blob: d4be75b6210a4464939ca4e19fa82d8118af4d9b [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
36
37/** \defgroup error Error codes
38 * @{
39 */
40
David Saadab4ecc272019-02-14 13:48:10 +020041/* PSA error codes */
42
Gilles Peskinef3b731e2018-12-12 13:38:31 +010043/** The action was completed successfully. */
44#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045
46/** An error occurred that does not correspond to any defined
47 * failure cause.
48 *
49 * Implementations may use this error code if none of the other standard
50 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020051#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010052
53/** The requested operation or a parameter is not supported
54 * by this implementation.
55 *
56 * Implementations should return this error code when an enumeration
57 * parameter such as a key type, algorithm, etc. is not recognized.
58 * If a combination of parameters is recognized and identified as
59 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020060#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010061
62/** The requested action is denied by a policy.
63 *
64 * Implementations should return this error code when the parameters
65 * are recognized as valid and supported, and a policy explicitly
66 * denies the requested operation.
67 *
68 * If a subset of the parameters of a function call identify a
69 * forbidden operation, and another subset of the parameters are
70 * not valid or not supported, it is unspecified whether the function
71 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
72 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020073#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010074
75/** An output buffer is too small.
76 *
77 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
78 * description to determine a sufficient buffer size.
79 *
80 * Implementations should preferably return this error code only
81 * in cases when performing the operation with a larger output
82 * buffer would succeed. However implementations may return this
83 * error if a function has invalid or unsupported parameters in addition
84 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
David Saadab4ecc272019-02-14 13:48:10 +020087/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088 *
David Saadab4ecc272019-02-14 13:48:10 +020089 * Implementations should return this error, when attempting
90 * to write an item (like a key) that already exists. */
91#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010092
David Saadab4ecc272019-02-14 13:48:10 +020093/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094 *
David Saadab4ecc272019-02-14 13:48:10 +020095 * Implementations should return this error, if a requested item (like
96 * a key) does not exist. */
97#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
99/** The requested action cannot be performed in the current state.
100 *
101 * Multipart operations return this error when one of the
102 * functions is called out of sequence. Refer to the function
103 * descriptions for permitted sequencing of functions.
104 *
105 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100106 * that a key either exists or not,
107 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100108 * as applicable.
109 *
110 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200111 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100112 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200113#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100114
115/** The parameters passed to the function are invalid.
116 *
117 * Implementations may return this error any time a parameter or
118 * combination of parameters are recognized as invalid.
119 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100120 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200121 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100122 * instead.
123 */
David Saadab4ecc272019-02-14 13:48:10 +0200124#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100125
126/** There is not enough runtime memory.
127 *
128 * If the action is carried out across multiple security realms, this
129 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200130#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100131
132/** There is not enough persistent storage.
133 *
134 * Functions that modify the key storage return this error code if
135 * there is insufficient storage space on the host media. In addition,
136 * many functions that do not otherwise access storage may return this
137 * error code if the implementation requires a mandatory log entry for
138 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200139#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100140
141/** There was a communication failure inside the implementation.
142 *
143 * This can indicate a communication failure between the application
144 * and an external cryptoprocessor or between the cryptoprocessor and
145 * an external volatile or persistent memory. A communication failure
146 * may be transient or permanent depending on the cause.
147 *
148 * \warning If a function returns this error, it is undetermined
149 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200150 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100151 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
152 * if the requested action was completed successfully in an external
153 * cryptoprocessor but there was a breakdown of communication before
154 * the cryptoprocessor could report the status to the application.
155 */
David Saadab4ecc272019-02-14 13:48:10 +0200156#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100157
158/** There was a storage failure that may have led to data loss.
159 *
160 * This error indicates that some persistent storage is corrupted.
161 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200162 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100163 * between the cryptoprocessor and its external storage (use
164 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
165 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
166 *
167 * Note that a storage failure does not indicate that any data that was
168 * previously read is invalid. However this previously read data may no
169 * longer be readable from storage.
170 *
171 * When a storage failure occurs, it is no longer possible to ensure
172 * the global integrity of the keystore. Depending on the global
173 * integrity guarantees offered by the implementation, access to other
174 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100175 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 *
177 * Implementations should only use this error code to report a
178 * permanent storage corruption. However application writers should
179 * keep in mind that transient errors while reading the storage may be
180 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200181#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100182
183/** A hardware failure was detected.
184 *
185 * A hardware failure may be transient or permanent depending on the
186 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200187#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188
189/** A tampering attempt was detected.
190 *
191 * If an application receives this error code, there is no guarantee
192 * that previously accessed or computed data was correct and remains
193 * confidential. Applications should not perform any security function
194 * and should enter a safe failure state.
195 *
196 * Implementations may return this error code if they detect an invalid
197 * state that cannot happen during normal operation and that indicates
198 * that the implementation's security guarantees no longer hold. Depending
199 * on the implementation architecture and on its security and safety goals,
200 * the implementation may forcibly terminate the application.
201 *
202 * This error code is intended as a last resort when a security breach
203 * is detected and it is unsure whether the keystore data is still
204 * protected. Implementations shall only return this error code
205 * to report an alarm from a tampering detector, to indicate that
206 * the confidentiality of stored data can no longer be guaranteed,
207 * or to indicate that the integrity of previously returned data is now
208 * considered compromised. Implementations shall not use this error code
209 * to indicate a hardware failure that merely makes it impossible to
210 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
211 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
212 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
213 * instead).
214 *
215 * This error indicates an attack against the application. Implementations
216 * shall not return this error code as a consequence of the behavior of
217 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200218#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100219
220/** There is not enough entropy to generate random data needed
221 * for the requested action.
222 *
223 * This error indicates a failure of a hardware random generator.
224 * Application writers should note that this error can be returned not
225 * only by functions whose purpose is to generate random data, such
226 * as key, IV or nonce generation, but also by functions that execute
227 * an algorithm with a randomized result, as well as functions that
228 * use randomization of intermediate computations as a countermeasure
229 * to certain attacks.
230 *
231 * Implementations should avoid returning this error after psa_crypto_init()
232 * has succeeded. Implementations should generate sufficient
233 * entropy during initialization and subsequently use a cryptographically
234 * secure pseudorandom generator (PRNG). However implementations may return
235 * this error at any time if a policy requires the PRNG to be reseeded
236 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200237#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100238
239/** The signature, MAC or hash is incorrect.
240 *
241 * Verification functions return this error if the verification
242 * calculations completed successfully, and the value to be verified
243 * was determined to be incorrect.
244 *
245 * If the value to verify has an invalid size, implementations may return
246 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200247#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100248
249/** The decrypted padding is incorrect.
250 *
251 * \warning In some protocols, when decrypting data, it is essential that
252 * the behavior of the application does not depend on whether the padding
253 * is correct, down to precise timing. Applications should prefer
254 * protocols that use authenticated encryption rather than plain
255 * encryption. If the application must perform a decryption of
256 * unauthenticated data, the application writer should take care not
257 * to reveal whether the padding is invalid.
