blob: a81a014e46aa6bbb23b553d5ff52eeb7b35aa010 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
Mateusz Starzyk363eb292021-05-19 17:32:44 +020036#include "mbedtls/private_access.h"
Gilles Peskinef3b731e2018-12-12 13:38:31 +010037
38/** \defgroup error Error codes
39 * @{
40 */
41
David Saadab4ecc272019-02-14 13:48:10 +020042/* PSA error codes */
43
Gilles Peskinef3b731e2018-12-12 13:38:31 +010044/** The action was completed successfully. */
45#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010046
47/** An error occurred that does not correspond to any defined
48 * failure cause.
49 *
50 * Implementations may use this error code if none of the other standard
51 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020052#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010053
54/** The requested operation or a parameter is not supported
55 * by this implementation.
56 *
57 * Implementations should return this error code when an enumeration
58 * parameter such as a key type, algorithm, etc. is not recognized.
59 * If a combination of parameters is recognized and identified as
60 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020061#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010062
63/** The requested action is denied by a policy.
64 *
65 * Implementations should return this error code when the parameters
66 * are recognized as valid and supported, and a policy explicitly
67 * denies the requested operation.
68 *
69 * If a subset of the parameters of a function call identify a
70 * forbidden operation, and another subset of the parameters are
71 * not valid or not supported, it is unspecified whether the function
72 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
73 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020074#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010075
76/** An output buffer is too small.
77 *
78 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
79 * description to determine a sufficient buffer size.
80 *
81 * Implementations should preferably return this error code only
82 * in cases when performing the operation with a larger output
83 * buffer would succeed. However implementations may return this
84 * error if a function has invalid or unsupported parameters in addition
85 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020086#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010087
David Saadab4ecc272019-02-14 13:48:10 +020088/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010089 *
David Saadab4ecc272019-02-14 13:48:10 +020090 * Implementations should return this error, when attempting
91 * to write an item (like a key) that already exists. */
92#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010093
David Saadab4ecc272019-02-14 13:48:10 +020094/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010095 *
David Saadab4ecc272019-02-14 13:48:10 +020096 * Implementations should return this error, if a requested item (like
97 * a key) does not exist. */
98#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010099
100/** The requested action cannot be performed in the current state.
101 *
102 * Multipart operations return this error when one of the
103 * functions is called out of sequence. Refer to the function
104 * descriptions for permitted sequencing of functions.
105 *
106 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100107 * that a key either exists or not,
108 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100109 * as applicable.
110 *
111 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200112 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100113 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200114#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100115
116/** The parameters passed to the function are invalid.
117 *
118 * Implementations may return this error any time a parameter or
119 * combination of parameters are recognized as invalid.
120 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100121 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200122 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * instead.
124 */
David Saadab4ecc272019-02-14 13:48:10 +0200125#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100126
127/** There is not enough runtime memory.
128 *
129 * If the action is carried out across multiple security realms, this
130 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200131#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100132
133/** There is not enough persistent storage.
134 *
135 * Functions that modify the key storage return this error code if
136 * there is insufficient storage space on the host media. In addition,
137 * many functions that do not otherwise access storage may return this
138 * error code if the implementation requires a mandatory log entry for
139 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200140#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100141
142/** There was a communication failure inside the implementation.
143 *
144 * This can indicate a communication failure between the application
145 * and an external cryptoprocessor or between the cryptoprocessor and
146 * an external volatile or persistent memory. A communication failure
147 * may be transient or permanent depending on the cause.
148 *
149 * \warning If a function returns this error, it is undetermined
150 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200151 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100152 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
153 * if the requested action was completed successfully in an external
154 * cryptoprocessor but there was a breakdown of communication before
155 * the cryptoprocessor could report the status to the application.
156 */
David Saadab4ecc272019-02-14 13:48:10 +0200157#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100158
159/** There was a storage failure that may have led to data loss.
160 *
161 * This error indicates that some persistent storage is corrupted.
162 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200163 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100164 * between the cryptoprocessor and its external storage (use
165 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
166 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
167 *
168 * Note that a storage failure does not indicate that any data that was
169 * previously read is invalid. However this previously read data may no
170 * longer be readable from storage.
171 *
172 * When a storage failure occurs, it is no longer possible to ensure
173 * the global integrity of the keystore. Depending on the global
174 * integrity guarantees offered by the implementation, access to other
175 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100176 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100177 *
178 * Implementations should only use this error code to report a
179 * permanent storage corruption. However application writers should
180 * keep in mind that transient errors while reading the storage may be
181 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200182#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100183
184/** A hardware failure was detected.
185 *
186 * A hardware failure may be transient or permanent depending on the
187 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200188#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100189
190/** A tampering attempt was detected.
191 *
192 * If an application receives this error code, there is no guarantee
193 * that previously accessed or computed data was correct and remains
194 * confidential. Applications should not perform any security function
195 * and should enter a safe failure state.
196 *
197 * Implementations may return this error code if they detect an invalid
198 * state that cannot happen during normal operation and that indicates
199 * that the implementation's security guarantees no longer hold. Depending
200 * on the implementation architecture and on its security and safety goals,
201 * the implementation may forcibly terminate the application.
202 *
203 * This error code is intended as a last resort when a security breach
204 * is detected and it is unsure whether the keystore data is still
205 * protected. Implementations shall only return this error code
206 * to report an alarm from a tampering detector, to indicate that
207 * the confidentiality of stored data can no longer be guaranteed,
208 * or to indicate that the integrity of previously returned data is now
209 * considered compromised. Implementations shall not use this error code
210 * to indicate a hardware failure that merely makes it impossible to
211 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
212 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
213 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
214 * instead).
215 *
216 * This error indicates an attack against the application. Implementations
217 * shall not return this error code as a consequence of the behavior of
218 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200219#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100220
221/** There is not enough entropy to generate random data needed
222 * for the requested action.
223 *
224 * This error indicates a failure of a hardware random generator.
225 * Application writers should note that this error can be returned not
226 * only by functions whose purpose is to generate random data, such
227 * as key, IV or nonce generation, but also by functions that execute
228 * an algorithm with a randomized result, as well as functions that
229 * use randomization of intermediate computations as a countermeasure
230 * to certain attacks.
231 *
232 * Implementations should avoid returning this error after psa_crypto_init()
233 * has succeeded. Implementations should generate sufficient
234 * entropy during initialization and subsequently use a cryptographically
235 * secure pseudorandom generator (PRNG). However implementations may return
236 * this error at any time if a policy requires the PRNG to be reseeded
237 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200238#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100239
240/** The signature, MAC or hash is incorrect.
241 *
242 * Verification functions return this error if the verification
243 * calculations completed successfully, and the value to be verified
244 * was determined to be incorrect.
245 *
246 * If the value to verify has an invalid size, implementations may return
247 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200248#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100249
250/** The decrypted padding is incorrect.
251 *
252 * \warning In some protocols, when decrypting data, it is essential that
253 * the behavior of the application does not depend on whether the padding
254 * is correct, down to precise timing. Applications should prefer
255 * protocols that use authenticated encryption rather than plain
256 * encryption. If the application must perform a decryption of
257 * unauthenticated data, the application writer should take care not
258 * to reveal whether the padding is invalid.
259 *
260 * Implementations should strive to make valid and invalid padding
261 * as close as possible to indistinguishable to an external observer.
262 * In particular, the timing of a decryption operation should not
263 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200264#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100265
David Saadab4ecc272019-02-14 13:48:10 +0200266/** Return this error when there's insufficient data when attempting
267 * to read from a resource. */
268#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100269
Ronald Croncf56a0a2020-08-04 09:51:30 +0200270/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100271 */
David Saadab4ecc272019-02-14 13:48:10 +0200272#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100273
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100274/** Stored data has been corrupted.
275 *
276 * This error indicates that some persistent storage has suffered corruption.
277 * It does not indicate the following situations, which have specific error
278 * codes:
279 *
280 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
281 * - A communication error between the cryptoprocessor and its external
282 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
283 * - When the storage is in a valid state but is full - use
284 * #PSA_ERROR_INSUFFICIENT_STORAGE.
285 * - When the storage fails for other reasons - use
286 * #PSA_ERROR_STORAGE_FAILURE.
287 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
288 *
289 * \note A storage corruption does not indicate that any data that was
290 * previously read is invalid. However this previously read data might no
291 * longer be readable from storage.
