blob: a360f27a4cfe875fb952ddfa5dc15c2c8d7fb673 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
Mateusz Starzyk363eb292021-05-19 17:32:44 +020036#include "mbedtls/private_access.h"
Gilles Peskinef3b731e2018-12-12 13:38:31 +010037
38/** \defgroup error Error codes
39 * @{
40 */
41
David Saadab4ecc272019-02-14 13:48:10 +020042/* PSA error codes */
43
Gilles Peskinef3b731e2018-12-12 13:38:31 +010044/** The action was completed successfully. */
45#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010046
47/** An error occurred that does not correspond to any defined
48 * failure cause.
49 *
50 * Implementations may use this error code if none of the other standard
51 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020052#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010053
54/** The requested operation or a parameter is not supported
55 * by this implementation.
56 *
57 * Implementations should return this error code when an enumeration
58 * parameter such as a key type, algorithm, etc. is not recognized.
59 * If a combination of parameters is recognized and identified as
60 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020061#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010062
63/** The requested action is denied by a policy.
64 *
65 * Implementations should return this error code when the parameters
66 * are recognized as valid and supported, and a policy explicitly
67 * denies the requested operation.
68 *
69 * If a subset of the parameters of a function call identify a
70 * forbidden operation, and another subset of the parameters are
71 * not valid or not supported, it is unspecified whether the function
72 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
73 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020074#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010075
76/** An output buffer is too small.
77 *
78 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
79 * description to determine a sufficient buffer size.
80 *
81 * Implementations should preferably return this error code only
82 * in cases when performing the operation with a larger output
83 * buffer would succeed. However implementations may return this
84 * error if a function has invalid or unsupported parameters in addition
85 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020086#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010087
David Saadab4ecc272019-02-14 13:48:10 +020088/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010089 *
David Saadab4ecc272019-02-14 13:48:10 +020090 * Implementations should return this error, when attempting
91 * to write an item (like a key) that already exists. */
92#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010093
David Saadab4ecc272019-02-14 13:48:10 +020094/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010095 *
David Saadab4ecc272019-02-14 13:48:10 +020096 * Implementations should return this error, if a requested item (like
97 * a key) does not exist. */
98#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010099
100/** The requested action cannot be performed in the current state.
101 *
102 * Multipart operations return this error when one of the
103 * functions is called out of sequence. Refer to the function
104 * descriptions for permitted sequencing of functions.
105 *
106 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100107 * that a key either exists or not,
108 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100109 * as applicable.
110 *
111 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200112 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100113 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200114#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100115
116/** The parameters passed to the function are invalid.
117 *
118 * Implementations may return this error any time a parameter or
119 * combination of parameters are recognized as invalid.
120 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100121 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200122 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * instead.
124 */
David Saadab4ecc272019-02-14 13:48:10 +0200125#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100126
127/** There is not enough runtime memory.
128 *
129 * If the action is carried out across multiple security realms, this
130 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200131#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100132
133/** There is not enough persistent storage.
134 *
135 * Functions that modify the key storage return this error code if
136 * there is insufficient storage space on the host media. In addition,
137 * many functions that do not otherwise access storage may return this
138 * error code if the implementation requires a mandatory log entry for
139 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200140#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100141
142/** There was a communication failure inside the implementation.
143 *
144 * This can indicate a communication failure between the application
145 * and an external cryptoprocessor or between the cryptoprocessor and
146 * an external volatile or persistent memory. A communication failure
147 * may be transient or permanent depending on the cause.
148 *
149 * \warning If a function returns this error, it is undetermined
150 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200151 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100152 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
153 * if the requested action was completed successfully in an external
154 * cryptoprocessor but there was a breakdown of communication before
155 * the cryptoprocessor could report the status to the application.
156 */
David Saadab4ecc272019-02-14 13:48:10 +0200157#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100158
159/** There was a storage failure that may have led to data loss.
160 *
161 * This error indicates that some persistent storage is corrupted.
162 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200163 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100164 * between the cryptoprocessor and its external storage (use
165 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
166 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
167 *
168 * Note that a storage failure does not indicate that any data that was
169 * previously read is invalid. However this previously read data may no
170 * longer be readable from storage.
171 *
172 * When a storage failure occurs, it is no longer possible to ensure
173 * the global integrity of the keystore. Depending on the global
174 * integrity guarantees offered by the implementation, access to other
175 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100176 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100177 *
178 * Implementations should only use this error code to report a
179 * permanent storage corruption. However application writers should
180 * keep in mind that transient errors while reading the storage may be
181 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200182#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100183
184/** A hardware failure was detected.
185 *
186 * A hardware failure may be transient or permanent depending on the
187 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200188#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100189
190/** A tampering attempt was detected.
191 *
192 * If an application receives this error code, there is no guarantee
193 * that previously accessed or computed data was correct and remains
194 * confidential. Applications should not perform any security function
195 * and should enter a safe failure state.
196 *
197 * Implementations may return this error code if they detect an invalid
198 * state that cannot happen during normal operation and that indicates
199 * that the implementation's security guarantees no longer hold. Depending
200 * on the implementation architecture and on its security and safety goals,
201 * the implementation may forcibly terminate the application.
202 *
203 * This error code is intended as a last resort when a security breach
204 * is detected and it is unsure whether the keystore data is still
205 * protected. Implementations shall only return this error code
206 * to report an alarm from a tampering detector, to indicate that
207 * the confidentiality of stored data can no longer be guaranteed,
208 * or to indicate that the integrity of previously returned data is now
209 * considered compromised. Implementations shall not use this error code
210 * to indicate a hardware failure that merely makes it impossible to
211 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
212 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
213 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
214 * instead).
215 *
216 * This error indicates an attack against the application. Implementations
217 * shall not return this error code as a consequence of the behavior of
218 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200219#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100220
221/** There is not enough entropy to generate random data needed
222 * for the requested action.
223 *
224 * This error indicates a failure of a hardware random generator.
225 * Application writers should note that this error can be returned not
226 * only by functions whose purpose is to generate random data, such
227 * as key, IV or nonce generation, but also by functions that execute
228 * an algorithm with a randomized result, as well as functions that
229 * use randomization of intermediate computations as a countermeasure
230 * to certain attacks.
231 *
232 * Implementations should avoid returning this error after psa_crypto_init()
233 * has succeeded. Implementations should generate sufficient
234 * entropy during initialization and subsequently use a cryptographically
235 * secure pseudorandom generator (PRNG). However implementations may return
236 * this error at any time if a policy requires the PRNG to be reseeded
237 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200238#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100239
240/** The signature, MAC or hash is incorrect.
241 *
242 * Verification functions return this error if the verification
243 * calculations completed successfully, and the value to be verified
244 * was determined to be incorrect.
245 *
246 * If the value to verify has an invalid size, implementations may return
247 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200248#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100249
250/** The decrypted padding is incorrect.
251 *
252 * \warning In some protocols, when decrypting data, it is essential that
253 * the behavior of the application does not depend on whether the padding
254 * is correct, down to precise timing. Applications should prefer
255 * protocols that use authenticated encryption rather than plain
256 * encryption. If the application must perform a decryption of
257 * unauthenticated data, the application writer should take care not
258 * to reveal whether the padding is invalid.
259 *
260 * Implementations should strive to make valid and invalid padding
261 * as close as possible to indistinguishable to an external observer.
262 * In particular, the timing of a decryption operation should not
263 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200264#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100265
David Saadab4ecc272019-02-14 13:48:10 +0200266/** Return this error when there's insufficient data when attempting
267 * to read from a resource. */
268#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100269
Ronald Croncf56a0a2020-08-04 09:51:30 +0200270/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100271 */
David Saadab4ecc272019-02-14 13:48:10 +0200272#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100273
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100274/** Stored data has been corrupted.
275 *
276 * This error indicates that some persistent storage has suffered corruption.
277 * It does not indicate the following situations, which have specific error
278 * codes:
279 *
280 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
281 * - A communication error between the cryptoprocessor and its external
282 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
283 * - When the storage is in a valid state but is full - use
284 * #PSA_ERROR_INSUFFICIENT_STORAGE.
