blob: 06e978e49ec0e825eb30cc3dcf19ea78af7e3cbc [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
Mateusz Starzyk363eb292021-05-19 17:32:44 +020036#include "mbedtls/private_access.h"
Gilles Peskinef3b731e2018-12-12 13:38:31 +010037
38/** \defgroup error Error codes
39 * @{
40 */
41
David Saadab4ecc272019-02-14 13:48:10 +020042/* PSA error codes */
43
Gilles Peskinef3b731e2018-12-12 13:38:31 +010044/** The action was completed successfully. */
45#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010046
47/** An error occurred that does not correspond to any defined
48 * failure cause.
49 *
50 * Implementations may use this error code if none of the other standard
51 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020052#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010053
54/** The requested operation or a parameter is not supported
55 * by this implementation.
56 *
57 * Implementations should return this error code when an enumeration
58 * parameter such as a key type, algorithm, etc. is not recognized.
59 * If a combination of parameters is recognized and identified as
60 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020061#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010062
63/** The requested action is denied by a policy.
64 *
65 * Implementations should return this error code when the parameters
66 * are recognized as valid and supported, and a policy explicitly
67 * denies the requested operation.
68 *
69 * If a subset of the parameters of a function call identify a
70 * forbidden operation, and another subset of the parameters are
71 * not valid or not supported, it is unspecified whether the function
72 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
73 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020074#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010075
76/** An output buffer is too small.
77 *
78 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
79 * description to determine a sufficient buffer size.
80 *
81 * Implementations should preferably return this error code only
82 * in cases when performing the operation with a larger output
83 * buffer would succeed. However implementations may return this
84 * error if a function has invalid or unsupported parameters in addition
85 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020086#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010087
David Saadab4ecc272019-02-14 13:48:10 +020088/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010089 *
David Saadab4ecc272019-02-14 13:48:10 +020090 * Implementations should return this error, when attempting
91 * to write an item (like a key) that already exists. */
92#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010093
David Saadab4ecc272019-02-14 13:48:10 +020094/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010095 *
David Saadab4ecc272019-02-14 13:48:10 +020096 * Implementations should return this error, if a requested item (like
97 * a key) does not exist. */
98#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010099
100/** The requested action cannot be performed in the current state.
101 *
102 * Multipart operations return this error when one of the
103 * functions is called out of sequence. Refer to the function
104 * descriptions for permitted sequencing of functions.
105 *
106 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100107 * that a key either exists or not,
108 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100109 * as applicable.
110 *
111 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200112 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100113 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200114#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100115
116/** The parameters passed to the function are invalid.
117 *
118 * Implementations may return this error any time a parameter or
119 * combination of parameters are recognized as invalid.
120 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100121 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200122 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * instead.
124 */
David Saadab4ecc272019-02-14 13:48:10 +0200125#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100126
127/** There is not enough runtime memory.
128 *
129 * If the action is carried out across multiple security realms, this
130 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200131#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100132
133/** There is not enough persistent storage.
134 *
135 * Functions that modify the key storage return this error code if
136 * there is insufficient storage space on the host media. In addition,
137 * many functions that do not otherwise access storage may return this
138 * error code if the implementation requires a mandatory log entry for
139 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200140#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100141
142/** There was a communication failure inside the implementation.
143 *
144 * This can indicate a communication failure between the application
145 * and an external cryptoprocessor or between the cryptoprocessor and
146 * an external volatile or persistent memory. A communication failure
147 * may be transient or permanent depending on the cause.
148 *
149 * \warning If a function returns this error, it is undetermined
150 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200151 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100152 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
153 * if the requested action was completed successfully in an external
154 * cryptoprocessor but there was a breakdown of communication before
155 * the cryptoprocessor could report the status to the application.
156 */
David Saadab4ecc272019-02-14 13:48:10 +0200157#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100158
159/** There was a storage failure that may have led to data loss.
160 *
161 * This error indicates that some persistent storage is corrupted.
162 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200163 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100164 * between the cryptoprocessor and its external storage (use
165 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
166 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
167 *
168 * Note that a storage failure does not indicate that any data that was
169 * previously read is invalid. However this previously read data may no
170 * longer be readable from storage.
171 *
172 * When a storage failure occurs, it is no longer possible to ensure
173 * the global integrity of the keystore. Depending on the global
174 * integrity guarantees offered by the implementation, access to other
175 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100176 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100177 *
178 * Implementations should only use this error code to report a
179 * permanent storage corruption. However application writers should
180 * keep in mind that transient errors while reading the storage may be
181 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200182#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100183
184/** A hardware failure was detected.
185 *
186 * A hardware failure may be transient or permanent depending on the
187 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200188#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100189
190/** A tampering attempt was detected.
191 *
192 * If an application receives this error code, there is no guarantee
193 * that previously accessed or computed data was correct and remains
194 * confidential. Applications should not perform any security function
195 * and should enter a safe failure state.
196 *
197 * Implementations may return this error code if they detect an invalid
198 * state that cannot happen during normal operation and that indicates
199 * that the implementation's security guarantees no longer hold. Depending
200 * on the implementation architecture and on its security and safety goals,
201 * the implementation may forcibly terminate the application.
202 *
203 * This error code is intended as a last resort when a security breach
204 * is detected and it is unsure whether the keystore data is still
205 * protected. Implementations shall only return this error code
206 * to report an alarm from a tampering detector, to indicate that
207 * the confidentiality of stored data can no longer be guaranteed,
208 * or to indicate that the integrity of previously returned data is now
209 * considered compromised. Implementations shall not use this error code
210 * to indicate a hardware failure that merely makes it impossible to
211 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
212 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
213 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
214 * instead).
215 *
216 * This error indicates an attack against the application. Implementations
217 * shall not return this error code as a consequence of the behavior of
218 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200219#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100220
221/** There is not enough entropy to generate random data needed
222 * for the requested action.
223 *
224 * This error indicates a failure of a hardware random generator.
225 * Application writers should note that this error can be returned not
226 * only by functions whose purpose is to generate random data, such
227 * as key, IV or nonce generation, but also by functions that execute
228 * an algorithm with a randomized result, as well as functions that
229 * use randomization of intermediate computations as a countermeasure
230 * to certain attacks.
231 *
232 * Implementations should avoid returning this error after psa_crypto_init()
233 * has succeeded. Implementations should generate sufficient
234 * entropy during initialization and subsequently use a cryptographically
235 * secure pseudorandom generator (PRNG). However implementations may return
236 * this error at any time if a policy requires the PRNG to be reseeded
237 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200238#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100239
240/** The signature, MAC or hash is incorrect.
241 *
242 * Verification functions return this error if the verification
243 * calculations completed successfully, and the value to be verified
244 * was determined to be incorrect.
245 *
246 * If the value to verify has an invalid size, implementations may return
247 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200248#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100249
250/** The decrypted padding is incorrect.
251 *
252 * \warning In some protocols, when decrypting data, it is essential that
253 * the behavior of the application does not depend on whether the padding
254 * is correct, down to precise timing. Applications should prefer
255 * protocols that use authenticated encryption rather than plain
256 * encryption. If the application must perform a decryption of
257 * unauthenticated data, the application writer should take care not
258 * to reveal whether the padding is invalid.
259 *
260 * Implementations should strive to make valid and invalid padding
261 * as close as possible to indistinguishable to an external observer.
262 * In particular, the timing of a decryption operation should not
263 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200264#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100265
David Saadab4ecc272019-02-14 13:48:10 +0200266/** Return this error when there's insufficient data when attempting
267 * to read from a resource. */
268#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100269
Ronald Croncf56a0a2020-08-04 09:51:30 +0200270/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100271 */
David Saadab4ecc272019-02-14 13:48:10 +0200272#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100273
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100274/** Stored data has been corrupted.
275 *
276 * This error indicates that some persistent storage has suffered corruption.
277 * It does not indicate the following situations, which have specific error
278 * codes:
279 *
280 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
281 * - A communication error between the cryptoprocessor and its external
282 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
283 * - When the storage is in a valid state but is full - use
284 * #PSA_ERROR_INSUFFICIENT_STORAGE.
285 * - When the storage fails for other reasons - use
286 * #PSA_ERROR_STORAGE_FAILURE.
287 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
288 *
289 * \note A storage corruption does not indicate that any data that was
290 * previously read is invalid. However this previously read data might no
291 * longer be readable from storage.
292 *
293 * When a storage failure occurs, it is no longer possible to ensure the
294 * global integrity of the keystore.
295 */
296#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
297
gabor-mezei-armfe309242020-11-09 17:39:56 +0100298/** Data read from storage is not valid for the implementation.
299 *
300 * This error indicates that some data read from storage does not have a valid
301 * format. It does not indicate the following situations, which have specific
302 * error codes:
303 *
304 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
305 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
306 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
307 *
308 * This error is typically a result of either storage corruption on a
309 * cleartext storage backend, or an attempt to read data that was
310 * written by an incompatible version of the library.
