blob: 6d34b0640b2aca0d27e1c0358d59b4d75b2a38db [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
36
37/** \defgroup error Error codes
38 * @{
39 */
40
David Saadab4ecc272019-02-14 13:48:10 +020041/* PSA error codes */
42
Gilles Peskinef3b731e2018-12-12 13:38:31 +010043/** The action was completed successfully. */
44#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045
46/** An error occurred that does not correspond to any defined
47 * failure cause.
48 *
49 * Implementations may use this error code if none of the other standard
50 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020051#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010052
53/** The requested operation or a parameter is not supported
54 * by this implementation.
55 *
56 * Implementations should return this error code when an enumeration
57 * parameter such as a key type, algorithm, etc. is not recognized.
58 * If a combination of parameters is recognized and identified as
59 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020060#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010061
62/** The requested action is denied by a policy.
63 *
64 * Implementations should return this error code when the parameters
65 * are recognized as valid and supported, and a policy explicitly
66 * denies the requested operation.
67 *
68 * If a subset of the parameters of a function call identify a
69 * forbidden operation, and another subset of the parameters are
70 * not valid or not supported, it is unspecified whether the function
71 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
72 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020073#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010074
75/** An output buffer is too small.
76 *
77 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
78 * description to determine a sufficient buffer size.
79 *
80 * Implementations should preferably return this error code only
81 * in cases when performing the operation with a larger output
82 * buffer would succeed. However implementations may return this
83 * error if a function has invalid or unsupported parameters in addition
84 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
David Saadab4ecc272019-02-14 13:48:10 +020087/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088 *
David Saadab4ecc272019-02-14 13:48:10 +020089 * Implementations should return this error, when attempting
90 * to write an item (like a key) that already exists. */
91#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010092
David Saadab4ecc272019-02-14 13:48:10 +020093/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094 *
David Saadab4ecc272019-02-14 13:48:10 +020095 * Implementations should return this error, if a requested item (like
96 * a key) does not exist. */
97#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
99/** The requested action cannot be performed in the current state.
100 *
101 * Multipart operations return this error when one of the
102 * functions is called out of sequence. Refer to the function
103 * descriptions for permitted sequencing of functions.
104 *
105 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100106 * that a key either exists or not,
107 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100108 * as applicable.
109 *
110 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200111 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100112 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200113#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100114
115/** The parameters passed to the function are invalid.
116 *
117 * Implementations may return this error any time a parameter or
118 * combination of parameters are recognized as invalid.
119 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100120 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200121 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100122 * instead.
123 */
David Saadab4ecc272019-02-14 13:48:10 +0200124#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100125
126/** There is not enough runtime memory.
127 *
128 * If the action is carried out across multiple security realms, this
129 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200130#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100131
132/** There is not enough persistent storage.
133 *
134 * Functions that modify the key storage return this error code if
135 * there is insufficient storage space on the host media. In addition,
136 * many functions that do not otherwise access storage may return this
137 * error code if the implementation requires a mandatory log entry for
138 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200139#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100140
141/** There was a communication failure inside the implementation.
142 *
143 * This can indicate a communication failure between the application
144 * and an external cryptoprocessor or between the cryptoprocessor and
145 * an external volatile or persistent memory. A communication failure
146 * may be transient or permanent depending on the cause.
147 *
148 * \warning If a function returns this error, it is undetermined
149 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200150 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100151 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
152 * if the requested action was completed successfully in an external
153 * cryptoprocessor but there was a breakdown of communication before
154 * the cryptoprocessor could report the status to the application.
155 */
David Saadab4ecc272019-02-14 13:48:10 +0200156#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100157
158/** There was a storage failure that may have led to data loss.
159 *
160 * This error indicates that some persistent storage is corrupted.
161 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200162 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100163 * between the cryptoprocessor and its external storage (use
164 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
165 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
166 *
167 * Note that a storage failure does not indicate that any data that was
168 * previously read is invalid. However this previously read data may no
169 * longer be readable from storage.
170 *
171 * When a storage failure occurs, it is no longer possible to ensure
172 * the global integrity of the keystore. Depending on the global
173 * integrity guarantees offered by the implementation, access to other
174 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100175 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 *
177 * Implementations should only use this error code to report a
178 * permanent storage corruption. However application writers should
179 * keep in mind that transient errors while reading the storage may be
180 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200181#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100182
183/** A hardware failure was detected.
184 *
185 * A hardware failure may be transient or permanent depending on the
186 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200187#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188
189/** A tampering attempt was detected.
190 *
191 * If an application receives this error code, there is no guarantee
192 * that previously accessed or computed data was correct and remains
193 * confidential. Applications should not perform any security function
194 * and should enter a safe failure state.
195 *
196 * Implementations may return this error code if they detect an invalid
197 * state that cannot happen during normal operation and that indicates
198 * that the implementation's security guarantees no longer hold. Depending
199 * on the implementation architecture and on its security and safety goals,
200 * the implementation may forcibly terminate the application.
201 *
202 * This error code is intended as a last resort when a security breach
203 * is detected and it is unsure whether the keystore data is still
204 * protected. Implementations shall only return this error code
205 * to report an alarm from a tampering detector, to indicate that
206 * the confidentiality of stored data can no longer be guaranteed,
207 * or to indicate that the integrity of previously returned data is now
208 * considered compromised. Implementations shall not use this error code
209 * to indicate a hardware failure that merely makes it impossible to
210 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
211 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
212 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
213 * instead).
214 *
215 * This error indicates an attack against the application. Implementations
216 * shall not return this error code as a consequence of the behavior of
217 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200218#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100219
220/** There is not enough entropy to generate random data needed
221 * for the requested action.
222 *
223 * This error indicates a failure of a hardware random generator.
224 * Application writers should note that this error can be returned not
225 * only by functions whose purpose is to generate random data, such
226 * as key, IV or nonce generation, but also by functions that execute
227 * an algorithm with a randomized result, as well as functions that
228 * use randomization of intermediate computations as a countermeasure
229 * to certain attacks.
230 *
231 * Implementations should avoid returning this error after psa_crypto_init()
232 * has succeeded. Implementations should generate sufficient
233 * entropy during initialization and subsequently use a cryptographically
234 * secure pseudorandom generator (PRNG). However implementations may return
235 * this error at any time if a policy requires the PRNG to be reseeded
236 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200237#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100238
239/** The signature, MAC or hash is incorrect.
240 *
241 * Verification functions return this error if the verification
242 * calculations completed successfully, and the value to be verified
243 * was determined to be incorrect.
244 *
245 * If the value to verify has an invalid size, implementations may return
246 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200247#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100248
249/** The decrypted padding is incorrect.
250 *
251 * \warning In some protocols, when decrypting data, it is essential that
252 * the behavior of the application does not depend on whether the padding
253 * is correct, down to precise timing. Applications should prefer
254 * protocols that use authenticated encryption rather than plain
255 * encryption. If the application must perform a decryption of
256 * unauthenticated data, the application writer should take care not
257 * to reveal whether the padding is invalid.
258 *
259 * Implementations should strive to make valid and invalid padding
260 * as close as possible to indistinguishable to an external observer.
261 * In particular, the timing of a decryption operation should not
262 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200263#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100264
David Saadab4ecc272019-02-14 13:48:10 +0200265/** Return this error when there's insufficient data when attempting
266 * to read from a resource. */
267#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100268
Ronald Croncf56a0a2020-08-04 09:51:30 +0200269/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270 */
David Saadab4ecc272019-02-14 13:48:10 +0200271#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100273/** Stored data has been corrupted.