285 * - When the storage fails for other reasons - use
286 * #PSA_ERROR_STORAGE_FAILURE.
287 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
288 *
289 * \note A storage corruption does not indicate that any data that was
290 * previously read is invalid. However this previously read data might no
291 * longer be readable from storage.
292 *
293 * When a storage failure occurs, it is no longer possible to ensure the
294 * global integrity of the keystore.
295 */
296#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
297
gabor-mezei-armfe309242020-11-09 17:39:56 +0100298/** Data read from storage is not valid for the implementation.
299 *
300 * This error indicates that some data read from storage does not have a valid
301 * format. It does not indicate the following situations, which have specific
302 * error codes:
303 *
304 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
305 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
306 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
307 *
308 * This error is typically a result of either storage corruption on a
309 * cleartext storage backend, or an attempt to read data that was
310 * written by an incompatible version of the library.
311 */
312#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
313
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100314/**@}*/
315
316/** \defgroup crypto_types Key and algorithm types
317 * @{
318 */
319
320/** An invalid key type value.
321 *
322 * Zero is not the encoding of any key type.
323 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100324#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100325
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100326/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100327 *
328 * Key types defined by this standard will never have the
329 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
330 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
331 * respect the bitwise structure used by standard encodings whenever practical.
332 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100333#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100334
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100335#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100336#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
337#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
338#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100339#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100340
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100341#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100342
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100343/** Whether a key type is vendor-defined.
344 *
345 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
346 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100347#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
348 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
349
350/** Whether a key type is an unstructured array of bytes.
351 *
352 * This encompasses both symmetric keys and non-key data.
353 */
354#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100355 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
356 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100357
358/** Whether a key type is asymmetric: either a key pair or a public key. */
359#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
360 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
361 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
362 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
363/** Whether a key type is the public part of a key pair. */
364#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
365 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
366/** Whether a key type is a key pair containing a private part and a public
367 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200368#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100369 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
370/** The key pair type corresponding to a public key type.
371 *
372 * You may also pass a key pair type as \p type, it will be left unchanged.
373 *
374 * \param type A public key type or key pair type.
375 *
376 * \return The corresponding key pair type.
377 * If \p type is not a public key or a key pair,
378 * the return value is undefined.
379 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200380#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100381 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
382/** The public key type corresponding to a key pair type.
383 *
384 * You may also pass a key pair type as \p type, it will be left unchanged.
385 *
386 * \param type A public key type or key pair type.
387 *
388 * \return The corresponding public key type.
389 * If \p type is not a public key or a key pair,
390 * the return value is undefined.
391 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200392#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100393 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
394
395/** Raw data.
396 *
397 * A "key" of this type cannot be used for any cryptographic operation.
398 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100399#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100400
401/** HMAC key.
402 *
403 * The key policy determines which underlying hash algorithm the key can be
404 * used for.
405 *
406 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100407 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100408 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100409#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100410
411/** A secret for key derivation.
412 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200413 * This key type is for high-entropy secrets only. For low-entropy secrets,
414 * #PSA_KEY_TYPE_PASSWORD should be used instead.
415 *
416 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
417 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
418 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100419 * The key policy determines which key derivation algorithm the key
420 * can be used for.
421 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100422#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200424/** A low-entropy secret for password hashing or key derivation.
425 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200426 * This key type is suitable for passwords and passphrases which are typically
427 * intended to be memorizable by humans, and have a low entropy relative to
428 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200429 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200430 * for such keys. It is not suitable for passwords with extremely low entropy,
431 * such as numerical PINs.
432 *
433 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
434 * key derivation algorithms. Algorithms that accept such an input were
435 * designed to accept low-entropy secret and are known as password hashing or
436 * key stretching algorithms.
437 *
438 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
439 * key derivation algorithms, as the algorithms that take such an input expect
440 * it to be high-entropy.
441 *
442 * The key policy determines which key derivation algorithm the key can be
443 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200444 */
Manuel Pégourié-Gonnardc16033e2021-04-30 11:59:40 +0200445#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200446
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200447/** A secret value that can be used to verify a password hash.
448 *
449 * The key policy determines which key derivation algorithm the key
450 * can be used for, among the same permissible subset as for
451 * #PSA_KEY_TYPE_PASSWORD.
452 */
453#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)
454
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200455/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200456 *
457 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200458 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200459 */
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200460#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200461
Gilles Peskine737c6be2019-05-21 16:01:06 +0200462/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100463 *
464 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
465 * 32 bytes (AES-256).
466 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100467#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100468
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200469/** Key for a cipher, AEAD or MAC algorithm based on the
470 * ARIA block cipher. */
471#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)
472
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100473/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
474 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100475 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
476 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100477 *
478 * Note that single DES and 2-key 3DES are weak and strongly
479 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
480 * is weak and deprecated and should only be used in legacy protocols.
481 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100482#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100483
Gilles Peskine737c6be2019-05-21 16:01:06 +0200484/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100485 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100486#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100487
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200488/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
489 *
490 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
491 *
Gilles Peskine14d35542022-03-10 18:36:37 +0100492 * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
493 * 12-byte nonces.
494 *
495 * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
496 * with the initial counter value 1, you can process and discard a
497 * 64-byte block before the real data.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200498 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100499#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200500
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100501/** RSA public key.
502 *
503 * The size of an RSA key is the bit size of the modulus.
504 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100505#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100506/** RSA key pair (private and public key).
507 *
508 * The size of an RSA key is the bit size of the modulus.
509 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100510#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100511/** Whether a key type is an RSA key (pair or public-only). */
512#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200513 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100514
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100515#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100516#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
517#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100518/** Elliptic curve key pair.
519 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100520 * The size of an elliptic curve key is the bit size associated with the curve,
521 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
522 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
523 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100524 * \param curve A value of type ::psa_ecc_family_t that
525 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100526 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200527#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
528 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100529/** Elliptic curve public key.
530 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100531 * The size of an elliptic curve public key is the same as the corresponding
532 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
533 * `PSA_ECC_FAMILY_xxx` curve families).
534 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100535 * \param curve A value of type ::psa_ecc_family_t that
536 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100537 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100538#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
539 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
540
541/** Whether a key type is an elliptic curve key (pair or public-only). */
542#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200543 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100544 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100545/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200546#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100547 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200548 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100549/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100550#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
551 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
552 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
553
554/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100555#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
556 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100557 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
558 0))
559
Przemyslaw Stekiel6d3d18b2022-01-20 22:41:17 +0100560/** Check if the curve of given family is Weierstrass elliptic curve. */
561#define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
562
Gilles Peskine228abc52019-12-03 17:24:19 +0100563/** SEC Koblitz curves over prime fields.
564 *
565 * This family comprises the following curves:
566 * secp192k1, secp224k1, secp256k1.
567 * They are defined in _Standards for Efficient Cryptography_,
568 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
569 * https://www.secg.org/sec2-v2.pdf
570 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100571#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100572
573/** SEC random curves over prime fields.
574 *
575 * This family comprises the following curves:
576 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
577 * They are defined in _Standards for Efficient Cryptography_,
578 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
579 * https://www.secg.org/sec2-v2.pdf
580 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100581#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100582/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100583#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100584
585/** SEC Koblitz curves over binary fields.
586 *
587 * This family comprises the following curves:
588 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
589 * They are defined in _Standards for Efficient Cryptography_,
590 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
591 * https://www.secg.org/sec2-v2.pdf
592 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100593#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100594
595/** SEC random curves over binary fields.
596 *
597 * This family comprises the following curves:
598 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
599 * They are defined in _Standards for Efficient Cryptography_,
600 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
601 * https://www.secg.org/sec2-v2.pdf
602 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100603#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100604
605/** SEC additional random curves over binary fields.
606 *
607 * This family comprises the following curve:
608 * sect163r2.
609 * It is defined in _Standards for Efficient Cryptography_,
610 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
611 * https://www.secg.org/sec2-v2.pdf
612 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100613#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100614
615/** Brainpool P random curves.
616 *
617 * This family comprises the following curves:
618 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
619 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
620 * It is defined in RFC 5639.
621 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100622#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100623
624/** Curve25519 and Curve448.
