macro may return either 0 or 1 if \p alg is not a supported
1569 * algorithm identifier.
1570 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001571#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001572 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1573 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001574
1575#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1576 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1577
1578/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001579 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001580 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001581 * `g^{ab}` in big-endian format.
1582 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1583 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001584 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001585#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001586
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001587/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1588 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001589 * This includes the raw finite field Diffie-Hellman algorithm as well as
1590 * finite-field Diffie-Hellman followed by any supporter key derivation
1591 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001592 *
1593 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1594 *
1595 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1596 * This macro may return either 0 or 1 if \c alg is not a supported
1597 * key agreement algorithm identifier.
1598 */
1599#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001600 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001601
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001602/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1603 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001604 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001605 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1606 * `m` is the bit size associated with the curve, i.e. the bit size of the
1607 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1608 * the byte containing the most significant bit of the shared secret
1609 * is padded with zero bits. The byte order is either little-endian
1610 * or big-endian depending on the curve type.
1611 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001612 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001613 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1614 * in little-endian byte order.
1615 * The bit size is 448 for Curve448 and 255 for Curve25519.
1616 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001617 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001618 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1619 * in big-endian byte order.
1620 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1621 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001622 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001623 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1624 * in big-endian byte order.
1625 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001626 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001627#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001628
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001629/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1630 * algorithm.
1631 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001632 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1633 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1634 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001635 *
1636 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1637 *
1638 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1639 * 0 otherwise.
1640 * This macro may return either 0 or 1 if \c alg is not a supported
1641 * key agreement algorithm identifier.
1642 */
1643#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001644 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001645
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001646/** Whether the specified algorithm encoding is a wildcard.
1647 *
1648 * Wildcard values may only be used to set the usage algorithm field in
1649 * a policy, not to perform an operation.
1650 *
1651 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1652 *
1653 * \return 1 if \c alg is a wildcard algorithm encoding.
1654 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1655 * an operation).
1656 * \return This macro may return either 0 or 1 if \c alg is not a supported
1657 * algorithm identifier.
1658 */
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001659#define PSA_ALG_IS_WILDCARD(alg) \
1660 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1661 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1662 PSA_ALG_IS_MAC(alg) ? \
1663 (alg & PSA_ALG_MAC_MINIMUM_LENGTH_FLAG) != 0 : \
1664 PSA_ALG_IS_AEAD(alg) ? \
1665 (alg & PSA_ALG_AEAD_MINIMUM_LENGTH_FLAG) != 0 : \
1666 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001667
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001668/**@}*/
1669
1670/** \defgroup key_lifetimes Key lifetimes
1671 * @{
1672 */
1673
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001674/** The default lifetime for volatile keys.
1675 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001676 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001677 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001678 *
1679 * A key with this lifetime is typically stored in the RAM area of the
1680 * PSA Crypto subsystem. However this is an implementation choice.
1681 * If an implementation stores data about the key in a non-volatile memory,
1682 * it must release all the resources associated with the key and erase the
1683 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001684 */
1685#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1686
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001687/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001688 *
1689 * A persistent key remains in storage until it is explicitly destroyed or
1690 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001691 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001692 * provide their own mechanism (for example to perform a factory reset,
1693 * to prepare for device refurbishment, or to uninstall an application).
1694 *
1695 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001696 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001697 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001698 */
1699#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1700
Gilles Peskineaff11812020-05-04 19:03:10 +02001701/** The persistence level of volatile keys.
1702 *
1703 * See ::psa_key_persistence_t for more information.
1704 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001705#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001706
1707/** The default persistence level for persistent keys.
1708 *
1709 * See ::psa_key_persistence_t for more information.
1710 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001711#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02001712
1713/** A persistence level indicating that a key is never destroyed.
1714 *
1715 * See ::psa_key_persistence_t for more information.
1716 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001717#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001718
1719#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001720 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001721
1722#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001723 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001724
1725/** Whether a key lifetime indicates that the key is volatile.
