blob: 722f5bafe246a10e4f0b0beab09f980c6e4fdd2a [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
36
37/** \defgroup error Error codes
38 * @{
39 */
40
David Saadab4ecc272019-02-14 13:48:10 +020041/* PSA error codes */
42
Gilles Peskinef3b731e2018-12-12 13:38:31 +010043/** The action was completed successfully. */
44#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045
46/** An error occurred that does not correspond to any defined
47 * failure cause.
48 *
49 * Implementations may use this error code if none of the other standard
50 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020051#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010052
53/** The requested operation or a parameter is not supported
54 * by this implementation.
55 *
56 * Implementations should return this error code when an enumeration
57 * parameter such as a key type, algorithm, etc. is not recognized.
58 * If a combination of parameters is recognized and identified as
59 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020060#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010061
62/** The requested action is denied by a policy.
63 *
64 * Implementations should return this error code when the parameters
65 * are recognized as valid and supported, and a policy explicitly
66 * denies the requested operation.
67 *
68 * If a subset of the parameters of a function call identify a
69 * forbidden operation, and another subset of the parameters are
70 * not valid or not supported, it is unspecified whether the function
71 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
72 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020073#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010074
75/** An output buffer is too small.
76 *
77 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
78 * description to determine a sufficient buffer size.
79 *
80 * Implementations should preferably return this error code only
81 * in cases when performing the operation with a larger output
82 * buffer would succeed. However implementations may return this
83 * error if a function has invalid or unsupported parameters in addition
84 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
David Saadab4ecc272019-02-14 13:48:10 +020087/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088 *
David Saadab4ecc272019-02-14 13:48:10 +020089 * Implementations should return this error, when attempting
90 * to write an item (like a key) that already exists. */
91#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010092
David Saadab4ecc272019-02-14 13:48:10 +020093/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094 *
David Saadab4ecc272019-02-14 13:48:10 +020095 * Implementations should return this error, if a requested item (like
96 * a key) does not exist. */
97#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
99/** The requested action cannot be performed in the current state.
100 *
101 * Multipart operations return this error when one of the
102 * functions is called out of sequence. Refer to the function
103 * descriptions for permitted sequencing of functions.
104 *
105 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100106 * that a key either exists or not,
107 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100108 * as applicable.
109 *
110 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200111 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100112 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200113#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100114
115/** The parameters passed to the function are invalid.
116 *
117 * Implementations may return this error any time a parameter or
118 * combination of parameters are recognized as invalid.
119 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100120 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200121 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100122 * instead.
123 */
David Saadab4ecc272019-02-14 13:48:10 +0200124#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100125
126/** There is not enough runtime memory.
127 *
128 * If the action is carried out across multiple security realms, this
129 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200130#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100131
132/** There is not enough persistent storage.
133 *
134 * Functions that modify the key storage return this error code if
135 * there is insufficient storage space on the host media. In addition,
136 * many functions that do not otherwise access storage may return this
137 * error code if the implementation requires a mandatory log entry for
138 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200139#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100140
141/** There was a communication failure inside the implementation.
142 *
143 * This can indicate a communication failure between the application
144 * and an external cryptoprocessor or between the cryptoprocessor and
145 * an external volatile or persistent memory. A communication failure
146 * may be transient or permanent depending on the cause.
147 *
148 * \warning If a function returns this error, it is undetermined
149 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200150 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100151 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
152 * if the requested action was completed successfully in an external
153 * cryptoprocessor but there was a breakdown of communication before
154 * the cryptoprocessor could report the status to the application.
155 */
David Saadab4ecc272019-02-14 13:48:10 +0200156#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100157
158/** There was a storage failure that may have led to data loss.
159 *
160 * This error indicates that some persistent storage is corrupted.
161 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200162 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100163 * between the cryptoprocessor and its external storage (use
164 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
165 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
166 *
167 * Note that a storage failure does not indicate that any data that was
168 * previously read is invalid. However this previously read data may no
169 * longer be readable from storage.
170 *
171 * When a storage failure occurs, it is no longer possible to ensure
172 * the global integrity of the keystore. Depending on the global
173 * integrity guarantees offered by the implementation, access to other
174 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100175 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 *
177 * Implementations should only use this error code to report a
178 * permanent storage corruption. However application writers should
179 * keep in mind that transient errors while reading the storage may be
180 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200181#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100182
183/** A hardware failure was detected.
184 *
185 * A hardware failure may be transient or permanent depending on the
186 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200187#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188
189/** A tampering attempt was detected.
190 *
191 * If an application receives this error code, there is no guarantee
192 * that previously accessed or computed data was correct and remains
193 * confidential. Applications should not perform any security function
194 * and should enter a safe failure state.
195 *
196 * Implementations may return this error code if they detect an invalid
197 * state that cannot happen during normal operation and that indicates
198 * that the implementation's security guarantees no longer hold. Depending
199 * on the implementation architecture and on its security and safety goals,
200 * the implementation may forcibly terminate the application.
201 *
202 * This error code is intended as a last resort when a security breach
203 * is detected and it is unsure whether the keystore data is still
204 * protected. Implementations shall only return this error code
205 * to report an alarm from a tampering detector, to indicate that
206 * the confidentiality of stored data can no longer be guaranteed,
207 * or to indicate that the integrity of previously returned data is now
208 * considered compromised. Implementations shall not use this error code
209 * to indicate a hardware failure that merely makes it impossible to
210 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
211 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
212 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
213 * instead).
214 *
215 * This error indicates an attack against the application. Implementations
216 * shall not return this error code as a consequence of the behavior of
217 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200218#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100219
220/** There is not enough entropy to generate random data needed
221 * for the requested action.
222 *
223 * This error indicates a failure of a hardware random generator.
224 * Application writers should note that this error can be returned not
225 * only by functions whose purpose is to generate random data, such
226 * as key, IV or nonce generation, but also by functions that execute
227 * an algorithm with a randomized result, as well as functions that
228 * use randomization of intermediate computations as a countermeasure
229 * to certain attacks.
230 *
231 * Implementations should avoid returning this error after psa_crypto_init()
232 * has succeeded. Implementations should generate sufficient
233 * entropy during initialization and subsequently use a cryptographically
234 * secure pseudorandom generator (PRNG). However implementations may return
235 * this error at any time if a policy requires the PRNG to be reseeded
236 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200237#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100238
239/** The signature, MAC or hash is incorrect.
240 *
241 * Verification functions return this error if the verification
242 * calculations completed successfully, and the value to be verified
243 * was determined to be incorrect.
244 *
245 * If the value to verify has an invalid size, implementations may return
246 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200247#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100248
249/** The decrypted padding is incorrect.
250 *
251 * \warning In some protocols, when decrypting data, it is essential that
252 * the behavior of the application does not depend on whether the padding
253 * is correct, down to precise timing. Applications should prefer
254 * protocols that use authenticated encryption rather than plain
255 * encryption. If the application must perform a decryption of
256 * unauthenticated data, the application writer should take care not
257 * to reveal whether the padding is invalid.
258 *
259 * Implementations should strive to make valid and invalid padding
260 * as close as possible to indistinguishable to an external observer.
261 * In particular, the timing of a decryption operation should not
262 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200263#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100264
David Saadab4ecc272019-02-14 13:48:10 +0200265/** Return this error when there's insufficient data when attempting
266 * to read from a resource. */
267#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100268
Ronald Croncf56a0a2020-08-04 09:51:30 +0200269/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270 */
David Saadab4ecc272019-02-14 13:48:10 +0200271#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100273/** Stored data has been corrupted.
