blob: 6d075334cd4b87280aaeaa4e499217aadb35fc68 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
Mateusz Starzyk363eb292021-05-19 17:32:44 +020036#include "mbedtls/private_access.h"
Gilles Peskinef3b731e2018-12-12 13:38:31 +010037
38/** \defgroup error Error codes
39 * @{
40 */
41
David Saadab4ecc272019-02-14 13:48:10 +020042/* PSA error codes */
43
Gilles Peskinef3b731e2018-12-12 13:38:31 +010044/** The action was completed successfully. */
45#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010046
47/** An error occurred that does not correspond to any defined
48 * failure cause.
49 *
50 * Implementations may use this error code if none of the other standard
51 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020052#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010053
54/** The requested operation or a parameter is not supported
55 * by this implementation.
56 *
57 * Implementations should return this error code when an enumeration
58 * parameter such as a key type, algorithm, etc. is not recognized.
59 * If a combination of parameters is recognized and identified as
60 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020061#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010062
63/** The requested action is denied by a policy.
64 *
65 * Implementations should return this error code when the parameters
66 * are recognized as valid and supported, and a policy explicitly
67 * denies the requested operation.
68 *
69 * If a subset of the parameters of a function call identify a
70 * forbidden operation, and another subset of the parameters are
71 * not valid or not supported, it is unspecified whether the function
72 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
73 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020074#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010075
76/** An output buffer is too small.
77 *
78 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
79 * description to determine a sufficient buffer size.
80 *
81 * Implementations should preferably return this error code only
82 * in cases when performing the operation with a larger output
83 * buffer would succeed. However implementations may return this
84 * error if a function has invalid or unsupported parameters in addition
85 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020086#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010087
David Saadab4ecc272019-02-14 13:48:10 +020088/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010089 *
David Saadab4ecc272019-02-14 13:48:10 +020090 * Implementations should return this error, when attempting
91 * to write an item (like a key) that already exists. */
92#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010093
David Saadab4ecc272019-02-14 13:48:10 +020094/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010095 *
David Saadab4ecc272019-02-14 13:48:10 +020096 * Implementations should return this error, if a requested item (like
97 * a key) does not exist. */
98#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010099
100/** The requested action cannot be performed in the current state.
101 *
102 * Multipart operations return this error when one of the
103 * functions is called out of sequence. Refer to the function
104 * descriptions for permitted sequencing of functions.
105 *
106 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100107 * that a key either exists or not,
108 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100109 * as applicable.
110 *
111 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200112 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100113 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200114#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100115
116/** The parameters passed to the function are invalid.
117 *
118 * Implementations may return this error any time a parameter or
119 * combination of parameters are recognized as invalid.
120 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100121 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200122 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * instead.
124 */
David Saadab4ecc272019-02-14 13:48:10 +0200125#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100126
127/** There is not enough runtime memory.
128 *
129 * If the action is carried out across multiple security realms, this
130 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200131#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100132
133/** There is not enough persistent storage.
134 *
135 * Functions that modify the key storage return this error code if
136 * there is insufficient storage space on the host media. In addition,
137 * many functions that do not otherwise access storage may return this
138 * error code if the implementation requires a mandatory log entry for
139 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200140#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100141
142/** There was a communication failure inside the implementation.
143 *
144 * This can indicate a communication failure between the application
145 * and an external cryptoprocessor or between the cryptoprocessor and
146 * an external volatile or persistent memory. A communication failure
147 * may be transient or permanent depending on the cause.
148 *
149 * \warning If a function returns this error, it is undetermined
150 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200151 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100152 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
153 * if the requested action was completed successfully in an external
154 * cryptoprocessor but there was a breakdown of communication before
155 * the cryptoprocessor could report the status to the application.
156 */
David Saadab4ecc272019-02-14 13:48:10 +0200157#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100158
159/** There was a storage failure that may have led to data loss.
160 *
161 * This error indicates that some persistent storage is corrupted.
162 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200163 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100164 * between the cryptoprocessor and its external storage (use
165 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
166 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
167 *
168 * Note that a storage failure does not indicate that any data that was
169 * previously read is invalid. However this previously read data may no
170 * longer be readable from storage.
171 *
172 * When a storage failure occurs, it is no longer possible to ensure
173 * the global integrity of the keystore. Depending on the global
174 * integrity guarantees offered by the implementation, access to other
175 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100176 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100177 *
178 * Implementations should only use this error code to report a
179 * permanent storage corruption. However application writers should
180 * keep in mind that transient errors while reading the storage may be
181 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200182#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100183
184/** A hardware failure was detected.
185 *
186 * A hardware failure may be transient or permanent depending on the
187 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200188#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100189
190/** A tampering attempt was detected.
191 *
192 * If an application receives this error code, there is no guarantee
193 * that previously accessed or computed data was correct and remains
194 * confidential. Applications should not perform any security function
195 * and should enter a safe failure state.
196 *
197 * Implementations may return this error code if they detect an invalid
198 * state that cannot happen during normal operation and that indicates
199 * that the implementation's security guarantees no longer hold. Depending
200 * on the implementation architecture and on its security and safety goals,
201 * the implementation may forcibly terminate the application.
202 *
203 * This error code is intended as a last resort when a security breach
204 * is detected and it is unsure whether the keystore data is still
205 * protected. Implementations shall only return this error code
206 * to report an alarm from a tampering detector, to indicate that
207 * the confidentiality of stored data can no longer be guaranteed,
208 * or to indicate that the integrity of previously returned data is now
209 * considered compromised. Implementations shall not use this error code
210 * to indicate a hardware failure that merely makes it impossible to
211 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
212 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
213 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
214 * instead).
215 *
216 * This error indicates an attack against the application. Implementations
217 * shall not return this error code as a consequence of the behavior of
218 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200219#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100220
221/** There is not enough entropy to generate random data needed
222 * for the requested action.
223 *
224 * This error indicates a failure of a hardware random generator.
225 * Application writers should note that this error can be returned not
226 * only by functions whose purpose is to generate random data, such
227 * as key, IV or nonce generation, but also by functions that execute
228 * an algorithm with a randomized result, as well as functions that
229 * use randomization of intermediate computations as a countermeasure
230 * to certain attacks.
231 *
232 * Implementations should avoid returning this error after psa_crypto_init()
233 * has succeeded. Implementations should generate sufficient
234 * entropy during initialization and subsequently use a cryptographically
235 * secure pseudorandom generator (PRNG). However implementations may return
236 * this error at any time if a policy requires the PRNG to be reseeded
237 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200238#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100239
240/** The signature, MAC or hash is incorrect.
241 *
242 * Verification functions return this error if the verification
243 * calculations completed successfully, and the value to be verified
244 * was determined to be incorrect.
245 *
246 * If the value to verify has an invalid size, implementations may return
247 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200248#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100249
250/** The decrypted padding is incorrect.
251 *
252 * \warning In some protocols, when decrypting data, it is essential that
253 * the behavior of the application does not depend on whether the padding
254 * is correct, down to precise timing. Applications should prefer
255 * protocols that use authenticated encryption rather than plain
256 * encryption. If the application must perform a decryption of
257 * unauthenticated data, the application writer should take care not
258 * to reveal whether the padding is invalid.
259 *
260 * Implementations should strive to make valid and invalid padding
261 * as close as possible to indistinguishable to an external observer.
262 * In particular, the timing of a decryption operation should not
263 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200264#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100265
David Saadab4ecc272019-02-14 13:48:10 +0200266/** Return this error when there's insufficient data when attempting
267 * to read from a resource. */
268#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100269
Ronald Croncf56a0a2020-08-04 09:51:30 +0200270/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100271 */
David Saadab4ecc272019-02-14 13:48:10 +0200272#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100273
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100274/** Stored data has been corrupted.
275 *
276 * This error indicates that some persistent storage has suffered corruption.