258 *
259 * Implementations should strive to make valid and invalid padding
260 * as close as possible to indistinguishable to an external observer.
261 * In particular, the timing of a decryption operation should not
262 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200263#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100264
David Saadab4ecc272019-02-14 13:48:10 +0200265/** Return this error when there's insufficient data when attempting
266 * to read from a resource. */
267#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100268
Ronald Croncf56a0a2020-08-04 09:51:30 +0200269/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270 */
David Saadab4ecc272019-02-14 13:48:10 +0200271#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100273/** Stored data has been corrupted.
274 *
275 * This error indicates that some persistent storage has suffered corruption.
276 * It does not indicate the following situations, which have specific error
277 * codes:
278 *
279 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
280 * - A communication error between the cryptoprocessor and its external
281 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
282 * - When the storage is in a valid state but is full - use
283 * #PSA_ERROR_INSUFFICIENT_STORAGE.
284 * - When the storage fails for other reasons - use
285 * #PSA_ERROR_STORAGE_FAILURE.
286 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
287 *
288 * \note A storage corruption does not indicate that any data that was
289 * previously read is invalid. However this previously read data might no
290 * longer be readable from storage.
291 *
292 * When a storage failure occurs, it is no longer possible to ensure the
293 * global integrity of the keystore.
294 */
295#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
296
gabor-mezei-armfe309242020-11-09 17:39:56 +0100297/** Data read from storage is not valid for the implementation.
298 *
299 * This error indicates that some data read from storage does not have a valid
300 * format. It does not indicate the following situations, which have specific
301 * error codes:
302 *
303 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
304 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
305 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
306 *
307 * This error is typically a result of either storage corruption on a
308 * cleartext storage backend, or an attempt to read data that was
309 * written by an incompatible version of the library.
310 */
311#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
312
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100313/**@}*/
314
315/** \defgroup crypto_types Key and algorithm types
316 * @{
317 */
318
319/** An invalid key type value.
320 *
321 * Zero is not the encoding of any key type.
322 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100323#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100324
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100325/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100326 *
327 * Key types defined by this standard will never have the
328 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
329 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
330 * respect the bitwise structure used by standard encodings whenever practical.
331 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100332#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100333
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100334#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100335#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
336#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
337#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100338#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100340#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100341
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100342/** Whether a key type is vendor-defined.
343 *
344 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
345 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100346#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
347 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
348
349/** Whether a key type is an unstructured array of bytes.
350 *
351 * This encompasses both symmetric keys and non-key data.
352 */
353#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100354 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
355 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100356
357/** Whether a key type is asymmetric: either a key pair or a public key. */
358#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
359 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
360 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
361 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
362/** Whether a key type is the public part of a key pair. */
363#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
364 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
365/** Whether a key type is a key pair containing a private part and a public
366 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200367#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100368 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
369/** The key pair type corresponding to a public key type.
370 *
371 * You may also pass a key pair type as \p type, it will be left unchanged.
372 *
373 * \param type A public key type or key pair type.
374 *
375 * \return The corresponding key pair type.
376 * If \p type is not a public key or a key pair,
377 * the return value is undefined.
378 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200379#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100380 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
381/** The public key type corresponding to a key pair type.
382 *
383 * You may also pass a key pair type as \p type, it will be left unchanged.
384 *
385 * \param type A public key type or key pair type.
386 *
387 * \return The corresponding public key type.
388 * If \p type is not a public key or a key pair,
389 * the return value is undefined.
390 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200391#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100392 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
393
394/** Raw data.
395 *
396 * A "key" of this type cannot be used for any cryptographic operation.
397 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100398#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100399
400/** HMAC key.
401 *
402 * The key policy determines which underlying hash algorithm the key can be
403 * used for.
404 *
405 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100406 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100407 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100408#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100409
410/** A secret for key derivation.
411 *
412 * The key policy determines which key derivation algorithm the key
413 * can be used for.
414 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100415#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100416
Gilles Peskine737c6be2019-05-21 16:01:06 +0200417/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100418 *
419 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
420 * 32 bytes (AES-256).
421 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100422#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
424/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
425 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100426 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
427 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100428 *
429 * Note that single DES and 2-key 3DES are weak and strongly
430 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
431 * is weak and deprecated and should only be used in legacy protocols.
432 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100433#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100434
Gilles Peskine737c6be2019-05-21 16:01:06 +0200435/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100436 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100437#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100438
439/** Key for the RC4 stream cipher.
440 *
441 * Note that RC4 is weak and deprecated and should only be used in
442 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100443#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100444
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200445/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
446 *
447 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
448 *
449 * Implementations must support 12-byte nonces, may support 8-byte nonces,
450 * and should reject other sizes.
451 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100452#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200453
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100454/** RSA public key.
455 *
456 * The size of an RSA key is the bit size of the modulus.
457 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100458#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100459/** RSA key pair (private and public key).
460 *
461 * The size of an RSA key is the bit size of the modulus.
462 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100463#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100464/** Whether a key type is an RSA key (pair or public-only). */
465#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200466 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100467
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100468#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100469#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
470#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100471/** Elliptic curve key pair.
472 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100473 * The size of an elliptic curve key is the bit size associated with the curve,
474 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
475 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
476 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100477 * \param curve A value of type ::psa_ecc_family_t that
478 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100479 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200480#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
481 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100482/** Elliptic curve public key.
483 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100484 * The size of an elliptic curve public key is the same as the corresponding
485 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
486 * `PSA_ECC_FAMILY_xxx` curve families).
487 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100488 * \param curve A value of type ::psa_ecc_family_t that
489 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100490 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100491#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
492 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
493
494/** Whether a key type is an elliptic curve key (pair or public-only). */
495#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200496 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100497 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100498/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200499#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100500 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200501 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100502/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100503#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
504 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
505 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
506
507/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100508#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
509 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100510 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
511 0))
512
Gilles Peskine228abc52019-12-03 17:24:19 +0100513/** SEC Koblitz curves over prime fields.
514 *
515 * This family comprises the following curves:
516 * secp192k1, secp224k1, secp256k1.
517 * They are defined in _Standards for Efficient Cryptography_,
518 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
519 * https://www.secg.org/sec2-v2.pdf
520 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100521#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100522
523/** SEC random curves over prime fields.
524 *
525 * This family comprises the following curves:
526 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
527 * They are defined in _Standards for Efficient Cryptography_,
528 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
529 * https://www.secg.org/sec2-v2.pdf
530 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100531#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100532/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100533#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100534
535/** SEC Koblitz curves over binary fields.
536 *
537 * This family comprises the following curves:
538 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
539 * They are defined in _Standards for Efficient Cryptography_,
540 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
541 * https://www.secg.org/sec2-v2.pdf
542 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100543#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100544
545/** SEC random curves over binary fields.