311 */
312#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
313
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100314/**@}*/
315
316/** \defgroup crypto_types Key and algorithm types
317 * @{
318 */
319
320/** An invalid key type value.
321 *
322 * Zero is not the encoding of any key type.
323 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100324#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100325
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100326/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100327 *
328 * Key types defined by this standard will never have the
329 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
330 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
331 * respect the bitwise structure used by standard encodings whenever practical.
332 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100333#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100334
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100335#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100336#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
337#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
338#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100339#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100340
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100341#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100342
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100343/** Whether a key type is vendor-defined.
344 *
345 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
346 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100347#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
348 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
349
350/** Whether a key type is an unstructured array of bytes.
351 *
352 * This encompasses both symmetric keys and non-key data.
353 */
354#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100355 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
356 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100357
358/** Whether a key type is asymmetric: either a key pair or a public key. */
359#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
360 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
361 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
362 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
363/** Whether a key type is the public part of a key pair. */
364#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
365 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
366/** Whether a key type is a key pair containing a private part and a public
367 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200368#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100369 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
370/** The key pair type corresponding to a public key type.
371 *
372 * You may also pass a key pair type as \p type, it will be left unchanged.
373 *
374 * \param type A public key type or key pair type.
375 *
376 * \return The corresponding key pair type.
377 * If \p type is not a public key or a key pair,
378 * the return value is undefined.
379 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200380#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100381 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
382/** The public key type corresponding to a key pair type.
383 *
384 * You may also pass a key pair type as \p type, it will be left unchanged.
385 *
386 * \param type A public key type or key pair type.
387 *
388 * \return The corresponding public key type.
389 * If \p type is not a public key or a key pair,
390 * the return value is undefined.
391 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200392#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100393 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
394
395/** Raw data.
396 *
397 * A "key" of this type cannot be used for any cryptographic operation.
398 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100399#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100400
401/** HMAC key.
402 *
403 * The key policy determines which underlying hash algorithm the key can be
404 * used for.
405 *
406 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100407 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100408 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100409#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100410
411/** A secret for key derivation.
412 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200413 * This key type is for high-entropy secrets only. For low-entropy secrets,
414 * #PSA_KEY_TYPE_PASSWORD should be used instead.
415 *
416 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
417 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
418 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100419 * The key policy determines which key derivation algorithm the key
420 * can be used for.
421 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100422#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200424/** A low-entropy secret for password hashing or key derivation.
425 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200426 * This key type is suitable for passwords and passphrases which are typically
427 * intended to be memorizable by humans, and have a low entropy relative to
428 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200429 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200430 * for such keys. It is not suitable for passwords with extremely low entropy,
431 * such as numerical PINs.
432 *
433 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
434 * key derivation algorithms. Algorithms that accept such an input were
435 * designed to accept low-entropy secret and are known as password hashing or
436 * key stretching algorithms.
437 *
438 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
439 * key derivation algorithms, as the algorithms that take such an input expect
440 * it to be high-entropy.
441 *
442 * The key policy determines which key derivation algorithm the key can be
443 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200444 */
Manuel Pégourié-Gonnardc16033e2021-04-30 11:59:40 +0200445#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200446
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200447/** A secret value that can be used to verify a password hash.
448 *
449 * The key policy determines which key derivation algorithm the key
450 * can be used for, among the same permissible subset as for
451 * #PSA_KEY_TYPE_PASSWORD.
452 */
453#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)
454
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200455/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200456 *
457 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200458 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200459 */
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200460#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200461
Gilles Peskine737c6be2019-05-21 16:01:06 +0200462/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100463 *
464 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
465 * 32 bytes (AES-256).
466 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100467#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100468
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200469/** Key for a cipher, AEAD or MAC algorithm based on the
470 * ARIA block cipher. */
471#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)
472
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100473/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
474 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100475 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
476 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100477 *
478 * Note that single DES and 2-key 3DES are weak and strongly
479 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
480 * is weak and deprecated and should only be used in legacy protocols.
481 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100482#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100483
Gilles Peskine737c6be2019-05-21 16:01:06 +0200484/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100485 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100486#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100487
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200488/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
489 *
490 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
491 *
492 * Implementations must support 12-byte nonces, may support 8-byte nonces,
493 * and should reject other sizes.
494 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100495#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200496
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100497/** RSA public key.
498 *
499 * The size of an RSA key is the bit size of the modulus.
500 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100501#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100502/** RSA key pair (private and public key).
503 *
504 * The size of an RSA key is the bit size of the modulus.
505 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100506#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100507/** Whether a key type is an RSA key (pair or public-only). */
508#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200509 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100510
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100511#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100512#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
513#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100514/** Elliptic curve key pair.
515 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100516 * The size of an elliptic curve key is the bit size associated with the curve,
517 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
518 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
519 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100520 * \param curve A value of type ::psa_ecc_family_t that
521 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100522 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200523#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
524 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100525/** Elliptic curve public key.
526 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100527 * The size of an elliptic curve public key is the same as the corresponding
528 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
529 * `PSA_ECC_FAMILY_xxx` curve families).
530 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100531 * \param curve A value of type ::psa_ecc_family_t that
532 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100533 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100534#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
535 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
536
537/** Whether a key type is an elliptic curve key (pair or public-only). */
538#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200539 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100540 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100541/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200542#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100543 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200544 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100545/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100546#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
547 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
548 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
549
550/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100551#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
552 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100553 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
554 0))
555
Przemyslaw Stekiel6d3d18b2022-01-20 22:41:17 +0100556/** Check if the curve of given family is Weierstrass elliptic curve. */
557#define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
558
Gilles Peskine228abc52019-12-03 17:24:19 +0100559/** SEC Koblitz curves over prime fields.
560 *
561 * This family comprises the following curves:
562 * secp192k1, secp224k1, secp256k1.
563 * They are defined in _Standards for Efficient Cryptography_,
564 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
565 * https://www.secg.org/sec2-v2.pdf
566 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100567#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100568
569/** SEC random curves over prime fields.
570 *
571 * This family comprises the following curves:
572 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
573 * They are defined in _Standards for Efficient Cryptography_,
574 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
575 * https://www.secg.org/sec2-v2.pdf
576 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100577#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100578/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100579#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100580
581/** SEC Koblitz curves over binary fields.
582 *
583 * This family comprises the following curves:
584 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
585 * They are defined in _Standards for Efficient Cryptography_,
586 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
587 * https://www.secg.org/sec2-v2.pdf
588 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100589#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100590
591/** SEC random curves over binary fields.
592 *
593 * This family comprises the following curves:
594 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
595 * They are defined in _Standards for Efficient Cryptography_,
596 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
597 * https://www.secg.org/sec2-v2.pdf
598 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100599#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100600
601/** SEC additional random curves over binary fields.
602 *
603 * This family comprises the following curve:
604 * sect163r2.
605 * It is defined in _Standards for Efficient Cryptography_,
606 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
607 * https://www.secg.org/sec2-v2.pdf
608 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100609#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100610
611/** Brainpool P random curves.
612 *
613 * This family comprises the following curves:
614 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
615 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
616 * It is defined in RFC 5639.
617 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100618#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100619
620/** Curve25519 and Curve448.
621 *
622 * This family comprises the following Montgomery curves:
623 * - 255-bit: Bernstein et al.,
624 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
625 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
626 * - 448-bit: Hamburg,
627 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
628 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
629 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100630#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100631
Gilles Peskine67546802021-02-24 21:49:40 +0100632/** The twisted Edwards curves Ed25519 and Ed448.
633 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100634 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100635 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100636 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100637 *
638 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100639 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100640 * to Curve25519.
641 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
642 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
643 * to Curve448.
644 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
645 */
646#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
647
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100648#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100649#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
650#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100651/** Diffie-Hellman key pair.
652 *
Paul Elliott75e27032020-06-03 15:17:39 +0100653 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100654 * Diffie-Hellman group to be used.
655 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200656#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
657 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100658/** Diffie-Hellman public key.
659 *
Paul Elliott75e27032020-06-03 15:17:39 +0100660 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100661 * Diffie-Hellman group to be used.
662 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200663#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
664 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
665
666/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
667#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200668 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200669 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
670/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200671#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200672 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200673 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200674/** Whether a key type is a Diffie-Hellman public key. */
675#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
676 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
677 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
678
679/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100680#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
681 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200682 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
683 0))
684
Gilles Peskine228abc52019-12-03 17:24:19 +0100685/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
686 *
687 * This family includes groups with the following key sizes (in bits):
688 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
689 * all of these sizes or only a subset.
690 */
Paul Elliott75e27032020-06-03 15:17:39 +0100691#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100692
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100693#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100694 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100695/** The block size of a block cipher.
696 *
697 * \param type A cipher key type (value of type #psa_key_type_t).
698 *
699 * \return The block size for a block cipher, or 1 for a stream cipher.
700 * The return value is undefined if \p type is not a supported
701 * cipher key type.
702 *
703 * \note It is possible to build stream cipher algorithms on top of a block
704 * cipher, for example CTR mode (#PSA_ALG_CTR).