274 *
275 * This error indicates that some persistent storage has suffered corruption.
276 * It does not indicate the following situations, which have specific error
277 * codes:
278 *
279 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
280 * - A communication error between the cryptoprocessor and its external
281 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
282 * - When the storage is in a valid state but is full - use
283 * #PSA_ERROR_INSUFFICIENT_STORAGE.
284 * - When the storage fails for other reasons - use
285 * #PSA_ERROR_STORAGE_FAILURE.
286 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
287 *
288 * \note A storage corruption does not indicate that any data that was
289 * previously read is invalid. However this previously read data might no
290 * longer be readable from storage.
291 *
292 * When a storage failure occurs, it is no longer possible to ensure the
293 * global integrity of the keystore.
294 */
295#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
296
gabor-mezei-armfe309242020-11-09 17:39:56 +0100297/** Data read from storage is not valid for the implementation.
298 *
299 * This error indicates that some data read from storage does not have a valid
300 * format. It does not indicate the following situations, which have specific
301 * error codes:
302 *
303 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
304 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
305 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
306 *
307 * This error is typically a result of either storage corruption on a
308 * cleartext storage backend, or an attempt to read data that was
309 * written by an incompatible version of the library.
310 */
311#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
312
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100313/**@}*/
314
315/** \defgroup crypto_types Key and algorithm types
316 * @{
317 */
318
319/** An invalid key type value.
320 *
321 * Zero is not the encoding of any key type.
322 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100323#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100324
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100325/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100326 *
327 * Key types defined by this standard will never have the
328 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
329 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
330 * respect the bitwise structure used by standard encodings whenever practical.
331 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100332#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100333
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100334#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100335#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
336#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
337#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100338#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100340#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100341
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100342/** Whether a key type is vendor-defined.
343 *
344 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
345 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100346#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
347 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
348
349/** Whether a key type is an unstructured array of bytes.
350 *
351 * This encompasses both symmetric keys and non-key data.
352 */
353#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100354 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
355 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100356
357/** Whether a key type is asymmetric: either a key pair or a public key. */
358#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
359 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
360 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
361 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
362/** Whether a key type is the public part of a key pair. */
363#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
364 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
365/** Whether a key type is a key pair containing a private part and a public
366 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200367#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100368 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
369/** The key pair type corresponding to a public key type.
370 *
371 * You may also pass a key pair type as \p type, it will be left unchanged.
372 *
373 * \param type A public key type or key pair type.
374 *
375 * \return The corresponding key pair type.
376 * If \p type is not a public key or a key pair,
377 * the return value is undefined.
378 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200379#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100380 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
381/** The public key type corresponding to a key pair type.
382 *
383 * You may also pass a key pair type as \p type, it will be left unchanged.
384 *
385 * \param type A public key type or key pair type.
386 *
387 * \return The corresponding public key type.
388 * If \p type is not a public key or a key pair,
389 * the return value is undefined.
390 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200391#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100392 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
393
394/** Raw data.
395 *
396 * A "key" of this type cannot be used for any cryptographic operation.
397 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100398#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100399
400/** HMAC key.
401 *
402 * The key policy determines which underlying hash algorithm the key can be
403 * used for.
404 *
405 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100406 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100407 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100408#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100409
410/** A secret for key derivation.
411 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200412 * This key type is for high-entropy secrets only. For low-entropy secrets,
413 * #PSA_KEY_TYPE_PASSWORD should be used instead.
414 *
415 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
416 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
417 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100418 * The key policy determines which key derivation algorithm the key
419 * can be used for.
420 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100421#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100422
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200423/** A low-entropy secret for password hashing or key derivation.
424 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200425 * This key type is suitable for passwords and passphrases which are typically
426 * intended to be memorizable by humans, and have a low entropy relative to
427 * their size. It can be used for randomly generated or derived keys with
428 * maximum or near-maximum entropy, but PSA_KEY_TYPE_DERIVE is more suitable
429 * for such keys. It is not suitable for passwords with extremely low entropy,
430 * such as numerical PINs.
431 *
432 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
433 * key derivation algorithms. Algorithms that accept such an input were
434 * designed to accept low-entropy secret and are known as password hashing or
435 * key stretching algorithms.
436 *
437 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
438 * key derivation algorithms, as the algorithms that take such an input expect
439 * it to be high-entropy.
440 *
441 * The key policy determines which key derivation algorithm the key can be
442 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200443 */
Manuel Pégourié-Gonnardc16033e2021-04-30 11:59:40 +0200444#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200445
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200446/** A secret value that can be used to verify a password hash.
447 *
448 * The key policy determines which key derivation algorithm the key
449 * can be used for, among the same permissible subset as for
450 * #PSA_KEY_TYPE_PASSWORD.
451 */
452#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)
453
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200454/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200455 *
456 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200457 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200458 */
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200459#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200460
Gilles Peskine737c6be2019-05-21 16:01:06 +0200461/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100462 *
463 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
464 * 32 bytes (AES-256).
465 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100466#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100467
468/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
469 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100470 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
471 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100472 *
473 * Note that single DES and 2-key 3DES are weak and strongly
474 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
475 * is weak and deprecated and should only be used in legacy protocols.
476 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100477#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100478
Gilles Peskine737c6be2019-05-21 16:01:06 +0200479/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100480 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100481#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100482
483/** Key for the RC4 stream cipher.
484 *
485 * Note that RC4 is weak and deprecated and should only be used in
486 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100487#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100488
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200489/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
490 *
491 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
492 *
493 * Implementations must support 12-byte nonces, may support 8-byte nonces,
494 * and should reject other sizes.
495 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100496#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200497
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100498/** RSA public key.
499 *
500 * The size of an RSA key is the bit size of the modulus.
501 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100502#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100503/** RSA key pair (private and public key).
504 *
505 * The size of an RSA key is the bit size of the modulus.
506 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100507#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100508/** Whether a key type is an RSA key (pair or public-only). */
509#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200510 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100511
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100512#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100513#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
514#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100515/** Elliptic curve key pair.
516 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100517 * The size of an elliptic curve key is the bit size associated with the curve,
518 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
519 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
520 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100521 * \param curve A value of type ::psa_ecc_family_t that
522 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100523 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200524#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
525 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100526/** Elliptic curve public key.
527 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100528 * The size of an elliptic curve public key is the same as the corresponding
529 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
530 * `PSA_ECC_FAMILY_xxx` curve families).
531 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100532 * \param curve A value of type ::psa_ecc_family_t that
533 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100534 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100535#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
536 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
537
538/** Whether a key type is an elliptic curve key (pair or public-only). */
539#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200540 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100541 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100542/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200543#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100544 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200545 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100546/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100547#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
548 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
549 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
550
551/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100552#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
553 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100554 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
555 0))
556
Gilles Peskine228abc52019-12-03 17:24:19 +0100557/** SEC Koblitz curves over prime fields.
558 *
559 * This family comprises the following curves:
560 * secp192k1, secp224k1, secp256k1.
561 * They are defined in _Standards for Efficient Cryptography_,
562 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
563 * https://www.secg.org/sec2-v2.pdf
564 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100565#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100566
567/** SEC random curves over prime fields.
568 *
569 * This family comprises the following curves:
570 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
571 * They are defined in _Standards for Efficient Cryptography_,
572 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
573 * https://www.secg.org/sec2-v2.pdf
574 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100575#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100576/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100577#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100578
579/** SEC Koblitz curves over binary fields.