546 *
547 * This family comprises the following curves:
548 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
549 * They are defined in _Standards for Efficient Cryptography_,
550 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
551 * https://www.secg.org/sec2-v2.pdf
552 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100553#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100554
555/** SEC additional random curves over binary fields.
556 *
557 * This family comprises the following curve:
558 * sect163r2.
559 * It is defined in _Standards for Efficient Cryptography_,
560 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
561 * https://www.secg.org/sec2-v2.pdf
562 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100563#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100564
565/** Brainpool P random curves.
566 *
567 * This family comprises the following curves:
568 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
569 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
570 * It is defined in RFC 5639.
571 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100572#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100573
574/** Curve25519 and Curve448.
575 *
576 * This family comprises the following Montgomery curves:
577 * - 255-bit: Bernstein et al.,
578 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
579 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
580 * - 448-bit: Hamburg,
581 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
582 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
583 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100584#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100585
Gilles Peskine67546802021-02-24 21:49:40 +0100586/** The twisted Edwards curves Ed25519 and Ed448.
587 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100588 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100589 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100590 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100591 *
592 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100593 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100594 * to Curve25519.
595 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
596 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
597 * to Curve448.
598 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
599 */
600#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
601
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100602#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100603#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
604#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100605/** Diffie-Hellman key pair.
606 *
Paul Elliott75e27032020-06-03 15:17:39 +0100607 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100608 * Diffie-Hellman group to be used.
609 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200610#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
611 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100612/** Diffie-Hellman public key.
613 *
Paul Elliott75e27032020-06-03 15:17:39 +0100614 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100615 * Diffie-Hellman group to be used.
616 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200617#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
618 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
619
620/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
621#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200622 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200623 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
624/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200625#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200626 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200627 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200628/** Whether a key type is a Diffie-Hellman public key. */
629#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
630 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
631 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
632
633/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100634#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
635 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200636 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
637 0))
638
Gilles Peskine228abc52019-12-03 17:24:19 +0100639/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
640 *
641 * This family includes groups with the following key sizes (in bits):
642 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
643 * all of these sizes or only a subset.
644 */
Paul Elliott75e27032020-06-03 15:17:39 +0100645#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100646
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100647#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100648 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100649/** The block size of a block cipher.
650 *
651 * \param type A cipher key type (value of type #psa_key_type_t).
652 *
653 * \return The block size for a block cipher, or 1 for a stream cipher.
654 * The return value is undefined if \p type is not a supported
655 * cipher key type.
656 *
657 * \note It is possible to build stream cipher algorithms on top of a block
658 * cipher, for example CTR mode (#PSA_ALG_CTR).
659 * This macro only takes the key type into account, so it cannot be
660 * used to determine the size of the data that #psa_cipher_update()
661 * might buffer for future processing in general.
662 *
663 * \note This macro returns a compile-time constant if its argument is one.
664 *
665 * \warning This macro may evaluate its argument multiple times.
666 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100667#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100668 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100669 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100670 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100671
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100672/** Vendor-defined algorithm flag.
673 *
674 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
675 * bit set. Vendors who define additional algorithms must use an encoding with
676 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
677 * used by standard encodings whenever practical.
678 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100679#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100680
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100681#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100682#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
683#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100684#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100685#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
686#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
687#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
688#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
689#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100690
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100691/** Whether an algorithm is vendor-defined.
692 *
693 * See also #PSA_ALG_VENDOR_FLAG.
694 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100695#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
696 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
697
698/** Whether the specified algorithm is a hash algorithm.
699 *
700 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
701 *
702 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
703 * This macro may return either 0 or 1 if \p alg is not a supported
704 * algorithm identifier.
705 */
706#define PSA_ALG_IS_HASH(alg) \
707 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
708
709/** Whether the specified algorithm is a MAC algorithm.
710 *
711 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
712 *
713 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
714 * This macro may return either 0 or 1 if \p alg is not a supported
715 * algorithm identifier.
716 */
717#define PSA_ALG_IS_MAC(alg) \
718 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
719
720/** Whether the specified algorithm is a symmetric cipher algorithm.
721 *
722 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
723 *
724 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
725 * This macro may return either 0 or 1 if \p alg is not a supported
726 * algorithm identifier.
727 */
728#define PSA_ALG_IS_CIPHER(alg) \
729 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
730
731/** Whether the specified algorithm is an authenticated encryption
732 * with associated data (AEAD) algorithm.
733 *
734 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
735 *
736 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
737 * This macro may return either 0 or 1 if \p alg is not a supported
738 * algorithm identifier.
739 */
740#define PSA_ALG_IS_AEAD(alg) \
741 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
742
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200743/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200744 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100745 *
746 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
747 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200748 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100749 * This macro may return either 0 or 1 if \p alg is not a supported
750 * algorithm identifier.
751 */
752#define PSA_ALG_IS_SIGN(alg) \
753 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
754
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200755/** Whether the specified algorithm is an asymmetric encryption algorithm,
756 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100757 *
758 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
759 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200760 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100761 * This macro may return either 0 or 1 if \p alg is not a supported
762 * algorithm identifier.
763 */
764#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
765 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
766
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100767/** Whether the specified algorithm is a key agreement algorithm.
768 *
769 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
770 *
771 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
772 * This macro may return either 0 or 1 if \p alg is not a supported
773 * algorithm identifier.
774 */
775#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100776 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100777
778/** Whether the specified algorithm is a key derivation algorithm.
779 *
780 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
781 *
782 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
783 * This macro may return either 0 or 1 if \p alg is not a supported
784 * algorithm identifier.
785 */
786#define PSA_ALG_IS_KEY_DERIVATION(alg) \
787 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
788
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100789#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100790/** MD2 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100791#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100792/** MD4 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100793#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100794/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100795#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100796/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100797#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100798/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100799#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100800/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100801#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100802/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100803#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100804/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100805#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100806/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100807#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100808/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100809#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100810/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100811#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100812/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100813#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100814/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100815#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100816/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100817#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100818/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100819#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100820/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100821 *
822 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
823 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
824 * has the same output size and a (theoretically) higher security strength.
825 */
Gilles Peskine27354692021-03-03 17:45:06 +0100826#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100827
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100828/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100829 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100830 * This value may be used to form the algorithm usage field of a policy
831 * for a signature algorithm that is parametrized by a hash. The key
832 * may then be used to perform operations using the same signature
833 * algorithm parametrized with any supported hash.
834 *
835 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100836 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100837 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100838 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100839 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
840 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100841 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200842 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100843 * ```
844 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100845 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100846 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
847 * call to sign or verify a message may use a different hash.
848 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200849 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
850 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
851 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100852 * ```
853 *
854 * This value may not be used to build other algorithms that are
855 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100856 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100857 *
858 * This value may not be used to build an algorithm specification to
859 * perform an operation. It is only valid to build policies.