1726 *
1727 * A volatile key is automatically destroyed by the implementation when
1728 * the application instance terminates. In particular, a volatile key
1729 * is automatically destroyed on a power reset of the device.
1730 *
1731 * A key that is not volatile is persistent. Persistent keys are
1732 * preserved until the application explicitly destroys them or until an
1733 * implementation-specific device management event occurs (for example,
1734 * a factory reset).
1735 *
1736 * \param lifetime The lifetime value to query (value of type
1737 * ::psa_key_lifetime_t).
1738 *
1739 * \return \c 1 if the key is volatile, otherwise \c 0.
1740 */
1741#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
1742 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02001743 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001744
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02001745/** Construct a lifetime from a persistence level and a location.
1746 *
1747 * \param persistence The persistence level
1748 * (value of type ::psa_key_persistence_t).
1749 * \param location The location indicator
1750 * (value of type ::psa_key_location_t).
1751 *
1752 * \return The constructed lifetime value.
1753 */
1754#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
1755 ((location) << 8 | (persistence))
1756
Gilles Peskineaff11812020-05-04 19:03:10 +02001757/** The local storage area for persistent keys.
1758 *
1759 * This storage area is available on all systems that can store persistent
1760 * keys without delegating the storage to a third-party cryptoprocessor.
1761 *
1762 * See ::psa_key_location_t for more information.
1763 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001764#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02001765
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001766#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001767
Gilles Peskine4a231b82019-05-06 18:56:14 +02001768/** The minimum value for a key identifier chosen by the application.
1769 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001770#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001771/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001772 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001773#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001774/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001775 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001776#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001777/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001778 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001779#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02001780
Ronald Cron7424f0d2020-09-14 16:17:41 +02001781
1782#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
1783
1784#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
1785#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
1786#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
1787
1788/** Utility to initialize a key identifier at runtime.
1789 *
1790 * \param unused Unused parameter.
1791 * \param key_id Identifier of the key.
1792 */
1793static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
1794 unsigned int unused, psa_key_id_t key_id )
1795{
1796 (void)unused;
1797
1798 return( key_id );
1799}
1800
1801/** Compare two key identifiers.
1802 *
1803 * \param id1 First key identifier.
1804 * \param id2 Second key identifier.
1805 *
1806 * \return Non-zero if the two key identifier are equal, zero otherwise.
1807 */
1808static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
1809 mbedtls_svc_key_id_t id2 )
1810{
1811 return( id1 == id2 );
1812}
1813
Ronald Cronc4d1b512020-07-31 11:26:37 +02001814/** Check whether a key identifier is null.
1815 *
1816 * \param key Key identifier.
1817 *
1818 * \return Non-zero if the key identifier is null, zero otherwise.
1819 */
1820static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
1821{
1822 return( key == 0 );
1823}
1824
Ronald Cron7424f0d2020-09-14 16:17:41 +02001825#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
1826
1827#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
1828#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
1829#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
1830
1831/** Utility to initialize a key identifier at runtime.
1832 *
1833 * \param owner_id Identifier of the key owner.
1834 * \param key_id Identifier of the key.
1835 */
1836static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
1837 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
1838{
1839 return( (mbedtls_svc_key_id_t){ .key_id = key_id,
1840 .owner = owner_id } );
1841}
1842
1843/** Compare two key identifiers.
1844 *
1845 * \param id1 First key identifier.
1846 * \param id2 Second key identifier.
1847 *
1848 * \return Non-zero if the two key identifier are equal, zero otherwise.
1849 */
1850static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
1851 mbedtls_svc_key_id_t id2 )
1852{
1853 return( ( id1.key_id == id2.key_id ) &&
1854 mbedtls_key_owner_id_equal( id1.owner, id2.owner ) );
1855}
1856
Ronald Cronc4d1b512020-07-31 11:26:37 +02001857/** Check whether a key identifier is null.
1858 *
1859 * \param key Key identifier.