580 *
581 * This family comprises the following curves:
582 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
583 * They are defined in _Standards for Efficient Cryptography_,
584 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
585 * https://www.secg.org/sec2-v2.pdf
586 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100587#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100588
589/** SEC random curves over binary fields.
590 *
591 * This family comprises the following curves:
592 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
593 * They are defined in _Standards for Efficient Cryptography_,
594 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
595 * https://www.secg.org/sec2-v2.pdf
596 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100597#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100598
599/** SEC additional random curves over binary fields.
600 *
601 * This family comprises the following curve:
602 * sect163r2.
603 * It is defined in _Standards for Efficient Cryptography_,
604 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
605 * https://www.secg.org/sec2-v2.pdf
606 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100607#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100608
609/** Brainpool P random curves.
610 *
611 * This family comprises the following curves:
612 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
613 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
614 * It is defined in RFC 5639.
615 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100616#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100617
618/** Curve25519 and Curve448.
619 *
620 * This family comprises the following Montgomery curves:
621 * - 255-bit: Bernstein et al.,
622 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
623 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
624 * - 448-bit: Hamburg,
625 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
626 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
627 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100628#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100629
Gilles Peskine67546802021-02-24 21:49:40 +0100630/** The twisted Edwards curves Ed25519 and Ed448.
631 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100632 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100633 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100634 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100635 *
636 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100637 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100638 * to Curve25519.
639 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
640 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
641 * to Curve448.
642 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
643 */
644#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
645
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100646#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100647#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
648#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100649/** Diffie-Hellman key pair.
650 *
Paul Elliott75e27032020-06-03 15:17:39 +0100651 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100652 * Diffie-Hellman group to be used.
653 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200654#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
655 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100656/** Diffie-Hellman public key.
657 *
Paul Elliott75e27032020-06-03 15:17:39 +0100658 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100659 * Diffie-Hellman group to be used.
660 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200661#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
662 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
663
664/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
665#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200666 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200667 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
668/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200669#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200670 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200671 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200672/** Whether a key type is a Diffie-Hellman public key. */
673#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
674 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
675 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
676
677/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100678#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
679 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200680 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
681 0))
682
Gilles Peskine228abc52019-12-03 17:24:19 +0100683/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
684 *
685 * This family includes groups with the following key sizes (in bits):
686 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
687 * all of these sizes or only a subset.
688 */
Paul Elliott75e27032020-06-03 15:17:39 +0100689#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100690
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100691#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100692 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100693/** The block size of a block cipher.
694 *
695 * \param type A cipher key type (value of type #psa_key_type_t).
696 *
697 * \return The block size for a block cipher, or 1 for a stream cipher.
698 * The return value is undefined if \p type is not a supported
699 * cipher key type.
700 *
701 * \note It is possible to build stream cipher algorithms on top of a block
702 * cipher, for example CTR mode (#PSA_ALG_CTR).
703 * This macro only takes the key type into account, so it cannot be
704 * used to determine the size of the data that #psa_cipher_update()
705 * might buffer for future processing in general.
706 *
707 * \note This macro returns a compile-time constant if its argument is one.
708 *
709 * \warning This macro may evaluate its argument multiple times.
710 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100711#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100712 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100713 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100714 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100715
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100716/** Vendor-defined algorithm flag.
717 *
718 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
719 * bit set. Vendors who define additional algorithms must use an encoding with
720 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
721 * used by standard encodings whenever practical.
722 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100723#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100724
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100725#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100726#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
727#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100728#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100729#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
730#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
731#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
732#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
733#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100734
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100735/** Whether an algorithm is vendor-defined.
736 *
737 * See also #PSA_ALG_VENDOR_FLAG.
738 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100739#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
740 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
741
742/** Whether the specified algorithm is a hash algorithm.
743 *
744 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
745 *
746 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
747 * This macro may return either 0 or 1 if \p alg is not a supported
748 * algorithm identifier.
749 */
750#define PSA_ALG_IS_HASH(alg) \
751 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
752
753/** Whether the specified algorithm is a MAC algorithm.
754 *
755 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
756 *
757 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
758 * This macro may return either 0 or 1 if \p alg is not a supported
759 * algorithm identifier.
760 */
761#define PSA_ALG_IS_MAC(alg) \
762 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
763
764/** Whether the specified algorithm is a symmetric cipher algorithm.
765 *
766 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
767 *
768 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
769 * This macro may return either 0 or 1 if \p alg is not a supported
770 * algorithm identifier.
771 */
772#define PSA_ALG_IS_CIPHER(alg) \
773 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
774
775/** Whether the specified algorithm is an authenticated encryption
776 * with associated data (AEAD) algorithm.
777 *
778 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
779 *
780 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
781 * This macro may return either 0 or 1 if \p alg is not a supported
782 * algorithm identifier.
783 */
784#define PSA_ALG_IS_AEAD(alg) \
785 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
786
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200787/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200788 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100789 *
790 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
791 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200792 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100793 * This macro may return either 0 or 1 if \p alg is not a supported
794 * algorithm identifier.
795 */
796#define PSA_ALG_IS_SIGN(alg) \
797 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
798
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200799/** Whether the specified algorithm is an asymmetric encryption algorithm,
800 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100801 *
802 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
803 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200804 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100805 * This macro may return either 0 or 1 if \p alg is not a supported
806 * algorithm identifier.
807 */
808#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
809 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
810
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100811/** Whether the specified algorithm is a key agreement algorithm.
812 *
813 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
814 *
815 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
816 * This macro may return either 0 or 1 if \p alg is not a supported
817 * algorithm identifier.
818 */
819#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100820 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100821
822/** Whether the specified algorithm is a key derivation algorithm.
823 *
824 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
825 *
826 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
827 * This macro may return either 0 or 1 if \p alg is not a supported
828 * algorithm identifier.
829 */
830#define PSA_ALG_IS_KEY_DERIVATION(alg) \
831 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
832
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200833/** Whether the specified algorithm is a key stretching / password hashing
834 * algorithm.
835 *
836 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200837 * that is suitable for use with a low-entropy secret such as a password.
838 * Equivalently, it's a key derivation algorithm that uses a
839 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200840 *
841 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
842 *
843 * \return 1 if \p alg is a key stretching / passowrd hashing algorithm, 0
844 * otherwise. This macro may return either 0 or 1 if \p alg is not a
845 * supported algorithm identifier.
846 */
847#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
848 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
849 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
850
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100851#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100852/** MD2 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100853#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100854/** MD4 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100855#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100856/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100857#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100858/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100859#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100860/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100861#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100862/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100863#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100864/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100865#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100866/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100867#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100868/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100869#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100870/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100871#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100872/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100873#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100874/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100875#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100876/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100877#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100878/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100879#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100880/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100881#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100882/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100883 *
884 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
885 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
886 * has the same output size and a (theoretically) higher security strength.
887 */
Gilles Peskine27354692021-03-03 17:45:06 +0100888#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100889
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100890/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100891 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100892 * This value may be used to form the algorithm usage field of a policy
893 * for a signature algorithm that is parametrized by a hash. The key
894 * may then be used to perform operations using the same signature
895 * algorithm parametrized with any supported hash.
896 *
897 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100898 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100899 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100900 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100901 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
902 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100903 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200904 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100905 * ```
906 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100907 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100908 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
909 * call to sign or verify a message may use a different hash.
910 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200911 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
912 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
913 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100914 * ```
915 *
916 * This value may not be used to build other algorithms that are
917 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100918 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100919 *
920 * This value may not be used to build an algorithm specification to
921 * perform an operation. It is only valid to build policies.