292 *
293 * When a storage failure occurs, it is no longer possible to ensure the
294 * global integrity of the keystore.
295 */
296#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
297
gabor-mezei-armfe309242020-11-09 17:39:56 +0100298/** Data read from storage is not valid for the implementation.
299 *
300 * This error indicates that some data read from storage does not have a valid
301 * format. It does not indicate the following situations, which have specific
302 * error codes:
303 *
304 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
305 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
306 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
307 *
308 * This error is typically a result of either storage corruption on a
309 * cleartext storage backend, or an attempt to read data that was
310 * written by an incompatible version of the library.
311 */
312#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
313
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100314/**@}*/
315
316/** \defgroup crypto_types Key and algorithm types
317 * @{
318 */
319
320/** An invalid key type value.
321 *
322 * Zero is not the encoding of any key type.
323 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100324#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100325
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100326/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100327 *
328 * Key types defined by this standard will never have the
329 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
330 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
331 * respect the bitwise structure used by standard encodings whenever practical.
332 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100333#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100334
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100335#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100336#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
337#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
338#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100339#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100340
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100341#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100342
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100343/** Whether a key type is vendor-defined.
344 *
345 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
346 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100347#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
348 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
349
350/** Whether a key type is an unstructured array of bytes.
351 *
352 * This encompasses both symmetric keys and non-key data.
353 */
354#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100355 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
356 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100357
358/** Whether a key type is asymmetric: either a key pair or a public key. */
359#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
360 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
361 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
362 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
363/** Whether a key type is the public part of a key pair. */
364#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
365 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
366/** Whether a key type is a key pair containing a private part and a public
367 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200368#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100369 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
370/** The key pair type corresponding to a public key type.
371 *
372 * You may also pass a key pair type as \p type, it will be left unchanged.
373 *
374 * \param type A public key type or key pair type.
375 *
376 * \return The corresponding key pair type.
377 * If \p type is not a public key or a key pair,
378 * the return value is undefined.
379 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200380#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100381 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
382/** The public key type corresponding to a key pair type.
383 *
384 * You may also pass a key pair type as \p type, it will be left unchanged.
385 *
386 * \param type A public key type or key pair type.
387 *
388 * \return The corresponding public key type.
389 * If \p type is not a public key or a key pair,
390 * the return value is undefined.
391 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200392#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100393 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
394
395/** Raw data.
396 *
397 * A "key" of this type cannot be used for any cryptographic operation.
398 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100399#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100400
401/** HMAC key.
402 *
403 * The key policy determines which underlying hash algorithm the key can be
404 * used for.
405 *
406 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100407 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100408 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100409#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100410
411/** A secret for key derivation.
412 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200413 * This key type is for high-entropy secrets only. For low-entropy secrets,
414 * #PSA_KEY_TYPE_PASSWORD should be used instead.
415 *
416 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
417 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
418 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100419 * The key policy determines which key derivation algorithm the key
420 * can be used for.
421 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100422#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200424/** A low-entropy secret for password hashing or key derivation.
425 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200426 * This key type is suitable for passwords and passphrases which are typically
427 * intended to be memorizable by humans, and have a low entropy relative to
428 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200429 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200430 * for such keys. It is not suitable for passwords with extremely low entropy,
431 * such as numerical PINs.
432 *
433 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
434 * key derivation algorithms. Algorithms that accept such an input were
435 * designed to accept low-entropy secret and are known as password hashing or
436 * key stretching algorithms.
437 *
438 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
439 * key derivation algorithms, as the algorithms that take such an input expect
440 * it to be high-entropy.
441 *
442 * The key policy determines which key derivation algorithm the key can be
443 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200444 */
Manuel Pégourié-Gonnardc16033e2021-04-30 11:59:40 +0200445#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200446
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200447/** A secret value that can be used to verify a password hash.
448 *
449 * The key policy determines which key derivation algorithm the key
450 * can be used for, among the same permissible subset as for
451 * #PSA_KEY_TYPE_PASSWORD.
452 */
453#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)
454
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200455/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200456 *
457 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200458 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200459 */
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200460#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200461
Gilles Peskine737c6be2019-05-21 16:01:06 +0200462/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100463 *
464 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
465 * 32 bytes (AES-256).
466 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100467#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100468
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200469/** Key for a cipher, AEAD or MAC algorithm based on the
470 * ARIA block cipher. */
471#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)
472
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100473/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
474 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100475 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
476 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100477 *
478 * Note that single DES and 2-key 3DES are weak and strongly
479 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
480 * is weak and deprecated and should only be used in legacy protocols.
481 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100482#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100483
Gilles Peskine737c6be2019-05-21 16:01:06 +0200484/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100485 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100486#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100487
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200488/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
489 *
490 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
491 *
Gilles Peskine14d35542022-03-10 18:36:37 +0100492 * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
493 * 12-byte nonces.
494 *
495 * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
496 * with the initial counter value 1, you can process and discard a
497 * 64-byte block before the real data.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200498 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100499#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200500
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100501/** RSA public key.
502 *
503 * The size of an RSA key is the bit size of the modulus.
504 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100505#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100506/** RSA key pair (private and public key).
507 *
508 * The size of an RSA key is the bit size of the modulus.
509 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100510#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100511/** Whether a key type is an RSA key (pair or public-only). */
512#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200513 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100514
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100515#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100516#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
517#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100518/** Elliptic curve key pair.
519 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100520 * The size of an elliptic curve key is the bit size associated with the curve,
521 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
522 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
523 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100524 * \param curve A value of type ::psa_ecc_family_t that
525 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100526 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200527#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
528 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100529/** Elliptic curve public key.
530 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100531 * The size of an elliptic curve public key is the same as the corresponding
532 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
533 * `PSA_ECC_FAMILY_xxx` curve families).
534 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100535 * \param curve A value of type ::psa_ecc_family_t that
536 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100537 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100538#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
539 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
540
541/** Whether a key type is an elliptic curve key (pair or public-only). */
542#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200543 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100544 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100545/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200546#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100547 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200548 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100549/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100550#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
551 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
552 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
553
554/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100555#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
556 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100557 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
558 0))
559
Gilles Peskine228abc52019-12-03 17:24:19 +0100560/** SEC Koblitz curves over prime fields.
561 *
562 * This family comprises the following curves:
563 * secp192k1, secp224k1, secp256k1.
564 * They are defined in _Standards for Efficient Cryptography_,
565 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
566 * https://www.secg.org/sec2-v2.pdf
567 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100568#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100569
570/** SEC random curves over prime fields.
571 *
572 * This family comprises the following curves:
573 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
574 * They are defined in _Standards for Efficient Cryptography_,
575 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
576 * https://www.secg.org/sec2-v2.pdf
577 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100578#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100579/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100580#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100581
582/** SEC Koblitz curves over binary fields.
583 *
584 * This family comprises the following curves:
585 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
586 * They are defined in _Standards for Efficient Cryptography_,
587 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
588 * https://www.secg.org/sec2-v2.pdf
589 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100590#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100591
592/** SEC random curves over binary fields.
593 *
594 * This family comprises the following curves:
595 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
596 * They are defined in _Standards for Efficient Cryptography_,
597 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
598 * https://www.secg.org/sec2-v2.pdf
599 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100600#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100601
602/** SEC additional random curves over binary fields.
603 *
604 * This family comprises the following curve:
605 * sect163r2.
606 * It is defined in _Standards for Efficient Cryptography_,
607 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
608 * https://www.secg.org/sec2-v2.pdf
609 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100610#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100611
612/** Brainpool P random curves.
613 *
614 * This family comprises the following curves:
615 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
616 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
617 * It is defined in RFC 5639.
618 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100619#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100620
621/** Curve25519 and Curve448.
622 *
623 * This family comprises the following Montgomery curves:
624 * - 255-bit: Bernstein et al.,
625 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
626 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
627 * - 448-bit: Hamburg,
628 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
629 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
630 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100631#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100632
Gilles Peskine67546802021-02-24 21:49:40 +0100633/** The twisted Edwards curves Ed25519 and Ed448.
634 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100635 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100636 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100637 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100638 *
639 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100640 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100641 * to Curve25519.
642 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
643 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
644 * to Curve448.
645 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
646 */
647#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
648
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100649#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100650#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
651#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100652/** Diffie-Hellman key pair.