705 * This macro only takes the key type into account, so it cannot be
706 * used to determine the size of the data that #psa_cipher_update()
707 * might buffer for future processing in general.
708 *
709 * \note This macro returns a compile-time constant if its argument is one.
710 *
711 * \warning This macro may evaluate its argument multiple times.
712 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100713#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100714 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100715 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100716 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100717
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100718/** Vendor-defined algorithm flag.
719 *
720 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
721 * bit set. Vendors who define additional algorithms must use an encoding with
722 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
723 * used by standard encodings whenever practical.
724 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100725#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100726
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100727#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100728#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
729#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100730#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100731#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
732#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
733#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
734#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
735#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100736
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100737/** Whether an algorithm is vendor-defined.
738 *
739 * See also #PSA_ALG_VENDOR_FLAG.
740 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100741#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
742 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
743
744/** Whether the specified algorithm is a hash algorithm.
745 *
746 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
747 *
748 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
749 * This macro may return either 0 or 1 if \p alg is not a supported
750 * algorithm identifier.
751 */
752#define PSA_ALG_IS_HASH(alg) \
753 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
754
755/** Whether the specified algorithm is a MAC algorithm.
756 *
757 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
758 *
759 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
760 * This macro may return either 0 or 1 if \p alg is not a supported
761 * algorithm identifier.
762 */
763#define PSA_ALG_IS_MAC(alg) \
764 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
765
766/** Whether the specified algorithm is a symmetric cipher algorithm.
767 *
768 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
769 *
770 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
771 * This macro may return either 0 or 1 if \p alg is not a supported
772 * algorithm identifier.
773 */
774#define PSA_ALG_IS_CIPHER(alg) \
775 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
776
777/** Whether the specified algorithm is an authenticated encryption
778 * with associated data (AEAD) algorithm.
779 *
780 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
781 *
782 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
783 * This macro may return either 0 or 1 if \p alg is not a supported
784 * algorithm identifier.
785 */
786#define PSA_ALG_IS_AEAD(alg) \
787 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
788
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200789/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200790 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100791 *
792 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
793 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200794 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100795 * This macro may return either 0 or 1 if \p alg is not a supported
796 * algorithm identifier.
797 */
798#define PSA_ALG_IS_SIGN(alg) \
799 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
800
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200801/** Whether the specified algorithm is an asymmetric encryption algorithm,
802 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100803 *
804 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
805 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200806 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100807 * This macro may return either 0 or 1 if \p alg is not a supported
808 * algorithm identifier.
809 */
810#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
811 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
812
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100813/** Whether the specified algorithm is a key agreement algorithm.
814 *
815 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
816 *
817 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
818 * This macro may return either 0 or 1 if \p alg is not a supported
819 * algorithm identifier.
820 */
821#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100822 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100823
824/** Whether the specified algorithm is a key derivation algorithm.
825 *
826 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
827 *
828 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
829 * This macro may return either 0 or 1 if \p alg is not a supported
830 * algorithm identifier.
831 */
832#define PSA_ALG_IS_KEY_DERIVATION(alg) \
833 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
834
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200835/** Whether the specified algorithm is a key stretching / password hashing
836 * algorithm.
837 *
838 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200839 * that is suitable for use with a low-entropy secret such as a password.
840 * Equivalently, it's a key derivation algorithm that uses a
841 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200842 *
843 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
844 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +0100845 * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200846 * otherwise. This macro may return either 0 or 1 if \p alg is not a
847 * supported algorithm identifier.
848 */
849#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
850 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
851 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
852
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200853/** An invalid algorithm identifier value. */
854#define PSA_ALG_NONE ((psa_algorithm_t)0)
855
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100856#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100857/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100858#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100859/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100860#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100861/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100862#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100863/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100864#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100865/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100866#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100867/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100868#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100869/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100870#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100871/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100872#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100873/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100874#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100875/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100876#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100877/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100878#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100879/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100880#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100881/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100882#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100883/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100884 *
885 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
886 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
887 * has the same output size and a (theoretically) higher security strength.
888 */
Gilles Peskine27354692021-03-03 17:45:06 +0100889#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100890
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100891/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100892 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100893 * This value may be used to form the algorithm usage field of a policy
894 * for a signature algorithm that is parametrized by a hash. The key
895 * may then be used to perform operations using the same signature
896 * algorithm parametrized with any supported hash.
897 *
898 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskineacd2d0e2021-10-04 18:10:38 +0200899 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100900 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100901 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100902 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
903 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100904 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200905 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100906 * ```
907 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100908 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100909 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
910 * call to sign or verify a message may use a different hash.
911 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200912 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
913 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
914 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100915 * ```
916 *
917 * This value may not be used to build other algorithms that are
918 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100919 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100920 *
921 * This value may not be used to build an algorithm specification to
922 * perform an operation. It is only valid to build policies.
923 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100924#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100925
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100926#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100927#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100928/** Macro to build an HMAC algorithm.
929 *
930 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
931 *
932 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
933 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
934 *
935 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100936 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100937 * hash algorithm.
938 */
939#define PSA_ALG_HMAC(hash_alg) \
940 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
941
942#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
943 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
944
945/** Whether the specified algorithm is an HMAC algorithm.
946 *
947 * HMAC is a family of MAC algorithms that are based on a hash function.
948 *
949 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
950 *
951 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
952 * This macro may return either 0 or 1 if \p alg is not a supported
953 * algorithm identifier.
954 */
955#define PSA_ALG_IS_HMAC(alg) \
956 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
957 PSA_ALG_HMAC_BASE)
958
959/* In the encoding of a MAC algorithm, the bits corresponding to
960 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
961 * truncated. As an exception, the value 0 means the untruncated algorithm,
962 * whatever its length is. The length is encoded in 6 bits, so it can
963 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
964 * to full length is correctly encoded as 0 and any non-trivial truncation
965 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100966#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
967#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100968
Steven Cooremand927ed72021-02-22 19:59:35 +0100969/* In the encoding of a MAC algorithm, the bit corresponding to
970 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100971 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
972 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100973 * same base class and having a (potentially truncated) MAC length greater or
974 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
975#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
976
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100977/** Macro to build a truncated MAC algorithm.
978 *
979 * A truncated MAC algorithm is identical to the corresponding MAC
980 * algorithm except that the MAC value for the truncated algorithm
981 * consists of only the first \p mac_length bytes of the MAC value
982 * for the untruncated algorithm.
983 *
984 * \note This macro may allow constructing algorithm identifiers that
985 * are not valid, either because the specified length is larger
986 * than the untruncated MAC or because the specified length is
987 * smaller than permitted by the implementation.
988 *
989 * \note It is implementation-defined whether a truncated MAC that
990 * is truncated to the same length as the MAC of the untruncated
991 * algorithm is considered identical to the untruncated algorithm
992 * for policy comparison purposes.
993 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200994 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100995 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100996 * is true). This may be a truncated or untruncated
997 * MAC algorithm.
998 * \param mac_length Desired length of the truncated MAC in bytes.
999 * This must be at most the full length of the MAC
1000 * and must be at least an implementation-specified
1001 * minimum. The implementation-specified minimum
1002 * shall not be zero.
1003 *
1004 * \return The corresponding MAC algorithm with the specified
1005 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001006 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001007 * MAC algorithm or if \p mac_length is too small or
1008 * too large for the specified MAC algorithm.
1009 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001010#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1011 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1012 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001013 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1014
1015/** Macro to build the base MAC algorithm corresponding to a truncated
1016 * MAC algorithm.
1017 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001018 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001019 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001020 * is true). This may be a truncated or untruncated
1021 * MAC algorithm.
1022 *
1023 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001024 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001025 * MAC algorithm.
1026 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001027#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1028 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1029 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001030
1031/** Length to which a MAC algorithm is truncated.
1032 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001033 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001034 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001035 * is true).
1036 *
1037 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001038 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1039 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001040 * MAC algorithm.
1041 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001042#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1043 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001044
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001045/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001046 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001047 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001048 * sharing the same base algorithm, and where the (potentially truncated) MAC
1049 * length of the specific algorithm is equal to or larger then the wildcard
1050 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001051 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001052 * \note When setting the minimum required MAC length to less than the
1053 * smallest MAC length allowed by the base algorithm, this effectively
1054 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001055 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001056 * \param mac_alg A MAC algorithm identifier (value of type
1057 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1058 * is true).
1059 * \param min_mac_length Desired minimum length of the message authentication
1060 * code in bytes. This must be at most the untruncated
1061 * length of the MAC and must be at least 1.
1062 *
1063 * \return The corresponding MAC wildcard algorithm with the
1064 * specified minimum length.
1065 * \return Unspecified if \p mac_alg is not a supported MAC
1066 * algorithm or if \p min_mac_length is less than 1 or
1067 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001068 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001069#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1070 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1071 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001072
Bence Szépkútia2945512020-12-03 21:40:17 +01001073#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001074/** The CBC-MAC construction over a block cipher
1075 *
1076 * \warning CBC-MAC is insecure in many cases.