277 * It does not indicate the following situations, which have specific error
278 * codes:
279 *
280 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
281 * - A communication error between the cryptoprocessor and its external
282 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
283 * - When the storage is in a valid state but is full - use
284 * #PSA_ERROR_INSUFFICIENT_STORAGE.
285 * - When the storage fails for other reasons - use
286 * #PSA_ERROR_STORAGE_FAILURE.
287 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
288 *
289 * \note A storage corruption does not indicate that any data that was
290 * previously read is invalid. However this previously read data might no
291 * longer be readable from storage.
292 *
293 * When a storage failure occurs, it is no longer possible to ensure the
294 * global integrity of the keystore.
295 */
296#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
297
gabor-mezei-armfe309242020-11-09 17:39:56 +0100298/** Data read from storage is not valid for the implementation.
299 *
300 * This error indicates that some data read from storage does not have a valid
301 * format. It does not indicate the following situations, which have specific
302 * error codes:
303 *
304 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
305 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
306 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
307 *
308 * This error is typically a result of either storage corruption on a
309 * cleartext storage backend, or an attempt to read data that was
310 * written by an incompatible version of the library.
311 */
312#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
313
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100314/**@}*/
315
316/** \defgroup crypto_types Key and algorithm types
317 * @{
318 */
319
320/** An invalid key type value.
321 *
322 * Zero is not the encoding of any key type.
323 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100324#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100325
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100326/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100327 *
328 * Key types defined by this standard will never have the
329 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
330 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
331 * respect the bitwise structure used by standard encodings whenever practical.
332 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100333#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100334
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100335#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100336#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
337#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
338#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100339#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100340
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100341#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100342
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100343/** Whether a key type is vendor-defined.
344 *
345 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
346 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100347#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
348 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
349
350/** Whether a key type is an unstructured array of bytes.
351 *
352 * This encompasses both symmetric keys and non-key data.
353 */
354#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100355 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
356 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100357
358/** Whether a key type is asymmetric: either a key pair or a public key. */
359#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
360 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
361 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
362 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
363/** Whether a key type is the public part of a key pair. */
364#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
365 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
366/** Whether a key type is a key pair containing a private part and a public
367 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200368#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100369 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
370/** The key pair type corresponding to a public key type.
371 *
372 * You may also pass a key pair type as \p type, it will be left unchanged.
373 *
374 * \param type A public key type or key pair type.
375 *
376 * \return The corresponding key pair type.
377 * If \p type is not a public key or a key pair,
378 * the return value is undefined.
379 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200380#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100381 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
382/** The public key type corresponding to a key pair type.
383 *
384 * You may also pass a key pair type as \p type, it will be left unchanged.
385 *
386 * \param type A public key type or key pair type.
387 *
388 * \return The corresponding public key type.
389 * If \p type is not a public key or a key pair,
390 * the return value is undefined.
391 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200392#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100393 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
394
395/** Raw data.
396 *
397 * A "key" of this type cannot be used for any cryptographic operation.
398 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100399#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100400
401/** HMAC key.
402 *
403 * The key policy determines which underlying hash algorithm the key can be
404 * used for.
405 *
406 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100407 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100408 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100409#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100410
411/** A secret for key derivation.
412 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200413 * This key type is for high-entropy secrets only. For low-entropy secrets,
414 * #PSA_KEY_TYPE_PASSWORD should be used instead.
415 *
416 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
417 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
418 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100419 * The key policy determines which key derivation algorithm the key
420 * can be used for.
421 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100422#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200424/** A low-entropy secret for password hashing or key derivation.
425 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200426 * This key type is suitable for passwords and passphrases which are typically
427 * intended to be memorizable by humans, and have a low entropy relative to
428 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200429 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200430 * for such keys. It is not suitable for passwords with extremely low entropy,
431 * such as numerical PINs.
432 *
433 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
434 * key derivation algorithms. Algorithms that accept such an input were
435 * designed to accept low-entropy secret and are known as password hashing or
436 * key stretching algorithms.
437 *
438 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
439 * key derivation algorithms, as the algorithms that take such an input expect
440 * it to be high-entropy.
441 *
442 * The key policy determines which key derivation algorithm the key can be
443 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200444 */
Manuel Pégourié-Gonnardc16033e2021-04-30 11:59:40 +0200445#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200446
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200447/** A secret value that can be used to verify a password hash.
448 *
449 * The key policy determines which key derivation algorithm the key
450 * can be used for, among the same permissible subset as for
451 * #PSA_KEY_TYPE_PASSWORD.
452 */
453#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)
454
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200455/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200456 *
457 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200458 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200459 */
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200460#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200461
Gilles Peskine737c6be2019-05-21 16:01:06 +0200462/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100463 *
464 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
465 * 32 bytes (AES-256).
466 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100467#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100468
469/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
470 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100471 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
472 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100473 *
474 * Note that single DES and 2-key 3DES are weak and strongly
475 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
476 * is weak and deprecated and should only be used in legacy protocols.
477 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100478#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100479
Gilles Peskine737c6be2019-05-21 16:01:06 +0200480/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100481 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100482#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100483
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200484/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
485 *
486 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
487 *
488 * Implementations must support 12-byte nonces, may support 8-byte nonces,
489 * and should reject other sizes.
490 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100491#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200492
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100493/** RSA public key.
494 *
495 * The size of an RSA key is the bit size of the modulus.
496 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100497#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100498/** RSA key pair (private and public key).
499 *
500 * The size of an RSA key is the bit size of the modulus.
501 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100502#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100503/** Whether a key type is an RSA key (pair or public-only). */
504#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200505 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100506
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100507#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100508#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
509#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100510/** Elliptic curve key pair.
511 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100512 * The size of an elliptic curve key is the bit size associated with the curve,
513 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
514 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
515 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100516 * \param curve A value of type ::psa_ecc_family_t that
517 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100518 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200519#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
520 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100521/** Elliptic curve public key.
522 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100523 * The size of an elliptic curve public key is the same as the corresponding
524 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
525 * `PSA_ECC_FAMILY_xxx` curve families).
526 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100527 * \param curve A value of type ::psa_ecc_family_t that
528 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100529 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100530#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
531 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
532
533/** Whether a key type is an elliptic curve key (pair or public-only). */
534#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200535 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100536 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100537/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200538#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100539 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200540 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100541/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100542#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
543 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
544 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
545
546/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100547#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
548 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100549 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
550 0))
551
Gilles Peskine228abc52019-12-03 17:24:19 +0100552/** SEC Koblitz curves over prime fields.
553 *
554 * This family comprises the following curves:
555 * secp192k1, secp224k1, secp256k1.
556 * They are defined in _Standards for Efficient Cryptography_,
557 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
558 * https://www.secg.org/sec2-v2.pdf
559 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100560#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100561
562/** SEC random curves over prime fields.
563 *
564 * This family comprises the following curves:
565 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
566 * They are defined in _Standards for Efficient Cryptography_,
567 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
568 * https://www.secg.org/sec2-v2.pdf
569 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100570#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100571/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100572#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100573
574/** SEC Koblitz curves over binary fields.
575 *
576 * This family comprises the following curves:
577 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
578 * They are defined in _Standards for Efficient Cryptography_,
579 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
580 * https://www.secg.org/sec2-v2.pdf
581 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100582#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100583
584/** SEC random curves over binary fields.
585 *
586 * This family comprises the following curves:
587 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
588 * They are defined in _Standards for Efficient Cryptography_,
589 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
590 * https://www.secg.org/sec2-v2.pdf
591 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100592#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100593
594/** SEC additional random curves over binary fields.
595 *
596 * This family comprises the following curve:
597 * sect163r2.
598 * It is defined in _Standards for Efficient Cryptography_,
599 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
600 * https://www.secg.org/sec2-v2.pdf
601 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100602#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100603
604/** Brainpool P random curves.
605 *
606 * This family comprises the following curves:
607 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
608 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
609 * It is defined in RFC 5639.