653 *
Paul Elliott75e27032020-06-03 15:17:39 +0100654 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100655 * Diffie-Hellman group to be used.
656 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200657#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
658 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100659/** Diffie-Hellman public key.
660 *
Paul Elliott75e27032020-06-03 15:17:39 +0100661 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100662 * Diffie-Hellman group to be used.
663 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200664#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
665 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
666
667/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
668#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200669 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200670 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
671/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200672#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200673 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200674 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200675/** Whether a key type is a Diffie-Hellman public key. */
676#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
677 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
678 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
679
680/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100681#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
682 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200683 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
684 0))
685
Gilles Peskine228abc52019-12-03 17:24:19 +0100686/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
687 *
688 * This family includes groups with the following key sizes (in bits):
689 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
690 * all of these sizes or only a subset.
691 */
Paul Elliott75e27032020-06-03 15:17:39 +0100692#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100693
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100694#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100695 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100696/** The block size of a block cipher.
697 *
698 * \param type A cipher key type (value of type #psa_key_type_t).
699 *
700 * \return The block size for a block cipher, or 1 for a stream cipher.
701 * The return value is undefined if \p type is not a supported
702 * cipher key type.
703 *
704 * \note It is possible to build stream cipher algorithms on top of a block
705 * cipher, for example CTR mode (#PSA_ALG_CTR).
706 * This macro only takes the key type into account, so it cannot be
707 * used to determine the size of the data that #psa_cipher_update()
708 * might buffer for future processing in general.
709 *
710 * \note This macro returns a compile-time constant if its argument is one.
711 *
712 * \warning This macro may evaluate its argument multiple times.
713 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100714#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100715 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100716 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100717 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100718
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100719/** Vendor-defined algorithm flag.
720 *
721 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
722 * bit set. Vendors who define additional algorithms must use an encoding with
723 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
724 * used by standard encodings whenever practical.
725 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100726#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100727
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100728#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100729#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
730#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100731#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100732#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
733#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
734#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
735#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
736#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100737
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100738/** Whether an algorithm is vendor-defined.
739 *
740 * See also #PSA_ALG_VENDOR_FLAG.
741 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100742#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
743 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
744
745/** Whether the specified algorithm is a hash algorithm.
746 *
747 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
748 *
749 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
750 * This macro may return either 0 or 1 if \p alg is not a supported
751 * algorithm identifier.
752 */
753#define PSA_ALG_IS_HASH(alg) \
754 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
755
756/** Whether the specified algorithm is a MAC algorithm.
757 *
758 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
759 *
760 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
761 * This macro may return either 0 or 1 if \p alg is not a supported
762 * algorithm identifier.
763 */
764#define PSA_ALG_IS_MAC(alg) \
765 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
766
767/** Whether the specified algorithm is a symmetric cipher algorithm.
768 *
769 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
770 *
771 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
772 * This macro may return either 0 or 1 if \p alg is not a supported
773 * algorithm identifier.
774 */
775#define PSA_ALG_IS_CIPHER(alg) \
776 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
777
778/** Whether the specified algorithm is an authenticated encryption
779 * with associated data (AEAD) algorithm.
780 *
781 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
782 *
783 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
784 * This macro may return either 0 or 1 if \p alg is not a supported
785 * algorithm identifier.
786 */
787#define PSA_ALG_IS_AEAD(alg) \
788 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
789
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200790/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200791 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100792 *
793 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
794 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200795 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100796 * This macro may return either 0 or 1 if \p alg is not a supported
797 * algorithm identifier.
798 */
799#define PSA_ALG_IS_SIGN(alg) \
800 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
801
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200802/** Whether the specified algorithm is an asymmetric encryption algorithm,
803 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100804 *
805 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
806 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200807 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100808 * This macro may return either 0 or 1 if \p alg is not a supported
809 * algorithm identifier.
810 */
811#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
812 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
813
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100814/** Whether the specified algorithm is a key agreement algorithm.
815 *
816 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
817 *
818 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
819 * This macro may return either 0 or 1 if \p alg is not a supported
820 * algorithm identifier.
821 */
822#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100823 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100824
825/** Whether the specified algorithm is a key derivation algorithm.
826 *
827 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
828 *
829 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
830 * This macro may return either 0 or 1 if \p alg is not a supported
831 * algorithm identifier.
832 */
833#define PSA_ALG_IS_KEY_DERIVATION(alg) \
834 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
835
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200836/** Whether the specified algorithm is a key stretching / password hashing
837 * algorithm.
838 *
839 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200840 * that is suitable for use with a low-entropy secret such as a password.
841 * Equivalently, it's a key derivation algorithm that uses a
842 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200843 *
844 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
845 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +0100846 * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200847 * otherwise. This macro may return either 0 or 1 if \p alg is not a
848 * supported algorithm identifier.
849 */
850#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
851 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
852 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
853
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200854/** An invalid algorithm identifier value. */
855#define PSA_ALG_NONE ((psa_algorithm_t)0)
856
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100857#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100858/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100859#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100860/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100861#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100862/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100863#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100864/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100865#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100866/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100867#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100868/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100869#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100870/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100871#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100872/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100873#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100874/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100875#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100876/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100877#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100878/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100879#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100880/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100881#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100882/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100883#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100884/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100885 *
886 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
887 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
888 * has the same output size and a (theoretically) higher security strength.
889 */
Gilles Peskine27354692021-03-03 17:45:06 +0100890#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100891
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100892/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100893 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100894 * This value may be used to form the algorithm usage field of a policy
895 * for a signature algorithm that is parametrized by a hash. The key
896 * may then be used to perform operations using the same signature
897 * algorithm parametrized with any supported hash.
898 *
899 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskineacd2d0e2021-10-04 18:10:38 +0200900 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100901 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100902 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100903 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
904 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100905 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200906 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100907 * ```
908 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100909 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100910 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
911 * call to sign or verify a message may use a different hash.
912 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200913 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
914 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
915 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100916 * ```
917 *
918 * This value may not be used to build other algorithms that are
919 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100920 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100921 *
922 * This value may not be used to build an algorithm specification to
923 * perform an operation. It is only valid to build policies.
924 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100925#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100926
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100927#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100928#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100929/** Macro to build an HMAC algorithm.
930 *
931 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
932 *
933 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
934 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
935 *
936 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100937 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100938 * hash algorithm.
939 */
940#define PSA_ALG_HMAC(hash_alg) \
941 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
942
943#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
944 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
945
946/** Whether the specified algorithm is an HMAC algorithm.
947 *
948 * HMAC is a family of MAC algorithms that are based on a hash function.
949 *
950 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
951 *
952 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
953 * This macro may return either 0 or 1 if \p alg is not a supported
954 * algorithm identifier.
955 */
956#define PSA_ALG_IS_HMAC(alg) \
957 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
958 PSA_ALG_HMAC_BASE)
959
960/* In the encoding of a MAC algorithm, the bits corresponding to
961 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
962 * truncated. As an exception, the value 0 means the untruncated algorithm,
963 * whatever its length is. The length is encoded in 6 bits, so it can
964 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
965 * to full length is correctly encoded as 0 and any non-trivial truncation
966 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100967#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
968#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100969
Steven Cooremand927ed72021-02-22 19:59:35 +0100970/* In the encoding of a MAC algorithm, the bit corresponding to
971 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100972 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
973 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100974 * same base class and having a (potentially truncated) MAC length greater or
975 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
976#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
977
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100978/** Macro to build a truncated MAC algorithm.
979 *
980 * A truncated MAC algorithm is identical to the corresponding MAC
981 * algorithm except that the MAC value for the truncated algorithm
982 * consists of only the first \p mac_length bytes of the MAC value
983 * for the untruncated algorithm.
984 *
985 * \note This macro may allow constructing algorithm identifiers that
986 * are not valid, either because the specified length is larger
987 * than the untruncated MAC or because the specified length is
988 * smaller than permitted by the implementation.
989 *
990 * \note It is implementation-defined whether a truncated MAC that
991 * is truncated to the same length as the MAC of the untruncated
992 * algorithm is considered identical to the untruncated algorithm
993 * for policy comparison purposes.
994 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200995 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100996 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100997 * is true). This may be a truncated or untruncated
998 * MAC algorithm.
999 * \param mac_length Desired length of the truncated MAC in bytes.