860 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100861#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100862
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100863#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100864#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100865/** Macro to build an HMAC algorithm.
866 *
867 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
868 *
869 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
870 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
871 *
872 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100873 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100874 * hash algorithm.
875 */
876#define PSA_ALG_HMAC(hash_alg) \
877 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
878
879#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
880 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
881
882/** Whether the specified algorithm is an HMAC algorithm.
883 *
884 * HMAC is a family of MAC algorithms that are based on a hash function.
885 *
886 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
887 *
888 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
889 * This macro may return either 0 or 1 if \p alg is not a supported
890 * algorithm identifier.
891 */
892#define PSA_ALG_IS_HMAC(alg) \
893 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
894 PSA_ALG_HMAC_BASE)
895
896/* In the encoding of a MAC algorithm, the bits corresponding to
897 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
898 * truncated. As an exception, the value 0 means the untruncated algorithm,
899 * whatever its length is. The length is encoded in 6 bits, so it can
900 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
901 * to full length is correctly encoded as 0 and any non-trivial truncation
902 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100903#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
904#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100905
Steven Cooremand927ed72021-02-22 19:59:35 +0100906/* In the encoding of a MAC algorithm, the bit corresponding to
907 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100908 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
909 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100910 * same base class and having a (potentially truncated) MAC length greater or
911 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
912#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
913
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100914/** Macro to build a truncated MAC algorithm.
915 *
916 * A truncated MAC algorithm is identical to the corresponding MAC
917 * algorithm except that the MAC value for the truncated algorithm
918 * consists of only the first \p mac_length bytes of the MAC value
919 * for the untruncated algorithm.
920 *
921 * \note This macro may allow constructing algorithm identifiers that
922 * are not valid, either because the specified length is larger
923 * than the untruncated MAC or because the specified length is
924 * smaller than permitted by the implementation.
925 *
926 * \note It is implementation-defined whether a truncated MAC that
927 * is truncated to the same length as the MAC of the untruncated
928 * algorithm is considered identical to the untruncated algorithm
929 * for policy comparison purposes.
930 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200931 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100932 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100933 * is true). This may be a truncated or untruncated
934 * MAC algorithm.
935 * \param mac_length Desired length of the truncated MAC in bytes.
936 * This must be at most the full length of the MAC
937 * and must be at least an implementation-specified
938 * minimum. The implementation-specified minimum
939 * shall not be zero.
940 *
941 * \return The corresponding MAC algorithm with the specified
942 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100943 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100944 * MAC algorithm or if \p mac_length is too small or
945 * too large for the specified MAC algorithm.
946 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100947#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
948 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
949 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100950 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
951
952/** Macro to build the base MAC algorithm corresponding to a truncated
953 * MAC algorithm.
954 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200955 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100956 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100957 * is true). This may be a truncated or untruncated
958 * MAC algorithm.
959 *
960 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100961 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100962 * MAC algorithm.
963 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100964#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
965 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
966 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100967
968/** Length to which a MAC algorithm is truncated.
969 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200970 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100971 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100972 * is true).
973 *
974 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100975 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
976 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100977 * MAC algorithm.
978 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200979#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
980 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100981
Steven Cooremanee18b1f2021-02-08 11:44:21 +0100982/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100983 *
Steven Cooremana1d83222021-02-25 10:20:29 +0100984 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +0100985 * sharing the same base algorithm, and where the (potentially truncated) MAC
986 * length of the specific algorithm is equal to or larger then the wildcard
987 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100988 *
Steven Cooreman37389c72021-02-18 12:08:41 +0100989 * \note When setting the minimum required MAC length to less than the
990 * smallest MAC length allowed by the base algorithm, this effectively
991 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100992 *
Steven Cooreman37389c72021-02-18 12:08:41 +0100993 * \param mac_alg A MAC algorithm identifier (value of type
994 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
995 * is true).
996 * \param min_mac_length Desired minimum length of the message authentication
997 * code in bytes. This must be at most the untruncated
998 * length of the MAC and must be at least 1.
999 *
1000 * \return The corresponding MAC wildcard algorithm with the
1001 * specified minimum length.
1002 * \return Unspecified if \p mac_alg is not a supported MAC
1003 * algorithm or if \p min_mac_length is less than 1 or
1004 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001005 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001006#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1007 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1008 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001009
Bence Szépkútia2945512020-12-03 21:40:17 +01001010#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001011/** The CBC-MAC construction over a block cipher
1012 *
1013 * \warning CBC-MAC is insecure in many cases.
1014 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1015 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001016#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001017/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001018#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001019
1020/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1021 *
1022 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1023 *
1024 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1025 * This macro may return either 0 or 1 if \p alg is not a supported
1026 * algorithm identifier.
1027 */
1028#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1029 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1030 PSA_ALG_CIPHER_MAC_BASE)
1031
1032#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1033#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1034
1035/** Whether the specified algorithm is a stream cipher.
1036 *
1037 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1038 * by applying a bitwise-xor with a stream of bytes that is generated
1039 * from a key.
1040 *
1041 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1042 *
1043 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1044 * This macro may return either 0 or 1 if \p alg is not a supported
1045 * algorithm identifier or if it is not a symmetric cipher algorithm.
1046 */
1047#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1048 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1049 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1050
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001051/** The stream cipher mode of a stream cipher algorithm.
1052 *
1053 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001054 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1055 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001056 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001057#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001058
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001059/** The CTR stream cipher mode.
1060 *
1061 * CTR is a stream cipher which is built from a block cipher.
1062 * The underlying block cipher is determined by the key type.
1063 * For example, to use AES-128-CTR, use this algorithm with
1064 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1065 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001066#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001067
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001068/** The CFB stream cipher mode.
1069 *
1070 * The underlying block cipher is determined by the key type.
1071 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001072#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001073
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001074/** The OFB stream cipher mode.
1075 *
1076 * The underlying block cipher is determined by the key type.
1077 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001078#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001079
1080/** The XTS cipher mode.
1081 *
1082 * XTS is a cipher mode which is built from a block cipher. It requires at
1083 * least one full block of input, but beyond this minimum the input
1084 * does not need to be a whole number of blocks.
1085 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001086#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001087
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001088/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1089 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001090 * \warning ECB mode does not protect the confidentiality of the encrypted data
1091 * except in extremely narrow circumstances. It is recommended that applications
1092 * only use ECB if they need to construct an operating mode that the
1093 * implementation does not provide. Implementations are encouraged to provide
1094 * the modes that applications need in preference to supporting direct access
1095 * to ECB.
1096 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001097 * The underlying block cipher is determined by the key type.
1098 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001099 * This symmetric cipher mode can only be used with messages whose lengths are a
1100 * multiple of the block size of the chosen block cipher.
1101 *
1102 * ECB mode does not accept an initialization vector (IV). When using a
1103 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1104 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001105 */
1106#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1107
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001108/** The CBC block cipher chaining mode, with no padding.
