blob: 31a64647e3053b4b883aab99ea887cc7733d11d6 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
Mateusz Starzyk363eb292021-05-19 17:32:44 +020036#include "mbedtls/private_access.h"
Gilles Peskinef3b731e2018-12-12 13:38:31 +010037
38/** \defgroup error Error codes
39 * @{
40 */
41
David Saadab4ecc272019-02-14 13:48:10 +020042/* PSA error codes */
43
Gilles Peskinef3b731e2018-12-12 13:38:31 +010044/** The action was completed successfully. */
45#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010046
47/** An error occurred that does not correspond to any defined
48 * failure cause.
49 *
50 * Implementations may use this error code if none of the other standard
51 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020052#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010053
54/** The requested operation or a parameter is not supported
55 * by this implementation.
56 *
57 * Implementations should return this error code when an enumeration
58 * parameter such as a key type, algorithm, etc. is not recognized.
59 * If a combination of parameters is recognized and identified as
60 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020061#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010062
63/** The requested action is denied by a policy.
64 *
65 * Implementations should return this error code when the parameters
66 * are recognized as valid and supported, and a policy explicitly
67 * denies the requested operation.
68 *
69 * If a subset of the parameters of a function call identify a
70 * forbidden operation, and another subset of the parameters are
71 * not valid or not supported, it is unspecified whether the function
72 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
73 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020074#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010075
76/** An output buffer is too small.
77 *
78 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
79 * description to determine a sufficient buffer size.
80 *
81 * Implementations should preferably return this error code only
82 * in cases when performing the operation with a larger output
83 * buffer would succeed. However implementations may return this
84 * error if a function has invalid or unsupported parameters in addition
85 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020086#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010087
David Saadab4ecc272019-02-14 13:48:10 +020088/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010089 *
David Saadab4ecc272019-02-14 13:48:10 +020090 * Implementations should return this error, when attempting
91 * to write an item (like a key) that already exists. */
92#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010093
David Saadab4ecc272019-02-14 13:48:10 +020094/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010095 *
David Saadab4ecc272019-02-14 13:48:10 +020096 * Implementations should return this error, if a requested item (like
97 * a key) does not exist. */
98#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010099
100/** The requested action cannot be performed in the current state.
101 *
102 * Multipart operations return this error when one of the
103 * functions is called out of sequence. Refer to the function
104 * descriptions for permitted sequencing of functions.
105 *
106 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100107 * that a key either exists or not,
108 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100109 * as applicable.
110 *
111 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200112 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100113 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200114#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100115
116/** The parameters passed to the function are invalid.
117 *
118 * Implementations may return this error any time a parameter or
119 * combination of parameters are recognized as invalid.
120 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100121 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200122 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * instead.
124 */
David Saadab4ecc272019-02-14 13:48:10 +0200125#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100126
127/** There is not enough runtime memory.
128 *
129 * If the action is carried out across multiple security realms, this
130 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200131#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100132
133/** There is not enough persistent storage.
134 *
135 * Functions that modify the key storage return this error code if
136 * there is insufficient storage space on the host media. In addition,
137 * many functions that do not otherwise access storage may return this
138 * error code if the implementation requires a mandatory log entry for
139 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200140#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100141
142/** There was a communication failure inside the implementation.
143 *
144 * This can indicate a communication failure between the application
145 * and an external cryptoprocessor or between the cryptoprocessor and
146 * an external volatile or persistent memory. A communication failure
147 * may be transient or permanent depending on the cause.
148 *
149 * \warning If a function returns this error, it is undetermined
150 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200151 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100152 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
153 * if the requested action was completed successfully in an external
154 * cryptoprocessor but there was a breakdown of communication before
155 * the cryptoprocessor could report the status to the application.
156 */
David Saadab4ecc272019-02-14 13:48:10 +0200157#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100158
159/** There was a storage failure that may have led to data loss.
160 *
161 * This error indicates that some persistent storage is corrupted.
162 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200163 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100164 * between the cryptoprocessor and its external storage (use
165 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
166 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
167 *
168 * Note that a storage failure does not indicate that any data that was
169 * previously read is invalid. However this previously read data may no
170 * longer be readable from storage.
171 *
172 * When a storage failure occurs, it is no longer possible to ensure
173 * the global integrity of the keystore. Depending on the global
174 * integrity guarantees offered by the implementation, access to other
175 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100176 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100177 *
178 * Implementations should only use this error code to report a
179 * permanent storage corruption. However application writers should
180 * keep in mind that transient errors while reading the storage may be
181 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200182#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100183
184/** A hardware failure was detected.
185 *
186 * A hardware failure may be transient or permanent depending on the
187 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200188#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100189
190/** A tampering attempt was detected.
191 *
192 * If an application receives this error code, there is no guarantee
193 * that previously accessed or computed data was correct and remains
194 * confidential. Applications should not perform any security function
195 * and should enter a safe failure state.
196 *
197 * Implementations may return this error code if they detect an invalid
198 * state that cannot happen during normal operation and that indicates
199 * that the implementation's security guarantees no longer hold. Depending
200 * on the implementation architecture and on its security and safety goals,
201 * the implementation may forcibly terminate the application.
202 *
203 * This error code is intended as a last resort when a security breach
204 * is detected and it is unsure whether the keystore data is still
205 * protected. Implementations shall only return this error code
206 * to report an alarm from a tampering detector, to indicate that
207 * the confidentiality of stored data can no longer be guaranteed,
208 * or to indicate that the integrity of previously returned data is now
209 * considered compromised. Implementations shall not use this error code
210 * to indicate a hardware failure that merely makes it impossible to
211 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
212 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
213 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
214 * instead).
215 *
216 * This error indicates an attack against the application. Implementations
217 * shall not return this error code as a consequence of the behavior of
218 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200219#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100220
221/** There is not enough entropy to generate random data needed
222 * for the requested action.
223 *
224 * This error indicates a failure of a hardware random generator.
225 * Application writers should note that this error can be returned not
226 * only by functions whose purpose is to generate random data, such
227 * as key, IV or nonce generation, but also by functions that execute
228 * an algorithm with a randomized result, as well as functions that
229 * use randomization of intermediate computations as a countermeasure
230 * to certain attacks.
231 *
232 * Implementations should avoid returning this error after psa_crypto_init()
233 * has succeeded. Implementations should generate sufficient
234 * entropy during initialization and subsequently use a cryptographically
235 * secure pseudorandom generator (PRNG). However implementations may return
236 * this error at any time if a policy requires the PRNG to be reseeded
237 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200238#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100239
240/** The signature, MAC or hash is incorrect.
241 *
242 * Verification functions return this error if the verification
243 * calculations completed successfully, and the value to be verified
244 * was determined to be incorrect.
245 *
246 * If the value to verify has an invalid size, implementations may return
247 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200248#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100249
250/** The decrypted padding is incorrect.
251 *
252 * \warning In some protocols, when decrypting data, it is essential that
253 * the behavior of the application does not depend on whether the padding
254 * is correct, down to precise timing. Applications should prefer
255 * protocols that use authenticated encryption rather than plain
256 * encryption. If the application must perform a decryption of
257 * unauthenticated data, the application writer should take care not
258 * to reveal whether the padding is invalid.
259 *
260 * Implementations should strive to make valid and invalid padding
261 * as close as possible to indistinguishable to an external observer.
262 * In particular, the timing of a decryption operation should not
263 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200264#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100265
David Saadab4ecc272019-02-14 13:48:10 +0200266/** Return this error when there's insufficient data when attempting
267 * to read from a resource. */
268#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100269
Ronald Croncf56a0a2020-08-04 09:51:30 +0200270/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100271 */
David Saadab4ecc272019-02-14 13:48:10 +0200272#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100273
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100274/** Stored data has been corrupted.
275 *
276 * This error indicates that some persistent storage has suffered corruption.