1000 * This must be at most the full length of the MAC
1001 * and must be at least an implementation-specified
1002 * minimum. The implementation-specified minimum
1003 * shall not be zero.
1004 *
1005 * \return The corresponding MAC algorithm with the specified
1006 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001007 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001008 * MAC algorithm or if \p mac_length is too small or
1009 * too large for the specified MAC algorithm.
1010 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001011#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1012 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1013 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001014 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1015
1016/** Macro to build the base MAC algorithm corresponding to a truncated
1017 * MAC algorithm.
1018 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001019 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001020 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001021 * is true). This may be a truncated or untruncated
1022 * MAC algorithm.
1023 *
1024 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001025 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001026 * MAC algorithm.
1027 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001028#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1029 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1030 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001031
1032/** Length to which a MAC algorithm is truncated.
1033 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001034 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001035 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001036 * is true).
1037 *
1038 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001039 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1040 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001041 * MAC algorithm.
1042 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001043#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1044 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001045
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001046/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001047 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001048 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001049 * sharing the same base algorithm, and where the (potentially truncated) MAC
1050 * length of the specific algorithm is equal to or larger then the wildcard
1051 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001052 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001053 * \note When setting the minimum required MAC length to less than the
1054 * smallest MAC length allowed by the base algorithm, this effectively
1055 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001056 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001057 * \param mac_alg A MAC algorithm identifier (value of type
1058 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1059 * is true).
1060 * \param min_mac_length Desired minimum length of the message authentication
1061 * code in bytes. This must be at most the untruncated
1062 * length of the MAC and must be at least 1.
1063 *
1064 * \return The corresponding MAC wildcard algorithm with the
1065 * specified minimum length.
1066 * \return Unspecified if \p mac_alg is not a supported MAC
1067 * algorithm or if \p min_mac_length is less than 1 or
1068 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001069 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001070#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1071 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1072 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001073
Bence Szépkútia2945512020-12-03 21:40:17 +01001074#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001075/** The CBC-MAC construction over a block cipher
1076 *
1077 * \warning CBC-MAC is insecure in many cases.
1078 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1079 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001080#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001081/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001082#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001083
1084/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1085 *
1086 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1087 *
1088 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1089 * This macro may return either 0 or 1 if \p alg is not a supported
1090 * algorithm identifier.
1091 */
1092#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1093 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1094 PSA_ALG_CIPHER_MAC_BASE)
1095
1096#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1097#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1098
1099/** Whether the specified algorithm is a stream cipher.
1100 *
1101 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1102 * by applying a bitwise-xor with a stream of bytes that is generated
1103 * from a key.
1104 *
1105 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1106 *
1107 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1108 * This macro may return either 0 or 1 if \p alg is not a supported
1109 * algorithm identifier or if it is not a symmetric cipher algorithm.
1110 */
1111#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1112 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1113 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1114
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001115/** The stream cipher mode of a stream cipher algorithm.
1116 *
1117 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001118 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001119 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001120#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001121
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001122/** The CTR stream cipher mode.
1123 *
1124 * CTR is a stream cipher which is built from a block cipher.
1125 * The underlying block cipher is determined by the key type.
1126 * For example, to use AES-128-CTR, use this algorithm with
1127 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1128 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001129#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001130
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001131/** The CFB stream cipher mode.
1132 *
1133 * The underlying block cipher is determined by the key type.
1134 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001135#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001136
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001137/** The OFB stream cipher mode.
1138 *
1139 * The underlying block cipher is determined by the key type.
1140 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001141#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001142
1143/** The XTS cipher mode.
1144 *
1145 * XTS is a cipher mode which is built from a block cipher. It requires at
1146 * least one full block of input, but beyond this minimum the input
1147 * does not need to be a whole number of blocks.
1148 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001149#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001150
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001151/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1152 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001153 * \warning ECB mode does not protect the confidentiality of the encrypted data
1154 * except in extremely narrow circumstances. It is recommended that applications
1155 * only use ECB if they need to construct an operating mode that the
1156 * implementation does not provide. Implementations are encouraged to provide
1157 * the modes that applications need in preference to supporting direct access
1158 * to ECB.
1159 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001160 * The underlying block cipher is determined by the key type.
1161 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001162 * This symmetric cipher mode can only be used with messages whose lengths are a
1163 * multiple of the block size of the chosen block cipher.
1164 *
1165 * ECB mode does not accept an initialization vector (IV). When using a
1166 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1167 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001168 */
1169#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1170
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001171/** The CBC block cipher chaining mode, with no padding.
1172 *
1173 * The underlying block cipher is determined by the key type.
1174 *
1175 * This symmetric cipher mode can only be used with messages whose lengths
1176 * are whole number of blocks for the chosen block cipher.
1177 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001178#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001179
1180/** The CBC block cipher chaining mode with PKCS#7 padding.
1181 *
1182 * The underlying block cipher is determined by the key type.
1183 *
1184 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1185 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001186#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001187
Gilles Peskine679693e2019-05-06 15:10:16 +02001188#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1189
1190/** Whether the specified algorithm is an AEAD mode on a block cipher.
1191 *
1192 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1193 *
1194 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1195 * a block cipher, 0 otherwise.
1196 * This macro may return either 0 or 1 if \p alg is not a supported
1197 * algorithm identifier.
1198 */
1199#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1200 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1201 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1202
Gilles Peskine9153ec02019-02-15 13:02:02 +01001203/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001204 *
1205 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001206 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001207#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001208
Mateusz Starzyk594215b2021-10-14 12:23:06 +02001209/** The CCM* cipher mode without authentication.
1210 *
1211 * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1212 * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1213 *
1214 * The underlying block cipher is determined by the key type.
1215 *
1216 * Currently only 13-byte long IV's are supported.
1217 */
1218#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t)0x04c01300)
1219
Gilles Peskine9153ec02019-02-15 13:02:02 +01001220/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001221 *
1222 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001223 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001224#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001225
1226/** The Chacha20-Poly1305 AEAD algorithm.
1227 *
1228 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001229 *
1230 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1231 * and should reject other sizes.
1232 *
1233 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001234 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001235#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001236
1237/* In the encoding of a AEAD algorithm, the bits corresponding to
1238 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1239 * The constants for default lengths follow this encoding.
1240 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001241#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1242#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001243
Steven Cooremand927ed72021-02-22 19:59:35 +01001244/* In the encoding of an AEAD algorithm, the bit corresponding to
1245 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001246 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1247 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001248 * same base class and having a tag length greater than or equal to the one
1249 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1250#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1251
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001252/** Macro to build a shortened AEAD algorithm.
1253 *
1254 * A shortened AEAD algorithm is similar to the corresponding AEAD
1255 * algorithm, but has an authentication tag that consists of fewer bytes.
1256 * Depending on the algorithm, the tag length may affect the calculation
1257 * of the ciphertext.
1258 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001259 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001260 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001261 * is true).
1262 * \param tag_length Desired length of the authentication tag in bytes.
1263 *
1264 * \return The corresponding AEAD algorithm with the specified
1265 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001266 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001267 * AEAD algorithm or if \p tag_length is not valid
1268 * for the specified AEAD algorithm.
1269 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001270#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001271 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1272 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001273 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1274 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1275
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001276/** Retrieve the tag length of a specified AEAD algorithm
1277 *
1278 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001279 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001280 * is true).
1281 *
1282 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001283 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001284 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001285 */
1286#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1287 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1288 PSA_AEAD_TAG_LENGTH_OFFSET )
1289
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001290/** Calculate the corresponding AEAD algorithm with the default tag length.
1291 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001292 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001293 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001294 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001295 * \return The corresponding AEAD algorithm with the default
1296 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001297 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001298#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001299 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001300 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1301 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1302 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001303 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001304#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1305 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1306 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001307 ref :
1308
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001309/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001310 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001311 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001312 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001313 * algorithm is equal to or larger then the minimum tag length specified by the
1314 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001315 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001316 * \note When setting the minimum required tag length to less than the
1317 * smallest tag length allowed by the base algorithm, this effectively
1318 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001319 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001320 * \param aead_alg An AEAD algorithm identifier (value of type
1321 * #psa_algorithm_t such that
1322 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1323 * \param min_tag_length Desired minimum length of the authentication tag in
1324 * bytes. This must be at least 1 and at most the largest
1325 * allowed tag length of the algorithm.