1109 *
1110 * The underlying block cipher is determined by the key type.
1111 *
1112 * This symmetric cipher mode can only be used with messages whose lengths
1113 * are whole number of blocks for the chosen block cipher.
1114 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001115#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001116
1117/** The CBC block cipher chaining mode with PKCS#7 padding.
1118 *
1119 * The underlying block cipher is determined by the key type.
1120 *
1121 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1122 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001123#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001124
Gilles Peskine679693e2019-05-06 15:10:16 +02001125#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1126
1127/** Whether the specified algorithm is an AEAD mode on a block cipher.
1128 *
1129 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1130 *
1131 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1132 * a block cipher, 0 otherwise.
1133 * This macro may return either 0 or 1 if \p alg is not a supported
1134 * algorithm identifier.
1135 */
1136#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1137 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1138 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1139
Gilles Peskine9153ec02019-02-15 13:02:02 +01001140/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001141 *
1142 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001143 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001144#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001145
1146/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001147 *
1148 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001149 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001150#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001151
1152/** The Chacha20-Poly1305 AEAD algorithm.
1153 *
1154 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001155 *
1156 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1157 * and should reject other sizes.
1158 *
1159 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001160 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001161#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001162
1163/* In the encoding of a AEAD algorithm, the bits corresponding to
1164 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1165 * The constants for default lengths follow this encoding.
1166 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001167#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1168#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001169
Steven Cooremand927ed72021-02-22 19:59:35 +01001170/* In the encoding of an AEAD algorithm, the bit corresponding to
1171 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001172 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1173 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001174 * same base class and having a tag length greater than or equal to the one
1175 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1176#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1177
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001178/** Macro to build a shortened AEAD algorithm.
1179 *
1180 * A shortened AEAD algorithm is similar to the corresponding AEAD
1181 * algorithm, but has an authentication tag that consists of fewer bytes.
1182 * Depending on the algorithm, the tag length may affect the calculation
1183 * of the ciphertext.
1184 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001185 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001186 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001187 * is true).
1188 * \param tag_length Desired length of the authentication tag in bytes.
1189 *
1190 * \return The corresponding AEAD algorithm with the specified
1191 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001192 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001193 * AEAD algorithm or if \p tag_length is not valid
1194 * for the specified AEAD algorithm.
1195 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001196#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001197 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1198 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001199 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1200 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1201
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001202/** Retrieve the tag length of a specified AEAD algorithm
1203 *
1204 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001205 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001206 * is true).
1207 *
1208 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001209 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001210 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001211 */
1212#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1213 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1214 PSA_AEAD_TAG_LENGTH_OFFSET )
1215
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001216/** Calculate the corresponding AEAD algorithm with the default tag length.
1217 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001218 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001219 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001220 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001221 * \return The corresponding AEAD algorithm with the default
1222 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001223 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001224#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001225 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001226 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1227 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1228 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001229 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001230#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1231 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1232 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001233 ref :
1234
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001235/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001236 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001237 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001238 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001239 * algorithm is equal to or larger then the minimum tag length specified by the
1240 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001241 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001242 * \note When setting the minimum required tag length to less than the
1243 * smallest tag length allowed by the base algorithm, this effectively
1244 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001245 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001246 * \param aead_alg An AEAD algorithm identifier (value of type
1247 * #psa_algorithm_t such that
1248 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1249 * \param min_tag_length Desired minimum length of the authentication tag in
1250 * bytes. This must be at least 1 and at most the largest
1251 * allowed tag length of the algorithm.
1252 *
1253 * \return The corresponding AEAD wildcard algorithm with the
1254 * specified minimum length.
1255 * \return Unspecified if \p aead_alg is not a supported
1256 * AEAD algorithm or if \p min_tag_length is less than 1
1257 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001258 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001259#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001260 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1261 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001262
Bence Szépkútia2945512020-12-03 21:40:17 +01001263#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001264/** RSA PKCS#1 v1.5 signature with hashing.
1265 *
1266 * This is the signature scheme defined by RFC 8017
1267 * (PKCS#1: RSA Cryptography Specifications) under the name
1268 * RSASSA-PKCS1-v1_5.
1269 *
1270 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1271 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001272 * This includes #PSA_ALG_ANY_HASH
1273 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001274 *
1275 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001276 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001277 * hash algorithm.
1278 */
1279#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1280 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1281/** Raw PKCS#1 v1.5 signature.
1282 *
1283 * The input to this algorithm is the DigestInfo structure used by
1284 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1285 * steps 3&ndash;6.
1286 */
1287#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1288#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1289 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1290
Bence Szépkútia2945512020-12-03 21:40:17 +01001291#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001292/** RSA PSS signature with hashing.
1293 *
1294 * This is the signature scheme defined by RFC 8017
1295 * (PKCS#1: RSA Cryptography Specifications) under the name
1296 * RSASSA-PSS, with the message generation function MGF1, and with
1297 * a salt length equal to the length of the hash. The specified
1298 * hash algorithm is used to hash the input message, to create the
1299 * salted hash, and for the mask generation.
1300 *
1301 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1302 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001303 * This includes #PSA_ALG_ANY_HASH
1304 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001305 *
1306 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001307 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001308 * hash algorithm.
1309 */
1310#define PSA_ALG_RSA_PSS(hash_alg) \
1311 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1312#define PSA_ALG_IS_RSA_PSS(alg) \
1313 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1314
Bence Szépkútia2945512020-12-03 21:40:17 +01001315#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001316/** ECDSA signature with hashing.
1317 *
1318 * This is the ECDSA signature scheme defined by ANSI X9.62,
1319 * with a random per-message secret number (*k*).
1320 *
1321 * The representation of the signature as a byte string consists of
1322 * the concatentation of the signature values *r* and *s*. Each of
1323 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1324 * of the base point of the curve in octets. Each value is represented
1325 * in big-endian order (most significant octet first).
1326 *
1327 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1328 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001329 * This includes #PSA_ALG_ANY_HASH
1330 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001331 *
1332 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001333 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001334 * hash algorithm.
1335 */
1336#define PSA_ALG_ECDSA(hash_alg) \
1337 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1338/** ECDSA signature without hashing.
1339 *
1340 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1341 * without specifying a hash algorithm. This algorithm may only be
1342 * used to sign or verify a sequence of bytes that should be an
1343 * already-calculated hash. Note that the input is padded with
1344 * zeros on the left or truncated on the left as required to fit
1345 * the curve size.
1346 */
1347#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001348#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001349/** Deterministic ECDSA signature with hashing.
1350 *
1351 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1352 *
1353 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1354 *
1355 * Note that when this algorithm is used for verification, signatures
1356 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1357 * same private key are accepted. In other words,
1358 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1359 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1360 *
1361 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1362 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001363 * This includes #PSA_ALG_ANY_HASH
1364 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001365 *
1366 * \return The corresponding deterministic ECDSA signature
1367 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001368 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001369 * hash algorithm.