274 *
275 * This error indicates that some persistent storage has suffered corruption.
276 * It does not indicate the following situations, which have specific error
277 * codes:
278 *
279 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
280 * - A communication error between the cryptoprocessor and its external
281 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
282 * - When the storage is in a valid state but is full - use
283 * #PSA_ERROR_INSUFFICIENT_STORAGE.
284 * - When the storage fails for other reasons - use
285 * #PSA_ERROR_STORAGE_FAILURE.
286 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
287 *
288 * \note A storage corruption does not indicate that any data that was
289 * previously read is invalid. However this previously read data might no
290 * longer be readable from storage.
291 *
292 * When a storage failure occurs, it is no longer possible to ensure the
293 * global integrity of the keystore.
294 */
295#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
296
gabor-mezei-armfe309242020-11-09 17:39:56 +0100297/** Data read from storage is not valid for the implementation.
298 *
299 * This error indicates that some data read from storage does not have a valid
300 * format. It does not indicate the following situations, which have specific
301 * error codes:
302 *
303 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
304 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
305 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
306 *
307 * This error is typically a result of either storage corruption on a
308 * cleartext storage backend, or an attempt to read data that was
309 * written by an incompatible version of the library.
310 */
311#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
312
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100313/**@}*/
314
315/** \defgroup crypto_types Key and algorithm types
316 * @{
317 */
318
319/** An invalid key type value.
320 *
321 * Zero is not the encoding of any key type.
322 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100323#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100324
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100325/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100326 *
327 * Key types defined by this standard will never have the
328 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
329 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
330 * respect the bitwise structure used by standard encodings whenever practical.
331 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100332#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100333
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100334#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100335#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
336#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
337#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100338#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100340#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100341
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100342/** Whether a key type is vendor-defined.
343 *
344 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
345 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100346#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
347 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
348
349/** Whether a key type is an unstructured array of bytes.
350 *
351 * This encompasses both symmetric keys and non-key data.
352 */
353#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100354 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
355 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100356
357/** Whether a key type is asymmetric: either a key pair or a public key. */
358#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
359 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
360 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
361 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
362/** Whether a key type is the public part of a key pair. */
363#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
364 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
365/** Whether a key type is a key pair containing a private part and a public
366 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200367#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100368 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
369/** The key pair type corresponding to a public key type.
370 *
371 * You may also pass a key pair type as \p type, it will be left unchanged.
372 *
373 * \param type A public key type or key pair type.
374 *
375 * \return The corresponding key pair type.
376 * If \p type is not a public key or a key pair,
377 * the return value is undefined.
378 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200379#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100380 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
381/** The public key type corresponding to a key pair type.
382 *
383 * You may also pass a key pair type as \p type, it will be left unchanged.
384 *
385 * \param type A public key type or key pair type.
386 *
387 * \return The corresponding public key type.
388 * If \p type is not a public key or a key pair,
389 * the return value is undefined.
390 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200391#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100392 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
393
394/** Raw data.
395 *
396 * A "key" of this type cannot be used for any cryptographic operation.
397 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100398#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100399
400/** HMAC key.
401 *
402 * The key policy determines which underlying hash algorithm the key can be
403 * used for.
404 *
405 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100406 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100407 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100408#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100409
410/** A secret for key derivation.
411 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200412 * This key type is for high-entropy secrets only. For low-entropy secrets,
413 * #PSA_KEY_TYPE_PASSWORD should be used instead.
414 *
415 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
416 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
417 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100418 * The key policy determines which key derivation algorithm the key
419 * can be used for.
420 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100421#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100422
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200423/** A low-entropy secret for password hashing or key derivation.
424 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200425 * This key type is suitable for passwords and passphrases which are typically
426 * intended to be memorizable by humans, and have a low entropy relative to
427 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200428 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200429 * for such keys. It is not suitable for passwords with extremely low entropy,
430 * such as numerical PINs.
431 *
432 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
433 * key derivation algorithms. Algorithms that accept such an input were
434 * designed to accept low-entropy secret and are known as password hashing or
435 * key stretching algorithms.
436 *
437 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
438 * key derivation algorithms, as the algorithms that take such an input expect
439 * it to be high-entropy.
440 *
441 * The key policy determines which key derivation algorithm the key can be
442 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200443 */
Manuel Pégourié-Gonnardc16033e2021-04-30 11:59:40 +0200444#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200445
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200446/** A secret value that can be used to verify a password hash.
447 *
448 * The key policy determines which key derivation algorithm the key
449 * can be used for, among the same permissible subset as for
450 * #PSA_KEY_TYPE_PASSWORD.
451 */
452#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)
453
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200454/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200455 *
456 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200457 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200458 */
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200459#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200460
Gilles Peskine737c6be2019-05-21 16:01:06 +0200461/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100462 *
463 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
464 * 32 bytes (AES-256).
465 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100466#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100467
468/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
469 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100470 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
471 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100472 *
473 * Note that single DES and 2-key 3DES are weak and strongly
474 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
475 * is weak and deprecated and should only be used in legacy protocols.
476 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100477#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100478
Gilles Peskine737c6be2019-05-21 16:01:06 +0200479/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100480 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100481#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100482
483/** Key for the RC4 stream cipher.
484 *
485 * Note that RC4 is weak and deprecated and should only be used in
486 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100487#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100488
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200489/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
490 *
491 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
492 *
493 * Implementations must support 12-byte nonces, may support 8-byte nonces,
494 * and should reject other sizes.
495 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100496#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200497
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100498/** RSA public key.
499 *
500 * The size of an RSA key is the bit size of the modulus.
501 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100502#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100503/** RSA key pair (private and public key).
504 *
505 * The size of an RSA key is the bit size of the modulus.
506 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100507#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100508/** Whether a key type is an RSA key (pair or public-only). */
509#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200510 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100511
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100512#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100513#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
514#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100515/** Elliptic curve key pair.
516 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100517 * The size of an elliptic curve key is the bit size associated with the curve,
518 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
519 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
520 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100521 * \param curve A value of type ::psa_ecc_family_t that
522 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100523 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200524#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
525 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100526/** Elliptic curve public key.
527 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100528 * The size of an elliptic curve public key is the same as the corresponding
529 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
530 * `PSA_ECC_FAMILY_xxx` curve families).
531 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100532 * \param curve A value of type ::psa_ecc_family_t that
533 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100534 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100535#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
536 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
537
538/** Whether a key type is an elliptic curve key (pair or public-only). */
539#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200540 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100541 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100542/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200543#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100544 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200545 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100546/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100547#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
548 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
549 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
550
551/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100552#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
553 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100554 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
555 0))
556
Gilles Peskine228abc52019-12-03 17:24:19 +0100557/** SEC Koblitz curves over prime fields.
558 *
559 * This family comprises the following curves:
560 * secp192k1, secp224k1, secp256k1.
561 * They are defined in _Standards for Efficient Cryptography_,
562 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
563 * https://www.secg.org/sec2-v2.pdf
564 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100565#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100566
567/** SEC random curves over prime fields.
568 *
569 * This family comprises the following curves:
570 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
571 * They are defined in _Standards for Efficient Cryptography_,
572 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
573 * https://www.secg.org/sec2-v2.pdf
574 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100575#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100576/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100577#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100578
579/** SEC Koblitz curves over binary fields.
580 *
581 * This family comprises the following curves:
582 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
583 * They are defined in _Standards for Efficient Cryptography_,
584 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
585 * https://www.secg.org/sec2-v2.pdf
586 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100587#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100588
589/** SEC random curves over binary fields.