610 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100611#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100612
613/** Curve25519 and Curve448.
614 *
615 * This family comprises the following Montgomery curves:
616 * - 255-bit: Bernstein et al.,
617 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
618 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
619 * - 448-bit: Hamburg,
620 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
621 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
622 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100623#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100624
Gilles Peskine67546802021-02-24 21:49:40 +0100625/** The twisted Edwards curves Ed25519 and Ed448.
626 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100627 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100628 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100629 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100630 *
631 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100632 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100633 * to Curve25519.
634 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
635 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
636 * to Curve448.
637 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
638 */
639#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
640
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100641#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100642#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
643#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100644/** Diffie-Hellman key pair.
645 *
Paul Elliott75e27032020-06-03 15:17:39 +0100646 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100647 * Diffie-Hellman group to be used.
648 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200649#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
650 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100651/** Diffie-Hellman public key.
652 *
Paul Elliott75e27032020-06-03 15:17:39 +0100653 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100654 * Diffie-Hellman group to be used.
655 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200656#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
657 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
658
659/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
660#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200661 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200662 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
663/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200664#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200665 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200666 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200667/** Whether a key type is a Diffie-Hellman public key. */
668#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
669 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
670 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
671
672/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100673#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
674 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200675 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
676 0))
677
Gilles Peskine228abc52019-12-03 17:24:19 +0100678/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
679 *
680 * This family includes groups with the following key sizes (in bits):
681 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
682 * all of these sizes or only a subset.
683 */
Paul Elliott75e27032020-06-03 15:17:39 +0100684#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100685
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100686#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100687 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100688/** The block size of a block cipher.
689 *
690 * \param type A cipher key type (value of type #psa_key_type_t).
691 *
692 * \return The block size for a block cipher, or 1 for a stream cipher.
693 * The return value is undefined if \p type is not a supported
694 * cipher key type.
695 *
696 * \note It is possible to build stream cipher algorithms on top of a block
697 * cipher, for example CTR mode (#PSA_ALG_CTR).
698 * This macro only takes the key type into account, so it cannot be
699 * used to determine the size of the data that #psa_cipher_update()
700 * might buffer for future processing in general.
701 *
702 * \note This macro returns a compile-time constant if its argument is one.
703 *
704 * \warning This macro may evaluate its argument multiple times.
705 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100706#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100707 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100708 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100709 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100710
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100711/** Vendor-defined algorithm flag.
712 *
713 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
714 * bit set. Vendors who define additional algorithms must use an encoding with
715 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
716 * used by standard encodings whenever practical.
717 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100718#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100719
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100720#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100721#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
722#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100723#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100724#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
725#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
726#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
727#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
728#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100729
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100730/** Whether an algorithm is vendor-defined.
731 *
732 * See also #PSA_ALG_VENDOR_FLAG.
733 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100734#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
735 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
736
737/** Whether the specified algorithm is a hash algorithm.
738 *
739 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
740 *
741 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
742 * This macro may return either 0 or 1 if \p alg is not a supported
743 * algorithm identifier.
744 */
745#define PSA_ALG_IS_HASH(alg) \
746 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
747
748/** Whether the specified algorithm is a MAC algorithm.
749 *
750 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
751 *
752 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
753 * This macro may return either 0 or 1 if \p alg is not a supported
754 * algorithm identifier.
755 */
756#define PSA_ALG_IS_MAC(alg) \
757 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
758
759/** Whether the specified algorithm is a symmetric cipher algorithm.
760 *
761 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
762 *
763 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
764 * This macro may return either 0 or 1 if \p alg is not a supported
765 * algorithm identifier.
766 */
767#define PSA_ALG_IS_CIPHER(alg) \
768 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
769
770/** Whether the specified algorithm is an authenticated encryption
771 * with associated data (AEAD) algorithm.
772 *
773 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
774 *
775 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
776 * This macro may return either 0 or 1 if \p alg is not a supported
777 * algorithm identifier.
778 */
779#define PSA_ALG_IS_AEAD(alg) \
780 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
781
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200782/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200783 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100784 *
785 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
786 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200787 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100788 * This macro may return either 0 or 1 if \p alg is not a supported
789 * algorithm identifier.
790 */
791#define PSA_ALG_IS_SIGN(alg) \
792 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
793
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200794/** Whether the specified algorithm is an asymmetric encryption algorithm,
795 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100796 *
797 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
798 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200799 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100800 * This macro may return either 0 or 1 if \p alg is not a supported
801 * algorithm identifier.
802 */
803#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
804 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
805
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100806/** Whether the specified algorithm is a key agreement algorithm.
807 *
808 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
809 *
810 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
811 * This macro may return either 0 or 1 if \p alg is not a supported
812 * algorithm identifier.
813 */
814#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100815 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100816
817/** Whether the specified algorithm is a key derivation algorithm.
818 *
819 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
820 *
821 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
822 * This macro may return either 0 or 1 if \p alg is not a supported
823 * algorithm identifier.
824 */
825#define PSA_ALG_IS_KEY_DERIVATION(alg) \
826 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
827
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200828/** Whether the specified algorithm is a key stretching / password hashing
829 * algorithm.
830 *
831 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200832 * that is suitable for use with a low-entropy secret such as a password.
833 * Equivalently, it's a key derivation algorithm that uses a
834 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200835 *
836 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
837 *
838 * \return 1 if \p alg is a key stretching / passowrd hashing algorithm, 0
839 * otherwise. This macro may return either 0 or 1 if \p alg is not a
840 * supported algorithm identifier.
841 */
842#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
843 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
844 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
845
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100846#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100847/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100848#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100849/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100850#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100851/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100852#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100853/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100854#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100855/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100856#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100857/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100858#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100859/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100860#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100861/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100862#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100863/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100864#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100865/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100866#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100867/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100868#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100869/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100870#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100871/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100872#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100873/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100874 *
875 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
876 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
877 * has the same output size and a (theoretically) higher security strength.
878 */
Gilles Peskine27354692021-03-03 17:45:06 +0100879#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100880
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100881/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100882 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100883 * This value may be used to form the algorithm usage field of a policy
884 * for a signature algorithm that is parametrized by a hash. The key
885 * may then be used to perform operations using the same signature
886 * algorithm parametrized with any supported hash.
887 *
888 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100889 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100890 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100891 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100892 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
893 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100894 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200895 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100896 * ```
897 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100898 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100899 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
900 * call to sign or verify a message may use a different hash.
901 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200902 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
903 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
904 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100905 * ```
906 *
907 * This value may not be used to build other algorithms that are
908 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100909 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100910 *
911 * This value may not be used to build an algorithm specification to
912 * perform an operation. It is only valid to build policies.
913 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100914#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100915
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100916#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100917#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100918/** Macro to build an HMAC algorithm.
919 *
920 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
921 *
922 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
923 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
924 *
925 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100926 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100927 * hash algorithm.
928 */
929#define PSA_ALG_HMAC(hash_alg) \
930 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
931
932#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
933 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
934
935/** Whether the specified algorithm is an HMAC algorithm.
936 *
937 * HMAC is a family of MAC algorithms that are based on a hash function.
938 *
939 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
940 *
941 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
942 * This macro may return either 0 or 1 if \p alg is not a supported
943 * algorithm identifier.
944 */
945#define PSA_ALG_IS_HMAC(alg) \
946 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
947 PSA_ALG_HMAC_BASE)
948
949/* In the encoding of a MAC algorithm, the bits corresponding to
950 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
951 * truncated. As an exception, the value 0 means the untruncated algorithm,
952 * whatever its length is. The length is encoded in 6 bits, so it can
953 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
954 * to full length is correctly encoded as 0 and any non-trivial truncation
955 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100956#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
957#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100958
Steven Cooremand927ed72021-02-22 19:59:35 +0100959/* In the encoding of a MAC algorithm, the bit corresponding to
960 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100961 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
962 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100963 * same base class and having a (potentially truncated) MAC length greater or
964 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
965#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
966
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100967/** Macro to build a truncated MAC algorithm.