1077 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1078 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001079#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001080/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001081#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001082
1083/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1084 *
1085 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1086 *
1087 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1088 * This macro may return either 0 or 1 if \p alg is not a supported
1089 * algorithm identifier.
1090 */
1091#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1092 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1093 PSA_ALG_CIPHER_MAC_BASE)
1094
1095#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1096#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1097
1098/** Whether the specified algorithm is a stream cipher.
1099 *
1100 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1101 * by applying a bitwise-xor with a stream of bytes that is generated
1102 * from a key.
1103 *
1104 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1105 *
1106 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1107 * This macro may return either 0 or 1 if \p alg is not a supported
1108 * algorithm identifier or if it is not a symmetric cipher algorithm.
1109 */
1110#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1111 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1112 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1113
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001114/** The stream cipher mode of a stream cipher algorithm.
1115 *
1116 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001117 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001118 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001119#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001120
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001121/** The CTR stream cipher mode.
1122 *
1123 * CTR is a stream cipher which is built from a block cipher.
1124 * The underlying block cipher is determined by the key type.
1125 * For example, to use AES-128-CTR, use this algorithm with
1126 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1127 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001128#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001129
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001130/** The CFB stream cipher mode.
1131 *
1132 * The underlying block cipher is determined by the key type.
1133 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001134#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001135
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001136/** The OFB stream cipher mode.
1137 *
1138 * The underlying block cipher is determined by the key type.
1139 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001140#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001141
1142/** The XTS cipher mode.
1143 *
1144 * XTS is a cipher mode which is built from a block cipher. It requires at
1145 * least one full block of input, but beyond this minimum the input
1146 * does not need to be a whole number of blocks.
1147 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001148#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001149
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001150/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1151 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001152 * \warning ECB mode does not protect the confidentiality of the encrypted data
1153 * except in extremely narrow circumstances. It is recommended that applications
1154 * only use ECB if they need to construct an operating mode that the
1155 * implementation does not provide. Implementations are encouraged to provide
1156 * the modes that applications need in preference to supporting direct access
1157 * to ECB.
1158 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001159 * The underlying block cipher is determined by the key type.
1160 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001161 * This symmetric cipher mode can only be used with messages whose lengths are a
1162 * multiple of the block size of the chosen block cipher.
1163 *
1164 * ECB mode does not accept an initialization vector (IV). When using a
1165 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1166 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001167 */
1168#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1169
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001170/** The CBC block cipher chaining mode, with no padding.
1171 *
1172 * The underlying block cipher is determined by the key type.
1173 *
1174 * This symmetric cipher mode can only be used with messages whose lengths
1175 * are whole number of blocks for the chosen block cipher.
1176 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001177#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001178
1179/** The CBC block cipher chaining mode with PKCS#7 padding.
1180 *
1181 * The underlying block cipher is determined by the key type.
1182 *
1183 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1184 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001185#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001186
Gilles Peskine679693e2019-05-06 15:10:16 +02001187#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1188
1189/** Whether the specified algorithm is an AEAD mode on a block cipher.
1190 *
1191 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1192 *
1193 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1194 * a block cipher, 0 otherwise.
1195 * This macro may return either 0 or 1 if \p alg is not a supported
1196 * algorithm identifier.
1197 */
1198#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1199 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1200 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1201
Gilles Peskine9153ec02019-02-15 13:02:02 +01001202/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001203 *
1204 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001205 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001206#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001207
Mateusz Starzyk594215b2021-10-14 12:23:06 +02001208/** The CCM* cipher mode without authentication.
1209 *
1210 * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1211 * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1212 *
1213 * The underlying block cipher is determined by the key type.
1214 *
1215 * Currently only 13-byte long IV's are supported.
1216 */
1217#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t)0x04c01300)
1218
Gilles Peskine9153ec02019-02-15 13:02:02 +01001219/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001220 *
1221 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001222 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001223#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001224
1225/** The Chacha20-Poly1305 AEAD algorithm.
1226 *
1227 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001228 *
1229 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1230 * and should reject other sizes.
1231 *
1232 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001233 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001234#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001235
1236/* In the encoding of a AEAD algorithm, the bits corresponding to
1237 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1238 * The constants for default lengths follow this encoding.
1239 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001240#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1241#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001242
Steven Cooremand927ed72021-02-22 19:59:35 +01001243/* In the encoding of an AEAD algorithm, the bit corresponding to
1244 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001245 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1246 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001247 * same base class and having a tag length greater than or equal to the one
1248 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1249#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1250
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001251/** Macro to build a shortened AEAD algorithm.
1252 *
1253 * A shortened AEAD algorithm is similar to the corresponding AEAD
1254 * algorithm, but has an authentication tag that consists of fewer bytes.
1255 * Depending on the algorithm, the tag length may affect the calculation
1256 * of the ciphertext.
1257 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001258 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001259 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001260 * is true).
1261 * \param tag_length Desired length of the authentication tag in bytes.
1262 *
1263 * \return The corresponding AEAD algorithm with the specified
1264 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001265 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001266 * AEAD algorithm or if \p tag_length is not valid
1267 * for the specified AEAD algorithm.
1268 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001269#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001270 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1271 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001272 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1273 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1274
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001275/** Retrieve the tag length of a specified AEAD algorithm
1276 *
1277 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001278 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001279 * is true).
1280 *
1281 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001282 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001283 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001284 */
1285#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1286 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1287 PSA_AEAD_TAG_LENGTH_OFFSET )
1288
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001289/** Calculate the corresponding AEAD algorithm with the default tag length.
1290 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001291 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001292 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001293 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001294 * \return The corresponding AEAD algorithm with the default
1295 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001296 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001297#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001298 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001299 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1300 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1301 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001302 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001303#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1304 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1305 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001306 ref :
1307
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001308/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001309 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001310 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001311 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001312 * algorithm is equal to or larger then the minimum tag length specified by the
1313 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001314 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001315 * \note When setting the minimum required tag length to less than the
1316 * smallest tag length allowed by the base algorithm, this effectively
1317 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001318 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001319 * \param aead_alg An AEAD algorithm identifier (value of type
1320 * #psa_algorithm_t such that
1321 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1322 * \param min_tag_length Desired minimum length of the authentication tag in
1323 * bytes. This must be at least 1 and at most the largest
1324 * allowed tag length of the algorithm.
1325 *
1326 * \return The corresponding AEAD wildcard algorithm with the
1327 * specified minimum length.
1328 * \return Unspecified if \p aead_alg is not a supported
1329 * AEAD algorithm or if \p min_tag_length is less than 1
1330 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001331 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001332#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001333 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1334 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001335
Bence Szépkútia2945512020-12-03 21:40:17 +01001336#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001337/** RSA PKCS#1 v1.5 signature with hashing.
1338 *
1339 * This is the signature scheme defined by RFC 8017
1340 * (PKCS#1: RSA Cryptography Specifications) under the name
1341 * RSASSA-PKCS1-v1_5.
1342 *
1343 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1344 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001345 * This includes #PSA_ALG_ANY_HASH
1346 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001347 *
1348 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001349 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001350 * hash algorithm.
1351 */
1352#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1353 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1354/** Raw PKCS#1 v1.5 signature.
1355 *
1356 * The input to this algorithm is the DigestInfo structure used by
1357 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1358 * steps 3&ndash;6.
1359 */
1360#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1361#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1362 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1363
Bence Szépkútia2945512020-12-03 21:40:17 +01001364#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001365#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t)0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001366/** RSA PSS signature with hashing.
1367 *
1368 * This is the signature scheme defined by RFC 8017
1369 * (PKCS#1: RSA Cryptography Specifications) under the name
1370 * RSASSA-PSS, with the message generation function MGF1, and with
1371 * a salt length equal to the length of the hash. The specified
1372 * hash algorithm is used to hash the input message, to create the
1373 * salted hash, and for the mask generation.
1374 *
1375 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1376 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001377 * This includes #PSA_ALG_ANY_HASH
1378 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001379 *
1380 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001381 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001382 * hash algorithm.
1383 */
1384#define PSA_ALG_RSA_PSS(hash_alg) \
1385 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001386
1387/** RSA PSS signature with hashing with relaxed verification.
1388 *
1389 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1390 * but allows an arbitrary salt length (including \c 0) when verifying a
1391 * signature.
1392 *
1393 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1394 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1395 * This includes #PSA_ALG_ANY_HASH
1396 * when specifying the algorithm in a usage policy.
1397 *
1398 * \return The corresponding RSA PSS signature algorithm.
1399 * \return Unspecified if \p hash_alg is not a supported
1400 * hash algorithm.
1401 */
1402#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1403 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1404
1405/** Whether the specified algorithm is RSA PSS with standard salt.
1406 *
1407 * \param alg An algorithm value or an algorithm policy wildcard.