1326 *
1327 * \return The corresponding AEAD wildcard algorithm with the
1328 * specified minimum length.
1329 * \return Unspecified if \p aead_alg is not a supported
1330 * AEAD algorithm or if \p min_tag_length is less than 1
1331 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001332 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001333#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001334 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1335 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001336
Bence Szépkútia2945512020-12-03 21:40:17 +01001337#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001338/** RSA PKCS#1 v1.5 signature with hashing.
1339 *
1340 * This is the signature scheme defined by RFC 8017
1341 * (PKCS#1: RSA Cryptography Specifications) under the name
1342 * RSASSA-PKCS1-v1_5.
1343 *
1344 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1345 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001346 * This includes #PSA_ALG_ANY_HASH
1347 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001348 *
1349 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001350 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001351 * hash algorithm.
1352 */
1353#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1354 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1355/** Raw PKCS#1 v1.5 signature.
1356 *
1357 * The input to this algorithm is the DigestInfo structure used by
1358 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1359 * steps 3&ndash;6.
1360 */
1361#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1362#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1363 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1364
Bence Szépkútia2945512020-12-03 21:40:17 +01001365#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001366#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t)0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001367/** RSA PSS signature with hashing.
1368 *
1369 * This is the signature scheme defined by RFC 8017
1370 * (PKCS#1: RSA Cryptography Specifications) under the name
1371 * RSASSA-PSS, with the message generation function MGF1, and with
1372 * a salt length equal to the length of the hash. The specified
1373 * hash algorithm is used to hash the input message, to create the
1374 * salted hash, and for the mask generation.
1375 *
1376 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1377 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001378 * This includes #PSA_ALG_ANY_HASH
1379 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001380 *
1381 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001382 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001383 * hash algorithm.
1384 */
1385#define PSA_ALG_RSA_PSS(hash_alg) \
1386 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001387
1388/** RSA PSS signature with hashing with relaxed verification.
1389 *
1390 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1391 * but allows an arbitrary salt length (including \c 0) when verifying a
1392 * signature.
1393 *
1394 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1395 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1396 * This includes #PSA_ALG_ANY_HASH
1397 * when specifying the algorithm in a usage policy.
1398 *
1399 * \return The corresponding RSA PSS signature algorithm.
1400 * \return Unspecified if \p hash_alg is not a supported
1401 * hash algorithm.
1402 */
1403#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1404 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1405
1406/** Whether the specified algorithm is RSA PSS with standard salt.
1407 *
1408 * \param alg An algorithm value or an algorithm policy wildcard.
1409 *
1410 * \return 1 if \p alg is of the form
1411 * #PSA_ALG_RSA_PSS(\c hash_alg),
1412 * where \c hash_alg is a hash algorithm or
1413 * #PSA_ALG_ANY_HASH. 0 otherwise.
1414 * This macro may return either 0 or 1 if \p alg is not
1415 * a supported algorithm identifier or policy.
1416 */
1417#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001418 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1419
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001420/** Whether the specified algorithm is RSA PSS with any salt.
1421 *
1422 * \param alg An algorithm value or an algorithm policy wildcard.
1423 *
1424 * \return 1 if \p alg is of the form
1425 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1426 * where \c hash_alg is a hash algorithm or
1427 * #PSA_ALG_ANY_HASH. 0 otherwise.
1428 * This macro may return either 0 or 1 if \p alg is not
1429 * a supported algorithm identifier or policy.
1430 */
1431#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1432 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1433
1434/** Whether the specified algorithm is RSA PSS.
1435 *
1436 * This includes any of the RSA PSS algorithm variants, regardless of the
1437 * constraints on salt length.
1438 *
1439 * \param alg An algorithm value or an algorithm policy wildcard.
1440 *
1441 * \return 1 if \p alg is of the form
1442 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1443 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1444 * where \c hash_alg is a hash algorithm or
1445 * #PSA_ALG_ANY_HASH. 0 otherwise.
1446 * This macro may return either 0 or 1 if \p alg is not
1447 * a supported algorithm identifier or policy.
1448 */
1449#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef6892de2021-10-08 16:28:32 +02001450 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1451 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001452
Bence Szépkútia2945512020-12-03 21:40:17 +01001453#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001454/** ECDSA signature with hashing.
1455 *
1456 * This is the ECDSA signature scheme defined by ANSI X9.62,
1457 * with a random per-message secret number (*k*).
1458 *
1459 * The representation of the signature as a byte string consists of
1460 * the concatentation of the signature values *r* and *s*. Each of
1461 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1462 * of the base point of the curve in octets. Each value is represented
1463 * in big-endian order (most significant octet first).
1464 *
1465 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1466 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001467 * This includes #PSA_ALG_ANY_HASH
1468 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001469 *
1470 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001471 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001472 * hash algorithm.
1473 */
1474#define PSA_ALG_ECDSA(hash_alg) \
1475 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1476/** ECDSA signature without hashing.
1477 *
1478 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1479 * without specifying a hash algorithm. This algorithm may only be
1480 * used to sign or verify a sequence of bytes that should be an
1481 * already-calculated hash. Note that the input is padded with
1482 * zeros on the left or truncated on the left as required to fit
1483 * the curve size.
1484 */
1485#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001486#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001487/** Deterministic ECDSA signature with hashing.
1488 *
1489 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1490 *
1491 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1492 *
1493 * Note that when this algorithm is used for verification, signatures
1494 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1495 * same private key are accepted. In other words,
1496 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1497 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1498 *
1499 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1500 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001501 * This includes #PSA_ALG_ANY_HASH
1502 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001503 *
1504 * \return The corresponding deterministic ECDSA signature
1505 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001506 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001507 * hash algorithm.
1508 */
1509#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1510 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001511#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001512#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001513 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001514 PSA_ALG_ECDSA_BASE)
1515#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001516 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001517#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1518 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1519#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1520 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1521
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001522/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1523 * using standard parameters.
1524 *
1525 * Contexts are not supported in the current version of this specification
1526 * because there is no suitable signature interface that can take the
1527 * context as a parameter. A future version of this specification may add
1528 * suitable functions and extend this algorithm to support contexts.
1529 *
1530 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1531 * In this specification, the following curves are supported:
1532 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1533 * in RFC 8032.
1534 * The curve is Edwards25519.
1535 * The hash function used internally is SHA-512.
1536 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1537 * in RFC 8032.
1538 * The curve is Edwards448.
1539 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001540 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001541 *
1542 * This algorithm can be used with psa_sign_message() and
1543 * psa_verify_message(). Since there is no prehashing, it cannot be used
1544 * with psa_sign_hash() or psa_verify_hash().
1545 *
1546 * The signature format is the concatenation of R and S as defined by
1547 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1548 * string for Ed448).
1549 */
1550#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1551
1552#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1553#define PSA_ALG_IS_HASH_EDDSA(alg) \
1554 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1555
1556/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001557 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001558 *
1559 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1560 *
1561 * This algorithm is Ed25519 as specified in RFC 8032.
1562 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001563 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001564 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001565 *
1566 * This is a hash-and-sign algorithm: to calculate a signature,
1567 * you can either:
1568 * - call psa_sign_message() on the message;
1569 * - or calculate the SHA-512 hash of the message
1570 * with psa_hash_compute()
1571 * or with a multi-part hash operation started with psa_hash_setup(),
1572 * using the hash algorithm #PSA_ALG_SHA_512,
1573 * then sign the calculated hash with psa_sign_hash().
1574 * Verifying a signature is similar, using psa_verify_message() or
1575 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001576 */
1577#define PSA_ALG_ED25519PH \
1578 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1579
1580/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1581 * using SHAKE256 and the Edwards448 curve.
1582 *
1583 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1584 *
1585 * This algorithm is Ed448 as specified in RFC 8032.
1586 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001587 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001588 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001589 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001590 *
1591 * This is a hash-and-sign algorithm: to calculate a signature,
1592 * you can either:
1593 * - call psa_sign_message() on the message;
1594 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1595 * with psa_hash_compute()
1596 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001597 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001598 * then sign the calculated hash with psa_sign_hash().