590 *
591 * This family comprises the following curves:
592 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
593 * They are defined in _Standards for Efficient Cryptography_,
594 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
595 * https://www.secg.org/sec2-v2.pdf
596 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100597#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100598
599/** SEC additional random curves over binary fields.
600 *
601 * This family comprises the following curve:
602 * sect163r2.
603 * It is defined in _Standards for Efficient Cryptography_,
604 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
605 * https://www.secg.org/sec2-v2.pdf
606 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100607#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100608
609/** Brainpool P random curves.
610 *
611 * This family comprises the following curves:
612 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
613 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
614 * It is defined in RFC 5639.
615 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100616#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100617
618/** Curve25519 and Curve448.
619 *
620 * This family comprises the following Montgomery curves:
621 * - 255-bit: Bernstein et al.,
622 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
623 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
624 * - 448-bit: Hamburg,
625 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
626 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
627 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100628#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100629
Gilles Peskine67546802021-02-24 21:49:40 +0100630/** The twisted Edwards curves Ed25519 and Ed448.
631 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100632 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100633 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100634 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100635 *
636 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100637 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100638 * to Curve25519.
639 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
640 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
641 * to Curve448.
642 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
643 */
644#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
645
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100646#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100647#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
648#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100649/** Diffie-Hellman key pair.
650 *
Paul Elliott75e27032020-06-03 15:17:39 +0100651 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100652 * Diffie-Hellman group to be used.
653 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200654#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
655 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100656/** Diffie-Hellman public key.
657 *
Paul Elliott75e27032020-06-03 15:17:39 +0100658 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100659 * Diffie-Hellman group to be used.
660 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200661#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
662 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
663
664/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
665#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200666 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200667 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
668/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200669#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200670 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200671 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200672/** Whether a key type is a Diffie-Hellman public key. */
673#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
674 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
675 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
676
677/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100678#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
679 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200680 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
681 0))
682
Gilles Peskine228abc52019-12-03 17:24:19 +0100683/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
684 *
685 * This family includes groups with the following key sizes (in bits):
686 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
687 * all of these sizes or only a subset.
688 */
Paul Elliott75e27032020-06-03 15:17:39 +0100689#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100690
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100691#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100692 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100693/** The block size of a block cipher.
694 *
695 * \param type A cipher key type (value of type #psa_key_type_t).
696 *
697 * \return The block size for a block cipher, or 1 for a stream cipher.
698 * The return value is undefined if \p type is not a supported
699 * cipher key type.
700 *
701 * \note It is possible to build stream cipher algorithms on top of a block
702 * cipher, for example CTR mode (#PSA_ALG_CTR).
703 * This macro only takes the key type into account, so it cannot be
704 * used to determine the size of the data that #psa_cipher_update()
705 * might buffer for future processing in general.
706 *
707 * \note This macro returns a compile-time constant if its argument is one.
708 *
709 * \warning This macro may evaluate its argument multiple times.
710 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100711#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100712 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100713 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100714 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100715
Manuel Pégourié-Gonnard71d955a2021-05-04 10:32:39 +0200716/** An invalid algorithm identifier value.
717 *
718 * Zero is not the encoding of any algorithm.
719 */
720#define PSA_ALG_NONE ((psa_algorithm_t)0)
721
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100722/** Vendor-defined algorithm flag.
723 *
724 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
725 * bit set. Vendors who define additional algorithms must use an encoding with
726 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
727 * used by standard encodings whenever practical.
728 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100729#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100730
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100731#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100732#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
733#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100734#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100735#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
736#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
737#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
738#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
739#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100740
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100741/** Whether an algorithm is vendor-defined.
742 *
743 * See also #PSA_ALG_VENDOR_FLAG.
744 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100745#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
746 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
747
748/** Whether the specified algorithm is a hash algorithm.
749 *
750 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
751 *
752 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
753 * This macro may return either 0 or 1 if \p alg is not a supported
754 * algorithm identifier.
755 */
756#define PSA_ALG_IS_HASH(alg) \
757 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
758
759/** Whether the specified algorithm is a MAC algorithm.
760 *
761 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
762 *
763 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
764 * This macro may return either 0 or 1 if \p alg is not a supported
765 * algorithm identifier.
766 */
767#define PSA_ALG_IS_MAC(alg) \
768 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
769
770/** Whether the specified algorithm is a symmetric cipher algorithm.
771 *
772 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
773 *
774 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
775 * This macro may return either 0 or 1 if \p alg is not a supported
776 * algorithm identifier.
777 */
778#define PSA_ALG_IS_CIPHER(alg) \
779 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
780
781/** Whether the specified algorithm is an authenticated encryption
782 * with associated data (AEAD) algorithm.
783 *
784 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
785 *
786 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
787 * This macro may return either 0 or 1 if \p alg is not a supported
788 * algorithm identifier.
789 */
790#define PSA_ALG_IS_AEAD(alg) \
791 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
792
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200793/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200794 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100795 *
796 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
797 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200798 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100799 * This macro may return either 0 or 1 if \p alg is not a supported
800 * algorithm identifier.
801 */
802#define PSA_ALG_IS_SIGN(alg) \
803 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
804
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200805/** Whether the specified algorithm is an asymmetric encryption algorithm,
806 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100807 *
808 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
809 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200810 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100811 * This macro may return either 0 or 1 if \p alg is not a supported
812 * algorithm identifier.
813 */
814#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
815 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
816
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100817/** Whether the specified algorithm is a key agreement algorithm.
818 *
819 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
820 *
821 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
822 * This macro may return either 0 or 1 if \p alg is not a supported
823 * algorithm identifier.
824 */
825#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100826 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100827
828/** Whether the specified algorithm is a key derivation algorithm.
829 *
830 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
831 *
832 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
833 * This macro may return either 0 or 1 if \p alg is not a supported
834 * algorithm identifier.
835 */
836#define PSA_ALG_IS_KEY_DERIVATION(alg) \
837 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
838
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200839/** Whether the specified algorithm is a key stretching / password hashing
840 * algorithm.
841 *
842 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200843 * that is suitable for use with a low-entropy secret such as a password.
844 * Equivalently, it's a key derivation algorithm that uses a
845 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200846 *
847 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
848 *
849 * \return 1 if \p alg is a key stretching / passowrd hashing algorithm, 0
850 * otherwise. This macro may return either 0 or 1 if \p alg is not a
851 * supported algorithm identifier.
852 */
853#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
854 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
855 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
856
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100857#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100858/** MD2 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100859#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100860/** MD4 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100861#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100862/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100863#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100864/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100865#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100866/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100867#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100868/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100869#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100870/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100871#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100872/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100873#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100874/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100875#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100876/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100877#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100878/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100879#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100880/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100881#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100882/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100883#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100884/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100885#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100886/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100887#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100888/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100889 *
890 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
891 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
892 * has the same output size and a (theoretically) higher security strength.
893 */
Gilles Peskine27354692021-03-03 17:45:06 +0100894#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100895
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100896/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100897 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100898 * This value may be used to form the algorithm usage field of a policy
899 * for a signature algorithm that is parametrized by a hash. The key
900 * may then be used to perform operations using the same signature
901 * algorithm parametrized with any supported hash.
902 *
903 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100904 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100905 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100906 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100907 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
908 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100909 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200910 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100911 * ```
912 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100913 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100914 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
915 * call to sign or verify a message may use a different hash.
916 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200917 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
918 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
919 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100920 * ```
921 *
922 * This value may not be used to build other algorithms that are
923 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100924 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100925 *
926 * This value may not be used to build an algorithm specification to
927 * perform an operation. It is only valid to build policies.