1408 *
1409 * \return 1 if \p alg is of the form
1410 * #PSA_ALG_RSA_PSS(\c hash_alg),
1411 * where \c hash_alg is a hash algorithm or
1412 * #PSA_ALG_ANY_HASH. 0 otherwise.
1413 * This macro may return either 0 or 1 if \p alg is not
1414 * a supported algorithm identifier or policy.
1415 */
1416#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001417 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1418
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001419/** Whether the specified algorithm is RSA PSS with any salt.
1420 *
1421 * \param alg An algorithm value or an algorithm policy wildcard.
1422 *
1423 * \return 1 if \p alg is of the form
1424 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1425 * where \c hash_alg is a hash algorithm or
1426 * #PSA_ALG_ANY_HASH. 0 otherwise.
1427 * This macro may return either 0 or 1 if \p alg is not
1428 * a supported algorithm identifier or policy.
1429 */
1430#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1431 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1432
1433/** Whether the specified algorithm is RSA PSS.
1434 *
1435 * This includes any of the RSA PSS algorithm variants, regardless of the
1436 * constraints on salt length.
1437 *
1438 * \param alg An algorithm value or an algorithm policy wildcard.
1439 *
1440 * \return 1 if \p alg is of the form
1441 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1442 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1443 * where \c hash_alg is a hash algorithm or
1444 * #PSA_ALG_ANY_HASH. 0 otherwise.
1445 * This macro may return either 0 or 1 if \p alg is not
1446 * a supported algorithm identifier or policy.
1447 */
1448#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef6892de2021-10-08 16:28:32 +02001449 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1450 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001451
Bence Szépkútia2945512020-12-03 21:40:17 +01001452#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001453/** ECDSA signature with hashing.
1454 *
1455 * This is the ECDSA signature scheme defined by ANSI X9.62,
1456 * with a random per-message secret number (*k*).
1457 *
1458 * The representation of the signature as a byte string consists of
1459 * the concatentation of the signature values *r* and *s*. Each of
1460 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1461 * of the base point of the curve in octets. Each value is represented
1462 * in big-endian order (most significant octet first).
1463 *
1464 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1465 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001466 * This includes #PSA_ALG_ANY_HASH
1467 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001468 *
1469 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001470 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001471 * hash algorithm.
1472 */
1473#define PSA_ALG_ECDSA(hash_alg) \
1474 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1475/** ECDSA signature without hashing.
1476 *
1477 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1478 * without specifying a hash algorithm. This algorithm may only be
1479 * used to sign or verify a sequence of bytes that should be an
1480 * already-calculated hash. Note that the input is padded with
1481 * zeros on the left or truncated on the left as required to fit
1482 * the curve size.
1483 */
1484#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001485#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001486/** Deterministic ECDSA signature with hashing.
1487 *
1488 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1489 *
1490 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1491 *
1492 * Note that when this algorithm is used for verification, signatures
1493 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1494 * same private key are accepted. In other words,
1495 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1496 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1497 *
1498 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1499 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001500 * This includes #PSA_ALG_ANY_HASH
1501 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001502 *
1503 * \return The corresponding deterministic ECDSA signature
1504 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001505 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001506 * hash algorithm.
1507 */
1508#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1509 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001510#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001511#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001512 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001513 PSA_ALG_ECDSA_BASE)
1514#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001515 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001516#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1517 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1518#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1519 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1520
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001521/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1522 * using standard parameters.
1523 *
1524 * Contexts are not supported in the current version of this specification
1525 * because there is no suitable signature interface that can take the
1526 * context as a parameter. A future version of this specification may add
1527 * suitable functions and extend this algorithm to support contexts.
1528 *
1529 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1530 * In this specification, the following curves are supported:
1531 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1532 * in RFC 8032.
1533 * The curve is Edwards25519.
1534 * The hash function used internally is SHA-512.
1535 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1536 * in RFC 8032.
1537 * The curve is Edwards448.
1538 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001539 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001540 *
1541 * This algorithm can be used with psa_sign_message() and
1542 * psa_verify_message(). Since there is no prehashing, it cannot be used
1543 * with psa_sign_hash() or psa_verify_hash().
1544 *
1545 * The signature format is the concatenation of R and S as defined by
1546 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1547 * string for Ed448).
1548 */
1549#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1550
1551#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1552#define PSA_ALG_IS_HASH_EDDSA(alg) \
1553 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1554
1555/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001556 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001557 *
1558 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1559 *
1560 * This algorithm is Ed25519 as specified in RFC 8032.
1561 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001562 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001563 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001564 *
1565 * This is a hash-and-sign algorithm: to calculate a signature,
1566 * you can either:
1567 * - call psa_sign_message() on the message;
1568 * - or calculate the SHA-512 hash of the message
1569 * with psa_hash_compute()
1570 * or with a multi-part hash operation started with psa_hash_setup(),
1571 * using the hash algorithm #PSA_ALG_SHA_512,
1572 * then sign the calculated hash with psa_sign_hash().
1573 * Verifying a signature is similar, using psa_verify_message() or
1574 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001575 */
1576#define PSA_ALG_ED25519PH \
1577 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1578
1579/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1580 * using SHAKE256 and the Edwards448 curve.
1581 *
1582 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1583 *
1584 * This algorithm is Ed448 as specified in RFC 8032.
1585 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001586 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001587 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001588 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001589 *
1590 * This is a hash-and-sign algorithm: to calculate a signature,
1591 * you can either:
1592 * - call psa_sign_message() on the message;
1593 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1594 * with psa_hash_compute()
1595 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001596 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001597 * then sign the calculated hash with psa_sign_hash().
1598 * Verifying a signature is similar, using psa_verify_message() or
1599 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001600 */
1601#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001602 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001603
Gilles Peskine6d400852021-02-24 21:39:52 +01001604/* Default definition, to be overridden if the library is extended with
1605 * more hash-and-sign algorithms that we want to keep out of this header
1606 * file. */
1607#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1608
Gilles Peskinef2fe31a2021-09-22 16:42:02 +02001609/** Whether the specified algorithm is a signature algorithm that can be used
1610 * with psa_sign_hash() and psa_verify_hash().
1611 *
1612 * This encompasses all strict hash-and-sign algorithms categorized by
1613 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1614 * paradigm more loosely:
1615 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1616 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1617 *
1618 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1619 *
1620 * \return 1 if alg is a signature algorithm that can be used to sign a
1621 * hash. 0 if alg is a signature algorithm that can only be used
1622 * to sign a message. 0 if alg is not a signature algorithm.
1623 * This macro can return either 0 or 1 if alg is not a
1624 * supported algorithm identifier.
1625 */
1626#define PSA_ALG_IS_SIGN_HASH(alg) \
1627 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1628 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1629 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1630
1631/** Whether the specified algorithm is a signature algorithm that can be used
1632 * with psa_sign_message() and psa_verify_message().
1633 *
1634 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1635 *
1636 * \return 1 if alg is a signature algorithm that can be used to sign a
1637 * message. 0 if \p alg is a signature algorithm that can only be used
1638 * to sign an already-calculated hash. 0 if \p alg is not a signature
1639 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1640 * supported algorithm identifier.
1641 */
1642#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
1643 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA )
1644
Gilles Peskined35b4892019-01-14 16:02:15 +01001645/** Whether the specified algorithm is a hash-and-sign algorithm.
1646 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001647 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1648 * structured in two parts: first the calculation of a hash in a way that
1649 * does not depend on the key, then the calculation of a signature from the
Gilles Peskinef7b41372021-09-22 16:15:05 +02001650 * hash value and the key. Hash-and-sign algorithms encode the hash
1651 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1652 * to extract this algorithm.
1653 *
1654 * Thus, for a hash-and-sign algorithm,
1655 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1656 * ```
1657 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1658 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1659 * ```
1660 * Most usefully, separating the hash from the signature allows the hash
1661 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1662 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1663 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001664 *
1665 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1666 *
1667 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1668 * This macro may return either 0 or 1 if \p alg is not a supported
1669 * algorithm identifier.
1670 */
1671#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskinef7b41372021-09-22 16:15:05 +02001672 (PSA_ALG_IS_SIGN_HASH(alg) && \
1673 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001674
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001675/** Get the hash used by a hash-and-sign signature algorithm.
1676 *
1677 * A hash-and-sign algorithm is a signature algorithm which is
1678 * composed of two phases: first a hashing phase which does not use
1679 * the key and produces a hash of the input message, then a signing
1680 * phase which only uses the hash and the key and not the message
1681 * itself.
1682 *
1683 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1684 * #PSA_ALG_IS_SIGN(\p alg) is true).
1685 *
1686 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1687 * algorithm.
1688 * \return 0 if \p alg is a signature algorithm that does not
1689 * follow the hash-and-sign structure.
1690 * \return Unspecified if \p alg is not a signature algorithm or
1691 * if it is not supported by the implementation.
1692 */
1693#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001694 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001695 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1696 0)
1697
1698/** RSA PKCS#1 v1.5 encryption.
1699 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001700#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001701
Bence Szépkútia2945512020-12-03 21:40:17 +01001702#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001703/** RSA OAEP encryption.