922 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100923#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100924
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100925#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100926#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100927/** Macro to build an HMAC algorithm.
928 *
929 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
930 *
931 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
932 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
933 *
934 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100935 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100936 * hash algorithm.
937 */
938#define PSA_ALG_HMAC(hash_alg) \
939 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
940
941#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
942 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
943
944/** Whether the specified algorithm is an HMAC algorithm.
945 *
946 * HMAC is a family of MAC algorithms that are based on a hash function.
947 *
948 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
949 *
950 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
951 * This macro may return either 0 or 1 if \p alg is not a supported
952 * algorithm identifier.
953 */
954#define PSA_ALG_IS_HMAC(alg) \
955 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
956 PSA_ALG_HMAC_BASE)
957
958/* In the encoding of a MAC algorithm, the bits corresponding to
959 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
960 * truncated. As an exception, the value 0 means the untruncated algorithm,
961 * whatever its length is. The length is encoded in 6 bits, so it can
962 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
963 * to full length is correctly encoded as 0 and any non-trivial truncation
964 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100965#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
966#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100967
Steven Cooremand927ed72021-02-22 19:59:35 +0100968/* In the encoding of a MAC algorithm, the bit corresponding to
969 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100970 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
971 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100972 * same base class and having a (potentially truncated) MAC length greater or
973 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
974#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
975
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100976/** Macro to build a truncated MAC algorithm.
977 *
978 * A truncated MAC algorithm is identical to the corresponding MAC
979 * algorithm except that the MAC value for the truncated algorithm
980 * consists of only the first \p mac_length bytes of the MAC value
981 * for the untruncated algorithm.
982 *
983 * \note This macro may allow constructing algorithm identifiers that
984 * are not valid, either because the specified length is larger
985 * than the untruncated MAC or because the specified length is
986 * smaller than permitted by the implementation.
987 *
988 * \note It is implementation-defined whether a truncated MAC that
989 * is truncated to the same length as the MAC of the untruncated
990 * algorithm is considered identical to the untruncated algorithm
991 * for policy comparison purposes.
992 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200993 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100994 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100995 * is true). This may be a truncated or untruncated
996 * MAC algorithm.
997 * \param mac_length Desired length of the truncated MAC in bytes.
998 * This must be at most the full length of the MAC
999 * and must be at least an implementation-specified
1000 * minimum. The implementation-specified minimum
1001 * shall not be zero.
1002 *
1003 * \return The corresponding MAC algorithm with the specified
1004 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001005 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001006 * MAC algorithm or if \p mac_length is too small or
1007 * too large for the specified MAC algorithm.
1008 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001009#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1010 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1011 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001012 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1013
1014/** Macro to build the base MAC algorithm corresponding to a truncated
1015 * MAC algorithm.
1016 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001017 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001018 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001019 * is true). This may be a truncated or untruncated
1020 * MAC algorithm.
1021 *
1022 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001023 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001024 * MAC algorithm.
1025 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001026#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1027 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1028 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001029
1030/** Length to which a MAC algorithm is truncated.
1031 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001032 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001033 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001034 * is true).
1035 *
1036 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001037 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1038 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001039 * MAC algorithm.
1040 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001041#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1042 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001043
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001044/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001045 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001046 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001047 * sharing the same base algorithm, and where the (potentially truncated) MAC
1048 * length of the specific algorithm is equal to or larger then the wildcard
1049 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001050 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001051 * \note When setting the minimum required MAC length to less than the
1052 * smallest MAC length allowed by the base algorithm, this effectively
1053 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001054 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001055 * \param mac_alg A MAC algorithm identifier (value of type
1056 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1057 * is true).
1058 * \param min_mac_length Desired minimum length of the message authentication
1059 * code in bytes. This must be at most the untruncated
1060 * length of the MAC and must be at least 1.
1061 *
1062 * \return The corresponding MAC wildcard algorithm with the
1063 * specified minimum length.
1064 * \return Unspecified if \p mac_alg is not a supported MAC
1065 * algorithm or if \p min_mac_length is less than 1 or
1066 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001067 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001068#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1069 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1070 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001071
Bence Szépkútia2945512020-12-03 21:40:17 +01001072#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001073/** The CBC-MAC construction over a block cipher
1074 *
1075 * \warning CBC-MAC is insecure in many cases.
1076 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1077 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001078#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001079/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001080#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001081
1082/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1083 *
1084 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1085 *
1086 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1087 * This macro may return either 0 or 1 if \p alg is not a supported
1088 * algorithm identifier.
1089 */
1090#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1091 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1092 PSA_ALG_CIPHER_MAC_BASE)
1093
1094#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1095#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1096
1097/** Whether the specified algorithm is a stream cipher.
1098 *
1099 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1100 * by applying a bitwise-xor with a stream of bytes that is generated
1101 * from a key.
1102 *
1103 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1104 *
1105 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1106 * This macro may return either 0 or 1 if \p alg is not a supported
1107 * algorithm identifier or if it is not a symmetric cipher algorithm.
1108 */
1109#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1110 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1111 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1112
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001113/** The stream cipher mode of a stream cipher algorithm.
1114 *
1115 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001116 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1117 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001118 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001119#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001120
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001121/** The CTR stream cipher mode.
1122 *
1123 * CTR is a stream cipher which is built from a block cipher.
1124 * The underlying block cipher is determined by the key type.
1125 * For example, to use AES-128-CTR, use this algorithm with
1126 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1127 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001128#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001129
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001130/** The CFB stream cipher mode.
1131 *
1132 * The underlying block cipher is determined by the key type.
1133 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001134#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001135
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001136/** The OFB stream cipher mode.
1137 *
1138 * The underlying block cipher is determined by the key type.
1139 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001140#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001141
1142/** The XTS cipher mode.
1143 *
1144 * XTS is a cipher mode which is built from a block cipher. It requires at
1145 * least one full block of input, but beyond this minimum the input
1146 * does not need to be a whole number of blocks.
1147 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001148#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001149
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001150/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1151 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001152 * \warning ECB mode does not protect the confidentiality of the encrypted data
1153 * except in extremely narrow circumstances. It is recommended that applications
1154 * only use ECB if they need to construct an operating mode that the
1155 * implementation does not provide. Implementations are encouraged to provide
1156 * the modes that applications need in preference to supporting direct access
1157 * to ECB.
1158 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001159 * The underlying block cipher is determined by the key type.
1160 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001161 * This symmetric cipher mode can only be used with messages whose lengths are a
1162 * multiple of the block size of the chosen block cipher.
1163 *
1164 * ECB mode does not accept an initialization vector (IV). When using a
1165 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1166 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001167 */
1168#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1169
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001170/** The CBC block cipher chaining mode, with no padding.
1171 *
1172 * The underlying block cipher is determined by the key type.
1173 *
1174 * This symmetric cipher mode can only be used with messages whose lengths
1175 * are whole number of blocks for the chosen block cipher.
1176 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001177#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001178
1179/** The CBC block cipher chaining mode with PKCS#7 padding.
1180 *
1181 * The underlying block cipher is determined by the key type.
1182 *
1183 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1184 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001185#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001186
Gilles Peskine679693e2019-05-06 15:10:16 +02001187#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1188
1189/** Whether the specified algorithm is an AEAD mode on a block cipher.
1190 *
1191 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1192 *
1193 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1194 * a block cipher, 0 otherwise.
1195 * This macro may return either 0 or 1 if \p alg is not a supported
1196 * algorithm identifier.