928 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100929#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100930
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100931#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100932#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100933/** Macro to build an HMAC algorithm.
934 *
935 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
936 *
937 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
938 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
939 *
940 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100941 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100942 * hash algorithm.
943 */
944#define PSA_ALG_HMAC(hash_alg) \
945 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
946
947#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
948 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
949
950/** Whether the specified algorithm is an HMAC algorithm.
951 *
952 * HMAC is a family of MAC algorithms that are based on a hash function.
953 *
954 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
955 *
956 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
957 * This macro may return either 0 or 1 if \p alg is not a supported
958 * algorithm identifier.
959 */
960#define PSA_ALG_IS_HMAC(alg) \
961 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
962 PSA_ALG_HMAC_BASE)
963
964/* In the encoding of a MAC algorithm, the bits corresponding to
965 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
966 * truncated. As an exception, the value 0 means the untruncated algorithm,
967 * whatever its length is. The length is encoded in 6 bits, so it can
968 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
969 * to full length is correctly encoded as 0 and any non-trivial truncation
970 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100971#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
972#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100973
Steven Cooremand927ed72021-02-22 19:59:35 +0100974/* In the encoding of a MAC algorithm, the bit corresponding to
975 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100976 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
977 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100978 * same base class and having a (potentially truncated) MAC length greater or
979 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
980#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
981
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100982/** Macro to build a truncated MAC algorithm.
983 *
984 * A truncated MAC algorithm is identical to the corresponding MAC
985 * algorithm except that the MAC value for the truncated algorithm
986 * consists of only the first \p mac_length bytes of the MAC value
987 * for the untruncated algorithm.
988 *
989 * \note This macro may allow constructing algorithm identifiers that
990 * are not valid, either because the specified length is larger
991 * than the untruncated MAC or because the specified length is
992 * smaller than permitted by the implementation.
993 *
994 * \note It is implementation-defined whether a truncated MAC that
995 * is truncated to the same length as the MAC of the untruncated
996 * algorithm is considered identical to the untruncated algorithm
997 * for policy comparison purposes.
998 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200999 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001000 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001001 * is true). This may be a truncated or untruncated
1002 * MAC algorithm.
1003 * \param mac_length Desired length of the truncated MAC in bytes.
1004 * This must be at most the full length of the MAC
1005 * and must be at least an implementation-specified
1006 * minimum. The implementation-specified minimum
1007 * shall not be zero.
1008 *
1009 * \return The corresponding MAC algorithm with the specified
1010 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001011 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001012 * MAC algorithm or if \p mac_length is too small or
1013 * too large for the specified MAC algorithm.
1014 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001015#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1016 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1017 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001018 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1019
1020/** Macro to build the base MAC algorithm corresponding to a truncated
1021 * MAC algorithm.
1022 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001023 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001024 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001025 * is true). This may be a truncated or untruncated
1026 * MAC algorithm.
1027 *
1028 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001029 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001030 * MAC algorithm.
1031 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001032#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1033 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1034 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001035
1036/** Length to which a MAC algorithm is truncated.
1037 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001038 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001039 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001040 * is true).
1041 *
1042 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001043 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1044 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001045 * MAC algorithm.
1046 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001047#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1048 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001049
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001050/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001051 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001052 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001053 * sharing the same base algorithm, and where the (potentially truncated) MAC
1054 * length of the specific algorithm is equal to or larger then the wildcard
1055 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001056 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001057 * \note When setting the minimum required MAC length to less than the
1058 * smallest MAC length allowed by the base algorithm, this effectively
1059 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001060 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001061 * \param mac_alg A MAC algorithm identifier (value of type
1062 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1063 * is true).
1064 * \param min_mac_length Desired minimum length of the message authentication
1065 * code in bytes. This must be at most the untruncated
1066 * length of the MAC and must be at least 1.
1067 *
1068 * \return The corresponding MAC wildcard algorithm with the
1069 * specified minimum length.
1070 * \return Unspecified if \p mac_alg is not a supported MAC
1071 * algorithm or if \p min_mac_length is less than 1 or
1072 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001073 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001074#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1075 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1076 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001077
Bence Szépkútia2945512020-12-03 21:40:17 +01001078#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001079/** The CBC-MAC construction over a block cipher
1080 *
1081 * \warning CBC-MAC is insecure in many cases.
1082 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1083 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001084#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001085/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001086#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001087
1088/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1089 *
1090 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1091 *
1092 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1093 * This macro may return either 0 or 1 if \p alg is not a supported
1094 * algorithm identifier.
1095 */
1096#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1097 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1098 PSA_ALG_CIPHER_MAC_BASE)
1099
1100#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1101#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1102
1103/** Whether the specified algorithm is a stream cipher.
1104 *
1105 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1106 * by applying a bitwise-xor with a stream of bytes that is generated
1107 * from a key.
1108 *
1109 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1110 *
1111 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1112 * This macro may return either 0 or 1 if \p alg is not a supported
1113 * algorithm identifier or if it is not a symmetric cipher algorithm.
1114 */
1115#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1116 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1117 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1118
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001119/** The stream cipher mode of a stream cipher algorithm.
1120 *
1121 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001122 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1123 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001124 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001125#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001126
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001127/** The CTR stream cipher mode.
1128 *
1129 * CTR is a stream cipher which is built from a block cipher.
1130 * The underlying block cipher is determined by the key type.
1131 * For example, to use AES-128-CTR, use this algorithm with
1132 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1133 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001134#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001135
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001136/** The CFB stream cipher mode.
1137 *
1138 * The underlying block cipher is determined by the key type.
1139 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001140#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001141
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001142/** The OFB stream cipher mode.
1143 *
1144 * The underlying block cipher is determined by the key type.
1145 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001146#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001147
1148/** The XTS cipher mode.
1149 *
1150 * XTS is a cipher mode which is built from a block cipher. It requires at
1151 * least one full block of input, but beyond this minimum the input
1152 * does not need to be a whole number of blocks.
1153 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001154#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001155
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001156/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1157 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001158 * \warning ECB mode does not protect the confidentiality of the encrypted data
1159 * except in extremely narrow circumstances. It is recommended that applications
1160 * only use ECB if they need to construct an operating mode that the
1161 * implementation does not provide. Implementations are encouraged to provide
1162 * the modes that applications need in preference to supporting direct access
1163 * to ECB.
1164 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001165 * The underlying block cipher is determined by the key type.
1166 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001167 * This symmetric cipher mode can only be used with messages whose lengths are a
1168 * multiple of the block size of the chosen block cipher.
1169 *
1170 * ECB mode does not accept an initialization vector (IV). When using a
1171 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1172 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001173 */
1174#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1175
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001176/** The CBC block cipher chaining mode, with no padding.
1177 *
1178 * The underlying block cipher is determined by the key type.
1179 *
1180 * This symmetric cipher mode can only be used with messages whose lengths
1181 * are whole number of blocks for the chosen block cipher.
1182 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001183#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001184
1185/** The CBC block cipher chaining mode with PKCS#7 padding.
1186 *
1187 * The underlying block cipher is determined by the key type.
1188 *
1189 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1190 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001191#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001192
Gilles Peskine679693e2019-05-06 15:10:16 +02001193#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1194
1195/** Whether the specified algorithm is an AEAD mode on a block cipher.
1196 *
1197 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1198 *
1199 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1200 * a block cipher, 0 otherwise.
1201 * This macro may return either 0 or 1 if \p alg is not a supported
1202 * algorithm identifier.