277 * It does not indicate the following situations, which have specific error
278 * codes:
279 *
280 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
281 * - A communication error between the cryptoprocessor and its external
282 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
283 * - When the storage is in a valid state but is full - use
284 * #PSA_ERROR_INSUFFICIENT_STORAGE.
285 * - When the storage fails for other reasons - use
286 * #PSA_ERROR_STORAGE_FAILURE.
287 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
288 *
289 * \note A storage corruption does not indicate that any data that was
290 * previously read is invalid. However this previously read data might no
291 * longer be readable from storage.
292 *
293 * When a storage failure occurs, it is no longer possible to ensure the
294 * global integrity of the keystore.
295 */
296#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
297
gabor-mezei-armfe309242020-11-09 17:39:56 +0100298/** Data read from storage is not valid for the implementation.
299 *
300 * This error indicates that some data read from storage does not have a valid
301 * format. It does not indicate the following situations, which have specific
302 * error codes:
303 *
304 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
305 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
306 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
307 *
308 * This error is typically a result of either storage corruption on a
309 * cleartext storage backend, or an attempt to read data that was
310 * written by an incompatible version of the library.
311 */
312#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
313
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100314/**@}*/
315
316/** \defgroup crypto_types Key and algorithm types
317 * @{
318 */
319
320/** An invalid key type value.
321 *
322 * Zero is not the encoding of any key type.
323 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100324#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100325
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100326/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100327 *
328 * Key types defined by this standard will never have the
329 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
330 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
331 * respect the bitwise structure used by standard encodings whenever practical.
332 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100333#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100334
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100335#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100336#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
337#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
338#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100339#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100340
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100341#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100342
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100343/** Whether a key type is vendor-defined.
344 *
345 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
346 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100347#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
348 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
349
350/** Whether a key type is an unstructured array of bytes.
351 *
352 * This encompasses both symmetric keys and non-key data.
353 */
354#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100355 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
356 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100357
358/** Whether a key type is asymmetric: either a key pair or a public key. */
359#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
360 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
361 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
362 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
363/** Whether a key type is the public part of a key pair. */
364#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
365 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
366/** Whether a key type is a key pair containing a private part and a public
367 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200368#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100369 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
370/** The key pair type corresponding to a public key type.
371 *
372 * You may also pass a key pair type as \p type, it will be left unchanged.
373 *
374 * \param type A public key type or key pair type.
375 *
376 * \return The corresponding key pair type.
377 * If \p type is not a public key or a key pair,
378 * the return value is undefined.
379 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200380#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100381 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
382/** The public key type corresponding to a key pair type.
383 *
384 * You may also pass a key pair type as \p type, it will be left unchanged.
385 *
386 * \param type A public key type or key pair type.
387 *
388 * \return The corresponding public key type.
389 * If \p type is not a public key or a key pair,
390 * the return value is undefined.
391 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200392#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100393 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
394
395/** Raw data.
396 *
397 * A "key" of this type cannot be used for any cryptographic operation.
398 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100399#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100400
401/** HMAC key.
402 *
403 * The key policy determines which underlying hash algorithm the key can be
404 * used for.
405 *
406 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100407 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100408 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100409#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100410
411/** A secret for key derivation.
412 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200413 * This key type is for high-entropy secrets only. For low-entropy secrets,
414 * #PSA_KEY_TYPE_PASSWORD should be used instead.
415 *
416 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
417 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
418 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100419 * The key policy determines which key derivation algorithm the key
420 * can be used for.
421 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100422#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200424/** A low-entropy secret for password hashing or key derivation.
425 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200426 * This key type is suitable for passwords and passphrases which are typically
427 * intended to be memorizable by humans, and have a low entropy relative to
428 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200429 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200430 * for such keys. It is not suitable for passwords with extremely low entropy,
431 * such as numerical PINs.
432 *
433 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
434 * key derivation algorithms. Algorithms that accept such an input were
435 * designed to accept low-entropy secret and are known as password hashing or
436 * key stretching algorithms.
437 *
438 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
439 * key derivation algorithms, as the algorithms that take such an input expect
440 * it to be high-entropy.
441 *
442 * The key policy determines which key derivation algorithm the key can be
443 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200444 */
Manuel Pégourié-Gonnardc16033e2021-04-30 11:59:40 +0200445#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200446
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200447/** A secret value that can be used to verify a password hash.
448 *
449 * The key policy determines which key derivation algorithm the key
450 * can be used for, among the same permissible subset as for
451 * #PSA_KEY_TYPE_PASSWORD.
452 */
453#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)
454
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200455/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200456 *
457 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200458 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200459 */
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200460#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200461
Gilles Peskine737c6be2019-05-21 16:01:06 +0200462/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100463 *
464 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
465 * 32 bytes (AES-256).
466 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100467#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100468
469/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
470 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100471 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
472 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100473 *
474 * Note that single DES and 2-key 3DES are weak and strongly
475 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
476 * is weak and deprecated and should only be used in legacy protocols.
477 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100478#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100479
Gilles Peskine737c6be2019-05-21 16:01:06 +0200480/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100481 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100482#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100483
484/** Key for the RC4 stream cipher.
485 *
486 * Note that RC4 is weak and deprecated and should only be used in
487 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100488#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100489
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200490/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
491 *
492 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
493 *
494 * Implementations must support 12-byte nonces, may support 8-byte nonces,
495 * and should reject other sizes.
496 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100497#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200498
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100499/** RSA public key.
500 *
501 * The size of an RSA key is the bit size of the modulus.
502 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100503#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100504/** RSA key pair (private and public key).
505 *
506 * The size of an RSA key is the bit size of the modulus.
507 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100508#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100509/** Whether a key type is an RSA key (pair or public-only). */
510#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200511 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100512
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100513#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100514#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
515#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100516/** Elliptic curve key pair.
517 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100518 * The size of an elliptic curve key is the bit size associated with the curve,
519 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
520 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
521 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100522 * \param curve A value of type ::psa_ecc_family_t that
523 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100524 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200525#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
526 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100527/** Elliptic curve public key.
528 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100529 * The size of an elliptic curve public key is the same as the corresponding
530 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
531 * `PSA_ECC_FAMILY_xxx` curve families).
532 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100533 * \param curve A value of type ::psa_ecc_family_t that
534 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100535 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100536#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
537 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
538
539/** Whether a key type is an elliptic curve key (pair or public-only). */
540#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200541 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100542 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100543/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200544#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100545 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200546 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100547/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100548#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
549 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
550 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
551
552/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100553#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
554 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100555 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
556 0))
557
Gilles Peskine228abc52019-12-03 17:24:19 +0100558/** SEC Koblitz curves over prime fields.
559 *
560 * This family comprises the following curves:
561 * secp192k1, secp224k1, secp256k1.
562 * They are defined in _Standards for Efficient Cryptography_,
563 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
564 * https://www.secg.org/sec2-v2.pdf
565 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100566#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100567
568/** SEC random curves over prime fields.
569 *
570 * This family comprises the following curves:
571 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
572 * They are defined in _Standards for Efficient Cryptography_,
573 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
574 * https://www.secg.org/sec2-v2.pdf
575 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100576#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100577/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100578#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100579
580/** SEC Koblitz curves over binary fields.
581 *
582 * This family comprises the following curves:
583 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
584 * They are defined in _Standards for Efficient Cryptography_,
585 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
586 * https://www.secg.org/sec2-v2.pdf
587 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100588#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100589
590/** SEC random curves over binary fields.
591 *
592 * This family comprises the following curves:
593 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
594 * They are defined in _Standards for Efficient Cryptography_,
595 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
596 * https://www.secg.org/sec2-v2.pdf
597 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100598#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100599
600/** SEC additional random curves over binary fields.
601 *
602 * This family comprises the following curve:
603 * sect163r2.