1704 *
1705 * This is the encryption scheme defined by RFC 8017
1706 * (PKCS#1: RSA Cryptography Specifications) under the name
1707 * RSAES-OAEP, with the message generation function MGF1.
1708 *
1709 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1710 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1711 * for MGF1.
1712 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001713 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001714 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001715 * hash algorithm.
1716 */
1717#define PSA_ALG_RSA_OAEP(hash_alg) \
1718 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1719#define PSA_ALG_IS_RSA_OAEP(alg) \
1720 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1721#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1722 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1723 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1724 0)
1725
Bence Szépkútia2945512020-12-03 21:40:17 +01001726#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001727/** Macro to build an HKDF algorithm.
1728 *
1729 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1730 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001731 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001732 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001733 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001734 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1735 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1736 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1737 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001738 * starting to generate output.
1739 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001740 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1741 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1742 *
1743 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001744 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001745 * hash algorithm.
1746 */
1747#define PSA_ALG_HKDF(hash_alg) \
1748 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1749/** Whether the specified algorithm is an HKDF algorithm.
1750 *
1751 * HKDF is a family of key derivation algorithms that are based on a hash
1752 * function and the HMAC construction.
1753 *
1754 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1755 *
1756 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1757 * This macro may return either 0 or 1 if \c alg is not a supported
1758 * key derivation algorithm identifier.
1759 */
1760#define PSA_ALG_IS_HKDF(alg) \
1761 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1762#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1763 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1764
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001765#define PSA_ALG_HKDF_EXTRACT_BASE ((psa_algorithm_t)0x08000400)
1766/** Macro to build an HKDF-Extract algorithm.
1767 *
1768 * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA256)` is
1769 * HKDF-Extract using HMAC-SHA-256.
1770 *
1771 * This key derivation algorithm uses the following inputs:
Przemek Stekielb398d862022-05-18 15:43:54 +02001772 * - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001773 * - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
1774 * "extract" step.
Przemek Stekielb398d862022-05-18 15:43:54 +02001775 * The inputs are mandatory and must be passed in the order above.
1776 * Each input may only be passed once.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001777 *
1778 * \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
1779 * should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
1780 * as a separate algorithm for the sake of protocols that use it as a
1781 * building block. It may also be a slight performance optimization
1782 * in applications that use HKDF with the same salt and key but many
1783 * different info strings.
1784 *
Przemek Stekielb398d862022-05-18 15:43:54 +02001785 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1786 * if the salt is longer than the block size of the hash algorithm; then
1787 * pad with null bytes up to the block size. As a result, it is possible
1788 * for distinct salt inputs to result in the same outputs. To ensure
1789 * unique outputs, it is recommended to use a fixed length for salt values.
1790 *
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001791 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1792 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1793 *
1794 * \return The corresponding HKDF-Extract algorithm.
1795 * \return Unspecified if \p hash_alg is not a supported
1796 * hash algorithm.
1797 */
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001798#define PSA_ALG_HKDF_EXTRACT(hash_alg) \
1799 (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1800/** Whether the specified algorithm is an HKDF-Extract algorithm.
1801 *
1802 * HKDF-Extract is a family of key derivation algorithms that are based
1803 * on a hash function and the HMAC construction.
1804 *
1805 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1806 *
1807 * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
1808 * This macro may return either 0 or 1 if \c alg is not a supported
1809 * key derivation algorithm identifier.
1810 */
1811#define PSA_ALG_IS_HKDF_EXTRACT(alg) \
1812 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
1813
1814#define PSA_ALG_HKDF_EXPAND_BASE ((psa_algorithm_t)0x08000500)
1815/** Macro to build an HKDF-Expand algorithm.
1816 *
1817 * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA256)` is
1818 * HKDF-Expand using HMAC-SHA-256.
1819 *
1820 * This key derivation algorithm uses the following inputs:
Przemek Stekiel459ee352022-06-02 11:16:52 +02001821 * - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001822 * - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
1823 *
1824 * The inputs are mandatory and must be passed in the order above.
1825 * Each input may only be passed once.
1826 *
1827 * \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
1828 * should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
1829 * a separate algorithm for the sake of protocols that use it as a building
1830 * block. It may also be a slight performance optimization in applications
1831 * that use HKDF with the same salt and key but many different info strings.
1832 *
1833 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1834 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1835 *
1836 * \return The corresponding HKDF-Expand algorithm.
1837 * \return Unspecified if \p hash_alg is not a supported
1838 * hash algorithm.
1839 */
1840#define PSA_ALG_HKDF_EXPAND(hash_alg) \
1841 (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Przemek Stekielebf62812022-05-11 14:16:05 +02001842/** Whether the specified algorithm is an HKDF-Expand algorithm.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001843 *
1844 * HKDF-Expand is a family of key derivation algorithms that are based
1845 * on a hash function and the HMAC construction.
1846 *
1847 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1848 *
1849 * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
1850 * This macro may return either 0 or 1 if \c alg is not a supported
1851 * key derivation algorithm identifier.
1852 */
1853#define PSA_ALG_IS_HKDF_EXPAND(alg) \
1854 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1855
Bence Szépkútia2945512020-12-03 21:40:17 +01001856#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001857/** Macro to build a TLS-1.2 PRF algorithm.
1858 *
1859 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1860 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1861 * used with either SHA-256 or SHA-384.
1862 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001863 * This key derivation algorithm uses the following inputs, which must be
1864 * passed in the order given here:
1865 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001866 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1867 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001868 *
1869 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001870 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001871 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001872 *
1873 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1874 * TLS 1.2 PRF using HMAC-SHA-256.
1875 *
1876 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1877 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1878 *
1879 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001880 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001881 * hash algorithm.
1882 */
1883#define PSA_ALG_TLS12_PRF(hash_alg) \
1884 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1885
1886/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1887 *
1888 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1889 *
1890 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1891 * This macro may return either 0 or 1 if \c alg is not a supported
1892 * key derivation algorithm identifier.
1893 */
1894#define PSA_ALG_IS_TLS12_PRF(alg) \
1895 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1896#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1897 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1898
Bence Szépkútia2945512020-12-03 21:40:17 +01001899#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001900/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1901 *
1902 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1903 * from the PreSharedKey (PSK) through the application of padding
1904 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1905 * The latter is based on HMAC and can be used with either SHA-256
1906 * or SHA-384.
1907 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001908 * This key derivation algorithm uses the following inputs, which must be
1909 * passed in the order given here:
1910 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001911 * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
1912 * computation of the premaster secret. This input is optional;
1913 * if omitted, it defaults to a string of null bytes with the same length
1914 * as the secret (PSK) input.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001915 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1916 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001917 *
1918 * For the application to TLS-1.2, the seed (which is
1919 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1920 * ClientHello.Random + ServerHello.Random,
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001921 * the label is "master secret" or "extended master secret" and
1922 * the other secret depends on the key exchange specified in the cipher suite:
1923 * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
1924 * PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
1925 * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
1926 * (RFC 5489, Section 2), the other secret should be the output of the
1927 * PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
1928 * The recommended way to pass this input is to use a key derivation
1929 * algorithm constructed as
1930 * PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
1931 * and to call psa_key_derivation_key_agreement(). Alternatively,
1932 * this input may be an output of `psa_raw_key_agreement()` passed with
1933 * psa_key_derivation_input_bytes(), or an equivalent input passed with
1934 * psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
1935 * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
1936 * should be the 48-byte client challenge (the PreMasterSecret of
1937 * (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
1938 * a 46-byte random string chosen by the client. On the server, this is
1939 * typically an output of psa_asymmetric_decrypt() using
1940 * PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
1941 * with `psa_key_derivation_input_bytes()`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001942 *
1943 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1944 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1945 *
1946 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1947 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1948 *
1949 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001950 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001951 * hash algorithm.
1952 */
1953#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1954 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1955
1956/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1957 *
1958 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1959 *
1960 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1961 * This macro may return either 0 or 1 if \c alg is not a supported
1962 * key derivation algorithm identifier.
1963 */
1964#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1965 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1966#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1967 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1968
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001969/* This flag indicates whether the key derivation algorithm is suitable for
1970 * use on low-entropy secrets such as password - these algorithms are also
1971 * known as key stretching or password hashing schemes. These are also the
1972 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001973 *
1974 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001975 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001976#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001977
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001978#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001979/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001980 *
1981 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001982 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
1983 * HMAC with the specified hash.
1984 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2
1985 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001986 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001987 * This key derivation algorithm uses the following inputs, which must be
1988 * provided in the following order:
1989 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001990 * This input step must be used exactly once.
1991 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1992 * This input step must be used one or more times; if used several times, the
1993 * inputs will be concatenated. This can be used to build the final salt
1994 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001995 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001996 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001997 *
1998 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1999 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2000 *
2001 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
2002 * \return Unspecified if \p hash_alg is not a supported
2003 * hash algorithm.