968 *
969 * A truncated MAC algorithm is identical to the corresponding MAC
970 * algorithm except that the MAC value for the truncated algorithm
971 * consists of only the first \p mac_length bytes of the MAC value
972 * for the untruncated algorithm.
973 *
974 * \note This macro may allow constructing algorithm identifiers that
975 * are not valid, either because the specified length is larger
976 * than the untruncated MAC or because the specified length is
977 * smaller than permitted by the implementation.
978 *
979 * \note It is implementation-defined whether a truncated MAC that
980 * is truncated to the same length as the MAC of the untruncated
981 * algorithm is considered identical to the untruncated algorithm
982 * for policy comparison purposes.
983 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200984 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100985 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100986 * is true). This may be a truncated or untruncated
987 * MAC algorithm.
988 * \param mac_length Desired length of the truncated MAC in bytes.
989 * This must be at most the full length of the MAC
990 * and must be at least an implementation-specified
991 * minimum. The implementation-specified minimum
992 * shall not be zero.
993 *
994 * \return The corresponding MAC algorithm with the specified
995 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100996 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100997 * MAC algorithm or if \p mac_length is too small or
998 * too large for the specified MAC algorithm.
999 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001000#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1001 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1002 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001003 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1004
1005/** Macro to build the base MAC algorithm corresponding to a truncated
1006 * MAC algorithm.
1007 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001008 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001009 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001010 * is true). This may be a truncated or untruncated
1011 * MAC algorithm.
1012 *
1013 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001014 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001015 * MAC algorithm.
1016 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001017#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1018 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1019 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001020
1021/** Length to which a MAC algorithm is truncated.
1022 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001023 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001024 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001025 * is true).
1026 *
1027 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001028 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1029 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001030 * MAC algorithm.
1031 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001032#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1033 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001034
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001035/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001036 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001037 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001038 * sharing the same base algorithm, and where the (potentially truncated) MAC
1039 * length of the specific algorithm is equal to or larger then the wildcard
1040 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001041 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001042 * \note When setting the minimum required MAC length to less than the
1043 * smallest MAC length allowed by the base algorithm, this effectively
1044 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001045 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001046 * \param mac_alg A MAC algorithm identifier (value of type
1047 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1048 * is true).
1049 * \param min_mac_length Desired minimum length of the message authentication
1050 * code in bytes. This must be at most the untruncated
1051 * length of the MAC and must be at least 1.
1052 *
1053 * \return The corresponding MAC wildcard algorithm with the
1054 * specified minimum length.
1055 * \return Unspecified if \p mac_alg is not a supported MAC
1056 * algorithm or if \p min_mac_length is less than 1 or
1057 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001058 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001059#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1060 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1061 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001062
Bence Szépkútia2945512020-12-03 21:40:17 +01001063#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001064/** The CBC-MAC construction over a block cipher
1065 *
1066 * \warning CBC-MAC is insecure in many cases.
1067 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1068 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001069#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001070/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001071#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001072
1073/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1074 *
1075 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1076 *
1077 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1078 * This macro may return either 0 or 1 if \p alg is not a supported
1079 * algorithm identifier.
1080 */
1081#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1082 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1083 PSA_ALG_CIPHER_MAC_BASE)
1084
1085#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1086#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1087
1088/** Whether the specified algorithm is a stream cipher.
1089 *
1090 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1091 * by applying a bitwise-xor with a stream of bytes that is generated
1092 * from a key.
1093 *
1094 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1095 *
1096 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1097 * This macro may return either 0 or 1 if \p alg is not a supported
1098 * algorithm identifier or if it is not a symmetric cipher algorithm.
1099 */
1100#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1101 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1102 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1103
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001104/** The stream cipher mode of a stream cipher algorithm.
1105 *
1106 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001107 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001108 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001109#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001110
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001111/** The CTR stream cipher mode.
1112 *
1113 * CTR is a stream cipher which is built from a block cipher.
1114 * The underlying block cipher is determined by the key type.
1115 * For example, to use AES-128-CTR, use this algorithm with
1116 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1117 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001118#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001119
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001120/** The CFB stream cipher mode.
1121 *
1122 * The underlying block cipher is determined by the key type.
1123 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001124#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001125
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001126/** The OFB stream cipher mode.
1127 *
1128 * The underlying block cipher is determined by the key type.
1129 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001130#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001131
1132/** The XTS cipher mode.
1133 *
1134 * XTS is a cipher mode which is built from a block cipher. It requires at
1135 * least one full block of input, but beyond this minimum the input
1136 * does not need to be a whole number of blocks.
1137 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001138#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001139
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001140/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1141 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001142 * \warning ECB mode does not protect the confidentiality of the encrypted data
1143 * except in extremely narrow circumstances. It is recommended that applications
1144 * only use ECB if they need to construct an operating mode that the
1145 * implementation does not provide. Implementations are encouraged to provide
1146 * the modes that applications need in preference to supporting direct access
1147 * to ECB.
1148 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001149 * The underlying block cipher is determined by the key type.
1150 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001151 * This symmetric cipher mode can only be used with messages whose lengths are a
1152 * multiple of the block size of the chosen block cipher.
1153 *
1154 * ECB mode does not accept an initialization vector (IV). When using a
1155 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1156 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001157 */
1158#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1159
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001160/** The CBC block cipher chaining mode, with no padding.
1161 *
1162 * The underlying block cipher is determined by the key type.
1163 *
1164 * This symmetric cipher mode can only be used with messages whose lengths
1165 * are whole number of blocks for the chosen block cipher.
1166 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001167#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001168
1169/** The CBC block cipher chaining mode with PKCS#7 padding.
1170 *
1171 * The underlying block cipher is determined by the key type.
1172 *
1173 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1174 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001175#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001176
Gilles Peskine679693e2019-05-06 15:10:16 +02001177#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1178
1179/** Whether the specified algorithm is an AEAD mode on a block cipher.
1180 *
1181 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1182 *
1183 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1184 * a block cipher, 0 otherwise.
1185 * This macro may return either 0 or 1 if \p alg is not a supported
1186 * algorithm identifier.
1187 */
1188#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1189 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1190 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1191
Gilles Peskine9153ec02019-02-15 13:02:02 +01001192/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001193 *
1194 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001195 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001196#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001197
1198/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001199 *
1200 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001201 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001202#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001203
1204/** The Chacha20-Poly1305 AEAD algorithm.
1205 *
1206 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001207 *
1208 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1209 * and should reject other sizes.
1210 *
1211 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001212 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001213#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001214
1215/* In the encoding of a AEAD algorithm, the bits corresponding to
1216 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1217 * The constants for default lengths follow this encoding.
1218 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001219#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1220#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001221
Steven Cooremand927ed72021-02-22 19:59:35 +01001222/* In the encoding of an AEAD algorithm, the bit corresponding to
1223 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001224 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1225 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001226 * same base class and having a tag length greater than or equal to the one
1227 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1228#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1229
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001230/** Macro to build a shortened AEAD algorithm.
1231 *
1232 * A shortened AEAD algorithm is similar to the corresponding AEAD
1233 * algorithm, but has an authentication tag that consists of fewer bytes.
1234 * Depending on the algorithm, the tag length may affect the calculation
1235 * of the ciphertext.
1236 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001237 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001238 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001239 * is true).
1240 * \param tag_length Desired length of the authentication tag in bytes.
1241 *
1242 * \return The corresponding AEAD algorithm with the specified
1243 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001244 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001245 * AEAD algorithm or if \p tag_length is not valid
1246 * for the specified AEAD algorithm.
1247 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001248#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001249 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1250 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001251 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1252 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1253
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001254/** Retrieve the tag length of a specified AEAD algorithm
1255 *
1256 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001257 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001258 * is true).