1599 * Verifying a signature is similar, using psa_verify_message() or
1600 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001601 */
1602#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001603 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001604
Gilles Peskine6d400852021-02-24 21:39:52 +01001605/* Default definition, to be overridden if the library is extended with
1606 * more hash-and-sign algorithms that we want to keep out of this header
1607 * file. */
1608#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1609
Gilles Peskinef2fe31a2021-09-22 16:42:02 +02001610/** Whether the specified algorithm is a signature algorithm that can be used
1611 * with psa_sign_hash() and psa_verify_hash().
1612 *
1613 * This encompasses all strict hash-and-sign algorithms categorized by
1614 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1615 * paradigm more loosely:
1616 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1617 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1618 *
1619 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1620 *
1621 * \return 1 if alg is a signature algorithm that can be used to sign a
1622 * hash. 0 if alg is a signature algorithm that can only be used
1623 * to sign a message. 0 if alg is not a signature algorithm.
1624 * This macro can return either 0 or 1 if alg is not a
1625 * supported algorithm identifier.
1626 */
1627#define PSA_ALG_IS_SIGN_HASH(alg) \
1628 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1629 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1630 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1631
1632/** Whether the specified algorithm is a signature algorithm that can be used
1633 * with psa_sign_message() and psa_verify_message().
1634 *
1635 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1636 *
1637 * \return 1 if alg is a signature algorithm that can be used to sign a
1638 * message. 0 if \p alg is a signature algorithm that can only be used
1639 * to sign an already-calculated hash. 0 if \p alg is not a signature
1640 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1641 * supported algorithm identifier.
1642 */
1643#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
1644 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA )
1645
Gilles Peskined35b4892019-01-14 16:02:15 +01001646/** Whether the specified algorithm is a hash-and-sign algorithm.
1647 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001648 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1649 * structured in two parts: first the calculation of a hash in a way that
1650 * does not depend on the key, then the calculation of a signature from the
Gilles Peskinef7b41372021-09-22 16:15:05 +02001651 * hash value and the key. Hash-and-sign algorithms encode the hash
1652 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1653 * to extract this algorithm.
1654 *
1655 * Thus, for a hash-and-sign algorithm,
1656 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1657 * ```
1658 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1659 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1660 * ```
1661 * Most usefully, separating the hash from the signature allows the hash
1662 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1663 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1664 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001665 *
1666 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1667 *
1668 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1669 * This macro may return either 0 or 1 if \p alg is not a supported
1670 * algorithm identifier.
1671 */
1672#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskinef7b41372021-09-22 16:15:05 +02001673 (PSA_ALG_IS_SIGN_HASH(alg) && \
1674 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001675
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001676/** Get the hash used by a hash-and-sign signature algorithm.
1677 *
1678 * A hash-and-sign algorithm is a signature algorithm which is
1679 * composed of two phases: first a hashing phase which does not use
1680 * the key and produces a hash of the input message, then a signing
1681 * phase which only uses the hash and the key and not the message
1682 * itself.
1683 *
1684 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1685 * #PSA_ALG_IS_SIGN(\p alg) is true).
1686 *
1687 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1688 * algorithm.
1689 * \return 0 if \p alg is a signature algorithm that does not
1690 * follow the hash-and-sign structure.
1691 * \return Unspecified if \p alg is not a signature algorithm or
1692 * if it is not supported by the implementation.
1693 */
1694#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001695 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001696 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1697 0)
1698
1699/** RSA PKCS#1 v1.5 encryption.
1700 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001701#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001702
Bence Szépkútia2945512020-12-03 21:40:17 +01001703#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001704/** RSA OAEP encryption.
1705 *
1706 * This is the encryption scheme defined by RFC 8017
1707 * (PKCS#1: RSA Cryptography Specifications) under the name
1708 * RSAES-OAEP, with the message generation function MGF1.
1709 *
1710 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1711 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1712 * for MGF1.
1713 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001714 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001715 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001716 * hash algorithm.
1717 */
1718#define PSA_ALG_RSA_OAEP(hash_alg) \
1719 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1720#define PSA_ALG_IS_RSA_OAEP(alg) \
1721 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1722#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1723 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1724 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1725 0)
1726
Bence Szépkútia2945512020-12-03 21:40:17 +01001727#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001728/** Macro to build an HKDF algorithm.
1729 *
1730 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1731 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001732 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001733 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001734 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001735 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1736 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1737 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1738 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001739 * starting to generate output.
1740 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001741 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1742 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1743 *
1744 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001745 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001746 * hash algorithm.
1747 */
1748#define PSA_ALG_HKDF(hash_alg) \
1749 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1750/** Whether the specified algorithm is an HKDF algorithm.
1751 *
1752 * HKDF is a family of key derivation algorithms that are based on a hash
1753 * function and the HMAC construction.
1754 *
1755 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1756 *
1757 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1758 * This macro may return either 0 or 1 if \c alg is not a supported
1759 * key derivation algorithm identifier.
1760 */
1761#define PSA_ALG_IS_HKDF(alg) \
1762 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1763#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1764 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1765
Bence Szépkútia2945512020-12-03 21:40:17 +01001766#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001767/** Macro to build a TLS-1.2 PRF algorithm.
1768 *
1769 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1770 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1771 * used with either SHA-256 or SHA-384.
1772 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001773 * This key derivation algorithm uses the following inputs, which must be
1774 * passed in the order given here:
1775 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001776 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1777 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001778 *
1779 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001780 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001781 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001782 *
1783 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1784 * TLS 1.2 PRF using HMAC-SHA-256.
1785 *
1786 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1787 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1788 *
1789 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001790 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001791 * hash algorithm.
1792 */
1793#define PSA_ALG_TLS12_PRF(hash_alg) \
1794 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1795
1796/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1797 *
1798 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1799 *
1800 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1801 * This macro may return either 0 or 1 if \c alg is not a supported
1802 * key derivation algorithm identifier.
1803 */
1804#define PSA_ALG_IS_TLS12_PRF(alg) \
1805 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1806#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1807 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1808
Bence Szépkútia2945512020-12-03 21:40:17 +01001809#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001810/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1811 *
1812 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1813 * from the PreSharedKey (PSK) through the application of padding
1814 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1815 * The latter is based on HMAC and can be used with either SHA-256
1816 * or SHA-384.
1817 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001818 * This key derivation algorithm uses the following inputs, which must be
1819 * passed in the order given here:
1820 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001821 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1822 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001823 *
1824 * For the application to TLS-1.2, the seed (which is
1825 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1826 * ClientHello.Random + ServerHello.Random,
1827 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001828 *
1829 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1830 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1831 *
1832 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1833 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1834 *
1835 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001836 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001837 * hash algorithm.
1838 */
1839#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1840 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1841
1842/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1843 *
1844 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1845 *
1846 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1847 * This macro may return either 0 or 1 if \c alg is not a supported
1848 * key derivation algorithm identifier.
1849 */
1850#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1851 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1852#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1853 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1854
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001855/* This flag indicates whether the key derivation algorithm is suitable for
1856 * use on low-entropy secrets such as password - these algorithms are also
1857 * known as key stretching or password hashing schemes. These are also the
1858 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001859 *
1860 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001861 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001862#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001863
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001864#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001865/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001866 *
1867 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001868 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
1869 * HMAC with the specified hash.
1870 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2
1871 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001872 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001873 * This key derivation algorithm uses the following inputs, which must be
1874 * provided in the following order:
1875 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001876 * This input step must be used exactly once.
1877 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1878 * This input step must be used one or more times; if used several times, the
1879 * inputs will be concatenated. This can be used to build the final salt
1880 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001881 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001882 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001883 *
1884 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1885 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1886 *
1887 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
1888 * \return Unspecified if \p hash_alg is not a supported
1889 * hash algorithm.
1890 */
1891#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
1892 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1893
1894/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
1895 *
1896 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1897 *
1898 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
1899 * This macro may return either 0 or 1 if \c alg is not a supported
1900 * key derivation algorithm identifier.
1901 */
1902#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
1903 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001904
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001905/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
1906 *
1907 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
1908 * This macro specifies the PBKDF2 algorithm constructed using the
1909 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
1910 *
1911 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02001912 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001913 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001914#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001915
Bence Szépkútia2945512020-12-03 21:40:17 +01001916#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1917#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001918
Gilles Peskine6843c292019-01-18 16:44:49 +01001919/** Macro to build a combined algorithm that chains a key agreement with
1920 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001921 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001922 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1923 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1924 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1925 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001926 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001927 * \return The corresponding key agreement and derivation
1928 * algorithm.