1370 */
1371#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1372 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001373#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001374#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001375 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001376 PSA_ALG_ECDSA_BASE)
1377#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001378 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001379#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1380 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1381#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1382 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1383
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001384/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1385 * using standard parameters.
1386 *
1387 * Contexts are not supported in the current version of this specification
1388 * because there is no suitable signature interface that can take the
1389 * context as a parameter. A future version of this specification may add
1390 * suitable functions and extend this algorithm to support contexts.
1391 *
1392 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1393 * In this specification, the following curves are supported:
1394 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1395 * in RFC 8032.
1396 * The curve is Edwards25519.
1397 * The hash function used internally is SHA-512.
1398 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1399 * in RFC 8032.
1400 * The curve is Edwards448.
1401 * The hash function used internally is the first 114 bytes of the
1402 * SHAKE256 output, with
1403 * `dom4(1, "") = ASCII("SigEd448") || 0x01 0x00`
1404 * prepended to the input.
1405 *
1406 * This algorithm can be used with psa_sign_message() and
1407 * psa_verify_message(). Since there is no prehashing, it cannot be used
1408 * with psa_sign_hash() or psa_verify_hash().
1409 *
1410 * The signature format is the concatenation of R and S as defined by
1411 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1412 * string for Ed448).
1413 */
1414#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1415
1416#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1417#define PSA_ALG_IS_HASH_EDDSA(alg) \
1418 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1419
1420/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001421 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001422 *
1423 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1424 *
1425 * This algorithm is Ed25519 as specified in RFC 8032.
1426 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001427 * The prehash is SHA-512.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001428 * The hash function used internally is SHA-512, with
1429 * `dom2(0, "") = ASCII("SigEd25519 no Ed25519 collisions") || 0x00 0x00`
1430 * prepended to the input.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001431 *
1432 * This is a hash-and-sign algorithm: to calculate a signature,
1433 * you can either:
1434 * - call psa_sign_message() on the message;
1435 * - or calculate the SHA-512 hash of the message
1436 * with psa_hash_compute()
1437 * or with a multi-part hash operation started with psa_hash_setup(),
1438 * using the hash algorithm #PSA_ALG_SHA_512,
1439 * then sign the calculated hash with psa_sign_hash().
1440 * Verifying a signature is similar, using psa_verify_message() or
1441 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001442 */
1443#define PSA_ALG_ED25519PH \
1444 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1445
1446/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1447 * using SHAKE256 and the Edwards448 curve.
1448 *
1449 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1450 *
1451 * This algorithm is Ed448 as specified in RFC 8032.
1452 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001453 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001454 * The hash function used internally is the first 114 bytes of the
1455 * SHAKE256 output, with
1456 * `dom4(0, "") = ASCII("SigEd448") || 0x00 0x00`
1457 * prepended to the input.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001458 *
1459 * This is a hash-and-sign algorithm: to calculate a signature,
1460 * you can either:
1461 * - call psa_sign_message() on the message;
1462 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1463 * with psa_hash_compute()
1464 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001465 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001466 * then sign the calculated hash with psa_sign_hash().
1467 * Verifying a signature is similar, using psa_verify_message() or
1468 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001469 */
1470#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001471 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001472
Gilles Peskine6d400852021-02-24 21:39:52 +01001473/* Default definition, to be overridden if the library is extended with
1474 * more hash-and-sign algorithms that we want to keep out of this header
1475 * file. */
1476#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1477
Gilles Peskined35b4892019-01-14 16:02:15 +01001478/** Whether the specified algorithm is a hash-and-sign algorithm.
1479 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001480 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1481 * structured in two parts: first the calculation of a hash in a way that
1482 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001483 * hash value and the key.
1484 *
1485 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1486 *
1487 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1488 * This macro may return either 0 or 1 if \p alg is not a supported
1489 * algorithm identifier.
1490 */
1491#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1492 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001493 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
Gilles Peskine6d400852021-02-24 21:39:52 +01001494 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001495
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001496/** Get the hash used by a hash-and-sign signature algorithm.
1497 *
1498 * A hash-and-sign algorithm is a signature algorithm which is
1499 * composed of two phases: first a hashing phase which does not use
1500 * the key and produces a hash of the input message, then a signing
1501 * phase which only uses the hash and the key and not the message
1502 * itself.
1503 *
1504 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1505 * #PSA_ALG_IS_SIGN(\p alg) is true).
1506 *
1507 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1508 * algorithm.
1509 * \return 0 if \p alg is a signature algorithm that does not
1510 * follow the hash-and-sign structure.
1511 * \return Unspecified if \p alg is not a signature algorithm or
1512 * if it is not supported by the implementation.
1513 */
1514#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001515 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001516 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1517 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1518 0)
1519
1520/** RSA PKCS#1 v1.5 encryption.
1521 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001522#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001523
Bence Szépkútia2945512020-12-03 21:40:17 +01001524#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001525/** RSA OAEP encryption.
1526 *
1527 * This is the encryption scheme defined by RFC 8017
1528 * (PKCS#1: RSA Cryptography Specifications) under the name
1529 * RSAES-OAEP, with the message generation function MGF1.
1530 *
1531 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1532 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1533 * for MGF1.
1534 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001535 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001536 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001537 * hash algorithm.
1538 */
1539#define PSA_ALG_RSA_OAEP(hash_alg) \
1540 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1541#define PSA_ALG_IS_RSA_OAEP(alg) \
1542 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1543#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1544 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1545 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1546 0)
1547
Bence Szépkútia2945512020-12-03 21:40:17 +01001548#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001549/** Macro to build an HKDF algorithm.
1550 *
1551 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1552 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001553 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001554 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001555 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001556 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1557 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1558 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1559 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001560 * starting to generate output.
1561 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001562 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1563 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1564 *
1565 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001566 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001567 * hash algorithm.
1568 */
1569#define PSA_ALG_HKDF(hash_alg) \
1570 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1571/** Whether the specified algorithm is an HKDF algorithm.
1572 *
1573 * HKDF is a family of key derivation algorithms that are based on a hash
1574 * function and the HMAC construction.
1575 *
1576 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1577 *
1578 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1579 * This macro may return either 0 or 1 if \c alg is not a supported
1580 * key derivation algorithm identifier.
1581 */
1582#define PSA_ALG_IS_HKDF(alg) \
1583 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1584#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1585 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1586
Bence Szépkútia2945512020-12-03 21:40:17 +01001587#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001588/** Macro to build a TLS-1.2 PRF algorithm.
1589 *
1590 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1591 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1592 * used with either SHA-256 or SHA-384.
1593 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001594 * This key derivation algorithm uses the following inputs, which must be
1595 * passed in the order given here:
1596 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001597 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1598 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001599 *
1600 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001601 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001602 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001603 *
1604 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1605 * TLS 1.2 PRF using HMAC-SHA-256.