1259 *
1260 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001261 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001262 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001263 */
1264#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1265 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1266 PSA_AEAD_TAG_LENGTH_OFFSET )
1267
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001268/** Calculate the corresponding AEAD algorithm with the default tag length.
1269 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001270 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001271 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001272 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001273 * \return The corresponding AEAD algorithm with the default
1274 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001275 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001276#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001277 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001278 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1279 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1280 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001281 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001282#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1283 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1284 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001285 ref :
1286
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001287/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001288 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001289 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001290 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001291 * algorithm is equal to or larger then the minimum tag length specified by the
1292 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001293 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001294 * \note When setting the minimum required tag length to less than the
1295 * smallest tag length allowed by the base algorithm, this effectively
1296 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001297 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001298 * \param aead_alg An AEAD algorithm identifier (value of type
1299 * #psa_algorithm_t such that
1300 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1301 * \param min_tag_length Desired minimum length of the authentication tag in
1302 * bytes. This must be at least 1 and at most the largest
1303 * allowed tag length of the algorithm.
1304 *
1305 * \return The corresponding AEAD wildcard algorithm with the
1306 * specified minimum length.
1307 * \return Unspecified if \p aead_alg is not a supported
1308 * AEAD algorithm or if \p min_tag_length is less than 1
1309 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001310 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001311#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001312 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1313 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001314
Bence Szépkútia2945512020-12-03 21:40:17 +01001315#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001316/** RSA PKCS#1 v1.5 signature with hashing.
1317 *
1318 * This is the signature scheme defined by RFC 8017
1319 * (PKCS#1: RSA Cryptography Specifications) under the name
1320 * RSASSA-PKCS1-v1_5.
1321 *
1322 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1323 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001324 * This includes #PSA_ALG_ANY_HASH
1325 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001326 *
1327 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001328 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001329 * hash algorithm.
1330 */
1331#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1332 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1333/** Raw PKCS#1 v1.5 signature.
1334 *
1335 * The input to this algorithm is the DigestInfo structure used by
1336 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1337 * steps 3&ndash;6.
1338 */
1339#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1340#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1341 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1342
Bence Szépkútia2945512020-12-03 21:40:17 +01001343#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001344/** RSA PSS signature with hashing.
1345 *
1346 * This is the signature scheme defined by RFC 8017
1347 * (PKCS#1: RSA Cryptography Specifications) under the name
1348 * RSASSA-PSS, with the message generation function MGF1, and with
1349 * a salt length equal to the length of the hash. The specified
1350 * hash algorithm is used to hash the input message, to create the
1351 * salted hash, and for the mask generation.
1352 *
1353 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1354 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001355 * This includes #PSA_ALG_ANY_HASH
1356 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001357 *
1358 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001359 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001360 * hash algorithm.
1361 */
1362#define PSA_ALG_RSA_PSS(hash_alg) \
1363 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1364#define PSA_ALG_IS_RSA_PSS(alg) \
1365 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1366
Bence Szépkútia2945512020-12-03 21:40:17 +01001367#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001368/** ECDSA signature with hashing.
1369 *
1370 * This is the ECDSA signature scheme defined by ANSI X9.62,
1371 * with a random per-message secret number (*k*).
1372 *
1373 * The representation of the signature as a byte string consists of
1374 * the concatentation of the signature values *r* and *s*. Each of
1375 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1376 * of the base point of the curve in octets. Each value is represented
1377 * in big-endian order (most significant octet first).
1378 *
1379 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1380 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001381 * This includes #PSA_ALG_ANY_HASH
1382 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001383 *
1384 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001385 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001386 * hash algorithm.
1387 */
1388#define PSA_ALG_ECDSA(hash_alg) \
1389 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1390/** ECDSA signature without hashing.
1391 *
1392 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1393 * without specifying a hash algorithm. This algorithm may only be
1394 * used to sign or verify a sequence of bytes that should be an
1395 * already-calculated hash. Note that the input is padded with
1396 * zeros on the left or truncated on the left as required to fit
1397 * the curve size.
1398 */
1399#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001400#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001401/** Deterministic ECDSA signature with hashing.
1402 *
1403 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1404 *
1405 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1406 *
1407 * Note that when this algorithm is used for verification, signatures
1408 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1409 * same private key are accepted. In other words,
1410 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1411 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1412 *
1413 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1414 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001415 * This includes #PSA_ALG_ANY_HASH
1416 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001417 *
1418 * \return The corresponding deterministic ECDSA signature
1419 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001420 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001421 * hash algorithm.
1422 */
1423#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1424 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001425#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001426#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001427 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001428 PSA_ALG_ECDSA_BASE)
1429#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001430 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001431#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1432 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1433#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1434 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1435
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001436/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1437 * using standard parameters.
1438 *
1439 * Contexts are not supported in the current version of this specification
1440 * because there is no suitable signature interface that can take the
1441 * context as a parameter. A future version of this specification may add
1442 * suitable functions and extend this algorithm to support contexts.
1443 *
1444 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1445 * In this specification, the following curves are supported:
1446 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1447 * in RFC 8032.
1448 * The curve is Edwards25519.
1449 * The hash function used internally is SHA-512.
1450 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1451 * in RFC 8032.
1452 * The curve is Edwards448.
1453 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001454 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001455 *
1456 * This algorithm can be used with psa_sign_message() and
1457 * psa_verify_message(). Since there is no prehashing, it cannot be used
1458 * with psa_sign_hash() or psa_verify_hash().
1459 *
1460 * The signature format is the concatenation of R and S as defined by
1461 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1462 * string for Ed448).
1463 */
1464#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1465
1466#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1467#define PSA_ALG_IS_HASH_EDDSA(alg) \
1468 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1469
1470/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001471 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001472 *
1473 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1474 *
1475 * This algorithm is Ed25519 as specified in RFC 8032.
1476 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001477 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001478 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001479 *
1480 * This is a hash-and-sign algorithm: to calculate a signature,
1481 * you can either:
1482 * - call psa_sign_message() on the message;
1483 * - or calculate the SHA-512 hash of the message
1484 * with psa_hash_compute()
1485 * or with a multi-part hash operation started with psa_hash_setup(),
1486 * using the hash algorithm #PSA_ALG_SHA_512,
1487 * then sign the calculated hash with psa_sign_hash().
1488 * Verifying a signature is similar, using psa_verify_message() or
1489 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001490 */
1491#define PSA_ALG_ED25519PH \
1492 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1493
1494/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1495 * using SHAKE256 and the Edwards448 curve.
1496 *
1497 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1498 *
1499 * This algorithm is Ed448 as specified in RFC 8032.
1500 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001501 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001502 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001503 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001504 *
1505 * This is a hash-and-sign algorithm: to calculate a signature,
1506 * you can either:
1507 * - call psa_sign_message() on the message;
1508 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1509 * with psa_hash_compute()
1510 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001511 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001512 * then sign the calculated hash with psa_sign_hash().
1513 * Verifying a signature is similar, using psa_verify_message() or
1514 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001515 */
1516#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001517 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001518
Gilles Peskine6d400852021-02-24 21:39:52 +01001519/* Default definition, to be overridden if the library is extended with
1520 * more hash-and-sign algorithms that we want to keep out of this header
1521 * file. */
1522#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1523
Gilles Peskined35b4892019-01-14 16:02:15 +01001524/** Whether the specified algorithm is a hash-and-sign algorithm.
1525 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001526 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1527 * structured in two parts: first the calculation of a hash in a way that
1528 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001529 * hash value and the key.
1530 *
1531 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1532 *
1533 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1534 * This macro may return either 0 or 1 if \p alg is not a supported
1535 * algorithm identifier.
1536 */
1537#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1538 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001539 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
Gilles Peskine6d400852021-02-24 21:39:52 +01001540 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001541
gabor-mezei-arm4a210192021-04-14 21:14:28 +02001542/** Whether the specified algorithm is a signature algorithm that can be used
1543 * with psa_sign_message() and psa_verify_message().