1929 * \return Unspecified if \p ka_alg is not a supported
1930 * key agreement algorithm or \p kdf_alg is not a
1931 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001932 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001933#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1934 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001935
1936#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1937 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1938
Gilles Peskine6843c292019-01-18 16:44:49 +01001939#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1940 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001941
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001942/** Whether the specified algorithm is a raw key agreement algorithm.
1943 *
1944 * A raw key agreement algorithm is one that does not specify
1945 * a key derivation function.
1946 * Usually, raw key agreement algorithms are constructed directly with
1947 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001948 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001949 *
1950 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1951 *
1952 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1953 * This macro may return either 0 or 1 if \p alg is not a supported
1954 * algorithm identifier.
1955 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001956#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001957 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1958 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001959
1960#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1961 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1962
1963/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001964 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001965 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001966 * `g^{ab}` in big-endian format.
1967 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1968 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001969 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001970#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001971
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001972/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1973 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001974 * This includes the raw finite field Diffie-Hellman algorithm as well as
1975 * finite-field Diffie-Hellman followed by any supporter key derivation
1976 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001977 *
1978 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1979 *
1980 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1981 * This macro may return either 0 or 1 if \c alg is not a supported
1982 * key agreement algorithm identifier.
1983 */
1984#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001985 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001986
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001987/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1988 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001989 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001990 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1991 * `m` is the bit size associated with the curve, i.e. the bit size of the
1992 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1993 * the byte containing the most significant bit of the shared secret
1994 * is padded with zero bits. The byte order is either little-endian
1995 * or big-endian depending on the curve type.
1996 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001997 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001998 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1999 * in little-endian byte order.
2000 * The bit size is 448 for Curve448 and 255 for Curve25519.
2001 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002002 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002003 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2004 * in big-endian byte order.
2005 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2006 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002007 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002008 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2009 * in big-endian byte order.
2010 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002011 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002012#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002013
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002014/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2015 * algorithm.
2016 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002017 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2018 * elliptic curve Diffie-Hellman followed by any supporter key derivation
2019 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002020 *
2021 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2022 *
2023 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2024 * 0 otherwise.
2025 * This macro may return either 0 or 1 if \c alg is not a supported
2026 * key agreement algorithm identifier.
2027 */
2028#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002029 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002030
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002031/** Whether the specified algorithm encoding is a wildcard.
2032 *
2033 * Wildcard values may only be used to set the usage algorithm field in
2034 * a policy, not to perform an operation.
2035 *
2036 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2037 *
2038 * \return 1 if \c alg is a wildcard algorithm encoding.
2039 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2040 * an operation).
2041 * \return This macro may return either 0 or 1 if \c alg is not a supported
2042 * algorithm identifier.
2043 */
Steven Cooremand927ed72021-02-22 19:59:35 +01002044#define PSA_ALG_IS_WILDCARD(alg) \
2045 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
2046 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
2047 PSA_ALG_IS_MAC(alg) ? \
2048 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2049 PSA_ALG_IS_AEAD(alg) ? \
2050 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01002051 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002052
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002053/** Get the hash used by a composite algorithm.
2054 *
2055 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2056 *
2057 * \return The underlying hash algorithm if alg is a composite algorithm that
2058 * uses a hash algorithm.
2059 *
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002060 * \return \c 0 if alg is not a composite algorithm that uses a hash.
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002061 */
2062#define PSA_ALG_GET_HASH(alg) \
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002063 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t)0) : 0x02000000 | ((alg) & 0x000000ff))
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002064
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002065/**@}*/
2066
2067/** \defgroup key_lifetimes Key lifetimes
2068 * @{
2069 */
2070
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002071/** The default lifetime for volatile keys.
2072 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02002073 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002074 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002075 *
2076 * A key with this lifetime is typically stored in the RAM area of the
2077 * PSA Crypto subsystem. However this is an implementation choice.
2078 * If an implementation stores data about the key in a non-volatile memory,
2079 * it must release all the resources associated with the key and erase the
2080 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002081 */
2082#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
2083
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002084/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002085 *
2086 * A persistent key remains in storage until it is explicitly destroyed or
2087 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02002088 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002089 * provide their own mechanism (for example to perform a factory reset,
2090 * to prepare for device refurbishment, or to uninstall an application).
2091 *
2092 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02002093 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002094 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002095 */
2096#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
2097
Gilles Peskineaff11812020-05-04 19:03:10 +02002098/** The persistence level of volatile keys.
2099 *
2100 * See ::psa_key_persistence_t for more information.
2101 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002102#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02002103
2104/** The default persistence level for persistent keys.
2105 *
2106 * See ::psa_key_persistence_t for more information.
2107 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002108#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002109
2110/** A persistence level indicating that a key is never destroyed.
2111 *
2112 * See ::psa_key_persistence_t for more information.
2113 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002114#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002115
2116#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002117 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002118
2119#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002120 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002121
2122/** Whether a key lifetime indicates that the key is volatile.
2123 *
2124 * A volatile key is automatically destroyed by the implementation when
2125 * the application instance terminates. In particular, a volatile key
2126 * is automatically destroyed on a power reset of the device.
2127 *
2128 * A key that is not volatile is persistent. Persistent keys are
2129 * preserved until the application explicitly destroys them or until an
2130 * implementation-specific device management event occurs (for example,
2131 * a factory reset).
2132 *
2133 * \param lifetime The lifetime value to query (value of type
2134 * ::psa_key_lifetime_t).
2135 *
2136 * \return \c 1 if the key is volatile, otherwise \c 0.
2137 */
2138#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2139 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002140 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002141
Gilles Peskined133bb22021-04-21 20:05:59 +02002142/** Whether a key lifetime indicates that the key is read-only.
2143 *
2144 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2145 * They must be created through platform-specific means that bypass the API.
2146 *
2147 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine91466c82021-06-07 23:21:50 +02002148 * consider a platform with multiple levels of privilege, where a
2149 * low-privilege application can use a key but is not allowed to destroy
2150 * it, and the platform exposes the key to the application with a read-only
2151 * lifetime. High-privilege code can destroy the key even though the
2152 * application sees the key as read-only.
Gilles Peskined133bb22021-04-21 20:05:59 +02002153 *
2154 * \param lifetime The lifetime value to query (value of type
2155 * ::psa_key_lifetime_t).
2156 *
2157 * \return \c 1 if the key is read-only, otherwise \c 0.
2158 */
2159#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2160 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2161 PSA_KEY_PERSISTENCE_READ_ONLY)
2162
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002163/** Construct a lifetime from a persistence level and a location.
2164 *
2165 * \param persistence The persistence level
2166 * (value of type ::psa_key_persistence_t).
2167 * \param location The location indicator
2168 * (value of type ::psa_key_location_t).
2169 *
2170 * \return The constructed lifetime value.
2171 */
2172#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2173 ((location) << 8 | (persistence))
2174
Gilles Peskineaff11812020-05-04 19:03:10 +02002175/** The local storage area for persistent keys.
2176 *
2177 * This storage area is available on all systems that can store persistent
2178 * keys without delegating the storage to a third-party cryptoprocessor.
2179 *
2180 * See ::psa_key_location_t for more information.
2181 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002182#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002183
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002184#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002185
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002186/** The null key identifier.
2187 */
2188#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002189/** The minimum value for a key identifier chosen by the application.
2190 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002191#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002192/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002193 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002194#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002195/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002196 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002197#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002198/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002199 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002200#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002201
Ronald Cron7424f0d2020-09-14 16:17:41 +02002202
2203#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2204
2205#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2206#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2207#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2208
2209/** Utility to initialize a key identifier at runtime.
2210 *
2211 * \param unused Unused parameter.
2212 * \param key_id Identifier of the key.
2213 */
2214static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2215 unsigned int unused, psa_key_id_t key_id )
2216{
2217 (void)unused;
2218
2219 return( key_id );
2220}
2221
2222/** Compare two key identifiers.
2223 *
2224 * \param id1 First key identifier.
2225 * \param id2 Second key identifier.
2226 *
2227 * \return Non-zero if the two key identifier are equal, zero otherwise.
2228 */
2229static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2230 mbedtls_svc_key_id_t id2 )
2231{
2232 return( id1 == id2 );
2233}
2234
Ronald Cronc4d1b512020-07-31 11:26:37 +02002235/** Check whether a key identifier is null.