1203 */
1204#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1205 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1206 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1207
Gilles Peskine9153ec02019-02-15 13:02:02 +01001208/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001209 *
1210 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001211 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001212#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001213
1214/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001215 *
1216 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001217 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001218#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001219
1220/** The Chacha20-Poly1305 AEAD algorithm.
1221 *
1222 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001223 *
1224 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1225 * and should reject other sizes.
1226 *
1227 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001228 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001229#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001230
1231/* In the encoding of a AEAD algorithm, the bits corresponding to
1232 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1233 * The constants for default lengths follow this encoding.
1234 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001235#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1236#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001237
Steven Cooremand927ed72021-02-22 19:59:35 +01001238/* In the encoding of an AEAD algorithm, the bit corresponding to
1239 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001240 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1241 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001242 * same base class and having a tag length greater than or equal to the one
1243 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1244#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1245
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001246/** Macro to build a shortened AEAD algorithm.
1247 *
1248 * A shortened AEAD algorithm is similar to the corresponding AEAD
1249 * algorithm, but has an authentication tag that consists of fewer bytes.
1250 * Depending on the algorithm, the tag length may affect the calculation
1251 * of the ciphertext.
1252 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001253 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001254 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001255 * is true).
1256 * \param tag_length Desired length of the authentication tag in bytes.
1257 *
1258 * \return The corresponding AEAD algorithm with the specified
1259 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001260 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001261 * AEAD algorithm or if \p tag_length is not valid
1262 * for the specified AEAD algorithm.
1263 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001264#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001265 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1266 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001267 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1268 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1269
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001270/** Retrieve the tag length of a specified AEAD algorithm
1271 *
1272 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001273 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001274 * is true).
1275 *
1276 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001277 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001278 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001279 */
1280#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1281 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1282 PSA_AEAD_TAG_LENGTH_OFFSET )
1283
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001284/** Calculate the corresponding AEAD algorithm with the default tag length.
1285 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001286 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001287 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001288 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001289 * \return The corresponding AEAD algorithm with the default
1290 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001291 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001292#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001293 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001294 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1295 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1296 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001297 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001298#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1299 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1300 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001301 ref :
1302
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001303/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001304 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001305 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001306 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001307 * algorithm is equal to or larger then the minimum tag length specified by the
1308 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001309 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001310 * \note When setting the minimum required tag length to less than the
1311 * smallest tag length allowed by the base algorithm, this effectively
1312 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001313 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001314 * \param aead_alg An AEAD algorithm identifier (value of type
1315 * #psa_algorithm_t such that
1316 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1317 * \param min_tag_length Desired minimum length of the authentication tag in
1318 * bytes. This must be at least 1 and at most the largest
1319 * allowed tag length of the algorithm.
1320 *
1321 * \return The corresponding AEAD wildcard algorithm with the
1322 * specified minimum length.
1323 * \return Unspecified if \p aead_alg is not a supported
1324 * AEAD algorithm or if \p min_tag_length is less than 1
1325 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001326 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001327#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001328 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1329 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001330
Bence Szépkútia2945512020-12-03 21:40:17 +01001331#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001332/** RSA PKCS#1 v1.5 signature with hashing.
1333 *
1334 * This is the signature scheme defined by RFC 8017
1335 * (PKCS#1: RSA Cryptography Specifications) under the name
1336 * RSASSA-PKCS1-v1_5.
1337 *
1338 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1339 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001340 * This includes #PSA_ALG_ANY_HASH
1341 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001342 *
1343 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001344 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001345 * hash algorithm.
1346 */
1347#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1348 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1349/** Raw PKCS#1 v1.5 signature.
1350 *
1351 * The input to this algorithm is the DigestInfo structure used by
1352 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1353 * steps 3&ndash;6.
1354 */
1355#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1356#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1357 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1358
Bence Szépkútia2945512020-12-03 21:40:17 +01001359#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001360/** RSA PSS signature with hashing.
1361 *
1362 * This is the signature scheme defined by RFC 8017
1363 * (PKCS#1: RSA Cryptography Specifications) under the name
1364 * RSASSA-PSS, with the message generation function MGF1, and with
1365 * a salt length equal to the length of the hash. The specified
1366 * hash algorithm is used to hash the input message, to create the
1367 * salted hash, and for the mask generation.
1368 *
1369 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1370 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001371 * This includes #PSA_ALG_ANY_HASH
1372 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001373 *
1374 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001375 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001376 * hash algorithm.
1377 */
1378#define PSA_ALG_RSA_PSS(hash_alg) \
1379 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1380#define PSA_ALG_IS_RSA_PSS(alg) \
1381 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1382
Bence Szépkútia2945512020-12-03 21:40:17 +01001383#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001384/** ECDSA signature with hashing.
1385 *
1386 * This is the ECDSA signature scheme defined by ANSI X9.62,
1387 * with a random per-message secret number (*k*).
1388 *
1389 * The representation of the signature as a byte string consists of
1390 * the concatentation of the signature values *r* and *s*. Each of
1391 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1392 * of the base point of the curve in octets. Each value is represented
1393 * in big-endian order (most significant octet first).
1394 *
1395 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1396 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001397 * This includes #PSA_ALG_ANY_HASH
1398 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001399 *
1400 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001401 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001402 * hash algorithm.
1403 */
1404#define PSA_ALG_ECDSA(hash_alg) \
1405 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1406/** ECDSA signature without hashing.
1407 *
1408 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1409 * without specifying a hash algorithm. This algorithm may only be
1410 * used to sign or verify a sequence of bytes that should be an
1411 * already-calculated hash. Note that the input is padded with
1412 * zeros on the left or truncated on the left as required to fit
1413 * the curve size.
1414 */
1415#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001416#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001417/** Deterministic ECDSA signature with hashing.
1418 *
1419 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1420 *
1421 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1422 *
1423 * Note that when this algorithm is used for verification, signatures
1424 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1425 * same private key are accepted. In other words,
1426 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1427 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1428 *
1429 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1430 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001431 * This includes #PSA_ALG_ANY_HASH
1432 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001433 *
1434 * \return The corresponding deterministic ECDSA signature
1435 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001436 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001437 * hash algorithm.
1438 */
1439#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1440 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001441#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001442#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001443 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001444 PSA_ALG_ECDSA_BASE)
1445#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001446 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001447#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1448 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1449#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1450 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1451
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001452/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1453 * using standard parameters.
1454 *
1455 * Contexts are not supported in the current version of this specification
1456 * because there is no suitable signature interface that can take the
1457 * context as a parameter. A future version of this specification may add
1458 * suitable functions and extend this algorithm to support contexts.
1459 *
1460 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1461 * In this specification, the following curves are supported:
1462 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1463 * in RFC 8032.
1464 * The curve is Edwards25519.
1465 * The hash function used internally is SHA-512.
1466 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1467 * in RFC 8032.
1468 * The curve is Edwards448.
1469 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001470 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001471 *
1472 * This algorithm can be used with psa_sign_message() and
1473 * psa_verify_message(). Since there is no prehashing, it cannot be used
1474 * with psa_sign_hash() or psa_verify_hash().
1475 *
1476 * The signature format is the concatenation of R and S as defined by
1477 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1478 * string for Ed448).
1479 */
1480#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1481
1482#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1483#define PSA_ALG_IS_HASH_EDDSA(alg) \
1484 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1485
1486/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001487 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001488 *
1489 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1490 *
1491 * This algorithm is Ed25519 as specified in RFC 8032.