1544 *
1545 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1546 *
1547 * \return 1 if alg is a signature algorithm that can be used to sign a
gabor-mezei-arm36658e42021-04-20 12:08:36 +02001548 * message. 0 if \p alg is a signature algorithm that can only be used
1549 * to sign an already-calculated hash. 0 if \p alg is not a signature
1550 * algorithm. This macro can return either 0 or 1 if \p alg is not a
gabor-mezei-arm4a210192021-04-14 21:14:28 +02001551 * supported algorithm identifier.
1552 */
1553#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
gabor-mezei-arm36658e42021-04-20 12:08:36 +02001554 (PSA_ALG_IS_HASH_AND_SIGN(alg) || (alg) == PSA_ALG_PURE_EDDSA )
gabor-mezei-arm4a210192021-04-14 21:14:28 +02001555
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001556/** Get the hash used by a hash-and-sign signature algorithm.
1557 *
1558 * A hash-and-sign algorithm is a signature algorithm which is
1559 * composed of two phases: first a hashing phase which does not use
1560 * the key and produces a hash of the input message, then a signing
1561 * phase which only uses the hash and the key and not the message
1562 * itself.
1563 *
1564 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1565 * #PSA_ALG_IS_SIGN(\p alg) is true).
1566 *
1567 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1568 * algorithm.
1569 * \return 0 if \p alg is a signature algorithm that does not
1570 * follow the hash-and-sign structure.
1571 * \return Unspecified if \p alg is not a signature algorithm or
1572 * if it is not supported by the implementation.
1573 */
1574#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001575 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001576 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1577 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1578 0)
1579
1580/** RSA PKCS#1 v1.5 encryption.
1581 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001582#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001583
Bence Szépkútia2945512020-12-03 21:40:17 +01001584#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001585/** RSA OAEP encryption.
1586 *
1587 * This is the encryption scheme defined by RFC 8017
1588 * (PKCS#1: RSA Cryptography Specifications) under the name
1589 * RSAES-OAEP, with the message generation function MGF1.
1590 *
1591 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1592 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1593 * for MGF1.
1594 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001595 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001596 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001597 * hash algorithm.
1598 */
1599#define PSA_ALG_RSA_OAEP(hash_alg) \
1600 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1601#define PSA_ALG_IS_RSA_OAEP(alg) \
1602 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1603#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1604 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1605 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1606 0)
1607
Bence Szépkútia2945512020-12-03 21:40:17 +01001608#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001609/** Macro to build an HKDF algorithm.
1610 *
1611 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1612 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001613 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001614 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001615 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001616 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1617 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1618 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1619 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001620 * starting to generate output.
1621 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001622 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1623 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1624 *
1625 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001626 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001627 * hash algorithm.
1628 */
1629#define PSA_ALG_HKDF(hash_alg) \
1630 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1631/** Whether the specified algorithm is an HKDF algorithm.
1632 *
1633 * HKDF is a family of key derivation algorithms that are based on a hash
1634 * function and the HMAC construction.
1635 *
1636 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1637 *
1638 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1639 * This macro may return either 0 or 1 if \c alg is not a supported
1640 * key derivation algorithm identifier.
1641 */
1642#define PSA_ALG_IS_HKDF(alg) \
1643 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1644#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1645 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1646
Bence Szépkútia2945512020-12-03 21:40:17 +01001647#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001648/** Macro to build a TLS-1.2 PRF algorithm.
1649 *
1650 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1651 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1652 * used with either SHA-256 or SHA-384.
1653 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001654 * This key derivation algorithm uses the following inputs, which must be
1655 * passed in the order given here:
1656 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001657 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1658 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001659 *
1660 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001661 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001662 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001663 *
1664 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1665 * TLS 1.2 PRF using HMAC-SHA-256.
1666 *
1667 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1668 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1669 *
1670 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001671 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001672 * hash algorithm.
1673 */
1674#define PSA_ALG_TLS12_PRF(hash_alg) \
1675 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1676
1677/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1678 *
1679 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1680 *
1681 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1682 * This macro may return either 0 or 1 if \c alg is not a supported
1683 * key derivation algorithm identifier.
1684 */
1685#define PSA_ALG_IS_TLS12_PRF(alg) \
1686 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1687#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1688 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1689
Bence Szépkútia2945512020-12-03 21:40:17 +01001690#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001691/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1692 *
1693 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1694 * from the PreSharedKey (PSK) through the application of padding
1695 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1696 * The latter is based on HMAC and can be used with either SHA-256
1697 * or SHA-384.
1698 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001699 * This key derivation algorithm uses the following inputs, which must be
1700 * passed in the order given here:
1701 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001702 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1703 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001704 *
1705 * For the application to TLS-1.2, the seed (which is
1706 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1707 * ClientHello.Random + ServerHello.Random,
1708 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001709 *
1710 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1711 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1712 *
1713 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1714 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1715 *
1716 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001717 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001718 * hash algorithm.
1719 */
1720#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1721 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1722
1723/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1724 *
1725 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1726 *
1727 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1728 * This macro may return either 0 or 1 if \c alg is not a supported
1729 * key derivation algorithm identifier.
1730 */
1731#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1732 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1733#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1734 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1735
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001736/* This flag indicates whether the key derivation algorithm is suitable for
1737 * use on low-entropy secrets such as password - these algorithms are also
1738 * known as key stretching or password hashing schemes. These are also the
1739 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001740 *
1741 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001742 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001743#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001744
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001745#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001746/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001747 *
1748 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001749 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
1750 * HMAC with the specified hash.
1751 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2
1752 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001753 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001754 * This key derivation algorithm uses the following inputs, which must be
1755 * provided in the following order:
1756 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001757 * This input step must be used exactly once.
1758 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1759 * This input step must be used one or more times; if used several times, the
1760 * inputs will be concatenated. This can be used to build the final salt
1761 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001762 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001763 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001764 *
1765 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1766 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1767 *
1768 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
1769 * \return Unspecified if \p hash_alg is not a supported
1770 * hash algorithm.
1771 */
1772#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
1773 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1774
1775/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
1776 *
1777 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1778 *
1779 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
1780 * This macro may return either 0 or 1 if \c alg is not a supported
1781 * key derivation algorithm identifier.
1782 */
1783#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
1784 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001785
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001786/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
1787 *
1788 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
1789 * This macro specifies the PBKDF2 algorithm constructed using the
1790 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
1791 *
1792 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02001793 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001794 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001795#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001796
Bence Szépkútia2945512020-12-03 21:40:17 +01001797#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1798#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001799
Gilles Peskine6843c292019-01-18 16:44:49 +01001800/** Macro to build a combined algorithm that chains a key agreement with
1801 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001802 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001803 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1804 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1805 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1806 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001807 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001808 * \return The corresponding key agreement and derivation
1809 * algorithm.
1810 * \return Unspecified if \p ka_alg is not a supported
1811 * key agreement algorithm or \p kdf_alg is not a
1812 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001813 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001814#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1815 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001816
1817#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1818 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1819
Gilles Peskine6843c292019-01-18 16:44:49 +01001820#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1821 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001822
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001823/** Whether the specified algorithm is a raw key agreement algorithm.
1824 *
1825 * A raw key agreement algorithm is one that does not specify
1826 * a key derivation function.
1827 * Usually, raw key agreement algorithms are constructed directly with
1828 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001829 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001830 *
1831 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1832 *
1833 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1834 * This macro may return either 0 or 1 if \p alg is not a supported
1835 * algorithm identifier.
1836 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001837#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001838 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1839 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001840
1841#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1842 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1843
1844/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001845 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001846 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001847 * `g^{ab}` in big-endian format.