625 *
626 * This family comprises the following Montgomery curves:
627 * - 255-bit: Bernstein et al.,
628 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
629 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
630 * - 448-bit: Hamburg,
631 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
632 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
633 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100634#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100635
Gilles Peskine67546802021-02-24 21:49:40 +0100636/** The twisted Edwards curves Ed25519 and Ed448.
637 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100638 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100639 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100640 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100641 *
642 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100643 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100644 * to Curve25519.
645 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
646 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
647 * to Curve448.
648 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
649 */
650#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
651
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100652#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100653#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
654#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100655/** Diffie-Hellman key pair.
656 *
Paul Elliott75e27032020-06-03 15:17:39 +0100657 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100658 * Diffie-Hellman group to be used.
659 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200660#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
661 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100662/** Diffie-Hellman public key.
663 *
Paul Elliott75e27032020-06-03 15:17:39 +0100664 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100665 * Diffie-Hellman group to be used.
666 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200667#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
668 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
669
670/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
671#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200672 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200673 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
674/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200675#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200676 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200677 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200678/** Whether a key type is a Diffie-Hellman public key. */
679#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
680 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
681 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
682
683/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100684#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
685 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200686 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
687 0))
688
Gilles Peskine228abc52019-12-03 17:24:19 +0100689/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
690 *
691 * This family includes groups with the following key sizes (in bits):
692 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
693 * all of these sizes or only a subset.
694 */
Paul Elliott75e27032020-06-03 15:17:39 +0100695#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100696
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100697#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100698 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100699/** The block size of a block cipher.
700 *
701 * \param type A cipher key type (value of type #psa_key_type_t).
702 *
703 * \return The block size for a block cipher, or 1 for a stream cipher.
704 * The return value is undefined if \p type is not a supported
705 * cipher key type.
706 *
707 * \note It is possible to build stream cipher algorithms on top of a block
708 * cipher, for example CTR mode (#PSA_ALG_CTR).
709 * This macro only takes the key type into account, so it cannot be
710 * used to determine the size of the data that #psa_cipher_update()
711 * might buffer for future processing in general.
712 *
713 * \note This macro returns a compile-time constant if its argument is one.
714 *
715 * \warning This macro may evaluate its argument multiple times.
716 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100717#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100718 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100719 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100720 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100721
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100722/** Vendor-defined algorithm flag.
723 *
724 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
725 * bit set. Vendors who define additional algorithms must use an encoding with
726 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
727 * used by standard encodings whenever practical.
728 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100729#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100730
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100731#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100732#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
733#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100734#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100735#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
736#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
737#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
738#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
739#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100740
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100741/** Whether an algorithm is vendor-defined.
742 *
743 * See also #PSA_ALG_VENDOR_FLAG.
744 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100745#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
746 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
747
748/** Whether the specified algorithm is a hash algorithm.
749 *
750 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
751 *
752 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
753 * This macro may return either 0 or 1 if \p alg is not a supported
754 * algorithm identifier.
755 */
756#define PSA_ALG_IS_HASH(alg) \
757 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
758
759/** Whether the specified algorithm is a MAC algorithm.
760 *
761 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
762 *
763 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
764 * This macro may return either 0 or 1 if \p alg is not a supported
765 * algorithm identifier.
766 */
767#define PSA_ALG_IS_MAC(alg) \
768 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
769
770/** Whether the specified algorithm is a symmetric cipher algorithm.
771 *
772 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
773 *
774 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
775 * This macro may return either 0 or 1 if \p alg is not a supported
776 * algorithm identifier.
777 */
778#define PSA_ALG_IS_CIPHER(alg) \
779 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
780
781/** Whether the specified algorithm is an authenticated encryption
782 * with associated data (AEAD) algorithm.
783 *
784 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
785 *
786 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
787 * This macro may return either 0 or 1 if \p alg is not a supported
788 * algorithm identifier.
789 */
790#define PSA_ALG_IS_AEAD(alg) \
791 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
792
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200793/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200794 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100795 *
796 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
797 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200798 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100799 * This macro may return either 0 or 1 if \p alg is not a supported
800 * algorithm identifier.
801 */
802#define PSA_ALG_IS_SIGN(alg) \
803 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
804
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200805/** Whether the specified algorithm is an asymmetric encryption algorithm,
806 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100807 *
808 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
809 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200810 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100811 * This macro may return either 0 or 1 if \p alg is not a supported
812 * algorithm identifier.
813 */
814#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
815 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
816
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100817/** Whether the specified algorithm is a key agreement algorithm.
818 *
819 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
820 *
821 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
822 * This macro may return either 0 or 1 if \p alg is not a supported
823 * algorithm identifier.
824 */
825#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100826 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100827
828/** Whether the specified algorithm is a key derivation algorithm.
829 *
830 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
831 *
832 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
833 * This macro may return either 0 or 1 if \p alg is not a supported
834 * algorithm identifier.
835 */
836#define PSA_ALG_IS_KEY_DERIVATION(alg) \
837 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
838
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200839/** Whether the specified algorithm is a key stretching / password hashing
840 * algorithm.
841 *
842 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200843 * that is suitable for use with a low-entropy secret such as a password.
844 * Equivalently, it's a key derivation algorithm that uses a
845 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200846 *
847 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
848 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +0100849 * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200850 * otherwise. This macro may return either 0 or 1 if \p alg is not a
851 * supported algorithm identifier.
852 */
853#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
854 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
855 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
856
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200857/** An invalid algorithm identifier value. */
858#define PSA_ALG_NONE ((psa_algorithm_t)0)
859
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100860#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100861/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100862#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100863/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100864#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100865/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100866#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100867/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100868#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100869/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100870#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100871/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100872#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100873/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100874#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100875/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100876#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100877/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100878#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100879/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100880#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100881/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100882#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100883/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100884#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100885/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100886#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100887/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100888 *
889 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
890 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
891 * has the same output size and a (theoretically) higher security strength.
892 */
Gilles Peskine27354692021-03-03 17:45:06 +0100893#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100894
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100895/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100896 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100897 * This value may be used to form the algorithm usage field of a policy
898 * for a signature algorithm that is parametrized by a hash. The key
899 * may then be used to perform operations using the same signature
900 * algorithm parametrized with any supported hash.
901 *
902 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskineacd2d0e2021-10-04 18:10:38 +0200903 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100904 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100905 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100906 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
907 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100908 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200909 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100910 * ```
911 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100912 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100913 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
914 * call to sign or verify a message may use a different hash.
915 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200916 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
917 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
918 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100919 * ```
920 *
921 * This value may not be used to build other algorithms that are
922 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100923 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100924 *
925 * This value may not be used to build an algorithm specification to
926 * perform an operation. It is only valid to build policies.
927 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100928#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100929
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100930#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100931#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100932/** Macro to build an HMAC algorithm.
933 *
934 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
935 *
936 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
937 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
938 *
939 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100940 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100941 * hash algorithm.
942 */
943#define PSA_ALG_HMAC(hash_alg) \
944 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
945
946#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
947 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
948
949/** Whether the specified algorithm is an HMAC algorithm.
950 *
951 * HMAC is a family of MAC algorithms that are based on a hash function.
952 *
953 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
954 *
955 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
956 * This macro may return either 0 or 1 if \p alg is not a supported
957 * algorithm identifier.
958 */
959#define PSA_ALG_IS_HMAC(alg) \
960 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
961 PSA_ALG_HMAC_BASE)
962
963/* In the encoding of a MAC algorithm, the bits corresponding to
964 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
965 * truncated. As an exception, the value 0 means the untruncated algorithm,
966 * whatever its length is. The length is encoded in 6 bits, so it can
967 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
968 * to full length is correctly encoded as 0 and any non-trivial truncation
969 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100970#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
971#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100972
Steven Cooremand927ed72021-02-22 19:59:35 +0100973/* In the encoding of a MAC algorithm, the bit corresponding to
974 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100975 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
976 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100977 * same base class and having a (potentially truncated) MAC length greater or
978 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
979#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
980
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100981/** Macro to build a truncated MAC algorithm.