2236 *
2237 * \param key Key identifier.
2238 *
2239 * \return Non-zero if the key identifier is null, zero otherwise.
2240 */
2241static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2242{
2243 return( key == 0 );
2244}
2245
Ronald Cron7424f0d2020-09-14 16:17:41 +02002246#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2247
2248#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
2249#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
2250#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
2251
2252/** Utility to initialize a key identifier at runtime.
2253 *
2254 * \param owner_id Identifier of the key owner.
2255 * \param key_id Identifier of the key.
2256 */
2257static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2258 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2259{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002260 return( (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2261 .MBEDTLS_PRIVATE(owner) = owner_id } );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002262}
2263
2264/** Compare two key identifiers.
2265 *
2266 * \param id1 First key identifier.
2267 * \param id2 Second key identifier.
2268 *
2269 * \return Non-zero if the two key identifier are equal, zero otherwise.
2270 */
2271static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2272 mbedtls_svc_key_id_t id2 )
2273{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002274 return( ( id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id) ) &&
2275 mbedtls_key_owner_id_equal( id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner) ) );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002276}
2277
Ronald Cronc4d1b512020-07-31 11:26:37 +02002278/** Check whether a key identifier is null.
2279 *
2280 * \param key Key identifier.
2281 *
2282 * \return Non-zero if the key identifier is null, zero otherwise.
2283 */
2284static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2285{
Gilles Peskine52bb83e2021-05-28 12:59:49 +02002286 return( key.MBEDTLS_PRIVATE(key_id) == 0 );
Ronald Cronc4d1b512020-07-31 11:26:37 +02002287}
2288
Ronald Cron7424f0d2020-09-14 16:17:41 +02002289#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002290
2291/**@}*/
2292
2293/** \defgroup policy Key policies
2294 * @{
2295 */
2296
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002297/** Whether the key may be exported.
2298 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002299 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002300 * regardless of the value of this permission flag.
2301 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002302 * If a key does not have export permission, implementations shall not
2303 * allow the key to be exported in plain form from the cryptoprocessor,
2304 * whether through psa_export_key() or through a proprietary interface.
2305 * The key may however be exportable in a wrapped form, i.e. in a form
2306 * where it is encrypted by another key.
2307 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002308#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2309
2310/** Whether the key may be copied.
2311 *
2312 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002313 * with the same policy or a more restrictive policy.
2314 *
2315 * For lifetimes for which the key is located in a secure element which
2316 * enforce the non-exportability of keys, copying a key outside the secure
2317 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2318 * Copying the key inside the secure element is permitted with just
2319 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2320 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2321 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2322 * is sufficient to permit the copy.
2323 */
2324#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2325
2326/** Whether the key may be used to encrypt a message.
2327 *
2328 * This flag allows the key to be used for a symmetric encryption operation,
2329 * for an AEAD encryption-and-authentication operation,
2330 * or for an asymmetric encryption operation,
2331 * if otherwise permitted by the key's type and policy.
2332 *
2333 * For a key pair, this concerns the public key.
2334 */
2335#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2336
2337/** Whether the key may be used to decrypt a message.
2338 *
2339 * This flag allows the key to be used for a symmetric decryption operation,
2340 * for an AEAD decryption-and-verification operation,
2341 * or for an asymmetric decryption operation,
2342 * if otherwise permitted by the key's type and policy.
2343 *
2344 * For a key pair, this concerns the private key.
2345 */
2346#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2347
2348/** Whether the key may be used to sign a message.
2349 *
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002350 * This flag allows the key to be used for a MAC calculation operation or for
2351 * an asymmetric message signature operation, if otherwise permitted by the
2352 * key’s type and policy.
2353 *
2354 * For a key pair, this concerns the private key.
2355 */
2356#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
2357
2358/** Whether the key may be used to verify a message.
2359 *
2360 * This flag allows the key to be used for a MAC verification operation or for
2361 * an asymmetric message signature verification operation, if otherwise
2362 * permitted by the key’s type and policy.
2363 *
2364 * For a key pair, this concerns the public key.
2365 */
2366#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
2367
2368/** Whether the key may be used to sign a message.
2369 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002370 * This flag allows the key to be used for a MAC calculation operation
2371 * or for an asymmetric signature operation,
2372 * if otherwise permitted by the key's type and policy.
2373 *
2374 * For a key pair, this concerns the private key.
2375 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002376#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002377
2378/** Whether the key may be used to verify a message signature.
2379 *
2380 * This flag allows the key to be used for a MAC verification operation
2381 * or for an asymmetric signature verification operation,
2382 * if otherwise permitted by by the key's type and policy.
2383 *
2384 * For a key pair, this concerns the public key.
2385 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002386#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002387
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002388/** Whether the key may be used to derive other keys or produce a password
2389 * hash.
Andrew Thoelke52d18cd2021-06-25 11:03:57 +01002390 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002391 * This flag allows the key to be used for a key derivation operation or for
2392 * a key agreement operation, if otherwise permitted by by the key's type and
2393 * policy.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002394 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002395 * If this flag is present on all keys used in calls to
2396 * psa_key_derivation_input_key() for a key derivation operation, then it
2397 * permits calling psa_key_derivation_output_bytes() or
2398 * psa_key_derivation_output_key() at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002399 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002400#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002401
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002402/** Whether the key may be used to verify the result of a key derivation,
2403 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002404 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002405 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002406 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002407 * This flag allows the key to be used in a key derivation operation, if
2408 * otherwise permitted by by the key's type and policy.
2409 *
2410 * If this flag is present on all keys used in calls to
2411 * psa_key_derivation_input_key() for a key derivation operation, then it
2412 * permits calling psa_key_derivation_verify_bytes() or
2413 * psa_key_derivation_verify_key() at the end of the operation.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002414 */
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002415#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002416
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002417/**@}*/
2418
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002419/** \defgroup derivation Key derivation
2420 * @{
2421 */
2422
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002423/** A secret input for key derivation.
2424 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002425 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2426 * (passed to psa_key_derivation_input_key())
2427 * or the shared secret resulting from a key agreement
2428 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002429 *
2430 * The secret can also be a direct input (passed to
2431 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002432 * may not be used to derive keys: the operation will only allow
2433 * psa_key_derivation_output_bytes(),
2434 * psa_key_derivation_verify_bytes(), or
2435 * psa_key_derivation_verify_key(), but not
2436 * psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002437 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002438#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002439
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002440/** A low-entropy secret input for password hashing / key stretching.
2441 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002442 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2443 * psa_key_derivation_input_key()) or a direct input (passed to
2444 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2445 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2446 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002447 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002448 * The secret can also be a direct input (passed to
2449 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002450 * may not be used to derive keys: the operation will only allow
2451 * psa_key_derivation_output_bytes(),
2452 * psa_key_derivation_verify_bytes(), or
2453 * psa_key_derivation_verify_key(), but not
2454 * psa_key_derivation_output_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002455 */
2456#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102)
2457
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002458/** A label for key derivation.
2459 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002460 * This should be a direct input.
2461 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002462 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002463#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002464
2465/** A salt for key derivation.
2466 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002467 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002468 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2469 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002470 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002471#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002472
2473/** An information string for key derivation.
2474 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002475 * This should be a direct input.
2476 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002477 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002478#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002479
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002480/** A seed for key derivation.
2481 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002482 * This should be a direct input.
2483 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002484 */
2485#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2486
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002487/** A cost parameter for password hashing / key stretching.
2488 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002489 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002490 */
2491#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205)
2492
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002493/**@}*/
2494
Bence Szépkútib639d432021-04-21 10:33:54 +02002495/** \defgroup helper_macros Helper macros
2496 * @{
2497 */
2498
2499/* Helper macros */
2500
2501/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2502 * regardless of the tag length they encode.
2503 *
2504 * \param aead_alg_1 An AEAD algorithm identifier.
2505 * \param aead_alg_2 An AEAD algorithm identifier.
2506 *
2507 * \return 1 if both identifiers refer to the same AEAD algorithm,
2508 * 0 otherwise.
2509 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2510 * a supported AEAD algorithm.
2511 */
2512#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2513 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2514 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2515
2516/**@}*/
2517
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002518#endif /* PSA_CRYPTO_VALUES_H */