1197 */
1198#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1199 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1200 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1201
Gilles Peskine9153ec02019-02-15 13:02:02 +01001202/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001203 *
1204 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001205 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001206#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001207
1208/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001209 *
1210 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001211 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001212#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001213
1214/** The Chacha20-Poly1305 AEAD algorithm.
1215 *
1216 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001217 *
1218 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1219 * and should reject other sizes.
1220 *
1221 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001222 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001223#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001224
1225/* In the encoding of a AEAD algorithm, the bits corresponding to
1226 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1227 * The constants for default lengths follow this encoding.
1228 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001229#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1230#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001231
Steven Cooremand927ed72021-02-22 19:59:35 +01001232/* In the encoding of an AEAD algorithm, the bit corresponding to
1233 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001234 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1235 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001236 * same base class and having a tag length greater than or equal to the one
1237 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1238#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1239
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001240/** Macro to build a shortened AEAD algorithm.
1241 *
1242 * A shortened AEAD algorithm is similar to the corresponding AEAD
1243 * algorithm, but has an authentication tag that consists of fewer bytes.
1244 * Depending on the algorithm, the tag length may affect the calculation
1245 * of the ciphertext.
1246 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001247 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001248 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001249 * is true).
1250 * \param tag_length Desired length of the authentication tag in bytes.
1251 *
1252 * \return The corresponding AEAD algorithm with the specified
1253 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001254 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001255 * AEAD algorithm or if \p tag_length is not valid
1256 * for the specified AEAD algorithm.
1257 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001258#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001259 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1260 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001261 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1262 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1263
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001264/** Retrieve the tag length of a specified AEAD algorithm
1265 *
1266 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001267 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001268 * is true).
1269 *
1270 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001271 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001272 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001273 */
1274#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1275 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1276 PSA_AEAD_TAG_LENGTH_OFFSET )
1277
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001278/** Calculate the corresponding AEAD algorithm with the default tag length.
1279 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001280 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001281 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001282 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001283 * \return The corresponding AEAD algorithm with the default
1284 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001285 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001286#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001287 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001288 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1289 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1290 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001291 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001292#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1293 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1294 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001295 ref :
1296
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001297/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001298 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001299 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001300 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001301 * algorithm is equal to or larger then the minimum tag length specified by the
1302 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001303 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001304 * \note When setting the minimum required tag length to less than the
1305 * smallest tag length allowed by the base algorithm, this effectively
1306 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001307 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001308 * \param aead_alg An AEAD algorithm identifier (value of type
1309 * #psa_algorithm_t such that
1310 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1311 * \param min_tag_length Desired minimum length of the authentication tag in
1312 * bytes. This must be at least 1 and at most the largest
1313 * allowed tag length of the algorithm.
1314 *
1315 * \return The corresponding AEAD wildcard algorithm with the
1316 * specified minimum length.
1317 * \return Unspecified if \p aead_alg is not a supported
1318 * AEAD algorithm or if \p min_tag_length is less than 1
1319 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001320 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001321#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001322 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1323 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001324
Bence Szépkútia2945512020-12-03 21:40:17 +01001325#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001326/** RSA PKCS#1 v1.5 signature with hashing.
1327 *
1328 * This is the signature scheme defined by RFC 8017
1329 * (PKCS#1: RSA Cryptography Specifications) under the name
1330 * RSASSA-PKCS1-v1_5.
1331 *
1332 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1333 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001334 * This includes #PSA_ALG_ANY_HASH
1335 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001336 *
1337 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001338 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001339 * hash algorithm.
1340 */
1341#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1342 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1343/** Raw PKCS#1 v1.5 signature.
1344 *
1345 * The input to this algorithm is the DigestInfo structure used by
1346 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1347 * steps 3&ndash;6.
1348 */
1349#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1350#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1351 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1352
Bence Szépkútia2945512020-12-03 21:40:17 +01001353#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001354/** RSA PSS signature with hashing.
1355 *
1356 * This is the signature scheme defined by RFC 8017
1357 * (PKCS#1: RSA Cryptography Specifications) under the name
1358 * RSASSA-PSS, with the message generation function MGF1, and with
1359 * a salt length equal to the length of the hash. The specified
1360 * hash algorithm is used to hash the input message, to create the
1361 * salted hash, and for the mask generation.
1362 *
1363 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1364 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001365 * This includes #PSA_ALG_ANY_HASH
1366 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001367 *
1368 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001369 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001370 * hash algorithm.
1371 */
1372#define PSA_ALG_RSA_PSS(hash_alg) \
1373 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1374#define PSA_ALG_IS_RSA_PSS(alg) \
1375 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1376
Bence Szépkútia2945512020-12-03 21:40:17 +01001377#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001378/** ECDSA signature with hashing.
1379 *
1380 * This is the ECDSA signature scheme defined by ANSI X9.62,
1381 * with a random per-message secret number (*k*).
1382 *
1383 * The representation of the signature as a byte string consists of
1384 * the concatentation of the signature values *r* and *s*. Each of
1385 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1386 * of the base point of the curve in octets. Each value is represented
1387 * in big-endian order (most significant octet first).
1388 *
1389 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1390 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001391 * This includes #PSA_ALG_ANY_HASH
1392 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001393 *
1394 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001395 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001396 * hash algorithm.
1397 */
1398#define PSA_ALG_ECDSA(hash_alg) \
1399 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1400/** ECDSA signature without hashing.
1401 *
1402 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1403 * without specifying a hash algorithm. This algorithm may only be
1404 * used to sign or verify a sequence of bytes that should be an
1405 * already-calculated hash. Note that the input is padded with
1406 * zeros on the left or truncated on the left as required to fit
1407 * the curve size.
1408 */
1409#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001410#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001411/** Deterministic ECDSA signature with hashing.
1412 *
1413 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1414 *
1415 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1416 *
1417 * Note that when this algorithm is used for verification, signatures
1418 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1419 * same private key are accepted. In other words,
1420 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1421 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1422 *
1423 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1424 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001425 * This includes #PSA_ALG_ANY_HASH
1426 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001427 *
1428 * \return The corresponding deterministic ECDSA signature
1429 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001430 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001431 * hash algorithm.
1432 */
1433#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1434 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001435#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001436#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001437 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001438 PSA_ALG_ECDSA_BASE)
1439#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001440 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001441#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1442 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1443#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1444 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1445
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001446/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1447 * using standard parameters.
1448 *
1449 * Contexts are not supported in the current version of this specification
1450 * because there is no suitable signature interface that can take the
1451 * context as a parameter. A future version of this specification may add
1452 * suitable functions and extend this algorithm to support contexts.
1453 *
1454 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1455 * In this specification, the following curves are supported:
1456 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1457 * in RFC 8032.
1458 * The curve is Edwards25519.
1459 * The hash function used internally is SHA-512.
1460 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1461 * in RFC 8032.
1462 * The curve is Edwards448.
1463 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001464 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001465 *
1466 * This algorithm can be used with psa_sign_message() and
1467 * psa_verify_message(). Since there is no prehashing, it cannot be used
1468 * with psa_sign_hash() or psa_verify_hash().
1469 *
1470 * The signature format is the concatenation of R and S as defined by
1471 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1472 * string for Ed448).
1473 */
1474#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1475
1476#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1477#define PSA_ALG_IS_HASH_EDDSA(alg) \
1478 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1479
1480/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001481 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001482 *
1483 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1484 *
1485 * This algorithm is Ed25519 as specified in RFC 8032.