982 *
983 * A truncated MAC algorithm is identical to the corresponding MAC
984 * algorithm except that the MAC value for the truncated algorithm
985 * consists of only the first \p mac_length bytes of the MAC value
986 * for the untruncated algorithm.
987 *
988 * \note This macro may allow constructing algorithm identifiers that
989 * are not valid, either because the specified length is larger
990 * than the untruncated MAC or because the specified length is
991 * smaller than permitted by the implementation.
992 *
993 * \note It is implementation-defined whether a truncated MAC that
994 * is truncated to the same length as the MAC of the untruncated
995 * algorithm is considered identical to the untruncated algorithm
996 * for policy comparison purposes.
997 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200998 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100999 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001000 * is true). This may be a truncated or untruncated
1001 * MAC algorithm.
1002 * \param mac_length Desired length of the truncated MAC in bytes.
1003 * This must be at most the full length of the MAC
1004 * and must be at least an implementation-specified
1005 * minimum. The implementation-specified minimum
1006 * shall not be zero.
1007 *
1008 * \return The corresponding MAC algorithm with the specified
1009 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001010 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001011 * MAC algorithm or if \p mac_length is too small or
1012 * too large for the specified MAC algorithm.
1013 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001014#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1015 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1016 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001017 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1018
1019/** Macro to build the base MAC algorithm corresponding to a truncated
1020 * MAC algorithm.
1021 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001022 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001023 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001024 * is true). This may be a truncated or untruncated
1025 * MAC algorithm.
1026 *
1027 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001028 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001029 * MAC algorithm.
1030 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001031#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1032 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1033 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001034
1035/** Length to which a MAC algorithm is truncated.
1036 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001037 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001038 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001039 * is true).
1040 *
1041 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001042 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1043 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001044 * MAC algorithm.
1045 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001046#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1047 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001048
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001049/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001050 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001051 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001052 * sharing the same base algorithm, and where the (potentially truncated) MAC
1053 * length of the specific algorithm is equal to or larger then the wildcard
1054 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001055 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001056 * \note When setting the minimum required MAC length to less than the
1057 * smallest MAC length allowed by the base algorithm, this effectively
1058 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001059 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001060 * \param mac_alg A MAC algorithm identifier (value of type
1061 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1062 * is true).
1063 * \param min_mac_length Desired minimum length of the message authentication
1064 * code in bytes. This must be at most the untruncated
1065 * length of the MAC and must be at least 1.
1066 *
1067 * \return The corresponding MAC wildcard algorithm with the
1068 * specified minimum length.
1069 * \return Unspecified if \p mac_alg is not a supported MAC
1070 * algorithm or if \p min_mac_length is less than 1 or
1071 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001072 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001073#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1074 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1075 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001076
Bence Szépkútia2945512020-12-03 21:40:17 +01001077#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001078/** The CBC-MAC construction over a block cipher
1079 *
1080 * \warning CBC-MAC is insecure in many cases.
1081 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1082 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001083#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001084/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001085#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001086
1087/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1088 *
1089 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1090 *
1091 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1092 * This macro may return either 0 or 1 if \p alg is not a supported
1093 * algorithm identifier.
1094 */
1095#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1096 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1097 PSA_ALG_CIPHER_MAC_BASE)
1098
1099#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1100#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1101
1102/** Whether the specified algorithm is a stream cipher.
1103 *
1104 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1105 * by applying a bitwise-xor with a stream of bytes that is generated
1106 * from a key.
1107 *
1108 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1109 *
1110 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1111 * This macro may return either 0 or 1 if \p alg is not a supported
1112 * algorithm identifier or if it is not a symmetric cipher algorithm.
1113 */
1114#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1115 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1116 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1117
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001118/** The stream cipher mode of a stream cipher algorithm.
1119 *
1120 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001121 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001122 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001123#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001124
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001125/** The CTR stream cipher mode.
1126 *
1127 * CTR is a stream cipher which is built from a block cipher.
1128 * The underlying block cipher is determined by the key type.
1129 * For example, to use AES-128-CTR, use this algorithm with
1130 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1131 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001132#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001133
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001134/** The CFB stream cipher mode.
1135 *
1136 * The underlying block cipher is determined by the key type.
1137 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001138#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001139
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001140/** The OFB stream cipher mode.
1141 *
1142 * The underlying block cipher is determined by the key type.
1143 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001144#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001145
1146/** The XTS cipher mode.
1147 *
1148 * XTS is a cipher mode which is built from a block cipher. It requires at
1149 * least one full block of input, but beyond this minimum the input
1150 * does not need to be a whole number of blocks.
1151 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001152#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001153
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001154/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1155 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001156 * \warning ECB mode does not protect the confidentiality of the encrypted data
1157 * except in extremely narrow circumstances. It is recommended that applications
1158 * only use ECB if they need to construct an operating mode that the
1159 * implementation does not provide. Implementations are encouraged to provide
1160 * the modes that applications need in preference to supporting direct access
1161 * to ECB.
1162 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001163 * The underlying block cipher is determined by the key type.
1164 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001165 * This symmetric cipher mode can only be used with messages whose lengths are a
1166 * multiple of the block size of the chosen block cipher.
1167 *
1168 * ECB mode does not accept an initialization vector (IV). When using a
1169 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1170 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001171 */
1172#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1173
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001174/** The CBC block cipher chaining mode, with no padding.
1175 *
1176 * The underlying block cipher is determined by the key type.
1177 *
1178 * This symmetric cipher mode can only be used with messages whose lengths
1179 * are whole number of blocks for the chosen block cipher.
1180 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001181#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001182
1183/** The CBC block cipher chaining mode with PKCS#7 padding.
1184 *
1185 * The underlying block cipher is determined by the key type.
1186 *
1187 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1188 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001189#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001190
Gilles Peskine679693e2019-05-06 15:10:16 +02001191#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1192
1193/** Whether the specified algorithm is an AEAD mode on a block cipher.
1194 *
1195 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1196 *
1197 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1198 * a block cipher, 0 otherwise.
1199 * This macro may return either 0 or 1 if \p alg is not a supported
1200 * algorithm identifier.
1201 */
1202#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1203 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1204 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1205
Gilles Peskine9153ec02019-02-15 13:02:02 +01001206/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001207 *
1208 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001209 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001210#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001211
Mateusz Starzyk594215b2021-10-14 12:23:06 +02001212/** The CCM* cipher mode without authentication.
1213 *
1214 * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1215 * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1216 *
1217 * The underlying block cipher is determined by the key type.
1218 *
1219 * Currently only 13-byte long IV's are supported.
1220 */
1221#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t)0x04c01300)
1222
Gilles Peskine9153ec02019-02-15 13:02:02 +01001223/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001224 *
1225 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001226 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001227#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001228
1229/** The Chacha20-Poly1305 AEAD algorithm.
1230 *
1231 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001232 *
1233 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1234 * and should reject other sizes.
1235 *
1236 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001237 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001238#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001239
1240/* In the encoding of a AEAD algorithm, the bits corresponding to
1241 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1242 * The constants for default lengths follow this encoding.
1243 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001244#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1245#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001246
Steven Cooremand927ed72021-02-22 19:59:35 +01001247/* In the encoding of an AEAD algorithm, the bit corresponding to
1248 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001249 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1250 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001251 * same base class and having a tag length greater than or equal to the one
1252 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1253#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1254
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001255/** Macro to build a shortened AEAD algorithm.
1256 *
1257 * A shortened AEAD algorithm is similar to the corresponding AEAD
1258 * algorithm, but has an authentication tag that consists of fewer bytes.
1259 * Depending on the algorithm, the tag length may affect the calculation
1260 * of the ciphertext.
1261 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001262 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001263 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001264 * is true).
1265 * \param tag_length Desired length of the authentication tag in bytes.
1266 *
1267 * \return The corresponding AEAD algorithm with the specified
1268 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001269 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001270 * AEAD algorithm or if \p tag_length is not valid
1271 * for the specified AEAD algorithm.
1272 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001273#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001274 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1275 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001276 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1277 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1278
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001279/** Retrieve the tag length of a specified AEAD algorithm
1280 *
1281 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001282 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001283 * is true).