604 * It is defined in _Standards for Efficient Cryptography_,
605 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
606 * https://www.secg.org/sec2-v2.pdf
607 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100608#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100609
610/** Brainpool P random curves.
611 *
612 * This family comprises the following curves:
613 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
614 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
615 * It is defined in RFC 5639.
616 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100617#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100618
619/** Curve25519 and Curve448.
620 *
621 * This family comprises the following Montgomery curves:
622 * - 255-bit: Bernstein et al.,
623 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
624 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
625 * - 448-bit: Hamburg,
626 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
627 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
628 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100629#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100630
Gilles Peskine67546802021-02-24 21:49:40 +0100631/** The twisted Edwards curves Ed25519 and Ed448.
632 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100633 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100634 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100635 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100636 *
637 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100638 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100639 * to Curve25519.
640 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
641 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
642 * to Curve448.
643 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
644 */
645#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
646
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100647#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100648#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
649#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100650/** Diffie-Hellman key pair.
651 *
Paul Elliott75e27032020-06-03 15:17:39 +0100652 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100653 * Diffie-Hellman group to be used.
654 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200655#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
656 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100657/** Diffie-Hellman public key.
658 *
Paul Elliott75e27032020-06-03 15:17:39 +0100659 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100660 * Diffie-Hellman group to be used.
661 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200662#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
663 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
664
665/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
666#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200667 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200668 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
669/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200670#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200671 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200672 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200673/** Whether a key type is a Diffie-Hellman public key. */
674#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
675 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
676 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
677
678/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100679#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
680 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200681 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
682 0))
683
Gilles Peskine228abc52019-12-03 17:24:19 +0100684/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
685 *
686 * This family includes groups with the following key sizes (in bits):
687 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
688 * all of these sizes or only a subset.
689 */
Paul Elliott75e27032020-06-03 15:17:39 +0100690#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100691
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100692#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100693 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100694/** The block size of a block cipher.
695 *
696 * \param type A cipher key type (value of type #psa_key_type_t).
697 *
698 * \return The block size for a block cipher, or 1 for a stream cipher.
699 * The return value is undefined if \p type is not a supported
700 * cipher key type.
701 *
702 * \note It is possible to build stream cipher algorithms on top of a block
703 * cipher, for example CTR mode (#PSA_ALG_CTR).
704 * This macro only takes the key type into account, so it cannot be
705 * used to determine the size of the data that #psa_cipher_update()
706 * might buffer for future processing in general.
707 *
708 * \note This macro returns a compile-time constant if its argument is one.
709 *
710 * \warning This macro may evaluate its argument multiple times.
711 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100712#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100713 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100714 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100715 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100716
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100717/** Vendor-defined algorithm flag.
718 *
719 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
720 * bit set. Vendors who define additional algorithms must use an encoding with
721 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
722 * used by standard encodings whenever practical.
723 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100724#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100725
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100726#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100727#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
728#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100729#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100730#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
731#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
732#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
733#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
734#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100735
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100736/** Whether an algorithm is vendor-defined.
737 *
738 * See also #PSA_ALG_VENDOR_FLAG.
739 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100740#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
741 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
742
743/** Whether the specified algorithm is a hash algorithm.
744 *
745 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
746 *
747 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
748 * This macro may return either 0 or 1 if \p alg is not a supported
749 * algorithm identifier.
750 */
751#define PSA_ALG_IS_HASH(alg) \
752 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
753
754/** Whether the specified algorithm is a MAC algorithm.
755 *
756 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
757 *
758 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
759 * This macro may return either 0 or 1 if \p alg is not a supported
760 * algorithm identifier.
761 */
762#define PSA_ALG_IS_MAC(alg) \
763 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
764
765/** Whether the specified algorithm is a symmetric cipher algorithm.
766 *
767 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
768 *
769 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
770 * This macro may return either 0 or 1 if \p alg is not a supported
771 * algorithm identifier.
772 */
773#define PSA_ALG_IS_CIPHER(alg) \
774 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
775
776/** Whether the specified algorithm is an authenticated encryption
777 * with associated data (AEAD) algorithm.
778 *
779 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
780 *
781 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
782 * This macro may return either 0 or 1 if \p alg is not a supported
783 * algorithm identifier.
784 */
785#define PSA_ALG_IS_AEAD(alg) \
786 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
787
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200788/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200789 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100790 *
791 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
792 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200793 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100794 * This macro may return either 0 or 1 if \p alg is not a supported
795 * algorithm identifier.
796 */
797#define PSA_ALG_IS_SIGN(alg) \
798 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
799
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200800/** Whether the specified algorithm is an asymmetric encryption algorithm,
801 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100802 *
803 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
804 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200805 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100806 * This macro may return either 0 or 1 if \p alg is not a supported
807 * algorithm identifier.
808 */
809#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
810 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
811
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100812/** Whether the specified algorithm is a key agreement algorithm.
813 *
814 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
815 *
816 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
817 * This macro may return either 0 or 1 if \p alg is not a supported
818 * algorithm identifier.
819 */
820#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100821 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100822
823/** Whether the specified algorithm is a key derivation algorithm.
824 *
825 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
826 *
827 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
828 * This macro may return either 0 or 1 if \p alg is not a supported
829 * algorithm identifier.
830 */
831#define PSA_ALG_IS_KEY_DERIVATION(alg) \
832 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
833
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200834/** Whether the specified algorithm is a key stretching / password hashing
835 * algorithm.
836 *
837 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200838 * that is suitable for use with a low-entropy secret such as a password.
839 * Equivalently, it's a key derivation algorithm that uses a
840 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200841 *
842 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
843 *
844 * \return 1 if \p alg is a key stretching / passowrd hashing algorithm, 0
845 * otherwise. This macro may return either 0 or 1 if \p alg is not a
846 * supported algorithm identifier.
847 */
848#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
849 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
850 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
851
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100852#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100853/** MD2 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100854#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100855/** MD4 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100856#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100857/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100858#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100859/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100860#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100861/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100862#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100863/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100864#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100865/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100866#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100867/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100868#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100869/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100870#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100871/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100872#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100873/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100874#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100875/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100876#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100877/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100878#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100879/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100880#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100881/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100882#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100883/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100884 *
885 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
886 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
887 * has the same output size and a (theoretically) higher security strength.
888 */
Gilles Peskine27354692021-03-03 17:45:06 +0100889#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100890
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100891/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100892 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100893 * This value may be used to form the algorithm usage field of a policy
894 * for a signature algorithm that is parametrized by a hash. The key
895 * may then be used to perform operations using the same signature
896 * algorithm parametrized with any supported hash.
897 *
898 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100899 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100900 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100901 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100902 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
903 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100904 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200905 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100906 * ```
907 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100908 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100909 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
910 * call to sign or verify a message may use a different hash.
911 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200912 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
913 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
914 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100915 * ```
916 *
917 * This value may not be used to build other algorithms that are
918 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100919 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100920 *
921 * This value may not be used to build an algorithm specification to
922 * perform an operation. It is only valid to build policies.
923 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100924#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100925
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100926#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100927#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100928/** Macro to build an HMAC algorithm.
929 *
930 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
931 *
932 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
933 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
934 *
935 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100936 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100937 * hash algorithm.
938 */
939#define PSA_ALG_HMAC(hash_alg) \
940 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
941
942#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
943 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
944
945/** Whether the specified algorithm is an HMAC algorithm.
946 *
947 * HMAC is a family of MAC algorithms that are based on a hash function.
948 *
949 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
950 *
951 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
952 * This macro may return either 0 or 1 if \p alg is not a supported
953 * algorithm identifier.