2004 */
2005#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
2006 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2007
2008/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
2009 *
2010 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2011 *
2012 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
2013 * This macro may return either 0 or 1 if \c alg is not a supported
2014 * key derivation algorithm identifier.
2015 */
2016#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
2017 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002018
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002019/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
2020 *
2021 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2022 * This macro specifies the PBKDF2 algorithm constructed using the
2023 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
2024 *
2025 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02002026 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002027 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02002028#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002029
Bence Szépkútia2945512020-12-03 21:40:17 +01002030#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
2031#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002032
Gilles Peskine6843c292019-01-18 16:44:49 +01002033/** Macro to build a combined algorithm that chains a key agreement with
2034 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002035 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002036 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
2037 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
2038 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
2039 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002040 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002041 * \return The corresponding key agreement and derivation
2042 * algorithm.
2043 * \return Unspecified if \p ka_alg is not a supported
2044 * key agreement algorithm or \p kdf_alg is not a
2045 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002046 */
Gilles Peskine6843c292019-01-18 16:44:49 +01002047#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
2048 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002049
2050#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
2051 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
2052
Gilles Peskine6843c292019-01-18 16:44:49 +01002053#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
2054 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002055
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002056/** Whether the specified algorithm is a raw key agreement algorithm.
2057 *
2058 * A raw key agreement algorithm is one that does not specify
2059 * a key derivation function.
2060 * Usually, raw key agreement algorithms are constructed directly with
2061 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02002062 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002063 *
2064 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2065 *
2066 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
2067 * This macro may return either 0 or 1 if \p alg is not a supported
2068 * algorithm identifier.
2069 */
Gilles Peskine6843c292019-01-18 16:44:49 +01002070#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002071 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
2072 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01002073
2074#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
2075 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
2076
2077/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002078 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002079 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002080 * `g^{ab}` in big-endian format.
2081 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
2082 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002083 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002084#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002085
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002086/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
2087 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002088 * This includes the raw finite field Diffie-Hellman algorithm as well as
2089 * finite-field Diffie-Hellman followed by any supporter key derivation
2090 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002091 *
2092 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2093 *
2094 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
2095 * This macro may return either 0 or 1 if \c alg is not a supported
2096 * key agreement algorithm identifier.
2097 */
2098#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002099 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002100
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002101/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
2102 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002103 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002104 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
2105 * `m` is the bit size associated with the curve, i.e. the bit size of the
2106 * order of the curve's coordinate field. When `m` is not a multiple of 8,
2107 * the byte containing the most significant bit of the shared secret
2108 * is padded with zero bits. The byte order is either little-endian
2109 * or big-endian depending on the curve type.
2110 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01002111 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002112 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2113 * in little-endian byte order.
2114 * The bit size is 448 for Curve448 and 255 for Curve25519.
2115 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002116 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002117 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2118 * in big-endian byte order.
2119 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2120 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002121 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002122 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2123 * in big-endian byte order.
2124 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002125 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002126#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002127
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002128/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2129 * algorithm.
2130 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002131 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2132 * elliptic curve Diffie-Hellman followed by any supporter key derivation
2133 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002134 *
2135 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2136 *
2137 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2138 * 0 otherwise.
2139 * This macro may return either 0 or 1 if \c alg is not a supported
2140 * key agreement algorithm identifier.
2141 */
2142#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002143 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002144
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002145/** Whether the specified algorithm encoding is a wildcard.
2146 *
2147 * Wildcard values may only be used to set the usage algorithm field in
2148 * a policy, not to perform an operation.
2149 *
2150 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2151 *
2152 * \return 1 if \c alg is a wildcard algorithm encoding.
2153 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2154 * an operation).
2155 * \return This macro may return either 0 or 1 if \c alg is not a supported
2156 * algorithm identifier.
2157 */
Steven Cooremand927ed72021-02-22 19:59:35 +01002158#define PSA_ALG_IS_WILDCARD(alg) \
2159 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
2160 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
2161 PSA_ALG_IS_MAC(alg) ? \
2162 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2163 PSA_ALG_IS_AEAD(alg) ? \
2164 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01002165 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002166
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002167/** Get the hash used by a composite algorithm.
2168 *
2169 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2170 *
2171 * \return The underlying hash algorithm if alg is a composite algorithm that
2172 * uses a hash algorithm.
2173 *
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002174 * \return \c 0 if alg is not a composite algorithm that uses a hash.
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002175 */
2176#define PSA_ALG_GET_HASH(alg) \
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002177 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t)0) : 0x02000000 | ((alg) & 0x000000ff))
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002178
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002179/**@}*/
2180
2181/** \defgroup key_lifetimes Key lifetimes
2182 * @{
2183 */
2184
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002185/** The default lifetime for volatile keys.
2186 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02002187 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002188 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002189 *
2190 * A key with this lifetime is typically stored in the RAM area of the
2191 * PSA Crypto subsystem. However this is an implementation choice.
2192 * If an implementation stores data about the key in a non-volatile memory,
2193 * it must release all the resources associated with the key and erase the
2194 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002195 */
2196#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
2197
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002198/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002199 *
2200 * A persistent key remains in storage until it is explicitly destroyed or
2201 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02002202 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002203 * provide their own mechanism (for example to perform a factory reset,
2204 * to prepare for device refurbishment, or to uninstall an application).
2205 *
2206 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02002207 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002208 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002209 */
2210#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
2211
Gilles Peskineaff11812020-05-04 19:03:10 +02002212/** The persistence level of volatile keys.
2213 *
2214 * See ::psa_key_persistence_t for more information.
2215 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002216#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02002217
2218/** The default persistence level for persistent keys.
2219 *
2220 * See ::psa_key_persistence_t for more information.
2221 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002222#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002223
2224/** A persistence level indicating that a key is never destroyed.
2225 *
2226 * See ::psa_key_persistence_t for more information.
2227 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002228#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002229
2230#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002231 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002232
2233#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002234 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002235
2236/** Whether a key lifetime indicates that the key is volatile.
2237 *
2238 * A volatile key is automatically destroyed by the implementation when
2239 * the application instance terminates. In particular, a volatile key
2240 * is automatically destroyed on a power reset of the device.
2241 *
2242 * A key that is not volatile is persistent. Persistent keys are
2243 * preserved until the application explicitly destroys them or until an
2244 * implementation-specific device management event occurs (for example,
2245 * a factory reset).
2246 *
2247 * \param lifetime The lifetime value to query (value of type
2248 * ::psa_key_lifetime_t).
2249 *
2250 * \return \c 1 if the key is volatile, otherwise \c 0.
2251 */
2252#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2253 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002254 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002255
Gilles Peskined133bb22021-04-21 20:05:59 +02002256/** Whether a key lifetime indicates that the key is read-only.
2257 *
2258 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2259 * They must be created through platform-specific means that bypass the API.
2260 *
2261 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine91466c82021-06-07 23:21:50 +02002262 * consider a platform with multiple levels of privilege, where a
2263 * low-privilege application can use a key but is not allowed to destroy
2264 * it, and the platform exposes the key to the application with a read-only
2265 * lifetime. High-privilege code can destroy the key even though the
2266 * application sees the key as read-only.
Gilles Peskined133bb22021-04-21 20:05:59 +02002267 *
2268 * \param lifetime The lifetime value to query (value of type
2269 * ::psa_key_lifetime_t).
2270 *
2271 * \return \c 1 if the key is read-only, otherwise \c 0.
2272 */
2273#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2274 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2275 PSA_KEY_PERSISTENCE_READ_ONLY)
2276
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002277/** Construct a lifetime from a persistence level and a location.
2278 *
2279 * \param persistence The persistence level
2280 * (value of type ::psa_key_persistence_t).
2281 * \param location The location indicator
2282 * (value of type ::psa_key_location_t).
2283 *
2284 * \return The constructed lifetime value.
2285 */
2286#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2287 ((location) << 8 | (persistence))
2288
Gilles Peskineaff11812020-05-04 19:03:10 +02002289/** The local storage area for persistent keys.
2290 *
2291 * This storage area is available on all systems that can store persistent
2292 * keys without delegating the storage to a third-party cryptoprocessor.
2293 *
2294 * See ::psa_key_location_t for more information.
2295 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002296#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002297
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002298#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002299
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002300/** The null key identifier.
2301 */
2302#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002303/** The minimum value for a key identifier chosen by the application.
2304 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002305#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002306/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002307 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002308#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002309/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002310 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002311#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002312/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002313 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002314#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002315
Ronald Cron7424f0d2020-09-14 16:17:41 +02002316
2317#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2318
2319#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2320#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2321#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2322
2323/** Utility to initialize a key identifier at runtime.
2324 *
2325 * \param unused Unused parameter.
2326 * \param key_id Identifier of the key.
2327 */
2328static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2329 unsigned int unused, psa_key_id_t key_id )
2330{
2331 (void)unused;
2332
2333 return( key_id );
2334}
2335
2336/** Compare two key identifiers.
2337 *
2338 * \param id1 First key identifier.