1848 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1849 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001850 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001851#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001852
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001853/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1854 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001855 * This includes the raw finite field Diffie-Hellman algorithm as well as
1856 * finite-field Diffie-Hellman followed by any supporter key derivation
1857 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001858 *
1859 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1860 *
1861 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1862 * This macro may return either 0 or 1 if \c alg is not a supported
1863 * key agreement algorithm identifier.
1864 */
1865#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001866 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001867
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001868/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1869 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001870 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001871 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1872 * `m` is the bit size associated with the curve, i.e. the bit size of the
1873 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1874 * the byte containing the most significant bit of the shared secret
1875 * is padded with zero bits. The byte order is either little-endian
1876 * or big-endian depending on the curve type.
1877 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001878 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001879 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1880 * in little-endian byte order.
1881 * The bit size is 448 for Curve448 and 255 for Curve25519.
1882 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001883 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001884 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1885 * in big-endian byte order.
1886 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1887 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001888 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001889 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1890 * in big-endian byte order.
1891 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001892 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001893#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001894
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001895/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1896 * algorithm.
1897 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001898 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1899 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1900 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001901 *
1902 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1903 *
1904 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1905 * 0 otherwise.
1906 * This macro may return either 0 or 1 if \c alg is not a supported
1907 * key agreement algorithm identifier.
1908 */
1909#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001910 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001911
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001912/** Whether the specified algorithm encoding is a wildcard.
1913 *
1914 * Wildcard values may only be used to set the usage algorithm field in
1915 * a policy, not to perform an operation.
1916 *
1917 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1918 *
1919 * \return 1 if \c alg is a wildcard algorithm encoding.
1920 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1921 * an operation).
1922 * \return This macro may return either 0 or 1 if \c alg is not a supported
1923 * algorithm identifier.
1924 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001925#define PSA_ALG_IS_WILDCARD(alg) \
1926 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1927 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1928 PSA_ALG_IS_MAC(alg) ? \
1929 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1930 PSA_ALG_IS_AEAD(alg) ? \
1931 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001932 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001933
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001934/** Get the hash used by a composite algorithm.
1935 *
1936 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1937 *
1938 * \return The underlying hash algorithm if alg is a composite algorithm that
1939 * uses a hash algorithm.
1940 *
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02001941 * \return \c 0 if alg is not a composite algorithm that uses a hash.
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001942 */
1943#define PSA_ALG_GET_HASH(alg) \
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02001944 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t)0) : 0x02000000 | ((alg) & 0x000000ff))
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001945
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001946/**@}*/
1947
1948/** \defgroup key_lifetimes Key lifetimes
1949 * @{
1950 */
1951
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001952/** The default lifetime for volatile keys.
1953 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001954 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001955 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001956 *
1957 * A key with this lifetime is typically stored in the RAM area of the
1958 * PSA Crypto subsystem. However this is an implementation choice.
1959 * If an implementation stores data about the key in a non-volatile memory,
1960 * it must release all the resources associated with the key and erase the
1961 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001962 */
1963#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1964
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001965/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001966 *
1967 * A persistent key remains in storage until it is explicitly destroyed or
1968 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001969 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001970 * provide their own mechanism (for example to perform a factory reset,
1971 * to prepare for device refurbishment, or to uninstall an application).
1972 *
1973 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001974 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001975 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001976 */
1977#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1978
Gilles Peskineaff11812020-05-04 19:03:10 +02001979/** The persistence level of volatile keys.
1980 *
1981 * See ::psa_key_persistence_t for more information.
1982 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001983#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001984
1985/** The default persistence level for persistent keys.
1986 *
1987 * See ::psa_key_persistence_t for more information.
1988 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001989#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02001990
1991/** A persistence level indicating that a key is never destroyed.
1992 *
1993 * See ::psa_key_persistence_t for more information.
1994 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001995#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001996
1997#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001998 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001999
2000#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002001 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002002
2003/** Whether a key lifetime indicates that the key is volatile.
2004 *
2005 * A volatile key is automatically destroyed by the implementation when
2006 * the application instance terminates. In particular, a volatile key
2007 * is automatically destroyed on a power reset of the device.
2008 *
2009 * A key that is not volatile is persistent. Persistent keys are
2010 * preserved until the application explicitly destroys them or until an
2011 * implementation-specific device management event occurs (for example,
2012 * a factory reset).
2013 *
2014 * \param lifetime The lifetime value to query (value of type
2015 * ::psa_key_lifetime_t).
2016 *
2017 * \return \c 1 if the key is volatile, otherwise \c 0.
2018 */
2019#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2020 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002021 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002022
Gilles Peskined133bb22021-04-21 20:05:59 +02002023/** Whether a key lifetime indicates that the key is read-only.
2024 *
2025 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2026 * They must be created through platform-specific means that bypass the API.
2027 *
2028 * Some platforms may offer ways to destroy read-only keys. For example,
2029 * a platform with multiple levels of privilege may expose a key to an
2030 * application without allowing that application to destroy the key, in
2031 * which case it may show the key a view of the key metadata where the
2032 * lifetime is read-only.
2033 *
2034 * \param lifetime The lifetime value to query (value of type
2035 * ::psa_key_lifetime_t).
2036 *
2037 * \return \c 1 if the key is read-only, otherwise \c 0.
2038 */
2039#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2040 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2041 PSA_KEY_PERSISTENCE_READ_ONLY)
2042
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002043/** Construct a lifetime from a persistence level and a location.
2044 *
2045 * \param persistence The persistence level
2046 * (value of type ::psa_key_persistence_t).
2047 * \param location The location indicator
2048 * (value of type ::psa_key_location_t).
2049 *
2050 * \return The constructed lifetime value.
2051 */
2052#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2053 ((location) << 8 | (persistence))
2054
Gilles Peskineaff11812020-05-04 19:03:10 +02002055/** The local storage area for persistent keys.
2056 *
2057 * This storage area is available on all systems that can store persistent
2058 * keys without delegating the storage to a third-party cryptoprocessor.
2059 *
2060 * See ::psa_key_location_t for more information.
2061 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002062#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002063
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002064#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002065
Gilles Peskine4a231b82019-05-06 18:56:14 +02002066/** The minimum value for a key identifier chosen by the application.
2067 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002068#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002069/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002070 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002071#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002072/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002073 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002074#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002075/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002076 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002077#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002078
Ronald Cron7424f0d2020-09-14 16:17:41 +02002079
2080#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2081
2082#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2083#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2084#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2085
2086/** Utility to initialize a key identifier at runtime.
2087 *
2088 * \param unused Unused parameter.
2089 * \param key_id Identifier of the key.
2090 */
2091static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2092 unsigned int unused, psa_key_id_t key_id )
2093{
2094 (void)unused;
2095
2096 return( key_id );
2097}
2098
2099/** Compare two key identifiers.
2100 *
2101 * \param id1 First key identifier.
2102 * \param id2 Second key identifier.
2103 *
2104 * \return Non-zero if the two key identifier are equal, zero otherwise.
2105 */
2106static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2107 mbedtls_svc_key_id_t id2 )
2108{
2109 return( id1 == id2 );
2110}
2111
Ronald Cronc4d1b512020-07-31 11:26:37 +02002112/** Check whether a key identifier is null.
2113 *
2114 * \param key Key identifier.
2115 *
2116 * \return Non-zero if the key identifier is null, zero otherwise.
2117 */
2118static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2119{
2120 return( key == 0 );
2121}
2122
Ronald Cron7424f0d2020-09-14 16:17:41 +02002123#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2124
2125#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
2126#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
2127#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
2128
2129/** Utility to initialize a key identifier at runtime.
2130 *
2131 * \param owner_id Identifier of the key owner.
2132 * \param key_id Identifier of the key.
2133 */
2134static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2135 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2136{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002137 return( (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2138 .MBEDTLS_PRIVATE(owner) = owner_id } );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002139}
2140
2141/** Compare two key identifiers.
2142 *
2143 * \param id1 First key identifier.
2144 * \param id2 Second key identifier.
2145 *
2146 * \return Non-zero if the two key identifier are equal, zero otherwise.