1486 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001487 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001488 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001489 *
1490 * This is a hash-and-sign algorithm: to calculate a signature,
1491 * you can either:
1492 * - call psa_sign_message() on the message;
1493 * - or calculate the SHA-512 hash of the message
1494 * with psa_hash_compute()
1495 * or with a multi-part hash operation started with psa_hash_setup(),
1496 * using the hash algorithm #PSA_ALG_SHA_512,
1497 * then sign the calculated hash with psa_sign_hash().
1498 * Verifying a signature is similar, using psa_verify_message() or
1499 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001500 */
1501#define PSA_ALG_ED25519PH \
1502 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1503
1504/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1505 * using SHAKE256 and the Edwards448 curve.
1506 *
1507 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1508 *
1509 * This algorithm is Ed448 as specified in RFC 8032.
1510 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001511 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001512 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001513 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001514 *
1515 * This is a hash-and-sign algorithm: to calculate a signature,
1516 * you can either:
1517 * - call psa_sign_message() on the message;
1518 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1519 * with psa_hash_compute()
1520 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001521 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001522 * then sign the calculated hash with psa_sign_hash().
1523 * Verifying a signature is similar, using psa_verify_message() or
1524 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001525 */
1526#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001527 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001528
Gilles Peskine6d400852021-02-24 21:39:52 +01001529/* Default definition, to be overridden if the library is extended with
1530 * more hash-and-sign algorithms that we want to keep out of this header
1531 * file. */
1532#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1533
Gilles Peskined35b4892019-01-14 16:02:15 +01001534/** Whether the specified algorithm is a hash-and-sign algorithm.
1535 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001536 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1537 * structured in two parts: first the calculation of a hash in a way that
1538 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001539 * hash value and the key.
1540 *
1541 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1542 *
1543 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1544 * This macro may return either 0 or 1 if \p alg is not a supported
1545 * algorithm identifier.
1546 */
1547#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1548 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001549 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
Gilles Peskine6d400852021-02-24 21:39:52 +01001550 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001551
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001552/** Get the hash used by a hash-and-sign signature algorithm.
1553 *
1554 * A hash-and-sign algorithm is a signature algorithm which is
1555 * composed of two phases: first a hashing phase which does not use
1556 * the key and produces a hash of the input message, then a signing
1557 * phase which only uses the hash and the key and not the message
1558 * itself.
1559 *
1560 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1561 * #PSA_ALG_IS_SIGN(\p alg) is true).
1562 *
1563 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1564 * algorithm.
1565 * \return 0 if \p alg is a signature algorithm that does not
1566 * follow the hash-and-sign structure.
1567 * \return Unspecified if \p alg is not a signature algorithm or
1568 * if it is not supported by the implementation.
1569 */
1570#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001571 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001572 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1573 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1574 0)
1575
1576/** RSA PKCS#1 v1.5 encryption.
1577 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001578#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001579
Bence Szépkútia2945512020-12-03 21:40:17 +01001580#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001581/** RSA OAEP encryption.
1582 *
1583 * This is the encryption scheme defined by RFC 8017
1584 * (PKCS#1: RSA Cryptography Specifications) under the name
1585 * RSAES-OAEP, with the message generation function MGF1.
1586 *
1587 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1588 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1589 * for MGF1.
1590 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001591 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001592 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001593 * hash algorithm.
1594 */
1595#define PSA_ALG_RSA_OAEP(hash_alg) \
1596 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1597#define PSA_ALG_IS_RSA_OAEP(alg) \
1598 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1599#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1600 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1601 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1602 0)
1603
Bence Szépkútia2945512020-12-03 21:40:17 +01001604#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001605/** Macro to build an HKDF algorithm.
1606 *
1607 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1608 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001609 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001610 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001611 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001612 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1613 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1614 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1615 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001616 * starting to generate output.
1617 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001618 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1619 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1620 *
1621 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001622 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001623 * hash algorithm.
1624 */
1625#define PSA_ALG_HKDF(hash_alg) \
1626 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1627/** Whether the specified algorithm is an HKDF algorithm.
1628 *
1629 * HKDF is a family of key derivation algorithms that are based on a hash
1630 * function and the HMAC construction.
1631 *
1632 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1633 *
1634 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1635 * This macro may return either 0 or 1 if \c alg is not a supported
1636 * key derivation algorithm identifier.
1637 */
1638#define PSA_ALG_IS_HKDF(alg) \
1639 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1640#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1641 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1642
Bence Szépkútia2945512020-12-03 21:40:17 +01001643#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001644/** Macro to build a TLS-1.2 PRF algorithm.
1645 *
1646 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1647 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1648 * used with either SHA-256 or SHA-384.
1649 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001650 * This key derivation algorithm uses the following inputs, which must be
1651 * passed in the order given here:
1652 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001653 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1654 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001655 *
1656 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001657 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001658 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001659 *
1660 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1661 * TLS 1.2 PRF using HMAC-SHA-256.
1662 *
1663 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1664 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1665 *
1666 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001667 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001668 * hash algorithm.
1669 */
1670#define PSA_ALG_TLS12_PRF(hash_alg) \
1671 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1672
1673/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1674 *
1675 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1676 *
1677 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1678 * This macro may return either 0 or 1 if \c alg is not a supported
1679 * key derivation algorithm identifier.
1680 */
1681#define PSA_ALG_IS_TLS12_PRF(alg) \
1682 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1683#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1684 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1685
Bence Szépkútia2945512020-12-03 21:40:17 +01001686#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001687/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1688 *
1689 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1690 * from the PreSharedKey (PSK) through the application of padding
1691 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1692 * The latter is based on HMAC and can be used with either SHA-256
1693 * or SHA-384.
1694 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001695 * This key derivation algorithm uses the following inputs, which must be
1696 * passed in the order given here:
1697 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001698 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1699 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001700 *
1701 * For the application to TLS-1.2, the seed (which is
1702 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1703 * ClientHello.Random + ServerHello.Random,
1704 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001705 *
1706 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1707 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1708 *
1709 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1710 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1711 *
1712 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001713 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001714 * hash algorithm.
1715 */
1716#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1717 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1718
1719/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1720 *
1721 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1722 *
1723 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1724 * This macro may return either 0 or 1 if \c alg is not a supported
1725 * key derivation algorithm identifier.
1726 */
1727#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1728 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1729#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1730 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1731
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001732/* This flag indicates whether the key derivation algorithm is suitable for
1733 * use on low-entropy secrets such as password - these algorithms are also
1734 * known as key stretching or password hashing schemes. These are also the
1735 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
1736 */
1737#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00008000)
1738
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001739#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08008100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001740/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001741 *
1742 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001743 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
1744 * HMAC with the specified hash.
1745 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2
1746 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001747 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001748 * This key derivation algorithm uses the following inputs, which must be
1749 * provided in the following order:
1750 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001751 * This input step must be used exactly once.
1752 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1753 * This input step must be used one or more times; if used several times, the
1754 * inputs will be concatenated. This can be used to build the final salt
1755 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001756 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001757 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001758 *
1759 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1760 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1761 *
1762 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
1763 * \return Unspecified if \p hash_alg is not a supported
1764 * hash algorithm.
1765 */
1766#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
1767 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1768
1769/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
1770 *
1771 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1772 *
1773 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
1774 * This macro may return either 0 or 1 if \c alg is not a supported
1775 * key derivation algorithm identifier.
1776 */
1777#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
1778 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001779
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001780/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
1781 *
1782 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
1783 * This macro specifies the PBKDF2 algorithm constructed using the
1784 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
1785 *
1786 * This key derivation algorithm uses the same inputs as
1787 * #PBKDF_ALG_PBKDF2_HMAC() with the same constraints.