1284 *
1285 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001286 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001287 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001288 */
1289#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1290 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1291 PSA_AEAD_TAG_LENGTH_OFFSET )
1292
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001293/** Calculate the corresponding AEAD algorithm with the default tag length.
1294 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001295 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001296 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001297 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001298 * \return The corresponding AEAD algorithm with the default
1299 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001300 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001301#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001302 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001303 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1304 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1305 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001306 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001307#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1308 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1309 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001310 ref :
1311
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001312/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001313 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001314 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001315 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001316 * algorithm is equal to or larger then the minimum tag length specified by the
1317 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001318 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001319 * \note When setting the minimum required tag length to less than the
1320 * smallest tag length allowed by the base algorithm, this effectively
1321 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001322 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001323 * \param aead_alg An AEAD algorithm identifier (value of type
1324 * #psa_algorithm_t such that
1325 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1326 * \param min_tag_length Desired minimum length of the authentication tag in
1327 * bytes. This must be at least 1 and at most the largest
1328 * allowed tag length of the algorithm.
1329 *
1330 * \return The corresponding AEAD wildcard algorithm with the
1331 * specified minimum length.
1332 * \return Unspecified if \p aead_alg is not a supported
1333 * AEAD algorithm or if \p min_tag_length is less than 1
1334 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001335 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001336#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001337 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1338 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001339
Bence Szépkútia2945512020-12-03 21:40:17 +01001340#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001341/** RSA PKCS#1 v1.5 signature with hashing.
1342 *
1343 * This is the signature scheme defined by RFC 8017
1344 * (PKCS#1: RSA Cryptography Specifications) under the name
1345 * RSASSA-PKCS1-v1_5.
1346 *
1347 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1348 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001349 * This includes #PSA_ALG_ANY_HASH
1350 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001351 *
1352 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001353 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001354 * hash algorithm.
1355 */
1356#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1357 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1358/** Raw PKCS#1 v1.5 signature.
1359 *
1360 * The input to this algorithm is the DigestInfo structure used by
1361 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1362 * steps 3&ndash;6.
1363 */
1364#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1365#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1366 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1367
Bence Szépkútia2945512020-12-03 21:40:17 +01001368#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001369#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t)0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001370/** RSA PSS signature with hashing.
1371 *
1372 * This is the signature scheme defined by RFC 8017
1373 * (PKCS#1: RSA Cryptography Specifications) under the name
1374 * RSASSA-PSS, with the message generation function MGF1, and with
Tuvshinzaya Erdenekhuu44baacd2022-06-17 10:25:05 +01001375 * a salt length equal to the length of the hash, or the largest
1376 * possible salt length for the algorithm and key size if that is
1377 * smaller than the hash length. The specified hash algorithm is
1378 * used to hash the input message, to create the salted hash, and
1379 * for the mask generation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001380 *
1381 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1382 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001383 * This includes #PSA_ALG_ANY_HASH
1384 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001385 *
1386 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001387 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001388 * hash algorithm.
1389 */
1390#define PSA_ALG_RSA_PSS(hash_alg) \
1391 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001392
1393/** RSA PSS signature with hashing with relaxed verification.
1394 *
1395 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1396 * but allows an arbitrary salt length (including \c 0) when verifying a
1397 * signature.
1398 *
1399 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1400 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1401 * This includes #PSA_ALG_ANY_HASH
1402 * when specifying the algorithm in a usage policy.
1403 *
1404 * \return The corresponding RSA PSS signature algorithm.
1405 * \return Unspecified if \p hash_alg is not a supported
1406 * hash algorithm.
1407 */
1408#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1409 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1410
1411/** Whether the specified algorithm is RSA PSS with standard salt.
1412 *
1413 * \param alg An algorithm value or an algorithm policy wildcard.
1414 *
1415 * \return 1 if \p alg is of the form
1416 * #PSA_ALG_RSA_PSS(\c hash_alg),
1417 * where \c hash_alg is a hash algorithm or
1418 * #PSA_ALG_ANY_HASH. 0 otherwise.
1419 * This macro may return either 0 or 1 if \p alg is not
1420 * a supported algorithm identifier or policy.
1421 */
1422#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001423 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1424
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001425/** Whether the specified algorithm is RSA PSS with any salt.
1426 *
1427 * \param alg An algorithm value or an algorithm policy wildcard.
1428 *
1429 * \return 1 if \p alg is of the form
1430 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1431 * where \c hash_alg is a hash algorithm or
1432 * #PSA_ALG_ANY_HASH. 0 otherwise.
1433 * This macro may return either 0 or 1 if \p alg is not
1434 * a supported algorithm identifier or policy.
1435 */
1436#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1437 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1438
1439/** Whether the specified algorithm is RSA PSS.
1440 *
1441 * This includes any of the RSA PSS algorithm variants, regardless of the
1442 * constraints on salt length.
1443 *
1444 * \param alg An algorithm value or an algorithm policy wildcard.
1445 *
1446 * \return 1 if \p alg is of the form
1447 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1448 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1449 * where \c hash_alg is a hash algorithm or
1450 * #PSA_ALG_ANY_HASH. 0 otherwise.
1451 * This macro may return either 0 or 1 if \p alg is not
1452 * a supported algorithm identifier or policy.
1453 */
1454#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef6892de2021-10-08 16:28:32 +02001455 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1456 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001457
Bence Szépkútia2945512020-12-03 21:40:17 +01001458#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001459/** ECDSA signature with hashing.
1460 *
1461 * This is the ECDSA signature scheme defined by ANSI X9.62,
1462 * with a random per-message secret number (*k*).
1463 *
1464 * The representation of the signature as a byte string consists of
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001465 * the concatenation of the signature values *r* and *s*. Each of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001466 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1467 * of the base point of the curve in octets. Each value is represented
1468 * in big-endian order (most significant octet first).
1469 *
1470 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1471 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001472 * This includes #PSA_ALG_ANY_HASH
1473 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001474 *
1475 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001476 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001477 * hash algorithm.
1478 */
1479#define PSA_ALG_ECDSA(hash_alg) \
1480 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1481/** ECDSA signature without hashing.
1482 *
1483 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1484 * without specifying a hash algorithm. This algorithm may only be
1485 * used to sign or verify a sequence of bytes that should be an
1486 * already-calculated hash. Note that the input is padded with
1487 * zeros on the left or truncated on the left as required to fit
1488 * the curve size.
1489 */
1490#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001491#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001492/** Deterministic ECDSA signature with hashing.
1493 *
1494 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1495 *
1496 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1497 *
1498 * Note that when this algorithm is used for verification, signatures
1499 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1500 * same private key are accepted. In other words,
1501 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1502 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1503 *
1504 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1505 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001506 * This includes #PSA_ALG_ANY_HASH
1507 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001508 *
1509 * \return The corresponding deterministic ECDSA signature
1510 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001511 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001512 * hash algorithm.
1513 */
1514#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1515 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001516#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001517#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001518 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001519 PSA_ALG_ECDSA_BASE)
1520#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001521 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001522#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1523 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1524#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1525 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1526
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001527/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1528 * using standard parameters.
1529 *
1530 * Contexts are not supported in the current version of this specification
1531 * because there is no suitable signature interface that can take the
1532 * context as a parameter. A future version of this specification may add
1533 * suitable functions and extend this algorithm to support contexts.
1534 *
1535 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1536 * In this specification, the following curves are supported:
1537 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1538 * in RFC 8032.
1539 * The curve is Edwards25519.
1540 * The hash function used internally is SHA-512.
1541 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1542 * in RFC 8032.
1543 * The curve is Edwards448.
1544 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001545 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001546 *
1547 * This algorithm can be used with psa_sign_message() and
1548 * psa_verify_message(). Since there is no prehashing, it cannot be used
1549 * with psa_sign_hash() or psa_verify_hash().
1550 *
1551 * The signature format is the concatenation of R and S as defined by
1552 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1553 * string for Ed448).
1554 */
1555#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1556
1557#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1558#define PSA_ALG_IS_HASH_EDDSA(alg) \
1559 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1560
1561/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001562 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001563 *
1564 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1565 *
1566 * This algorithm is Ed25519 as specified in RFC 8032.