1492 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001493 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001494 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001495 *
1496 * This is a hash-and-sign algorithm: to calculate a signature,
1497 * you can either:
1498 * - call psa_sign_message() on the message;
1499 * - or calculate the SHA-512 hash of the message
1500 * with psa_hash_compute()
1501 * or with a multi-part hash operation started with psa_hash_setup(),
1502 * using the hash algorithm #PSA_ALG_SHA_512,
1503 * then sign the calculated hash with psa_sign_hash().
1504 * Verifying a signature is similar, using psa_verify_message() or
1505 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001506 */
1507#define PSA_ALG_ED25519PH \
1508 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1509
1510/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1511 * using SHAKE256 and the Edwards448 curve.
1512 *
1513 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1514 *
1515 * This algorithm is Ed448 as specified in RFC 8032.
1516 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001517 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001518 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001519 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001520 *
1521 * This is a hash-and-sign algorithm: to calculate a signature,
1522 * you can either:
1523 * - call psa_sign_message() on the message;
1524 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1525 * with psa_hash_compute()
1526 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001527 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001528 * then sign the calculated hash with psa_sign_hash().
1529 * Verifying a signature is similar, using psa_verify_message() or
1530 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001531 */
1532#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001533 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001534
Gilles Peskine6d400852021-02-24 21:39:52 +01001535/* Default definition, to be overridden if the library is extended with
1536 * more hash-and-sign algorithms that we want to keep out of this header
1537 * file. */
1538#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1539
Gilles Peskined35b4892019-01-14 16:02:15 +01001540/** Whether the specified algorithm is a hash-and-sign algorithm.
1541 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001542 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1543 * structured in two parts: first the calculation of a hash in a way that
1544 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001545 * hash value and the key.
1546 *
1547 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1548 *
1549 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1550 * This macro may return either 0 or 1 if \p alg is not a supported
1551 * algorithm identifier.
1552 */
1553#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1554 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001555 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
Gilles Peskine6d400852021-02-24 21:39:52 +01001556 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001557
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001558/** Get the hash used by a hash-and-sign signature algorithm.
1559 *
1560 * A hash-and-sign algorithm is a signature algorithm which is
1561 * composed of two phases: first a hashing phase which does not use
1562 * the key and produces a hash of the input message, then a signing
1563 * phase which only uses the hash and the key and not the message
1564 * itself.
1565 *
1566 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1567 * #PSA_ALG_IS_SIGN(\p alg) is true).
1568 *
1569 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1570 * algorithm.
1571 * \return 0 if \p alg is a signature algorithm that does not
1572 * follow the hash-and-sign structure.
1573 * \return Unspecified if \p alg is not a signature algorithm or
1574 * if it is not supported by the implementation.
1575 */
1576#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001577 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001578 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1579 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1580 0)
1581
1582/** RSA PKCS#1 v1.5 encryption.
1583 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001584#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001585
Bence Szépkútia2945512020-12-03 21:40:17 +01001586#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001587/** RSA OAEP encryption.
1588 *
1589 * This is the encryption scheme defined by RFC 8017
1590 * (PKCS#1: RSA Cryptography Specifications) under the name
1591 * RSAES-OAEP, with the message generation function MGF1.
1592 *
1593 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1594 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1595 * for MGF1.
1596 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001597 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001598 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001599 * hash algorithm.
1600 */
1601#define PSA_ALG_RSA_OAEP(hash_alg) \
1602 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1603#define PSA_ALG_IS_RSA_OAEP(alg) \
1604 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1605#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1606 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1607 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1608 0)
1609
Bence Szépkútia2945512020-12-03 21:40:17 +01001610#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001611/** Macro to build an HKDF algorithm.
1612 *
1613 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1614 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001615 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001616 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001617 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001618 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1619 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1620 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1621 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001622 * starting to generate output.
1623 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001624 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1625 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1626 *
1627 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001628 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001629 * hash algorithm.
1630 */
1631#define PSA_ALG_HKDF(hash_alg) \
1632 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1633/** Whether the specified algorithm is an HKDF algorithm.
1634 *
1635 * HKDF is a family of key derivation algorithms that are based on a hash
1636 * function and the HMAC construction.
1637 *
1638 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1639 *
1640 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1641 * This macro may return either 0 or 1 if \c alg is not a supported
1642 * key derivation algorithm identifier.
1643 */
1644#define PSA_ALG_IS_HKDF(alg) \
1645 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1646#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1647 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1648
Bence Szépkútia2945512020-12-03 21:40:17 +01001649#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001650/** Macro to build a TLS-1.2 PRF algorithm.
1651 *
1652 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1653 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1654 * used with either SHA-256 or SHA-384.
1655 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001656 * This key derivation algorithm uses the following inputs, which must be
1657 * passed in the order given here:
1658 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001659 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1660 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001661 *
1662 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001663 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001664 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001665 *
1666 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1667 * TLS 1.2 PRF using HMAC-SHA-256.
1668 *
1669 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1670 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1671 *
1672 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001673 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001674 * hash algorithm.
1675 */
1676#define PSA_ALG_TLS12_PRF(hash_alg) \
1677 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1678
1679/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1680 *
1681 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1682 *
1683 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1684 * This macro may return either 0 or 1 if \c alg is not a supported
1685 * key derivation algorithm identifier.
1686 */
1687#define PSA_ALG_IS_TLS12_PRF(alg) \
1688 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1689#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1690 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1691
Bence Szépkútia2945512020-12-03 21:40:17 +01001692#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001693/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1694 *
1695 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1696 * from the PreSharedKey (PSK) through the application of padding
1697 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1698 * The latter is based on HMAC and can be used with either SHA-256
1699 * or SHA-384.
1700 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001701 * This key derivation algorithm uses the following inputs, which must be
1702 * passed in the order given here:
1703 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001704 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1705 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001706 *
1707 * For the application to TLS-1.2, the seed (which is
1708 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1709 * ClientHello.Random + ServerHello.Random,
1710 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001711 *
1712 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1713 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1714 *
1715 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1716 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1717 *
1718 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001719 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001720 * hash algorithm.
1721 */
1722#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1723 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1724
1725/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1726 *
1727 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1728 *
1729 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1730 * This macro may return either 0 or 1 if \c alg is not a supported
1731 * key derivation algorithm identifier.
1732 */
1733#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1734 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1735#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1736 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1737
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001738/* This flag indicates whether the key derivation algorithm is suitable for
1739 * use on low-entropy secrets such as password - these algorithms are also
1740 * known as key stretching or password hashing schemes. These are also the
1741 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001742 *
1743 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001744 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001745#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001746
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001747#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001748/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001749 *
1750 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001751 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
1752 * HMAC with the specified hash.
1753 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2
1754 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001755 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001756 * This key derivation algorithm uses the following inputs, which must be
1757 * provided in the following order:
1758 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001759 * This input step must be used exactly once.
1760 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1761 * This input step must be used one or more times; if used several times, the
1762 * inputs will be concatenated. This can be used to build the final salt
1763 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001764 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001765 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001766 *
1767 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1768 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1769 *
1770 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
1771 * \return Unspecified if \p hash_alg is not a supported
1772 * hash algorithm.
1773 */
1774#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
1775 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1776
1777/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
1778 *
1779 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1780 *
1781 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
1782 * This macro may return either 0 or 1 if \c alg is not a supported
1783 * key derivation algorithm identifier.