1788 */
1789#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08008200)
1790
Bence Szépkútia2945512020-12-03 21:40:17 +01001791#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1792#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001793
Gilles Peskine6843c292019-01-18 16:44:49 +01001794/** Macro to build a combined algorithm that chains a key agreement with
1795 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001796 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001797 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1798 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1799 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1800 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001801 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001802 * \return The corresponding key agreement and derivation
1803 * algorithm.
1804 * \return Unspecified if \p ka_alg is not a supported
1805 * key agreement algorithm or \p kdf_alg is not a
1806 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001807 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001808#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1809 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001810
1811#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1812 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1813
Gilles Peskine6843c292019-01-18 16:44:49 +01001814#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1815 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001816
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001817/** Whether the specified algorithm is a raw key agreement algorithm.
1818 *
1819 * A raw key agreement algorithm is one that does not specify
1820 * a key derivation function.
1821 * Usually, raw key agreement algorithms are constructed directly with
1822 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001823 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001824 *
1825 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1826 *
1827 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1828 * This macro may return either 0 or 1 if \p alg is not a supported
1829 * algorithm identifier.
1830 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001831#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001832 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1833 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001834
1835#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1836 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1837
1838/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001839 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001840 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001841 * `g^{ab}` in big-endian format.
1842 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1843 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001844 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001845#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001846
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001847/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1848 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001849 * This includes the raw finite field Diffie-Hellman algorithm as well as
1850 * finite-field Diffie-Hellman followed by any supporter key derivation
1851 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001852 *
1853 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1854 *
1855 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1856 * This macro may return either 0 or 1 if \c alg is not a supported
1857 * key agreement algorithm identifier.
1858 */
1859#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001860 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001861
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001862/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1863 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001864 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001865 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1866 * `m` is the bit size associated with the curve, i.e. the bit size of the
1867 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1868 * the byte containing the most significant bit of the shared secret
1869 * is padded with zero bits. The byte order is either little-endian
1870 * or big-endian depending on the curve type.
1871 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001872 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001873 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1874 * in little-endian byte order.
1875 * The bit size is 448 for Curve448 and 255 for Curve25519.
1876 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001877 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001878 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1879 * in big-endian byte order.
1880 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1881 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001882 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001883 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1884 * in big-endian byte order.
1885 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001886 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001887#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001888
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001889/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1890 * algorithm.
1891 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001892 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1893 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1894 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001895 *
1896 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1897 *
1898 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1899 * 0 otherwise.
1900 * This macro may return either 0 or 1 if \c alg is not a supported
1901 * key agreement algorithm identifier.
1902 */
1903#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001904 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001905
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001906/** Whether the specified algorithm encoding is a wildcard.
1907 *
1908 * Wildcard values may only be used to set the usage algorithm field in
1909 * a policy, not to perform an operation.
1910 *
1911 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1912 *
1913 * \return 1 if \c alg is a wildcard algorithm encoding.
1914 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1915 * an operation).
1916 * \return This macro may return either 0 or 1 if \c alg is not a supported
1917 * algorithm identifier.
1918 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001919#define PSA_ALG_IS_WILDCARD(alg) \
1920 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1921 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1922 PSA_ALG_IS_MAC(alg) ? \
1923 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1924 PSA_ALG_IS_AEAD(alg) ? \
1925 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001926 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001927
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001928/** Get the hash used by a composite algorithm.
1929 *
1930 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1931 *
1932 * \return The underlying hash algorithm if alg is a composite algorithm that
1933 * uses a hash algorithm.
1934 *
1935 * \return #PSA_ALG_NONE if alg is not a composite algorithm that uses a hash.
1936 */
1937#define PSA_ALG_GET_HASH(alg) \
1938 (((alg) & 0x000000ff) == 0 ? PSA_ALG_NONE : 0x02000000 | ((alg) & 0x000000ff))
1939
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001940/**@}*/
1941
1942/** \defgroup key_lifetimes Key lifetimes
1943 * @{
1944 */
1945
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001946/** The default lifetime for volatile keys.
1947 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001948 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001949 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001950 *
1951 * A key with this lifetime is typically stored in the RAM area of the
1952 * PSA Crypto subsystem. However this is an implementation choice.
1953 * If an implementation stores data about the key in a non-volatile memory,
1954 * it must release all the resources associated with the key and erase the
1955 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001956 */
1957#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1958
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001959/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001960 *
1961 * A persistent key remains in storage until it is explicitly destroyed or
1962 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001963 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001964 * provide their own mechanism (for example to perform a factory reset,
1965 * to prepare for device refurbishment, or to uninstall an application).
1966 *
1967 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001968 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001969 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001970 */
1971#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1972
Gilles Peskineaff11812020-05-04 19:03:10 +02001973/** The persistence level of volatile keys.
1974 *
1975 * See ::psa_key_persistence_t for more information.
1976 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001977#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001978
1979/** The default persistence level for persistent keys.
1980 *
1981 * See ::psa_key_persistence_t for more information.
1982 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001983#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02001984
1985/** A persistence level indicating that a key is never destroyed.
1986 *
1987 * See ::psa_key_persistence_t for more information.
1988 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001989#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001990
1991#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001992 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001993
1994#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001995 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001996
1997/** Whether a key lifetime indicates that the key is volatile.
1998 *
1999 * A volatile key is automatically destroyed by the implementation when
2000 * the application instance terminates. In particular, a volatile key
2001 * is automatically destroyed on a power reset of the device.
2002 *
2003 * A key that is not volatile is persistent. Persistent keys are
2004 * preserved until the application explicitly destroys them or until an
2005 * implementation-specific device management event occurs (for example,
2006 * a factory reset).
2007 *
2008 * \param lifetime The lifetime value to query (value of type
2009 * ::psa_key_lifetime_t).
2010 *
2011 * \return \c 1 if the key is volatile, otherwise \c 0.
2012 */
2013#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2014 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002015 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002016
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002017/** Construct a lifetime from a persistence level and a location.
2018 *
2019 * \param persistence The persistence level
2020 * (value of type ::psa_key_persistence_t).
2021 * \param location The location indicator
2022 * (value of type ::psa_key_location_t).
2023 *
2024 * \return The constructed lifetime value.
2025 */
2026#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2027 ((location) << 8 | (persistence))
2028
Gilles Peskineaff11812020-05-04 19:03:10 +02002029/** The local storage area for persistent keys.
2030 *
2031 * This storage area is available on all systems that can store persistent
2032 * keys without delegating the storage to a third-party cryptoprocessor.
2033 *
2034 * See ::psa_key_location_t for more information.
2035 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002036#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002037
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002038#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002039
Gilles Peskine4a231b82019-05-06 18:56:14 +02002040/** The minimum value for a key identifier chosen by the application.
2041 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002042#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002043/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002044 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002045#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002046/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002047 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002048#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002049/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002050 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002051#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002052
Ronald Cron7424f0d2020-09-14 16:17:41 +02002053
2054#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2055
2056#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2057#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2058#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2059
2060/** Utility to initialize a key identifier at runtime.
2061 *
2062 * \param unused Unused parameter.
2063 * \param key_id Identifier of the key.
2064 */
2065static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2066 unsigned int unused, psa_key_id_t key_id )
2067{
2068 (void)unused;
2069
2070 return( key_id );
2071}
2072
2073/** Compare two key identifiers.