954 */
955#define PSA_ALG_IS_HMAC(alg) \
956 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
957 PSA_ALG_HMAC_BASE)
958
959/* In the encoding of a MAC algorithm, the bits corresponding to
960 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
961 * truncated. As an exception, the value 0 means the untruncated algorithm,
962 * whatever its length is. The length is encoded in 6 bits, so it can
963 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
964 * to full length is correctly encoded as 0 and any non-trivial truncation
965 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100966#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
967#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100968
Steven Cooremand927ed72021-02-22 19:59:35 +0100969/* In the encoding of a MAC algorithm, the bit corresponding to
970 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100971 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
972 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100973 * same base class and having a (potentially truncated) MAC length greater or
974 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
975#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
976
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100977/** Macro to build a truncated MAC algorithm.
978 *
979 * A truncated MAC algorithm is identical to the corresponding MAC
980 * algorithm except that the MAC value for the truncated algorithm
981 * consists of only the first \p mac_length bytes of the MAC value
982 * for the untruncated algorithm.
983 *
984 * \note This macro may allow constructing algorithm identifiers that
985 * are not valid, either because the specified length is larger
986 * than the untruncated MAC or because the specified length is
987 * smaller than permitted by the implementation.
988 *
989 * \note It is implementation-defined whether a truncated MAC that
990 * is truncated to the same length as the MAC of the untruncated
991 * algorithm is considered identical to the untruncated algorithm
992 * for policy comparison purposes.
993 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200994 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100995 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100996 * is true). This may be a truncated or untruncated
997 * MAC algorithm.
998 * \param mac_length Desired length of the truncated MAC in bytes.
999 * This must be at most the full length of the MAC
1000 * and must be at least an implementation-specified
1001 * minimum. The implementation-specified minimum
1002 * shall not be zero.
1003 *
1004 * \return The corresponding MAC algorithm with the specified
1005 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001006 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001007 * MAC algorithm or if \p mac_length is too small or
1008 * too large for the specified MAC algorithm.
1009 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001010#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1011 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1012 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001013 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1014
1015/** Macro to build the base MAC algorithm corresponding to a truncated
1016 * MAC algorithm.
1017 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001018 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001019 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001020 * is true). This may be a truncated or untruncated
1021 * MAC algorithm.
1022 *
1023 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001024 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001025 * MAC algorithm.
1026 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001027#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1028 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1029 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001030
1031/** Length to which a MAC algorithm is truncated.
1032 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001033 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001034 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001035 * is true).
1036 *
1037 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001038 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1039 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001040 * MAC algorithm.
1041 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001042#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1043 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001044
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001045/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001046 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001047 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001048 * sharing the same base algorithm, and where the (potentially truncated) MAC
1049 * length of the specific algorithm is equal to or larger then the wildcard
1050 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001051 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001052 * \note When setting the minimum required MAC length to less than the
1053 * smallest MAC length allowed by the base algorithm, this effectively
1054 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001055 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001056 * \param mac_alg A MAC algorithm identifier (value of type
1057 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1058 * is true).
1059 * \param min_mac_length Desired minimum length of the message authentication
1060 * code in bytes. This must be at most the untruncated
1061 * length of the MAC and must be at least 1.
1062 *
1063 * \return The corresponding MAC wildcard algorithm with the
1064 * specified minimum length.
1065 * \return Unspecified if \p mac_alg is not a supported MAC
1066 * algorithm or if \p min_mac_length is less than 1 or
1067 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001068 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001069#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1070 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1071 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001072
Bence Szépkútia2945512020-12-03 21:40:17 +01001073#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001074/** The CBC-MAC construction over a block cipher
1075 *
1076 * \warning CBC-MAC is insecure in many cases.
1077 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1078 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001079#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001080/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001081#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001082
1083/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1084 *
1085 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1086 *
1087 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1088 * This macro may return either 0 or 1 if \p alg is not a supported
1089 * algorithm identifier.
1090 */
1091#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1092 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1093 PSA_ALG_CIPHER_MAC_BASE)
1094
1095#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1096#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1097
1098/** Whether the specified algorithm is a stream cipher.
1099 *
1100 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1101 * by applying a bitwise-xor with a stream of bytes that is generated
1102 * from a key.
1103 *
1104 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1105 *
1106 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1107 * This macro may return either 0 or 1 if \p alg is not a supported
1108 * algorithm identifier or if it is not a symmetric cipher algorithm.
1109 */
1110#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1111 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1112 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1113
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001114/** The stream cipher mode of a stream cipher algorithm.
1115 *
1116 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001117 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1118 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001119 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001120#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001121
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001122/** The CTR stream cipher mode.
1123 *
1124 * CTR is a stream cipher which is built from a block cipher.
1125 * The underlying block cipher is determined by the key type.
1126 * For example, to use AES-128-CTR, use this algorithm with
1127 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1128 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001129#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001130
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001131/** The CFB stream cipher mode.
1132 *
1133 * The underlying block cipher is determined by the key type.
1134 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001135#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001136
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001137/** The OFB stream cipher mode.
1138 *
1139 * The underlying block cipher is determined by the key type.
1140 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001141#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001142
1143/** The XTS cipher mode.
1144 *
1145 * XTS is a cipher mode which is built from a block cipher. It requires at
1146 * least one full block of input, but beyond this minimum the input
1147 * does not need to be a whole number of blocks.
1148 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001149#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001150
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001151/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1152 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001153 * \warning ECB mode does not protect the confidentiality of the encrypted data
1154 * except in extremely narrow circumstances. It is recommended that applications
1155 * only use ECB if they need to construct an operating mode that the
1156 * implementation does not provide. Implementations are encouraged to provide
1157 * the modes that applications need in preference to supporting direct access
1158 * to ECB.
1159 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001160 * The underlying block cipher is determined by the key type.
1161 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001162 * This symmetric cipher mode can only be used with messages whose lengths are a
1163 * multiple of the block size of the chosen block cipher.
1164 *
1165 * ECB mode does not accept an initialization vector (IV). When using a
1166 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1167 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001168 */
1169#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1170
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001171/** The CBC block cipher chaining mode, with no padding.
1172 *
1173 * The underlying block cipher is determined by the key type.
1174 *
1175 * This symmetric cipher mode can only be used with messages whose lengths
1176 * are whole number of blocks for the chosen block cipher.
1177 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001178#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001179
1180/** The CBC block cipher chaining mode with PKCS#7 padding.
1181 *
1182 * The underlying block cipher is determined by the key type.
1183 *
1184 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1185 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001186#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001187
Gilles Peskine679693e2019-05-06 15:10:16 +02001188#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1189
1190/** Whether the specified algorithm is an AEAD mode on a block cipher.
1191 *
1192 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1193 *
1194 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1195 * a block cipher, 0 otherwise.
1196 * This macro may return either 0 or 1 if \p alg is not a supported
1197 * algorithm identifier.
1198 */
1199#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1200 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1201 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1202
Gilles Peskine9153ec02019-02-15 13:02:02 +01001203/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001204 *
1205 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001206 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001207#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001208
1209/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001210 *
1211 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001212 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001213#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001214
1215/** The Chacha20-Poly1305 AEAD algorithm.
1216 *
1217 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001218 *
1219 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1220 * and should reject other sizes.
1221 *
1222 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001223 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001224#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001225
1226/* In the encoding of a AEAD algorithm, the bits corresponding to
1227 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1228 * The constants for default lengths follow this encoding.
1229 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001230#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1231#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001232
Steven Cooremand927ed72021-02-22 19:59:35 +01001233/* In the encoding of an AEAD algorithm, the bit corresponding to
1234 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001235 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1236 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001237 * same base class and having a tag length greater than or equal to the one
1238 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1239#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1240
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001241/** Macro to build a shortened AEAD algorithm.
1242 *
1243 * A shortened AEAD algorithm is similar to the corresponding AEAD
1244 * algorithm, but has an authentication tag that consists of fewer bytes.
1245 * Depending on the algorithm, the tag length may affect the calculation
1246 * of the ciphertext.