1567 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001568 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001569 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001570 *
1571 * This is a hash-and-sign algorithm: to calculate a signature,
1572 * you can either:
1573 * - call psa_sign_message() on the message;
1574 * - or calculate the SHA-512 hash of the message
1575 * with psa_hash_compute()
1576 * or with a multi-part hash operation started with psa_hash_setup(),
1577 * using the hash algorithm #PSA_ALG_SHA_512,
1578 * then sign the calculated hash with psa_sign_hash().
1579 * Verifying a signature is similar, using psa_verify_message() or
1580 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001581 */
1582#define PSA_ALG_ED25519PH \
1583 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1584
1585/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1586 * using SHAKE256 and the Edwards448 curve.
1587 *
1588 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1589 *
1590 * This algorithm is Ed448 as specified in RFC 8032.
1591 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001592 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001593 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001594 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001595 *
1596 * This is a hash-and-sign algorithm: to calculate a signature,
1597 * you can either:
1598 * - call psa_sign_message() on the message;
1599 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1600 * with psa_hash_compute()
1601 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001602 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001603 * then sign the calculated hash with psa_sign_hash().
1604 * Verifying a signature is similar, using psa_verify_message() or
1605 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001606 */
1607#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001608 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001609
Gilles Peskine6d400852021-02-24 21:39:52 +01001610/* Default definition, to be overridden if the library is extended with
1611 * more hash-and-sign algorithms that we want to keep out of this header
1612 * file. */
1613#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1614
Gilles Peskinef2fe31a2021-09-22 16:42:02 +02001615/** Whether the specified algorithm is a signature algorithm that can be used
1616 * with psa_sign_hash() and psa_verify_hash().
1617 *
1618 * This encompasses all strict hash-and-sign algorithms categorized by
1619 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1620 * paradigm more loosely:
1621 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1622 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1623 *
1624 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1625 *
1626 * \return 1 if alg is a signature algorithm that can be used to sign a
1627 * hash. 0 if alg is a signature algorithm that can only be used
1628 * to sign a message. 0 if alg is not a signature algorithm.
1629 * This macro can return either 0 or 1 if alg is not a
1630 * supported algorithm identifier.
1631 */
1632#define PSA_ALG_IS_SIGN_HASH(alg) \
1633 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1634 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1635 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1636
1637/** Whether the specified algorithm is a signature algorithm that can be used
1638 * with psa_sign_message() and psa_verify_message().
1639 *
1640 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1641 *
1642 * \return 1 if alg is a signature algorithm that can be used to sign a
1643 * message. 0 if \p alg is a signature algorithm that can only be used
1644 * to sign an already-calculated hash. 0 if \p alg is not a signature
1645 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1646 * supported algorithm identifier.
1647 */
1648#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
1649 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA )
1650
Gilles Peskined35b4892019-01-14 16:02:15 +01001651/** Whether the specified algorithm is a hash-and-sign algorithm.
1652 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001653 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1654 * structured in two parts: first the calculation of a hash in a way that
1655 * does not depend on the key, then the calculation of a signature from the
Gilles Peskinef7b41372021-09-22 16:15:05 +02001656 * hash value and the key. Hash-and-sign algorithms encode the hash
1657 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1658 * to extract this algorithm.
1659 *
1660 * Thus, for a hash-and-sign algorithm,
1661 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1662 * ```
1663 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1664 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1665 * ```
1666 * Most usefully, separating the hash from the signature allows the hash
1667 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1668 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1669 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001670 *
1671 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1672 *
1673 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1674 * This macro may return either 0 or 1 if \p alg is not a supported
1675 * algorithm identifier.
1676 */
1677#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskinef7b41372021-09-22 16:15:05 +02001678 (PSA_ALG_IS_SIGN_HASH(alg) && \
1679 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001680
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001681/** Get the hash used by a hash-and-sign signature algorithm.
1682 *
1683 * A hash-and-sign algorithm is a signature algorithm which is
1684 * composed of two phases: first a hashing phase which does not use
1685 * the key and produces a hash of the input message, then a signing
1686 * phase which only uses the hash and the key and not the message
1687 * itself.
1688 *
1689 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1690 * #PSA_ALG_IS_SIGN(\p alg) is true).
1691 *
1692 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1693 * algorithm.
1694 * \return 0 if \p alg is a signature algorithm that does not
1695 * follow the hash-and-sign structure.
1696 * \return Unspecified if \p alg is not a signature algorithm or
1697 * if it is not supported by the implementation.
1698 */
1699#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001700 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001701 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1702 0)
1703
1704/** RSA PKCS#1 v1.5 encryption.
1705 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001706#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001707
Bence Szépkútia2945512020-12-03 21:40:17 +01001708#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001709/** RSA OAEP encryption.
1710 *
1711 * This is the encryption scheme defined by RFC 8017
1712 * (PKCS#1: RSA Cryptography Specifications) under the name
1713 * RSAES-OAEP, with the message generation function MGF1.
1714 *
1715 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1716 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1717 * for MGF1.
1718 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001719 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001720 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001721 * hash algorithm.
1722 */
1723#define PSA_ALG_RSA_OAEP(hash_alg) \
1724 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1725#define PSA_ALG_IS_RSA_OAEP(alg) \
1726 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1727#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1728 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1729 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1730 0)
1731
Bence Szépkútia2945512020-12-03 21:40:17 +01001732#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001733/** Macro to build an HKDF algorithm.
1734 *
1735 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1736 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001737 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001738 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001739 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001740 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1741 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1742 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1743 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001744 * starting to generate output.
1745 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001746 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1747 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1748 *
1749 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001750 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001751 * hash algorithm.
1752 */
1753#define PSA_ALG_HKDF(hash_alg) \
1754 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1755/** Whether the specified algorithm is an HKDF algorithm.
1756 *
1757 * HKDF is a family of key derivation algorithms that are based on a hash
1758 * function and the HMAC construction.
1759 *
1760 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1761 *
1762 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1763 * This macro may return either 0 or 1 if \c alg is not a supported
1764 * key derivation algorithm identifier.
1765 */
1766#define PSA_ALG_IS_HKDF(alg) \
1767 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1768#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1769 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1770
Bence Szépkútia2945512020-12-03 21:40:17 +01001771#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001772/** Macro to build a TLS-1.2 PRF algorithm.
1773 *
1774 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1775 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1776 * used with either SHA-256 or SHA-384.
1777 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001778 * This key derivation algorithm uses the following inputs, which must be
1779 * passed in the order given here:
1780 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001781 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1782 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001783 *
1784 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001785 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001786 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001787 *
1788 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1789 * TLS 1.2 PRF using HMAC-SHA-256.
1790 *
1791 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1792 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1793 *
1794 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001795 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001796 * hash algorithm.
1797 */
1798#define PSA_ALG_TLS12_PRF(hash_alg) \
1799 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1800
1801/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1802 *
1803 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1804 *
1805 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1806 * This macro may return either 0 or 1 if \c alg is not a supported
1807 * key derivation algorithm identifier.
1808 */
1809#define PSA_ALG_IS_TLS12_PRF(alg) \
1810 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1811#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1812 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1813
Bence Szépkútia2945512020-12-03 21:40:17 +01001814#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001815/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1816 *
1817 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1818 * from the PreSharedKey (PSK) through the application of padding
1819 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1820 * The latter is based on HMAC and can be used with either SHA-256
1821 * or SHA-384.