2074 *
2075 * \param id1 First key identifier.
2076 * \param id2 Second key identifier.
2077 *
2078 * \return Non-zero if the two key identifier are equal, zero otherwise.
2079 */
2080static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2081 mbedtls_svc_key_id_t id2 )
2082{
2083 return( id1 == id2 );
2084}
2085
Ronald Cronc4d1b512020-07-31 11:26:37 +02002086/** Check whether a key identifier is null.
2087 *
2088 * \param key Key identifier.
2089 *
2090 * \return Non-zero if the key identifier is null, zero otherwise.
2091 */
2092static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2093{
2094 return( key == 0 );
2095}
2096
Ronald Cron7424f0d2020-09-14 16:17:41 +02002097#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2098
2099#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
2100#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
2101#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
2102
2103/** Utility to initialize a key identifier at runtime.
2104 *
2105 * \param owner_id Identifier of the key owner.
2106 * \param key_id Identifier of the key.
2107 */
2108static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2109 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2110{
2111 return( (mbedtls_svc_key_id_t){ .key_id = key_id,
2112 .owner = owner_id } );
2113}
2114
2115/** Compare two key identifiers.
2116 *
2117 * \param id1 First key identifier.
2118 * \param id2 Second key identifier.
2119 *
2120 * \return Non-zero if the two key identifier are equal, zero otherwise.
2121 */
2122static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2123 mbedtls_svc_key_id_t id2 )
2124{
2125 return( ( id1.key_id == id2.key_id ) &&
2126 mbedtls_key_owner_id_equal( id1.owner, id2.owner ) );
2127}
2128
Ronald Cronc4d1b512020-07-31 11:26:37 +02002129/** Check whether a key identifier is null.
2130 *
2131 * \param key Key identifier.
2132 *
2133 * \return Non-zero if the key identifier is null, zero otherwise.
2134 */
2135static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2136{
2137 return( ( key.key_id == 0 ) && ( key.owner == 0 ) );
2138}
2139
Ronald Cron7424f0d2020-09-14 16:17:41 +02002140#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002141
2142/**@}*/
2143
2144/** \defgroup policy Key policies
2145 * @{
2146 */
2147
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002148/** Whether the key may be exported.
2149 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002150 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002151 * regardless of the value of this permission flag.
2152 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002153 * If a key does not have export permission, implementations shall not
2154 * allow the key to be exported in plain form from the cryptoprocessor,
2155 * whether through psa_export_key() or through a proprietary interface.
2156 * The key may however be exportable in a wrapped form, i.e. in a form
2157 * where it is encrypted by another key.
2158 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002159#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2160
2161/** Whether the key may be copied.
2162 *
2163 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002164 * with the same policy or a more restrictive policy.
2165 *
2166 * For lifetimes for which the key is located in a secure element which
2167 * enforce the non-exportability of keys, copying a key outside the secure
2168 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2169 * Copying the key inside the secure element is permitted with just
2170 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2171 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2172 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2173 * is sufficient to permit the copy.
2174 */
2175#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2176
2177/** Whether the key may be used to encrypt a message.
2178 *
2179 * This flag allows the key to be used for a symmetric encryption operation,
2180 * for an AEAD encryption-and-authentication operation,
2181 * or for an asymmetric encryption operation,
2182 * if otherwise permitted by the key's type and policy.
2183 *
2184 * For a key pair, this concerns the public key.
2185 */
2186#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2187
2188/** Whether the key may be used to decrypt a message.
2189 *
2190 * This flag allows the key to be used for a symmetric decryption operation,
2191 * for an AEAD decryption-and-verification operation,
2192 * or for an asymmetric decryption operation,
2193 * if otherwise permitted by the key's type and policy.
2194 *
2195 * For a key pair, this concerns the private key.
2196 */
2197#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2198
2199/** Whether the key may be used to sign a message.
2200 *
2201 * This flag allows the key to be used for a MAC calculation operation
2202 * or for an asymmetric signature operation,
2203 * if otherwise permitted by the key's type and policy.
2204 *
2205 * For a key pair, this concerns the private key.
2206 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002207#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002208
2209/** Whether the key may be used to verify a message signature.
2210 *
2211 * This flag allows the key to be used for a MAC verification operation
2212 * or for an asymmetric signature verification operation,
2213 * if otherwise permitted by by the key's type and policy.
2214 *
2215 * For a key pair, this concerns the public key.
2216 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002217#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002218
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002219/** Whether the key may be used to derive other keys or produce a password
2220 * hash.
2221 *
2222 * This flag allows the key to be used as the input of
2223 * psa_key_derivation_input_key() at the step
2224 * #PSA_KEY_DERIVATION_INPUT_SECRET of #PSA_KEY_DERIVATION_INPUT_PASSWORD
2225 * depending on the algorithm, and allows the use of
2226 * psa_key_derivation_output_bytes() or psa_key_derivation_output_key()
2227 * at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002228 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002229#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002230
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002231/** Whether the key may be used to verify the result of a key derivation,
2232 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002233 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002234 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002235 *
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +02002236 * - for a key of type #PSA_KEY_TYPE_PASSWORD_HASH, as the \c key argument of
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002237 * psa_key_derivation_verify_key();
2238 * - for a key of type #PSA_KEY_TYPE_PASSWORD (or #PSA_KEY_TYPE_DERIVE), as
2239 * the input to psa_key_derivation_input_key() at the step
2240 * #PSA_KEY_DERIVATION_INPUT_PASSWORD (or #PSA_KEY_DERIVATION_INPUT_SECRET);
2241 * then at the end of the operation use of psa_key_derivation_verify_bytes()
2242 * or psa_key_derivation_verify_key() will be permitted (but not
2243 * psa_key_derivation_output_xxx() unless #PSA_KEY_USAGE_DERIVE is set).
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002244 */
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002245#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002246
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002247/**@}*/
2248
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002249/** \defgroup derivation Key derivation
2250 * @{
2251 */
2252
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002253/** A secret input for key derivation.
2254 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002255 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2256 * (passed to psa_key_derivation_input_key())
2257 * or the shared secret resulting from a key agreement
2258 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002259 *
2260 * The secret can also be a direct input (passed to
2261 * key_derivation_input_bytes()). In this case, the derivation operation
2262 * may not be used to derive keys: the operation will only allow
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002263 * psa_key_derivation_output_bytes() or
Manuel Pégourié-Gonnardd307f632021-05-03 10:12:06 +02002264 * psa_key_derivation_verify_xxx() but not
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002265 * psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002266 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002267#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002268
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002269/** A low-entropy secret input for password hashing / key stretching.
2270 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002271 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2272 * psa_key_derivation_input_key()) or a direct input (passed to
2273 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2274 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2275 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002276 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002277 * If the secret is a direct input, the derivation operation
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002278 * may not be used to derive keys: the operation will only allow
2279 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
2280 */
2281#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102)
2282
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002283/** A label for key derivation.
2284 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002285 * This should be a direct input.
2286 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002287 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002288#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002289
2290/** A salt for key derivation.
2291 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002292 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002293 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2294 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002295 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002296#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002297
2298/** An information string for key derivation.
2299 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002300 * This should be a direct input.
2301 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002302 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002303#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002304
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002305/** A seed for key derivation.
2306 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002307 * This should be a direct input.
2308 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002309 */
2310#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2311
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002312/** A cost parameter for password hashing / key stretching.
2313 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002314 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002315 */
2316#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205)
2317
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002318/**@}*/
2319
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002320#endif /* PSA_CRYPTO_VALUES_H */