1606 *
1607 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1608 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1609 *
1610 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001611 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001612 * hash algorithm.
1613 */
1614#define PSA_ALG_TLS12_PRF(hash_alg) \
1615 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1616
1617/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1618 *
1619 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1620 *
1621 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1622 * This macro may return either 0 or 1 if \c alg is not a supported
1623 * key derivation algorithm identifier.
1624 */
1625#define PSA_ALG_IS_TLS12_PRF(alg) \
1626 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1627#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1628 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1629
Bence Szépkútia2945512020-12-03 21:40:17 +01001630#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001631/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1632 *
1633 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1634 * from the PreSharedKey (PSK) through the application of padding
1635 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1636 * The latter is based on HMAC and can be used with either SHA-256
1637 * or SHA-384.
1638 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001639 * This key derivation algorithm uses the following inputs, which must be
1640 * passed in the order given here:
1641 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001642 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1643 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001644 *
1645 * For the application to TLS-1.2, the seed (which is
1646 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1647 * ClientHello.Random + ServerHello.Random,
1648 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001649 *
1650 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1651 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1652 *
1653 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1654 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1655 *
1656 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001657 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001658 * hash algorithm.
1659 */
1660#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1661 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1662
1663/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1664 *
1665 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1666 *
1667 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1668 * This macro may return either 0 or 1 if \c alg is not a supported
1669 * key derivation algorithm identifier.
1670 */
1671#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1672 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1673#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1674 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1675
Bence Szépkútia2945512020-12-03 21:40:17 +01001676#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1677#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001678
Gilles Peskine6843c292019-01-18 16:44:49 +01001679/** Macro to build a combined algorithm that chains a key agreement with
1680 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001681 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001682 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1683 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1684 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1685 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001686 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001687 * \return The corresponding key agreement and derivation
1688 * algorithm.
1689 * \return Unspecified if \p ka_alg is not a supported
1690 * key agreement algorithm or \p kdf_alg is not a
1691 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001692 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001693#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1694 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001695
1696#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1697 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1698
Gilles Peskine6843c292019-01-18 16:44:49 +01001699#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1700 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001701
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001702/** Whether the specified algorithm is a raw key agreement algorithm.
1703 *
1704 * A raw key agreement algorithm is one that does not specify
1705 * a key derivation function.
1706 * Usually, raw key agreement algorithms are constructed directly with
1707 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001708 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001709 *
1710 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1711 *
1712 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1713 * This macro may return either 0 or 1 if \p alg is not a supported
1714 * algorithm identifier.
1715 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001716#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001717 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1718 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001719
1720#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1721 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1722
1723/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001724 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001725 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001726 * `g^{ab}` in big-endian format.
1727 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1728 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001729 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001730#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001731
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001732/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1733 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001734 * This includes the raw finite field Diffie-Hellman algorithm as well as
1735 * finite-field Diffie-Hellman followed by any supporter key derivation
1736 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001737 *
1738 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1739 *
1740 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1741 * This macro may return either 0 or 1 if \c alg is not a supported
1742 * key agreement algorithm identifier.
1743 */
1744#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001745 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001746
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001747/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1748 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001749 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001750 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1751 * `m` is the bit size associated with the curve, i.e. the bit size of the
1752 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1753 * the byte containing the most significant bit of the shared secret
1754 * is padded with zero bits. The byte order is either little-endian
1755 * or big-endian depending on the curve type.
1756 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001757 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001758 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1759 * in little-endian byte order.
1760 * The bit size is 448 for Curve448 and 255 for Curve25519.
1761 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001762 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001763 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1764 * in big-endian byte order.
1765 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1766 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001767 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001768 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1769 * in big-endian byte order.
1770 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001771 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001772#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001773
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001774/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1775 * algorithm.
1776 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001777 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1778 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1779 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001780 *
1781 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1782 *
1783 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1784 * 0 otherwise.
1785 * This macro may return either 0 or 1 if \c alg is not a supported
1786 * key agreement algorithm identifier.
1787 */
1788#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001789 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001790
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001791/** Whether the specified algorithm encoding is a wildcard.
1792 *
1793 * Wildcard values may only be used to set the usage algorithm field in
1794 * a policy, not to perform an operation.
1795 *
1796 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1797 *
1798 * \return 1 if \c alg is a wildcard algorithm encoding.
1799 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1800 * an operation).
1801 * \return This macro may return either 0 or 1 if \c alg is not a supported
1802 * algorithm identifier.
1803 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001804#define PSA_ALG_IS_WILDCARD(alg) \
1805 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1806 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1807 PSA_ALG_IS_MAC(alg) ? \
1808 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1809 PSA_ALG_IS_AEAD(alg) ? \
1810 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001811 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001812
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001813/**@}*/
1814
1815/** \defgroup key_lifetimes Key lifetimes
1816 * @{
1817 */
1818
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001819/** The default lifetime for volatile keys.
1820 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001821 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001822 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001823 *
1824 * A key with this lifetime is typically stored in the RAM area of the
1825 * PSA Crypto subsystem. However this is an implementation choice.
1826 * If an implementation stores data about the key in a non-volatile memory,
1827 * it must release all the resources associated with the key and erase the
1828 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001829 */
1830#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1831
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001832/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001833 *
1834 * A persistent key remains in storage until it is explicitly destroyed or
1835 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001836 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001837 * provide their own mechanism (for example to perform a factory reset,
1838 * to prepare for device refurbishment, or to uninstall an application).
1839 *
1840 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001841 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001842 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001843 */
1844#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1845
Gilles Peskineaff11812020-05-04 19:03:10 +02001846/** The persistence level of volatile keys.
1847 *
1848 * See ::psa_key_persistence_t for more information.
1849 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001850#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001851
1852/** The default persistence level for persistent keys.
1853 *
1854 * See ::psa_key_persistence_t for more information.
1855 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001856#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02001857
1858/** A persistence level indicating that a key is never destroyed.
1859 *
1860 * See ::psa_key_persistence_t for more information.
1861 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001862#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001863
1864#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001865 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001866
1867#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001868 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001869
1870/** Whether a key lifetime indicates that the key is volatile.
1871 *
1872 * A volatile key is automatically destroyed by the implementation when
1873 * the application instance terminates. In particular, a volatile key
1874 * is automatically destroyed on a power reset of the device.
1875 *
1876 * A key that is not volatile is persistent. Persistent keys are
1877 * preserved until the application explicitly destroys them or until an
1878 * implementation-specific device management event occurs (for example,
1879 * a factory reset).
1880 *
1881 * \param lifetime The lifetime value to query (value of type
1882 * ::psa_key_lifetime_t).
1883 *
1884 * \return \c 1 if the key is volatile, otherwise \c 0.
1885 */
1886#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
1887 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02001888 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001889
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02001890/** Construct a lifetime from a persistence level and a location.
1891 *
1892 * \param persistence The persistence level
1893 * (value of type ::psa_key_persistence_t).