1822 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001823 * This key derivation algorithm uses the following inputs, which must be
1824 * passed in the order given here:
1825 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001826 * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
1827 * computation of the premaster secret. This input is optional;
1828 * if omitted, it defaults to a string of null bytes with the same length
1829 * as the secret (PSK) input.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001830 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1831 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001832 *
1833 * For the application to TLS-1.2, the seed (which is
1834 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1835 * ClientHello.Random + ServerHello.Random,
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001836 * the label is "master secret" or "extended master secret" and
1837 * the other secret depends on the key exchange specified in the cipher suite:
1838 * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
1839 * PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
1840 * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
1841 * (RFC 5489, Section 2), the other secret should be the output of the
1842 * PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
1843 * The recommended way to pass this input is to use a key derivation
1844 * algorithm constructed as
1845 * PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
1846 * and to call psa_key_derivation_key_agreement(). Alternatively,
1847 * this input may be an output of `psa_raw_key_agreement()` passed with
1848 * psa_key_derivation_input_bytes(), or an equivalent input passed with
1849 * psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
1850 * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
1851 * should be the 48-byte client challenge (the PreMasterSecret of
1852 * (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
1853 * a 46-byte random string chosen by the client. On the server, this is
1854 * typically an output of psa_asymmetric_decrypt() using
1855 * PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
1856 * with `psa_key_derivation_input_bytes()`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001857 *
1858 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1859 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1860 *
1861 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1862 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1863 *
1864 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001865 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001866 * hash algorithm.
1867 */
1868#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1869 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1870
1871/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1872 *
1873 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1874 *
1875 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1876 * This macro may return either 0 or 1 if \c alg is not a supported
1877 * key derivation algorithm identifier.
1878 */
1879#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1880 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1881#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1882 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1883
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001884/* This flag indicates whether the key derivation algorithm is suitable for
1885 * use on low-entropy secrets such as password - these algorithms are also
1886 * known as key stretching or password hashing schemes. These are also the
1887 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001888 *
1889 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001890 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001891#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001892
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001893#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001894/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001895 *
1896 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001897 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
1898 * HMAC with the specified hash.
1899 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2
1900 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001901 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001902 * This key derivation algorithm uses the following inputs, which must be
1903 * provided in the following order:
1904 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001905 * This input step must be used exactly once.
1906 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1907 * This input step must be used one or more times; if used several times, the
1908 * inputs will be concatenated. This can be used to build the final salt
1909 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001910 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001911 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001912 *
1913 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1914 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1915 *
1916 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
1917 * \return Unspecified if \p hash_alg is not a supported
1918 * hash algorithm.
1919 */
1920#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
1921 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1922
1923/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
1924 *
1925 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1926 *
1927 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
1928 * This macro may return either 0 or 1 if \c alg is not a supported
1929 * key derivation algorithm identifier.
1930 */
1931#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
1932 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001933
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001934/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
1935 *
1936 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
1937 * This macro specifies the PBKDF2 algorithm constructed using the
1938 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
1939 *
1940 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02001941 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001942 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001943#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001944
Bence Szépkútia2945512020-12-03 21:40:17 +01001945#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1946#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001947
Gilles Peskine6843c292019-01-18 16:44:49 +01001948/** Macro to build a combined algorithm that chains a key agreement with
1949 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001950 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001951 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1952 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1953 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1954 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001955 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001956 * \return The corresponding key agreement and derivation
1957 * algorithm.
1958 * \return Unspecified if \p ka_alg is not a supported
1959 * key agreement algorithm or \p kdf_alg is not a
1960 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001961 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001962#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1963 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001964
1965#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1966 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1967
Gilles Peskine6843c292019-01-18 16:44:49 +01001968#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1969 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001970
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001971/** Whether the specified algorithm is a raw key agreement algorithm.
1972 *
1973 * A raw key agreement algorithm is one that does not specify
1974 * a key derivation function.
1975 * Usually, raw key agreement algorithms are constructed directly with
1976 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001977 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001978 *
1979 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1980 *
1981 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1982 * This macro may return either 0 or 1 if \p alg is not a supported
1983 * algorithm identifier.
1984 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001985#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001986 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1987 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001988
1989#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1990 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1991
1992/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001993 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001994 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001995 * `g^{ab}` in big-endian format.
1996 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1997 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001998 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001999#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002000
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002001/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
2002 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002003 * This includes the raw finite field Diffie-Hellman algorithm as well as
2004 * finite-field Diffie-Hellman followed by any supporter key derivation
2005 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002006 *
2007 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2008 *
2009 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
2010 * This macro may return either 0 or 1 if \c alg is not a supported
2011 * key agreement algorithm identifier.
2012 */
2013#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002014 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002015
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002016/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
2017 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002018 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002019 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
2020 * `m` is the bit size associated with the curve, i.e. the bit size of the
2021 * order of the curve's coordinate field. When `m` is not a multiple of 8,
2022 * the byte containing the most significant bit of the shared secret
2023 * is padded with zero bits. The byte order is either little-endian
2024 * or big-endian depending on the curve type.
2025 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01002026 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002027 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2028 * in little-endian byte order.
2029 * The bit size is 448 for Curve448 and 255 for Curve25519.
2030 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002031 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002032 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2033 * in big-endian byte order.
2034 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2035 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002036 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002037 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2038 * in big-endian byte order.
2039 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002040 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002041#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002042
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002043/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2044 * algorithm.
2045 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002046 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2047 * elliptic curve Diffie-Hellman followed by any supporter key derivation
2048 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002049 *
2050 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2051 *
2052 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2053 * 0 otherwise.
2054 * This macro may return either 0 or 1 if \c alg is not a supported
2055 * key agreement algorithm identifier.
2056 */
2057#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002058 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002059
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002060/** Whether the specified algorithm encoding is a wildcard.
2061 *
2062 * Wildcard values may only be used to set the usage algorithm field in
2063 * a policy, not to perform an operation.
2064 *
2065 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2066 *
2067 * \return 1 if \c alg is a wildcard algorithm encoding.
2068 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2069 * an operation).
2070 * \return This macro may return either 0 or 1 if \c alg is not a supported
2071 * algorithm identifier.
2072 */
Steven Cooremand927ed72021-02-22 19:59:35 +01002073#define PSA_ALG_IS_WILDCARD(alg) \
2074 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
2075 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
2076 PSA_ALG_IS_MAC(alg) ? \
2077 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2078 PSA_ALG_IS_AEAD(alg) ? \
2079 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01002080 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002081
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002082/** Get the hash used by a composite algorithm.
2083 *
2084 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2085 *
2086 * \return The underlying hash algorithm if alg is a composite algorithm that
2087 * uses a hash algorithm.
2088 *
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002089 * \return \c 0 if alg is not a composite algorithm that uses a hash.
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002090 */
2091#define PSA_ALG_GET_HASH(alg) \
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002092 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t)0) : 0x02000000 | ((alg) & 0x000000ff))
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002093
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002094/**@}*/
2095
2096/** \defgroup key_lifetimes Key lifetimes
2097 * @{
2098 */
2099
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002100/** The default lifetime for volatile keys.
2101 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02002102 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002103 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002104 *
2105 * A key with this lifetime is typically stored in the RAM area of the
2106 * PSA Crypto subsystem. However this is an implementation choice.
2107 * If an implementation stores data about the key in a non-volatile memory,
2108 * it must release all the resources associated with the key and erase the
2109 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002110 */
2111#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
2112
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002113/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002114 *
2115 * A persistent key remains in storage until it is explicitly destroyed or
2116 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02002117 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002118 * provide their own mechanism (for example to perform a factory reset,
2119 * to prepare for device refurbishment, or to uninstall an application).
2120 *
2121 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02002122 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002123 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002124 */
2125#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
2126
Gilles Peskineaff11812020-05-04 19:03:10 +02002127/** The persistence level of volatile keys.
2128 *
2129 * See ::psa_key_persistence_t for more information.
2130 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002131#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02002132
2133/** The default persistence level for persistent keys.
2134 *
2135 * See ::psa_key_persistence_t for more information.
2136 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002137#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002138
2139/** A persistence level indicating that a key is never destroyed.
2140 *
2141 * See ::psa_key_persistence_t for more information.
2142 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002143#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002144
2145#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002146 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002147
2148#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002149 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002150
2151/** Whether a key lifetime indicates that the key is volatile.
2152 *
2153 * A volatile key is automatically destroyed by the implementation when
2154 * the application instance terminates. In particular, a volatile key
2155 * is automatically destroyed on a power reset of the device.
2156 *
2157 * A key that is not volatile is persistent. Persistent keys are
2158 * preserved until the application explicitly destroys them or until an
2159 * implementation-specific device management event occurs (for example,
2160 * a factory reset).