2339 * \param id2 Second key identifier.
2340 *
2341 * \return Non-zero if the two key identifier are equal, zero otherwise.
2342 */
2343static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2344 mbedtls_svc_key_id_t id2 )
2345{
2346 return( id1 == id2 );
2347}
2348
Ronald Cronc4d1b512020-07-31 11:26:37 +02002349/** Check whether a key identifier is null.
2350 *
2351 * \param key Key identifier.
2352 *
2353 * \return Non-zero if the key identifier is null, zero otherwise.
2354 */
2355static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2356{
2357 return( key == 0 );
2358}
2359
Ronald Cron7424f0d2020-09-14 16:17:41 +02002360#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2361
2362#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
2363#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
2364#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
2365
2366/** Utility to initialize a key identifier at runtime.
2367 *
2368 * \param owner_id Identifier of the key owner.
2369 * \param key_id Identifier of the key.
2370 */
2371static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2372 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2373{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002374 return( (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2375 .MBEDTLS_PRIVATE(owner) = owner_id } );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002376}
2377
2378/** Compare two key identifiers.
2379 *
2380 * \param id1 First key identifier.
2381 * \param id2 Second key identifier.
2382 *
2383 * \return Non-zero if the two key identifier are equal, zero otherwise.
2384 */
2385static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2386 mbedtls_svc_key_id_t id2 )
2387{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002388 return( ( id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id) ) &&
2389 mbedtls_key_owner_id_equal( id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner) ) );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002390}
2391
Ronald Cronc4d1b512020-07-31 11:26:37 +02002392/** Check whether a key identifier is null.
2393 *
2394 * \param key Key identifier.
2395 *
2396 * \return Non-zero if the key identifier is null, zero otherwise.
2397 */
2398static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2399{
Gilles Peskine52bb83e2021-05-28 12:59:49 +02002400 return( key.MBEDTLS_PRIVATE(key_id) == 0 );
Ronald Cronc4d1b512020-07-31 11:26:37 +02002401}
2402
Ronald Cron7424f0d2020-09-14 16:17:41 +02002403#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002404
2405/**@}*/
2406
2407/** \defgroup policy Key policies
2408 * @{
2409 */
2410
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002411/** Whether the key may be exported.
2412 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002413 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002414 * regardless of the value of this permission flag.
2415 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002416 * If a key does not have export permission, implementations shall not
2417 * allow the key to be exported in plain form from the cryptoprocessor,
2418 * whether through psa_export_key() or through a proprietary interface.
2419 * The key may however be exportable in a wrapped form, i.e. in a form
2420 * where it is encrypted by another key.
2421 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002422#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2423
2424/** Whether the key may be copied.
2425 *
2426 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002427 * with the same policy or a more restrictive policy.
2428 *
2429 * For lifetimes for which the key is located in a secure element which
2430 * enforce the non-exportability of keys, copying a key outside the secure
2431 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2432 * Copying the key inside the secure element is permitted with just
2433 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2434 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2435 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2436 * is sufficient to permit the copy.
2437 */
2438#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2439
2440/** Whether the key may be used to encrypt a message.
2441 *
2442 * This flag allows the key to be used for a symmetric encryption operation,
2443 * for an AEAD encryption-and-authentication operation,
2444 * or for an asymmetric encryption operation,
2445 * if otherwise permitted by the key's type and policy.
2446 *
2447 * For a key pair, this concerns the public key.
2448 */
2449#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2450
2451/** Whether the key may be used to decrypt a message.
2452 *
2453 * This flag allows the key to be used for a symmetric decryption operation,
2454 * for an AEAD decryption-and-verification operation,
2455 * or for an asymmetric decryption operation,
2456 * if otherwise permitted by the key's type and policy.
2457 *
2458 * For a key pair, this concerns the private key.
2459 */
2460#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2461
2462/** Whether the key may be used to sign a message.
2463 *
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002464 * This flag allows the key to be used for a MAC calculation operation or for
2465 * an asymmetric message signature operation, if otherwise permitted by the
2466 * key’s type and policy.
2467 *
2468 * For a key pair, this concerns the private key.
2469 */
2470#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
2471
2472/** Whether the key may be used to verify a message.
2473 *
2474 * This flag allows the key to be used for a MAC verification operation or for
2475 * an asymmetric message signature verification operation, if otherwise
2476 * permitted by the key’s type and policy.
2477 *
2478 * For a key pair, this concerns the public key.
2479 */
2480#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
2481
2482/** Whether the key may be used to sign a message.
2483 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002484 * This flag allows the key to be used for a MAC calculation operation
2485 * or for an asymmetric signature operation,
2486 * if otherwise permitted by the key's type and policy.
2487 *
2488 * For a key pair, this concerns the private key.
2489 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002490#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002491
2492/** Whether the key may be used to verify a message signature.
2493 *
2494 * This flag allows the key to be used for a MAC verification operation
2495 * or for an asymmetric signature verification operation,
2496 * if otherwise permitted by by the key's type and policy.
2497 *
2498 * For a key pair, this concerns the public key.
2499 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002500#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002501
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002502/** Whether the key may be used to derive other keys or produce a password
2503 * hash.
Andrew Thoelke52d18cd2021-06-25 11:03:57 +01002504 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002505 * This flag allows the key to be used for a key derivation operation or for
2506 * a key agreement operation, if otherwise permitted by by the key's type and
2507 * policy.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002508 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002509 * If this flag is present on all keys used in calls to
2510 * psa_key_derivation_input_key() for a key derivation operation, then it
2511 * permits calling psa_key_derivation_output_bytes() or
2512 * psa_key_derivation_output_key() at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002513 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002514#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002515
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002516/** Whether the key may be used to verify the result of a key derivation,
2517 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002518 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002519 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002520 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002521 * This flag allows the key to be used in a key derivation operation, if
2522 * otherwise permitted by by the key's type and policy.
2523 *
2524 * If this flag is present on all keys used in calls to
2525 * psa_key_derivation_input_key() for a key derivation operation, then it
2526 * permits calling psa_key_derivation_verify_bytes() or
2527 * psa_key_derivation_verify_key() at the end of the operation.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002528 */
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002529#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002530
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002531/**@}*/
2532
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002533/** \defgroup derivation Key derivation
2534 * @{
2535 */
2536
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002537/** A secret input for key derivation.
2538 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002539 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2540 * (passed to psa_key_derivation_input_key())
2541 * or the shared secret resulting from a key agreement
2542 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002543 *
2544 * The secret can also be a direct input (passed to
2545 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002546 * may not be used to derive keys: the operation will only allow
2547 * psa_key_derivation_output_bytes(),
2548 * psa_key_derivation_verify_bytes(), or
2549 * psa_key_derivation_verify_key(), but not
2550 * psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002551 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002552#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002553
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002554/** A low-entropy secret input for password hashing / key stretching.
2555 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002556 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2557 * psa_key_derivation_input_key()) or a direct input (passed to
2558 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2559 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2560 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002561 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002562 * The secret can also be a direct input (passed to
2563 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002564 * may not be used to derive keys: the operation will only allow
2565 * psa_key_derivation_output_bytes(),
2566 * psa_key_derivation_verify_bytes(), or
2567 * psa_key_derivation_verify_key(), but not
2568 * psa_key_derivation_output_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002569 */
2570#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102)
2571
Przemek Stekiel37c81c42022-04-07 13:38:53 +02002572/** A high-entropy additional secret input for key derivation.
2573 *
2574 * This is typically the shared secret resulting from a key agreement obtained
2575 * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
2576 * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
2577 * a direct input passed to `psa_key_derivation_input_bytes()`.
2578 */
2579#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
2580 ((psa_key_derivation_step_t)0x0103)
2581
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002582/** A label for key derivation.
2583 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002584 * This should be a direct input.
2585 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002586 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002587#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002588
2589/** A salt for key derivation.
2590 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002591 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002592 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2593 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002594 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002595#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002596
2597/** An information string for key derivation.
2598 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002599 * This should be a direct input.
2600 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002601 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002602#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002603
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002604/** A seed for key derivation.
2605 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002606 * This should be a direct input.
2607 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002608 */
2609#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2610
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002611/** A cost parameter for password hashing / key stretching.
2612 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002613 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002614 */
2615#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205)
2616
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002617/**@}*/
2618
Bence Szépkútib639d432021-04-21 10:33:54 +02002619/** \defgroup helper_macros Helper macros
2620 * @{
2621 */
2622
2623/* Helper macros */
2624
2625/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2626 * regardless of the tag length they encode.
2627 *
2628 * \param aead_alg_1 An AEAD algorithm identifier.
2629 * \param aead_alg_2 An AEAD algorithm identifier.
2630 *
2631 * \return 1 if both identifiers refer to the same AEAD algorithm,
2632 * 0 otherwise.
2633 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2634 * a supported AEAD algorithm.
2635 */
2636#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2637 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2638 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2639
2640/**@}*/
2641
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002642#endif /* PSA_CRYPTO_VALUES_H */