2147 */
2148static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2149 mbedtls_svc_key_id_t id2 )
2150{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002151 return( ( id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id) ) &&
2152 mbedtls_key_owner_id_equal( id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner) ) );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002153}
2154
Ronald Cronc4d1b512020-07-31 11:26:37 +02002155/** Check whether a key identifier is null.
2156 *
2157 * \param key Key identifier.
2158 *
2159 * \return Non-zero if the key identifier is null, zero otherwise.
2160 */
2161static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2162{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002163 return( ( key.MBEDTLS_PRIVATE(key_id) == 0 ) && ( key.MBEDTLS_PRIVATE(owner) == 0 ) );
Ronald Cronc4d1b512020-07-31 11:26:37 +02002164}
2165
Ronald Cron7424f0d2020-09-14 16:17:41 +02002166#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002167
2168/**@}*/
2169
2170/** \defgroup policy Key policies
2171 * @{
2172 */
2173
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002174/** Whether the key may be exported.
2175 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002176 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002177 * regardless of the value of this permission flag.
2178 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002179 * If a key does not have export permission, implementations shall not
2180 * allow the key to be exported in plain form from the cryptoprocessor,
2181 * whether through psa_export_key() or through a proprietary interface.
2182 * The key may however be exportable in a wrapped form, i.e. in a form
2183 * where it is encrypted by another key.
2184 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002185#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2186
2187/** Whether the key may be copied.
2188 *
2189 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002190 * with the same policy or a more restrictive policy.
2191 *
2192 * For lifetimes for which the key is located in a secure element which
2193 * enforce the non-exportability of keys, copying a key outside the secure
2194 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2195 * Copying the key inside the secure element is permitted with just
2196 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2197 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2198 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2199 * is sufficient to permit the copy.
2200 */
2201#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2202
2203/** Whether the key may be used to encrypt a message.
2204 *
2205 * This flag allows the key to be used for a symmetric encryption operation,
2206 * for an AEAD encryption-and-authentication operation,
2207 * or for an asymmetric encryption operation,
2208 * if otherwise permitted by the key's type and policy.
2209 *
2210 * For a key pair, this concerns the public key.
2211 */
2212#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2213
2214/** Whether the key may be used to decrypt a message.
2215 *
2216 * This flag allows the key to be used for a symmetric decryption operation,
2217 * for an AEAD decryption-and-verification operation,
2218 * or for an asymmetric decryption operation,
2219 * if otherwise permitted by the key's type and policy.
2220 *
2221 * For a key pair, this concerns the private key.
2222 */
2223#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2224
2225/** Whether the key may be used to sign a message.
2226 *
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002227 * This flag allows the key to be used for a MAC calculation operation or for
2228 * an asymmetric message signature operation, if otherwise permitted by the
2229 * key’s type and policy.
2230 *
2231 * For a key pair, this concerns the private key.
2232 */
2233#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
2234
2235/** Whether the key may be used to verify a message.
2236 *
2237 * This flag allows the key to be used for a MAC verification operation or for
2238 * an asymmetric message signature verification operation, if otherwise
2239 * permitted by the key’s type and policy.
2240 *
2241 * For a key pair, this concerns the public key.
2242 */
2243#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
2244
2245/** Whether the key may be used to sign a message.
2246 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002247 * This flag allows the key to be used for a MAC calculation operation
2248 * or for an asymmetric signature operation,
2249 * if otherwise permitted by the key's type and policy.
2250 *
2251 * For a key pair, this concerns the private key.
2252 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002253#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002254
2255/** Whether the key may be used to verify a message signature.
2256 *
2257 * This flag allows the key to be used for a MAC verification operation
2258 * or for an asymmetric signature verification operation,
2259 * if otherwise permitted by by the key's type and policy.
2260 *
2261 * For a key pair, this concerns the public key.
2262 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002263#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002264
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002265/** Whether the key may be used to derive other keys or produce a password
2266 * hash.
2267 *
2268 * This flag allows the key to be used as the input of
2269 * psa_key_derivation_input_key() at the step
2270 * #PSA_KEY_DERIVATION_INPUT_SECRET of #PSA_KEY_DERIVATION_INPUT_PASSWORD
2271 * depending on the algorithm, and allows the use of
2272 * psa_key_derivation_output_bytes() or psa_key_derivation_output_key()
2273 * at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002274 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002275#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002276
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002277/** Whether the key may be used to verify the result of a key derivation,
2278 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002279 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002280 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002281 *
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +02002282 * - for a key of type #PSA_KEY_TYPE_PASSWORD_HASH, as the \c key argument of
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002283 * psa_key_derivation_verify_key();
2284 * - for a key of type #PSA_KEY_TYPE_PASSWORD (or #PSA_KEY_TYPE_DERIVE), as
2285 * the input to psa_key_derivation_input_key() at the step
2286 * #PSA_KEY_DERIVATION_INPUT_PASSWORD (or #PSA_KEY_DERIVATION_INPUT_SECRET);
2287 * then at the end of the operation use of psa_key_derivation_verify_bytes()
2288 * or psa_key_derivation_verify_key() will be permitted (but not
2289 * psa_key_derivation_output_xxx() unless #PSA_KEY_USAGE_DERIVE is set).
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002290 */
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002291#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002292
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002293/**@}*/
2294
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002295/** \defgroup derivation Key derivation
2296 * @{
2297 */
2298
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002299/** A secret input for key derivation.
2300 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002301 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2302 * (passed to psa_key_derivation_input_key())
2303 * or the shared secret resulting from a key agreement
2304 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002305 *
2306 * The secret can also be a direct input (passed to
2307 * key_derivation_input_bytes()). In this case, the derivation operation
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002308 * may not be used to derive or verify keys: the operation will only allow
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002309 * psa_key_derivation_output_bytes() or
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002310 * psa_key_derivation_verify_bytes() but not
2311 * psa_key_derivation_output_key() or
2312 * psa_key_derivation_verify_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002313 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002314#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002315
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002316/** A low-entropy secret input for password hashing / key stretching.
2317 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002318 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2319 * psa_key_derivation_input_key()) or a direct input (passed to
2320 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2321 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2322 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002323 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002324 * The secret can also be a direct input (passed to
2325 * key_derivation_input_bytes()). In this case, the derivation operation
2326 * may not be used to derive or verify keys: the operation will only allow
2327 * psa_key_derivation_output_bytes() or
2328 * psa_key_derivation_verify_bytes(), not
2329 * psa_key_derivation_output_key() or
2330 * psa_key_derivation_verify_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002331 */
2332#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102)
2333
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002334/** A label for key derivation.
2335 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002336 * This should be a direct input.
2337 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002338 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002339#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002340
2341/** A salt for key derivation.
2342 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002343 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002344 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2345 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002346 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002347#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002348
2349/** An information string for key derivation.
2350 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002351 * This should be a direct input.
2352 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002353 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002354#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002355
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002356/** A seed for key derivation.
2357 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002358 * This should be a direct input.
2359 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002360 */
2361#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2362
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002363/** A cost parameter for password hashing / key stretching.
2364 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002365 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002366 */
2367#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205)
2368
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002369/**@}*/
2370
Bence Szépkútib639d432021-04-21 10:33:54 +02002371/** \defgroup helper_macros Helper macros
2372 * @{
2373 */
2374
2375/* Helper macros */
2376
2377/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2378 * regardless of the tag length they encode.
2379 *
2380 * \param aead_alg_1 An AEAD algorithm identifier.
2381 * \param aead_alg_2 An AEAD algorithm identifier.
2382 *
2383 * \return 1 if both identifiers refer to the same AEAD algorithm,
2384 * 0 otherwise.
2385 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2386 * a supported AEAD algorithm.
2387 */
2388#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2389 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2390 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2391
2392/**@}*/
2393
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002394#endif /* PSA_CRYPTO_VALUES_H */