1784 */
1785#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
1786 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001787
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001788/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
1789 *
1790 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
1791 * This macro specifies the PBKDF2 algorithm constructed using the
1792 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
1793 *
1794 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02001795 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001796 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001797#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001798
Bence Szépkútia2945512020-12-03 21:40:17 +01001799#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1800#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001801
Gilles Peskine6843c292019-01-18 16:44:49 +01001802/** Macro to build a combined algorithm that chains a key agreement with
1803 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001804 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001805 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1806 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1807 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1808 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001809 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001810 * \return The corresponding key agreement and derivation
1811 * algorithm.
1812 * \return Unspecified if \p ka_alg is not a supported
1813 * key agreement algorithm or \p kdf_alg is not a
1814 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001815 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001816#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1817 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001818
1819#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1820 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1821
Gilles Peskine6843c292019-01-18 16:44:49 +01001822#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1823 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001824
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001825/** Whether the specified algorithm is a raw key agreement algorithm.
1826 *
1827 * A raw key agreement algorithm is one that does not specify
1828 * a key derivation function.
1829 * Usually, raw key agreement algorithms are constructed directly with
1830 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001831 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001832 *
1833 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1834 *
1835 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1836 * This macro may return either 0 or 1 if \p alg is not a supported
1837 * algorithm identifier.
1838 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001839#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001840 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1841 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001842
1843#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1844 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1845
1846/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001847 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001848 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001849 * `g^{ab}` in big-endian format.
1850 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1851 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001852 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001853#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001854
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001855/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1856 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001857 * This includes the raw finite field Diffie-Hellman algorithm as well as
1858 * finite-field Diffie-Hellman followed by any supporter key derivation
1859 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001860 *
1861 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1862 *
1863 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1864 * This macro may return either 0 or 1 if \c alg is not a supported
1865 * key agreement algorithm identifier.
1866 */
1867#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001868 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001869
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001870/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1871 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001872 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001873 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1874 * `m` is the bit size associated with the curve, i.e. the bit size of the
1875 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1876 * the byte containing the most significant bit of the shared secret
1877 * is padded with zero bits. The byte order is either little-endian
1878 * or big-endian depending on the curve type.
1879 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001880 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001881 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1882 * in little-endian byte order.
1883 * The bit size is 448 for Curve448 and 255 for Curve25519.
1884 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001885 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001886 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1887 * in big-endian byte order.
1888 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1889 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001890 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001891 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1892 * in big-endian byte order.
1893 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001894 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001895#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001896
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001897/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1898 * algorithm.
1899 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001900 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1901 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1902 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001903 *
1904 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1905 *
1906 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1907 * 0 otherwise.
1908 * This macro may return either 0 or 1 if \c alg is not a supported
1909 * key agreement algorithm identifier.
1910 */
1911#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001912 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001913
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001914/** Whether the specified algorithm encoding is a wildcard.
1915 *
1916 * Wildcard values may only be used to set the usage algorithm field in
1917 * a policy, not to perform an operation.
1918 *
1919 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1920 *
1921 * \return 1 if \c alg is a wildcard algorithm encoding.
1922 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1923 * an operation).
1924 * \return This macro may return either 0 or 1 if \c alg is not a supported
1925 * algorithm identifier.
1926 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001927#define PSA_ALG_IS_WILDCARD(alg) \
1928 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1929 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1930 PSA_ALG_IS_MAC(alg) ? \
1931 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1932 PSA_ALG_IS_AEAD(alg) ? \
1933 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001934 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001935
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001936/** Get the hash used by a composite algorithm.
1937 *
1938 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1939 *
1940 * \return The underlying hash algorithm if alg is a composite algorithm that
1941 * uses a hash algorithm.
1942 *
1943 * \return #PSA_ALG_NONE if alg is not a composite algorithm that uses a hash.
1944 */
1945#define PSA_ALG_GET_HASH(alg) \
1946 (((alg) & 0x000000ff) == 0 ? PSA_ALG_NONE : 0x02000000 | ((alg) & 0x000000ff))
1947
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001948/**@}*/
1949
1950/** \defgroup key_lifetimes Key lifetimes
1951 * @{
1952 */
1953
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001954/** The default lifetime for volatile keys.
1955 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001956 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001957 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001958 *
1959 * A key with this lifetime is typically stored in the RAM area of the
1960 * PSA Crypto subsystem. However this is an implementation choice.
1961 * If an implementation stores data about the key in a non-volatile memory,
1962 * it must release all the resources associated with the key and erase the
1963 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001964 */
1965#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1966
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001967/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001968 *
1969 * A persistent key remains in storage until it is explicitly destroyed or
1970 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001971 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001972 * provide their own mechanism (for example to perform a factory reset,
1973 * to prepare for device refurbishment, or to uninstall an application).
1974 *
1975 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001976 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001977 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001978 */
1979#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1980
Gilles Peskineaff11812020-05-04 19:03:10 +02001981/** The persistence level of volatile keys.
1982 *
1983 * See ::psa_key_persistence_t for more information.
1984 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001985#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001986
1987/** The default persistence level for persistent keys.
1988 *
1989 * See ::psa_key_persistence_t for more information.
1990 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001991#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02001992
1993/** A persistence level indicating that a key is never destroyed.
1994 *
1995 * See ::psa_key_persistence_t for more information.
1996 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001997#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001998
1999#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002000 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002001
2002#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002003 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002004
2005/** Whether a key lifetime indicates that the key is volatile.
2006 *
2007 * A volatile key is automatically destroyed by the implementation when
2008 * the application instance terminates. In particular, a volatile key
2009 * is automatically destroyed on a power reset of the device.
2010 *
2011 * A key that is not volatile is persistent. Persistent keys are
2012 * preserved until the application explicitly destroys them or until an
2013 * implementation-specific device management event occurs (for example,
2014 * a factory reset).
2015 *
2016 * \param lifetime The lifetime value to query (value of type
2017 * ::psa_key_lifetime_t).
2018 *
2019 * \return \c 1 if the key is volatile, otherwise \c 0.
2020 */
2021#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2022 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002023 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002024
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002025/** Construct a lifetime from a persistence level and a location.
2026 *
2027 * \param persistence The persistence level
2028 * (value of type ::psa_key_persistence_t).
2029 * \param location The location indicator
2030 * (value of type ::psa_key_location_t).
2031 *
2032 * \return The constructed lifetime value.
2033 */
2034#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2035 ((location) << 8 | (persistence))
2036
Gilles Peskineaff11812020-05-04 19:03:10 +02002037/** The local storage area for persistent keys.
2038 *
2039 * This storage area is available on all systems that can store persistent
2040 * keys without delegating the storage to a third-party cryptoprocessor.
2041 *
2042 * See ::psa_key_location_t for more information.
2043 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002044#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002045
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002046#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002047
Gilles Peskine4a231b82019-05-06 18:56:14 +02002048/** The minimum value for a key identifier chosen by the application.
2049 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002050#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002051/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002052 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002053#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002054/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002055 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002056#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002057/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002058 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002059#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002060
Ronald Cron7424f0d2020-09-14 16:17:41 +02002061
2062#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2063
2064#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2065#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2066#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2067
2068/** Utility to initialize a key identifier at runtime.
2069 *
2070 * \param unused Unused parameter.
2071 * \param key_id Identifier of the key.
2072 */
2073static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2074 unsigned int unused, psa_key_id_t key_id )
2075{
2076 (void)unused;
2077
2078 return( key_id );
2079}
2080
2081/** Compare two key identifiers.
2082 *
2083 * \param id1 First key identifier.
2084 * \param id2 Second key identifier.
2085 *
2086 * \return Non-zero if the two key identifier are equal, zero otherwise.