1860 *
1861 * \return Non-zero if the key identifier is null, zero otherwise.
1862 */
1863static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
1864{
1865 return( ( key.key_id == 0 ) && ( key.owner == 0 ) );
1866}
1867
Ronald Cron7424f0d2020-09-14 16:17:41 +02001868#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001869
1870/**@}*/
1871
1872/** \defgroup policy Key policies
1873 * @{
1874 */
1875
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001876/** Whether the key may be exported.
1877 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001878 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001879 * regardless of the value of this permission flag.
1880 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001881 * If a key does not have export permission, implementations shall not
1882 * allow the key to be exported in plain form from the cryptoprocessor,
1883 * whether through psa_export_key() or through a proprietary interface.
1884 * The key may however be exportable in a wrapped form, i.e. in a form
1885 * where it is encrypted by another key.
1886 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001887#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1888
1889/** Whether the key may be copied.
1890 *
1891 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001892 * with the same policy or a more restrictive policy.
1893 *
1894 * For lifetimes for which the key is located in a secure element which
1895 * enforce the non-exportability of keys, copying a key outside the secure
1896 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1897 * Copying the key inside the secure element is permitted with just
1898 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1899 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
1900 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1901 * is sufficient to permit the copy.
1902 */
1903#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1904
1905/** Whether the key may be used to encrypt a message.
1906 *
1907 * This flag allows the key to be used for a symmetric encryption operation,
1908 * for an AEAD encryption-and-authentication operation,
1909 * or for an asymmetric encryption operation,
1910 * if otherwise permitted by the key's type and policy.
1911 *
1912 * For a key pair, this concerns the public key.
1913 */
1914#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1915
1916/** Whether the key may be used to decrypt a message.
1917 *
1918 * This flag allows the key to be used for a symmetric decryption operation,
1919 * for an AEAD decryption-and-verification operation,
1920 * or for an asymmetric decryption operation,
1921 * if otherwise permitted by the key's type and policy.
1922 *
1923 * For a key pair, this concerns the private key.
1924 */
1925#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1926
1927/** Whether the key may be used to sign a message.
1928 *
1929 * This flag allows the key to be used for a MAC calculation operation
1930 * or for an asymmetric signature operation,
1931 * if otherwise permitted by the key's type and policy.
1932 *
1933 * For a key pair, this concerns the private key.
1934 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001935#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001936
1937/** Whether the key may be used to verify a message signature.
1938 *
1939 * This flag allows the key to be used for a MAC verification operation
1940 * or for an asymmetric signature verification operation,
1941 * if otherwise permitted by by the key's type and policy.
1942 *
1943 * For a key pair, this concerns the public key.
1944 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001945#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001946
1947/** Whether the key may be used to derive other keys.
1948 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001949#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001950
1951/**@}*/
1952
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001953/** \defgroup derivation Key derivation
1954 * @{
1955 */
1956
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001957/** A secret input for key derivation.
1958 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001959 * This should be a key of type #PSA_KEY_TYPE_DERIVE
1960 * (passed to psa_key_derivation_input_key())
1961 * or the shared secret resulting from a key agreement
1962 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02001963 *
1964 * The secret can also be a direct input (passed to
1965 * key_derivation_input_bytes()). In this case, the derivation operation
1966 * may not be used to derive keys: the operation will only allow
1967 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001968 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001969#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001970
1971/** A label for key derivation.
1972 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001973 * This should be a direct input.
1974 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001975 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001976#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001977
1978/** A salt for key derivation.
1979 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001980 * This should be a direct input.
1981 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001982 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001983#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001984
1985/** An information string for key derivation.
1986 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001987 * This should be a direct input.
1988 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001989 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001990#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001991
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001992/** A seed for key derivation.
1993 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001994 * This should be a direct input.
1995 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001996 */
1997#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
1998
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001999/**@}*/
2000
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002001#endif /* PSA_CRYPTO_VALUES_H */