1247 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001248 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001249 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001250 * is true).
1251 * \param tag_length Desired length of the authentication tag in bytes.
1252 *
1253 * \return The corresponding AEAD algorithm with the specified
1254 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001255 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001256 * AEAD algorithm or if \p tag_length is not valid
1257 * for the specified AEAD algorithm.
1258 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001259#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001260 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1261 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001262 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1263 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1264
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001265/** Retrieve the tag length of a specified AEAD algorithm
1266 *
1267 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001268 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001269 * is true).
1270 *
1271 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001272 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001273 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001274 */
1275#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1276 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1277 PSA_AEAD_TAG_LENGTH_OFFSET )
1278
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001279/** Calculate the corresponding AEAD algorithm with the default tag length.
1280 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001281 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001282 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001283 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001284 * \return The corresponding AEAD algorithm with the default
1285 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001286 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001287#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001288 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001289 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1290 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1291 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001292 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001293#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1294 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1295 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001296 ref :
1297
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001298/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001299 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001300 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001301 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001302 * algorithm is equal to or larger then the minimum tag length specified by the
1303 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001304 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001305 * \note When setting the minimum required tag length to less than the
1306 * smallest tag length allowed by the base algorithm, this effectively
1307 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001308 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001309 * \param aead_alg An AEAD algorithm identifier (value of type
1310 * #psa_algorithm_t such that
1311 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1312 * \param min_tag_length Desired minimum length of the authentication tag in
1313 * bytes. This must be at least 1 and at most the largest
1314 * allowed tag length of the algorithm.
1315 *
1316 * \return The corresponding AEAD wildcard algorithm with the
1317 * specified minimum length.
1318 * \return Unspecified if \p aead_alg is not a supported
1319 * AEAD algorithm or if \p min_tag_length is less than 1
1320 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001321 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001322#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001323 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1324 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001325
Bence Szépkútia2945512020-12-03 21:40:17 +01001326#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001327/** RSA PKCS#1 v1.5 signature with hashing.
1328 *
1329 * This is the signature scheme defined by RFC 8017
1330 * (PKCS#1: RSA Cryptography Specifications) under the name
1331 * RSASSA-PKCS1-v1_5.
1332 *
1333 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1334 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001335 * This includes #PSA_ALG_ANY_HASH
1336 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001337 *
1338 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001339 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001340 * hash algorithm.
1341 */
1342#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1343 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1344/** Raw PKCS#1 v1.5 signature.
1345 *
1346 * The input to this algorithm is the DigestInfo structure used by
1347 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1348 * steps 3&ndash;6.
1349 */
1350#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1351#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1352 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1353
Bence Szépkútia2945512020-12-03 21:40:17 +01001354#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001355/** RSA PSS signature with hashing.
1356 *
1357 * This is the signature scheme defined by RFC 8017
1358 * (PKCS#1: RSA Cryptography Specifications) under the name
1359 * RSASSA-PSS, with the message generation function MGF1, and with
1360 * a salt length equal to the length of the hash. The specified
1361 * hash algorithm is used to hash the input message, to create the
1362 * salted hash, and for the mask generation.
1363 *
1364 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1365 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001366 * This includes #PSA_ALG_ANY_HASH
1367 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001368 *
1369 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001370 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001371 * hash algorithm.
1372 */
1373#define PSA_ALG_RSA_PSS(hash_alg) \
1374 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1375#define PSA_ALG_IS_RSA_PSS(alg) \
1376 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1377
Bence Szépkútia2945512020-12-03 21:40:17 +01001378#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001379/** ECDSA signature with hashing.
1380 *
1381 * This is the ECDSA signature scheme defined by ANSI X9.62,
1382 * with a random per-message secret number (*k*).
1383 *
1384 * The representation of the signature as a byte string consists of
1385 * the concatentation of the signature values *r* and *s*. Each of
1386 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1387 * of the base point of the curve in octets. Each value is represented
1388 * in big-endian order (most significant octet first).
1389 *
1390 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1391 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001392 * This includes #PSA_ALG_ANY_HASH
1393 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001394 *
1395 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001396 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001397 * hash algorithm.
1398 */
1399#define PSA_ALG_ECDSA(hash_alg) \
1400 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1401/** ECDSA signature without hashing.
1402 *
1403 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1404 * without specifying a hash algorithm. This algorithm may only be
1405 * used to sign or verify a sequence of bytes that should be an
1406 * already-calculated hash. Note that the input is padded with
1407 * zeros on the left or truncated on the left as required to fit
1408 * the curve size.
1409 */
1410#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001411#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001412/** Deterministic ECDSA signature with hashing.
1413 *
1414 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1415 *
1416 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1417 *
1418 * Note that when this algorithm is used for verification, signatures
1419 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1420 * same private key are accepted. In other words,
1421 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1422 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1423 *
1424 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1425 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001426 * This includes #PSA_ALG_ANY_HASH
1427 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001428 *
1429 * \return The corresponding deterministic ECDSA signature
1430 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001431 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001432 * hash algorithm.
1433 */
1434#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1435 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001436#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001437#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001438 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001439 PSA_ALG_ECDSA_BASE)
1440#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001441 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001442#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1443 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1444#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1445 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1446
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001447/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1448 * using standard parameters.
1449 *
1450 * Contexts are not supported in the current version of this specification
1451 * because there is no suitable signature interface that can take the
1452 * context as a parameter. A future version of this specification may add
1453 * suitable functions and extend this algorithm to support contexts.
1454 *
1455 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1456 * In this specification, the following curves are supported:
1457 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1458 * in RFC 8032.
1459 * The curve is Edwards25519.
1460 * The hash function used internally is SHA-512.
1461 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1462 * in RFC 8032.
1463 * The curve is Edwards448.
1464 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001465 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001466 *
1467 * This algorithm can be used with psa_sign_message() and
1468 * psa_verify_message(). Since there is no prehashing, it cannot be used
1469 * with psa_sign_hash() or psa_verify_hash().
1470 *
1471 * The signature format is the concatenation of R and S as defined by
1472 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1473 * string for Ed448).
1474 */
1475#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1476
1477#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1478#define PSA_ALG_IS_HASH_EDDSA(alg) \
1479 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1480
1481/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001482 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001483 *
1484 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1485 *
1486 * This algorithm is Ed25519 as specified in RFC 8032.
1487 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001488 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001489 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001490 *
1491 * This is a hash-and-sign algorithm: to calculate a signature,
1492 * you can either:
1493 * - call psa_sign_message() on the message;
1494 * - or calculate the SHA-512 hash of the message
1495 * with psa_hash_compute()
1496 * or with a multi-part hash operation started with psa_hash_setup(),
1497 * using the hash algorithm #PSA_ALG_SHA_512,
1498 * then sign the calculated hash with psa_sign_hash().
1499 * Verifying a signature is similar, using psa_verify_message() or
1500 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001501 */
1502#define PSA_ALG_ED25519PH \
1503 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1504
1505/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1506 * using SHAKE256 and the Edwards448 curve.
1507 *
1508 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1509 *
1510 * This algorithm is Ed448 as specified in RFC 8032.
1511 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001512 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001513 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001514 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001515 *
1516 * This is a hash-and-sign algorithm: to calculate a signature,
1517 * you can either:
1518 * - call psa_sign_message() on the message;
1519 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1520 * with psa_hash_compute()
1521 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001522 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001523 * then sign the calculated hash with psa_sign_hash().
1524 * Verifying a signature is similar, using psa_verify_message() or
1525 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001526 */
1527#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001528 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001529
Gilles Peskine6d400852021-02-24 21:39:52 +01001530/* Default definition, to be overridden if the library is extended with
1531 * more hash-and-sign algorithms that we want to keep out of this header
1532 * file. */
1533#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1534
Gilles Peskined35b4892019-01-14 16:02:15 +01001535/** Whether the specified algorithm is a hash-and-sign algorithm.