1894 * \param location The location indicator
1895 * (value of type ::psa_key_location_t).
1896 *
1897 * \return The constructed lifetime value.
1898 */
1899#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
1900 ((location) << 8 | (persistence))
1901
Gilles Peskineaff11812020-05-04 19:03:10 +02001902/** The local storage area for persistent keys.
1903 *
1904 * This storage area is available on all systems that can store persistent
1905 * keys without delegating the storage to a third-party cryptoprocessor.
1906 *
1907 * See ::psa_key_location_t for more information.
1908 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001909#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02001910
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001911#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001912
Gilles Peskine4a231b82019-05-06 18:56:14 +02001913/** The minimum value for a key identifier chosen by the application.
1914 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001915#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001916/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001917 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001918#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001919/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001920 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001921#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001922/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001923 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001924#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02001925
Ronald Cron7424f0d2020-09-14 16:17:41 +02001926
1927#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
1928
1929#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
1930#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
1931#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
1932
1933/** Utility to initialize a key identifier at runtime.
1934 *
1935 * \param unused Unused parameter.
1936 * \param key_id Identifier of the key.
1937 */
1938static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
1939 unsigned int unused, psa_key_id_t key_id )
1940{
1941 (void)unused;
1942
1943 return( key_id );
1944}
1945
1946/** Compare two key identifiers.
1947 *
1948 * \param id1 First key identifier.
1949 * \param id2 Second key identifier.
1950 *
1951 * \return Non-zero if the two key identifier are equal, zero otherwise.
1952 */
1953static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
1954 mbedtls_svc_key_id_t id2 )
1955{
1956 return( id1 == id2 );
1957}
1958
Ronald Cronc4d1b512020-07-31 11:26:37 +02001959/** Check whether a key identifier is null.
1960 *
1961 * \param key Key identifier.
1962 *
1963 * \return Non-zero if the key identifier is null, zero otherwise.
1964 */
1965static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
1966{
1967 return( key == 0 );
1968}
1969
Ronald Cron7424f0d2020-09-14 16:17:41 +02001970#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
1971
1972#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
1973#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
1974#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
1975
1976/** Utility to initialize a key identifier at runtime.
1977 *
1978 * \param owner_id Identifier of the key owner.
1979 * \param key_id Identifier of the key.
1980 */
1981static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
1982 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
1983{
1984 return( (mbedtls_svc_key_id_t){ .key_id = key_id,
1985 .owner = owner_id } );
1986}
1987
1988/** Compare two key identifiers.
1989 *
1990 * \param id1 First key identifier.
1991 * \param id2 Second key identifier.
1992 *
1993 * \return Non-zero if the two key identifier are equal, zero otherwise.
1994 */
1995static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
1996 mbedtls_svc_key_id_t id2 )
1997{
1998 return( ( id1.key_id == id2.key_id ) &&
1999 mbedtls_key_owner_id_equal( id1.owner, id2.owner ) );
2000}
2001
Ronald Cronc4d1b512020-07-31 11:26:37 +02002002/** Check whether a key identifier is null.
2003 *
2004 * \param key Key identifier.
2005 *
2006 * \return Non-zero if the key identifier is null, zero otherwise.
2007 */
2008static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2009{
2010 return( ( key.key_id == 0 ) && ( key.owner == 0 ) );
2011}
2012
Ronald Cron7424f0d2020-09-14 16:17:41 +02002013#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002014
2015/**@}*/
2016
2017/** \defgroup policy Key policies
2018 * @{
2019 */
2020
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002021/** Whether the key may be exported.
2022 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002023 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002024 * regardless of the value of this permission flag.
2025 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002026 * If a key does not have export permission, implementations shall not
2027 * allow the key to be exported in plain form from the cryptoprocessor,
2028 * whether through psa_export_key() or through a proprietary interface.
2029 * The key may however be exportable in a wrapped form, i.e. in a form
2030 * where it is encrypted by another key.
2031 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002032#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2033
2034/** Whether the key may be copied.
2035 *
2036 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002037 * with the same policy or a more restrictive policy.
2038 *
2039 * For lifetimes for which the key is located in a secure element which
2040 * enforce the non-exportability of keys, copying a key outside the secure
2041 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2042 * Copying the key inside the secure element is permitted with just
2043 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2044 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2045 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2046 * is sufficient to permit the copy.
2047 */
2048#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2049
2050/** Whether the key may be used to encrypt a message.
2051 *
2052 * This flag allows the key to be used for a symmetric encryption operation,
2053 * for an AEAD encryption-and-authentication operation,
2054 * or for an asymmetric encryption operation,
2055 * if otherwise permitted by the key's type and policy.
2056 *
2057 * For a key pair, this concerns the public key.
2058 */
2059#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2060
2061/** Whether the key may be used to decrypt a message.
2062 *
2063 * This flag allows the key to be used for a symmetric decryption operation,
2064 * for an AEAD decryption-and-verification operation,
2065 * or for an asymmetric decryption operation,
2066 * if otherwise permitted by the key's type and policy.
2067 *
2068 * For a key pair, this concerns the private key.
2069 */
2070#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2071
2072/** Whether the key may be used to sign a message.
2073 *
2074 * This flag allows the key to be used for a MAC calculation operation
2075 * or for an asymmetric signature operation,
2076 * if otherwise permitted by the key's type and policy.
2077 *
2078 * For a key pair, this concerns the private key.
2079 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002080#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002081
2082/** Whether the key may be used to verify a message signature.
2083 *
2084 * This flag allows the key to be used for a MAC verification operation
2085 * or for an asymmetric signature verification operation,
2086 * if otherwise permitted by by the key's type and policy.
2087 *
2088 * For a key pair, this concerns the public key.
2089 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002090#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002091
2092/** Whether the key may be used to derive other keys.
2093 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002094#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002095
2096/**@}*/
2097
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002098/** \defgroup derivation Key derivation
2099 * @{
2100 */
2101
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002102/** A secret input for key derivation.
2103 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002104 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2105 * (passed to psa_key_derivation_input_key())
2106 * or the shared secret resulting from a key agreement
2107 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002108 *
2109 * The secret can also be a direct input (passed to
2110 * key_derivation_input_bytes()). In this case, the derivation operation
2111 * may not be used to derive keys: the operation will only allow
2112 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002113 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002114#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002115
2116/** A label for key derivation.
2117 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002118 * This should be a direct input.
2119 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002120 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002121#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002122
2123/** A salt for key derivation.
2124 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002125 * This should be a direct input.
2126 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002127 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002128#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002129
2130/** An information string for key derivation.
2131 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002132 * This should be a direct input.
2133 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002134 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002135#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002136
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002137/** A seed for key derivation.
2138 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002139 * This should be a direct input.
2140 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002141 */
2142#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2143
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002144/**@}*/
2145
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002146#endif /* PSA_CRYPTO_VALUES_H */