2087 */
2088static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2089 mbedtls_svc_key_id_t id2 )
2090{
2091 return( id1 == id2 );
2092}
2093
Ronald Cronc4d1b512020-07-31 11:26:37 +02002094/** Check whether a key identifier is null.
2095 *
2096 * \param key Key identifier.
2097 *
2098 * \return Non-zero if the key identifier is null, zero otherwise.
2099 */
2100static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2101{
2102 return( key == 0 );
2103}
2104
Ronald Cron7424f0d2020-09-14 16:17:41 +02002105#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2106
2107#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
2108#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
2109#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
2110
2111/** Utility to initialize a key identifier at runtime.
2112 *
2113 * \param owner_id Identifier of the key owner.
2114 * \param key_id Identifier of the key.
2115 */
2116static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2117 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2118{
2119 return( (mbedtls_svc_key_id_t){ .key_id = key_id,
2120 .owner = owner_id } );
2121}
2122
2123/** Compare two key identifiers.
2124 *
2125 * \param id1 First key identifier.
2126 * \param id2 Second key identifier.
2127 *
2128 * \return Non-zero if the two key identifier are equal, zero otherwise.
2129 */
2130static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2131 mbedtls_svc_key_id_t id2 )
2132{
2133 return( ( id1.key_id == id2.key_id ) &&
2134 mbedtls_key_owner_id_equal( id1.owner, id2.owner ) );
2135}
2136
Ronald Cronc4d1b512020-07-31 11:26:37 +02002137/** Check whether a key identifier is null.
2138 *
2139 * \param key Key identifier.
2140 *
2141 * \return Non-zero if the key identifier is null, zero otherwise.
2142 */
2143static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2144{
2145 return( ( key.key_id == 0 ) && ( key.owner == 0 ) );
2146}
2147
Ronald Cron7424f0d2020-09-14 16:17:41 +02002148#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002149
2150/**@}*/
2151
2152/** \defgroup policy Key policies
2153 * @{
2154 */
2155
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002156/** Whether the key may be exported.
2157 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002158 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002159 * regardless of the value of this permission flag.
2160 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002161 * If a key does not have export permission, implementations shall not
2162 * allow the key to be exported in plain form from the cryptoprocessor,
2163 * whether through psa_export_key() or through a proprietary interface.
2164 * The key may however be exportable in a wrapped form, i.e. in a form
2165 * where it is encrypted by another key.
2166 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002167#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2168
2169/** Whether the key may be copied.
2170 *
2171 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002172 * with the same policy or a more restrictive policy.
2173 *
2174 * For lifetimes for which the key is located in a secure element which
2175 * enforce the non-exportability of keys, copying a key outside the secure
2176 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2177 * Copying the key inside the secure element is permitted with just
2178 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2179 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2180 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2181 * is sufficient to permit the copy.
2182 */
2183#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2184
2185/** Whether the key may be used to encrypt a message.
2186 *
2187 * This flag allows the key to be used for a symmetric encryption operation,
2188 * for an AEAD encryption-and-authentication operation,
2189 * or for an asymmetric encryption operation,
2190 * if otherwise permitted by the key's type and policy.
2191 *
2192 * For a key pair, this concerns the public key.
2193 */
2194#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2195
2196/** Whether the key may be used to decrypt a message.
2197 *
2198 * This flag allows the key to be used for a symmetric decryption operation,
2199 * for an AEAD decryption-and-verification operation,
2200 * or for an asymmetric decryption operation,
2201 * if otherwise permitted by the key's type and policy.
2202 *
2203 * For a key pair, this concerns the private key.
2204 */
2205#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2206
2207/** Whether the key may be used to sign a message.
2208 *
2209 * This flag allows the key to be used for a MAC calculation operation
2210 * or for an asymmetric signature operation,
2211 * if otherwise permitted by the key's type and policy.
2212 *
2213 * For a key pair, this concerns the private key.
2214 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002215#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002216
2217/** Whether the key may be used to verify a message signature.
2218 *
2219 * This flag allows the key to be used for a MAC verification operation
2220 * or for an asymmetric signature verification operation,
2221 * if otherwise permitted by by the key's type and policy.
2222 *
2223 * For a key pair, this concerns the public key.
2224 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002225#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002226
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002227/** Whether the key may be used to derive other keys or produce a password
2228 * hash.
2229 *
2230 * This flag allows the key to be used as the input of
2231 * psa_key_derivation_input_key() at the step
2232 * #PSA_KEY_DERIVATION_INPUT_SECRET of #PSA_KEY_DERIVATION_INPUT_PASSWORD
2233 * depending on the algorithm, and allows the use of
2234 * psa_key_derivation_output_bytes() or psa_key_derivation_output_key()
2235 * at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002236 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002237#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002238
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002239/** Whether the key may be used to verify the result of a key derivation,
2240 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002241 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002242 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002243 *
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +02002244 * - for a key of type #PSA_KEY_TYPE_PASSWORD_HASH, as the \c key argument of
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002245 * psa_key_derivation_verify_key();
2246 * - for a key of type #PSA_KEY_TYPE_PASSWORD (or #PSA_KEY_TYPE_DERIVE), as
2247 * the input to psa_key_derivation_input_key() at the step
2248 * #PSA_KEY_DERIVATION_INPUT_PASSWORD (or #PSA_KEY_DERIVATION_INPUT_SECRET);
2249 * then at the end of the operation use of psa_key_derivation_verify_bytes()
2250 * or psa_key_derivation_verify_key() will be permitted (but not
2251 * psa_key_derivation_output_xxx() unless #PSA_KEY_USAGE_DERIVE is set).
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002252 */
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002253#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002254
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002255/**@}*/
2256
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002257/** \defgroup derivation Key derivation
2258 * @{
2259 */
2260
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002261/** A secret input for key derivation.
2262 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002263 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2264 * (passed to psa_key_derivation_input_key())
2265 * or the shared secret resulting from a key agreement
2266 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002267 *
2268 * The secret can also be a direct input (passed to
2269 * key_derivation_input_bytes()). In this case, the derivation operation
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002270 * may not be used to derive or verify keys: the operation will only allow
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002271 * psa_key_derivation_output_bytes() or
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002272 * psa_key_derivation_verify_bytes() but not
2273 * psa_key_derivation_output_key() or
2274 * psa_key_derivation_verify_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002275 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002276#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002277
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002278/** A low-entropy secret input for password hashing / key stretching.
2279 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002280 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2281 * psa_key_derivation_input_key()) or a direct input (passed to
2282 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2283 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2284 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002285 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002286 * The secret can also be a direct input (passed to
2287 * key_derivation_input_bytes()). In this case, the derivation operation
2288 * may not be used to derive or verify keys: the operation will only allow
2289 * psa_key_derivation_output_bytes() or
2290 * psa_key_derivation_verify_bytes(), not
2291 * psa_key_derivation_output_key() or
2292 * psa_key_derivation_verify_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002293 */
2294#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102)
2295
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002296/** A label for key derivation.
2297 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002298 * This should be a direct input.
2299 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002300 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002301#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002302
2303/** A salt for key derivation.
2304 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002305 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002306 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2307 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002308 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002309#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002310
2311/** An information string for key derivation.
2312 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002313 * This should be a direct input.
2314 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002315 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002316#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002317
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002318/** A seed for key derivation.
2319 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002320 * This should be a direct input.
2321 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002322 */
2323#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2324
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002325/** A cost parameter for password hashing / key stretching.
2326 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002327 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002328 */
2329#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205)
2330
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002331/**@}*/
2332
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002333#endif /* PSA_CRYPTO_VALUES_H */