1536 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001537 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1538 * structured in two parts: first the calculation of a hash in a way that
1539 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001540 * hash value and the key.
1541 *
1542 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1543 *
1544 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1545 * This macro may return either 0 or 1 if \p alg is not a supported
1546 * algorithm identifier.
1547 */
1548#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1549 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001550 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
Gilles Peskine6d400852021-02-24 21:39:52 +01001551 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001552
gabor-mezei-arm4a210192021-04-14 21:14:28 +02001553/** Whether the specified algorithm is a signature algorithm that can be used
1554 * with psa_sign_message() and psa_verify_message().
1555 *
1556 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1557 *
1558 * \return 1 if alg is a signature algorithm that can be used to sign a
gabor-mezei-arm36658e42021-04-20 12:08:36 +02001559 * message. 0 if \p alg is a signature algorithm that can only be used
1560 * to sign an already-calculated hash. 0 if \p alg is not a signature
1561 * algorithm. This macro can return either 0 or 1 if \p alg is not a
gabor-mezei-arm4a210192021-04-14 21:14:28 +02001562 * supported algorithm identifier.
1563 */
1564#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
gabor-mezei-arm36658e42021-04-20 12:08:36 +02001565 (PSA_ALG_IS_HASH_AND_SIGN(alg) || (alg) == PSA_ALG_PURE_EDDSA )
gabor-mezei-arm4a210192021-04-14 21:14:28 +02001566
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001567/** Get the hash used by a hash-and-sign signature algorithm.
1568 *
1569 * A hash-and-sign algorithm is a signature algorithm which is
1570 * composed of two phases: first a hashing phase which does not use
1571 * the key and produces a hash of the input message, then a signing
1572 * phase which only uses the hash and the key and not the message
1573 * itself.
1574 *
1575 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1576 * #PSA_ALG_IS_SIGN(\p alg) is true).
1577 *
1578 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1579 * algorithm.
1580 * \return 0 if \p alg is a signature algorithm that does not
1581 * follow the hash-and-sign structure.
1582 * \return Unspecified if \p alg is not a signature algorithm or
1583 * if it is not supported by the implementation.
1584 */
1585#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001586 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001587 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1588 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1589 0)
1590
1591/** RSA PKCS#1 v1.5 encryption.
1592 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001593#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001594
Bence Szépkútia2945512020-12-03 21:40:17 +01001595#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001596/** RSA OAEP encryption.
1597 *
1598 * This is the encryption scheme defined by RFC 8017
1599 * (PKCS#1: RSA Cryptography Specifications) under the name
1600 * RSAES-OAEP, with the message generation function MGF1.
1601 *
1602 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1603 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1604 * for MGF1.
1605 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001606 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001607 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001608 * hash algorithm.
1609 */
1610#define PSA_ALG_RSA_OAEP(hash_alg) \
1611 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1612#define PSA_ALG_IS_RSA_OAEP(alg) \
1613 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1614#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1615 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1616 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1617 0)
1618
Bence Szépkútia2945512020-12-03 21:40:17 +01001619#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001620/** Macro to build an HKDF algorithm.
1621 *
1622 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1623 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001624 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001625 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001626 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001627 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1628 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1629 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1630 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001631 * starting to generate output.
1632 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001633 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1634 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1635 *
1636 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001637 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001638 * hash algorithm.
1639 */
1640#define PSA_ALG_HKDF(hash_alg) \
1641 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1642/** Whether the specified algorithm is an HKDF algorithm.
1643 *
1644 * HKDF is a family of key derivation algorithms that are based on a hash
1645 * function and the HMAC construction.
1646 *
1647 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1648 *
1649 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1650 * This macro may return either 0 or 1 if \c alg is not a supported
1651 * key derivation algorithm identifier.
1652 */
1653#define PSA_ALG_IS_HKDF(alg) \
1654 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1655#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1656 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1657
Bence Szépkútia2945512020-12-03 21:40:17 +01001658#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001659/** Macro to build a TLS-1.2 PRF algorithm.
1660 *
1661 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1662 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1663 * used with either SHA-256 or SHA-384.
1664 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001665 * This key derivation algorithm uses the following inputs, which must be
1666 * passed in the order given here:
1667 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001668 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1669 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001670 *
1671 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001672 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001673 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001674 *
1675 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1676 * TLS 1.2 PRF using HMAC-SHA-256.
1677 *
1678 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1679 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1680 *
1681 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001682 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001683 * hash algorithm.
1684 */
1685#define PSA_ALG_TLS12_PRF(hash_alg) \
1686 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1687
1688/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1689 *
1690 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1691 *
1692 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1693 * This macro may return either 0 or 1 if \c alg is not a supported
1694 * key derivation algorithm identifier.
1695 */
1696#define PSA_ALG_IS_TLS12_PRF(alg) \
1697 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1698#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1699 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1700
Bence Szépkútia2945512020-12-03 21:40:17 +01001701#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001702/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1703 *
1704 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1705 * from the PreSharedKey (PSK) through the application of padding
1706 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1707 * The latter is based on HMAC and can be used with either SHA-256
1708 * or SHA-384.
1709 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001710 * This key derivation algorithm uses the following inputs, which must be
1711 * passed in the order given here:
1712 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001713 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1714 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001715 *
1716 * For the application to TLS-1.2, the seed (which is
1717 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1718 * ClientHello.Random + ServerHello.Random,
1719 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001720 *
1721 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1722 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1723 *
1724 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1725 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1726 *
1727 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001728 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001729 * hash algorithm.
1730 */
1731#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1732 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1733
1734/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1735 *
1736 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1737 *
1738 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1739 * This macro may return either 0 or 1 if \c alg is not a supported
1740 * key derivation algorithm identifier.
1741 */
1742#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1743 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1744#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1745 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1746
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001747/* This flag indicates whether the key derivation algorithm is suitable for
1748 * use on low-entropy secrets such as password - these algorithms are also
1749 * known as key stretching or password hashing schemes. These are also the
1750 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001751 *
1752 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001753 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001754#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001755
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001756#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001757/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001758 *
1759 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001760 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
1761 * HMAC with the specified hash.
1762 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2
1763 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001764 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001765 * This key derivation algorithm uses the following inputs, which must be
1766 * provided in the following order:
1767 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001768 * This input step must be used exactly once.
1769 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1770 * This input step must be used one or more times; if used several times, the
1771 * inputs will be concatenated. This can be used to build the final salt
1772 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001773 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001774 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001775 *
1776 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1777 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1778 *
1779 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
1780 * \return Unspecified if \p hash_alg is not a supported
1781 * hash algorithm.
1782 */
1783#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
1784 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1785
1786/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
1787 *
1788 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1789 *
1790 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
1791 * This macro may return either 0 or 1 if \c alg is not a supported
1792 * key derivation algorithm identifier.
1793 */
1794#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
1795 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001796
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001797/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
1798 *
1799 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
1800 * This macro specifies the PBKDF2 algorithm constructed using the
1801 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
1802 *
1803 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02001804 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001805 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001806#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001807
Bence Szépkútia2945512020-12-03 21:40:17 +01001808#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1809#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001810
Gilles Peskine6843c292019-01-18 16:44:49 +01001811/** Macro to build a combined algorithm that chains a key agreement with
1812 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001813 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001814 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1815 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1816 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1817 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001818 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001819 * \return The corresponding key agreement and derivation
1820 * algorithm.
1821 * \return Unspecified if \p ka_alg is not a supported
1822 * key agreement algorithm or \p kdf_alg is not a
1823 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001824 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001825#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1826 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001827
1828#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1829 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1830
Gilles Peskine6843c292019-01-18 16:44:49 +01001831#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1832 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001833
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001834/** Whether the specified algorithm is a raw key agreement algorithm.
1835 *
1836 * A raw key agreement algorithm is one that does not specify
1837 * a key derivation function.
1838 * Usually, raw key agreement algorithms are constructed directly with
1839 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001840 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001841 *
1842 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1843 *
1844 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1845 * This macro may return either 0 or 1 if \p alg is not a supported
1846 * algorithm identifier.
1847 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001848#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001849 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1850 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001851
1852#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1853 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1854
1855/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001856 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001857 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001858 * `g^{ab}` in big-endian format.
1859 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1860 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001861 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001862#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001863
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001864/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1865 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001866 * This includes the raw finite field Diffie-Hellman algorithm as well as
1867 * finite-field Diffie-Hellman followed by any supporter key derivation
1868 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001869 *
1870 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1871 *
1872 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1873 * This macro may return either 0 or 1 if \c alg is not a supported
1874 * key agreement algorithm identifier.
1875 */
1876#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001877 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001878
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001879/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1880 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001881 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001882 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1883 * `m` is the bit size associated with the curve, i.e. the bit size of the
1884 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1885 * the byte containing the most significant bit of the shared secret
1886 * is padded with zero bits. The byte order is either little-endian
1887 * or big-endian depending on the curve type.
1888 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001889 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001890 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1891 * in little-endian byte order.
1892 * The bit size is 448 for Curve448 and 255 for Curve25519.
1893 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001894 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001895 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1896 * in big-endian byte order.
1897 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1898 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001899 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001900 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1901 * in big-endian byte order.
1902 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001903 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001904#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001905
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001906/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1907 * algorithm.
1908 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001909 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1910 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1911 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001912 *
1913 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1914 *
1915 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1916 * 0 otherwise.
1917 * This macro may return either 0 or 1 if \c alg is not a supported
1918 * key agreement algorithm identifier.
1919 */
1920#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001921 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001922
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001923/** Whether the specified algorithm encoding is a wildcard.
1924 *
1925 * Wildcard values may only be used to set the usage algorithm field in
1926 * a policy, not to perform an operation.
1927 *
1928 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1929 *
1930 * \return 1 if \c alg is a wildcard algorithm encoding.
1931 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1932 * an operation).
1933 * \return This macro may return either 0 or 1 if \c alg is not a supported
1934 * algorithm identifier.
1935 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001936#define PSA_ALG_IS_WILDCARD(alg) \
1937 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1938 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1939 PSA_ALG_IS_MAC(alg) ? \
1940 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1941 PSA_ALG_IS_AEAD(alg) ? \
1942 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001943 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001944
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001945/** Get the hash used by a composite algorithm.
1946 *
1947 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1948 *
1949 * \return The underlying hash algorithm if alg is a composite algorithm that
1950 * uses a hash algorithm.
1951 *
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02001952 * \return \c 0 if alg is not a composite algorithm that uses a hash.
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001953 */
1954#define PSA_ALG_GET_HASH(alg) \
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02001955 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t)0) : 0x02000000 | ((alg) & 0x000000ff))
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001956
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001957/**@}*/
1958
1959/** \defgroup key_lifetimes Key lifetimes
1960 * @{
1961 */
1962
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001963/** The default lifetime for volatile keys.
1964 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001965 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001966 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001967 *
1968 * A key with this lifetime is typically stored in the RAM area of the
1969 * PSA Crypto subsystem. However this is an implementation choice.
1970 * If an implementation stores data about the key in a non-volatile memory,
1971 * it must release all the resources associated with the key and erase the
1972 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001973 */
1974#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1975
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001976/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001977 *
1978 * A persistent key remains in storage until it is explicitly destroyed or
1979 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001980 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001981 * provide their own mechanism (for example to perform a factory reset,
1982 * to prepare for device refurbishment, or to uninstall an application).
1983 *
1984 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001985 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001986 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001987 */
1988#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1989
Gilles Peskineaff11812020-05-04 19:03:10 +02001990/** The persistence level of volatile keys.
1991 *
1992 * See ::psa_key_persistence_t for more information.
1993 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001994#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001995
1996/** The default persistence level for persistent keys.
1997 *
1998 * See ::psa_key_persistence_t for more information.
1999 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002000#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002001
2002/** A persistence level indicating that a key is never destroyed.
2003 *
2004 * See ::psa_key_persistence_t for more information.
2005 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002006#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002007
2008#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002009 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002010
2011#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002012 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002013
2014/** Whether a key lifetime indicates that the key is volatile.
2015 *
2016 * A volatile key is automatically destroyed by the implementation when
2017 * the application instance terminates. In particular, a volatile key
2018 * is automatically destroyed on a power reset of the device.
2019 *
2020 * A key that is not volatile is persistent. Persistent keys are
2021 * preserved until the application explicitly destroys them or until an
2022 * implementation-specific device management event occurs (for example,
2023 * a factory reset).
2024 *
2025 * \param lifetime The lifetime value to query (value of type
2026 * ::psa_key_lifetime_t).
2027 *
2028 * \return \c 1 if the key is volatile, otherwise \c 0.
2029 */
2030#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2031 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002032 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002033
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002034/** Construct a lifetime from a persistence level and a location.
2035 *
2036 * \param persistence The persistence level
2037 * (value of type ::psa_key_persistence_t).
2038 * \param location The location indicator
2039 * (value of type ::psa_key_location_t).
2040 *
2041 * \return The constructed lifetime value.
2042 */
2043#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2044 ((location) << 8 | (persistence))
2045
Gilles Peskineaff11812020-05-04 19:03:10 +02002046/** The local storage area for persistent keys.
2047 *
2048 * This storage area is available on all systems that can store persistent
2049 * keys without delegating the storage to a third-party cryptoprocessor.
2050 *
2051 * See ::psa_key_location_t for more information.
2052 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002053#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002054
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002055#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002056
Gilles Peskine4a231b82019-05-06 18:56:14 +02002057/** The minimum value for a key identifier chosen by the application.
2058 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002059#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002060/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002061 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002062#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002063/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002064 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002065#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002066/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002067 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002068#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002069
Ronald Cron7424f0d2020-09-14 16:17:41 +02002070
2071#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2072
2073#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2074#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2075#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2076
2077/** Utility to initialize a key identifier at runtime.
2078 *
2079 * \param unused Unused parameter.
2080 * \param key_id Identifier of the key.
2081 */
2082static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2083 unsigned int unused, psa_key_id_t key_id )
2084{
2085 (void)unused;
2086
2087 return( key_id );
2088}
2089
2090/** Compare two key identifiers.
2091 *
2092 * \param id1 First key identifier.
2093 * \param id2 Second key identifier.
2094 *
2095 * \return Non-zero if the two key identifier are equal, zero otherwise.
2096 */
2097static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2098 mbedtls_svc_key_id_t id2 )
2099{
2100 return( id1 == id2 );
2101}
2102
Ronald Cronc4d1b512020-07-31 11:26:37 +02002103/** Check whether a key identifier is null.
2104 *
2105 * \param key Key identifier.
2106 *
2107 * \return Non-zero if the key identifier is null, zero otherwise.
2108 */
2109static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2110{
2111 return( key == 0 );
2112}
2113
Ronald Cron7424f0d2020-09-14 16:17:41 +02002114#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2115
2116#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
2117#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
2118#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
2119
2120/** Utility to initialize a key identifier at runtime.
2121 *
2122 * \param owner_id Identifier of the key owner.
2123 * \param key_id Identifier of the key.
2124 */
2125static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2126 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2127{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002128 return( (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2129 .MBEDTLS_PRIVATE(owner) = owner_id } );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002130}
2131
2132/** Compare two key identifiers.
2133 *
2134 * \param id1 First key identifier.
2135 * \param id2 Second key identifier.
2136 *
2137 * \return Non-zero if the two key identifier are equal, zero otherwise.
2138 */
2139static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2140 mbedtls_svc_key_id_t id2 )
2141{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002142 return( ( id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id) ) &&
2143 mbedtls_key_owner_id_equal( id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner) ) );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002144}
2145
Ronald Cronc4d1b512020-07-31 11:26:37 +02002146/** Check whether a key identifier is null.
2147 *
2148 * \param key Key identifier.
2149 *
2150 * \return Non-zero if the key identifier is null, zero otherwise.
2151 */
2152static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2153{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002154 return( ( key.MBEDTLS_PRIVATE(key_id) == 0 ) && ( key.MBEDTLS_PRIVATE(owner) == 0 ) );
Ronald Cronc4d1b512020-07-31 11:26:37 +02002155}
2156
Ronald Cron7424f0d2020-09-14 16:17:41 +02002157#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002158
2159/**@}*/
2160
2161/** \defgroup policy Key policies
2162 * @{
2163 */
2164
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002165/** Whether the key may be exported.
2166 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002167 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002168 * regardless of the value of this permission flag.
2169 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002170 * If a key does not have export permission, implementations shall not
2171 * allow the key to be exported in plain form from the cryptoprocessor,
2172 * whether through psa_export_key() or through a proprietary interface.
2173 * The key may however be exportable in a wrapped form, i.e. in a form
2174 * where it is encrypted by another key.
2175 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002176#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2177
2178/** Whether the key may be copied.
2179 *
2180 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002181 * with the same policy or a more restrictive policy.
2182 *
2183 * For lifetimes for which the key is located in a secure element which
2184 * enforce the non-exportability of keys, copying a key outside the secure
2185 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2186 * Copying the key inside the secure element is permitted with just
2187 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2188 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2189 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2190 * is sufficient to permit the copy.
2191 */
2192#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2193
2194/** Whether the key may be used to encrypt a message.
2195 *
2196 * This flag allows the key to be used for a symmetric encryption operation,
2197 * for an AEAD encryption-and-authentication operation,
2198 * or for an asymmetric encryption operation,
2199 * if otherwise permitted by the key's type and policy.
2200 *
2201 * For a key pair, this concerns the public key.
2202 */
2203#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2204
2205/** Whether the key may be used to decrypt a message.
2206 *
2207 * This flag allows the key to be used for a symmetric decryption operation,
2208 * for an AEAD decryption-and-verification operation,
2209 * or for an asymmetric decryption operation,
2210 * if otherwise permitted by the key's type and policy.
2211 *
2212 * For a key pair, this concerns the private key.
2213 */
2214#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2215
2216/** Whether the key may be used to sign a message.
2217 *
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002218 * This flag allows the key to be used for a MAC calculation operation or for
2219 * an asymmetric message signature operation, if otherwise permitted by the
2220 * key’s type and policy.
2221 *
2222 * For a key pair, this concerns the private key.
2223 */
2224#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
2225
2226/** Whether the key may be used to verify a message.
2227 *
2228 * This flag allows the key to be used for a MAC verification operation or for
2229 * an asymmetric message signature verification operation, if otherwise
2230 * permitted by the key’s type and policy.
2231 *
2232 * For a key pair, this concerns the public key.
2233 */
2234#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
2235
2236/** Whether the key may be used to sign a message.
2237 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002238 * This flag allows the key to be used for a MAC calculation operation
2239 * or for an asymmetric signature operation,
2240 * if otherwise permitted by the key's type and policy.
2241 *
2242 * For a key pair, this concerns the private key.
2243 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002244#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002245
2246/** Whether the key may be used to verify a message signature.
2247 *
2248 * This flag allows the key to be used for a MAC verification operation
2249 * or for an asymmetric signature verification operation,
2250 * if otherwise permitted by by the key's type and policy.
2251 *
2252 * For a key pair, this concerns the public key.
2253 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002254#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002255
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002256/** Whether the key may be used to derive other keys or produce a password
2257 * hash.
2258 *
2259 * This flag allows the key to be used as the input of
2260 * psa_key_derivation_input_key() at the step
2261 * #PSA_KEY_DERIVATION_INPUT_SECRET of #PSA_KEY_DERIVATION_INPUT_PASSWORD
2262 * depending on the algorithm, and allows the use of
2263 * psa_key_derivation_output_bytes() or psa_key_derivation_output_key()
2264 * at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002265 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002266#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002267
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002268/** Whether the key may be used to verify the result of a key derivation,
2269 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002270 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002271 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002272 *
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +02002273 * - for a key of type #PSA_KEY_TYPE_PASSWORD_HASH, as the \c key argument of
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002274 * psa_key_derivation_verify_key();
2275 * - for a key of type #PSA_KEY_TYPE_PASSWORD (or #PSA_KEY_TYPE_DERIVE), as
2276 * the input to psa_key_derivation_input_key() at the step
2277 * #PSA_KEY_DERIVATION_INPUT_PASSWORD (or #PSA_KEY_DERIVATION_INPUT_SECRET);
2278 * then at the end of the operation use of psa_key_derivation_verify_bytes()
2279 * or psa_key_derivation_verify_key() will be permitted (but not
2280 * psa_key_derivation_output_xxx() unless #PSA_KEY_USAGE_DERIVE is set).
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002281 */
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002282#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002283
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002284/**@}*/
2285
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002286/** \defgroup derivation Key derivation
2287 * @{
2288 */
2289
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002290/** A secret input for key derivation.
2291 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002292 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2293 * (passed to psa_key_derivation_input_key())
2294 * or the shared secret resulting from a key agreement
2295 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002296 *
2297 * The secret can also be a direct input (passed to
2298 * key_derivation_input_bytes()). In this case, the derivation operation
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002299 * may not be used to derive or verify keys: the operation will only allow
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002300 * psa_key_derivation_output_bytes() or
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002301 * psa_key_derivation_verify_bytes() but not
2302 * psa_key_derivation_output_key() or
2303 * psa_key_derivation_verify_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002304 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002305#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002306
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002307/** A low-entropy secret input for password hashing / key stretching.
2308 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002309 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2310 * psa_key_derivation_input_key()) or a direct input (passed to
2311 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2312 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2313 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002314 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002315 * The secret can also be a direct input (passed to
2316 * key_derivation_input_bytes()). In this case, the derivation operation
2317 * may not be used to derive or verify keys: the operation will only allow
2318 * psa_key_derivation_output_bytes() or
2319 * psa_key_derivation_verify_bytes(), not
2320 * psa_key_derivation_output_key() or
2321 * psa_key_derivation_verify_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002322 */
2323#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102)
2324
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002325/** A label for key derivation.
2326 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002327 * This should be a direct input.
2328 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002329 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002330#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002331
2332/** A salt for key derivation.
2333 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002334 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002335 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2336 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002337 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002338#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002339
2340/** An information string for key derivation.
2341 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002342 * This should be a direct input.
2343 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002344 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002345#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002346
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002347/** A seed for key derivation.
2348 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002349 * This should be a direct input.
2350 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002351 */
2352#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2353
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002354/** A cost parameter for password hashing / key stretching.
2355 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002356 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002357 */
2358#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205)
2359
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002360/**@}*/
2361
Bence Szépkútib639d432021-04-21 10:33:54 +02002362/** \defgroup helper_macros Helper macros
2363 * @{
2364 */
2365
2366/* Helper macros */
2367
2368/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2369 * regardless of the tag length they encode.
2370 *
2371 * \param aead_alg_1 An AEAD algorithm identifier.
2372 * \param aead_alg_2 An AEAD algorithm identifier.
2373 *
2374 * \return 1 if both identifiers refer to the same AEAD algorithm,
2375 * 0 otherwise.
2376 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2377 * a supported AEAD algorithm.
2378 */
2379#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2380 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2381 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2382
2383/**@}*/
2384
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002385#endif /* PSA_CRYPTO_VALUES_H */