2161 *
2162 * \param lifetime The lifetime value to query (value of type
2163 * ::psa_key_lifetime_t).
2164 *
2165 * \return \c 1 if the key is volatile, otherwise \c 0.
2166 */
2167#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2168 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002169 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002170
Gilles Peskined133bb22021-04-21 20:05:59 +02002171/** Whether a key lifetime indicates that the key is read-only.
2172 *
2173 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2174 * They must be created through platform-specific means that bypass the API.
2175 *
2176 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine91466c82021-06-07 23:21:50 +02002177 * consider a platform with multiple levels of privilege, where a
2178 * low-privilege application can use a key but is not allowed to destroy
2179 * it, and the platform exposes the key to the application with a read-only
2180 * lifetime. High-privilege code can destroy the key even though the
2181 * application sees the key as read-only.
Gilles Peskined133bb22021-04-21 20:05:59 +02002182 *
2183 * \param lifetime The lifetime value to query (value of type
2184 * ::psa_key_lifetime_t).
2185 *
2186 * \return \c 1 if the key is read-only, otherwise \c 0.
2187 */
2188#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2189 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2190 PSA_KEY_PERSISTENCE_READ_ONLY)
2191
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002192/** Construct a lifetime from a persistence level and a location.
2193 *
2194 * \param persistence The persistence level
2195 * (value of type ::psa_key_persistence_t).
2196 * \param location The location indicator
2197 * (value of type ::psa_key_location_t).
2198 *
2199 * \return The constructed lifetime value.
2200 */
2201#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2202 ((location) << 8 | (persistence))
2203
Gilles Peskineaff11812020-05-04 19:03:10 +02002204/** The local storage area for persistent keys.
2205 *
2206 * This storage area is available on all systems that can store persistent
2207 * keys without delegating the storage to a third-party cryptoprocessor.
2208 *
2209 * See ::psa_key_location_t for more information.
2210 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002211#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002212
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002213#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002214
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002215/** The null key identifier.
2216 */
2217#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002218/** The minimum value for a key identifier chosen by the application.
2219 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002220#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002221/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002222 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002223#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002224/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002225 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002226#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002227/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002228 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002229#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002230
Ronald Cron7424f0d2020-09-14 16:17:41 +02002231
2232#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2233
2234#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2235#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2236#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2237
2238/** Utility to initialize a key identifier at runtime.
2239 *
2240 * \param unused Unused parameter.
2241 * \param key_id Identifier of the key.
2242 */
2243static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2244 unsigned int unused, psa_key_id_t key_id )
2245{
2246 (void)unused;
2247
2248 return( key_id );
2249}
2250
2251/** Compare two key identifiers.
2252 *
2253 * \param id1 First key identifier.
2254 * \param id2 Second key identifier.
2255 *
2256 * \return Non-zero if the two key identifier are equal, zero otherwise.
2257 */
2258static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2259 mbedtls_svc_key_id_t id2 )
2260{
2261 return( id1 == id2 );
2262}
2263
Ronald Cronc4d1b512020-07-31 11:26:37 +02002264/** Check whether a key identifier is null.
2265 *
2266 * \param key Key identifier.
2267 *
2268 * \return Non-zero if the key identifier is null, zero otherwise.
2269 */
2270static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2271{
2272 return( key == 0 );
2273}
2274
Ronald Cron7424f0d2020-09-14 16:17:41 +02002275#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2276
2277#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
Antonio de Angelis67294742022-05-05 14:11:32 +01002278#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).MBEDTLS_PRIVATE(key_id) )
2279#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).MBEDTLS_PRIVATE(owner) )
Ronald Cron7424f0d2020-09-14 16:17:41 +02002280
2281/** Utility to initialize a key identifier at runtime.
2282 *
2283 * \param owner_id Identifier of the key owner.
2284 * \param key_id Identifier of the key.
2285 */
2286static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2287 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2288{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002289 return( (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2290 .MBEDTLS_PRIVATE(owner) = owner_id } );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002291}
2292
2293/** Compare two key identifiers.
2294 *
2295 * \param id1 First key identifier.
2296 * \param id2 Second key identifier.
2297 *
2298 * \return Non-zero if the two key identifier are equal, zero otherwise.
2299 */
2300static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2301 mbedtls_svc_key_id_t id2 )
2302{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002303 return( ( id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id) ) &&
2304 mbedtls_key_owner_id_equal( id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner) ) );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002305}
2306
Ronald Cronc4d1b512020-07-31 11:26:37 +02002307/** Check whether a key identifier is null.
2308 *
2309 * \param key Key identifier.
2310 *
2311 * \return Non-zero if the key identifier is null, zero otherwise.
2312 */
2313static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2314{
Gilles Peskine52bb83e2021-05-28 12:59:49 +02002315 return( key.MBEDTLS_PRIVATE(key_id) == 0 );
Ronald Cronc4d1b512020-07-31 11:26:37 +02002316}
2317
Ronald Cron7424f0d2020-09-14 16:17:41 +02002318#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002319
2320/**@}*/
2321
2322/** \defgroup policy Key policies
2323 * @{
2324 */
2325
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002326/** Whether the key may be exported.
2327 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002328 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002329 * regardless of the value of this permission flag.
2330 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002331 * If a key does not have export permission, implementations shall not
2332 * allow the key to be exported in plain form from the cryptoprocessor,
2333 * whether through psa_export_key() or through a proprietary interface.
2334 * The key may however be exportable in a wrapped form, i.e. in a form
2335 * where it is encrypted by another key.
2336 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002337#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2338
2339/** Whether the key may be copied.
2340 *
2341 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002342 * with the same policy or a more restrictive policy.
2343 *
2344 * For lifetimes for which the key is located in a secure element which
2345 * enforce the non-exportability of keys, copying a key outside the secure
2346 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2347 * Copying the key inside the secure element is permitted with just
2348 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2349 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2350 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2351 * is sufficient to permit the copy.
2352 */
2353#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2354
2355/** Whether the key may be used to encrypt a message.
2356 *
2357 * This flag allows the key to be used for a symmetric encryption operation,
2358 * for an AEAD encryption-and-authentication operation,
2359 * or for an asymmetric encryption operation,
2360 * if otherwise permitted by the key's type and policy.
2361 *
2362 * For a key pair, this concerns the public key.
2363 */
2364#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2365
2366/** Whether the key may be used to decrypt a message.
2367 *
2368 * This flag allows the key to be used for a symmetric decryption operation,
2369 * for an AEAD decryption-and-verification operation,
2370 * or for an asymmetric decryption operation,
2371 * if otherwise permitted by the key's type and policy.
2372 *
2373 * For a key pair, this concerns the private key.
2374 */
2375#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2376
2377/** Whether the key may be used to sign a message.
2378 *
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002379 * This flag allows the key to be used for a MAC calculation operation or for
2380 * an asymmetric message signature operation, if otherwise permitted by the
2381 * key’s type and policy.
2382 *
2383 * For a key pair, this concerns the private key.
2384 */
2385#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
2386
2387/** Whether the key may be used to verify a message.
2388 *
2389 * This flag allows the key to be used for a MAC verification operation or for
2390 * an asymmetric message signature verification operation, if otherwise
2391 * permitted by the key’s type and policy.
2392 *
2393 * For a key pair, this concerns the public key.
2394 */
2395#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
2396
2397/** Whether the key may be used to sign a message.
2398 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002399 * This flag allows the key to be used for a MAC calculation operation
2400 * or for an asymmetric signature operation,
2401 * if otherwise permitted by the key's type and policy.
2402 *
2403 * For a key pair, this concerns the private key.
2404 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002405#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002406
2407/** Whether the key may be used to verify a message signature.
2408 *
2409 * This flag allows the key to be used for a MAC verification operation
2410 * or for an asymmetric signature verification operation,
2411 * if otherwise permitted by by the key's type and policy.
2412 *
2413 * For a key pair, this concerns the public key.
2414 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002415#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002416
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002417/** Whether the key may be used to derive other keys or produce a password
2418 * hash.
Andrew Thoelke52d18cd2021-06-25 11:03:57 +01002419 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002420 * This flag allows the key to be used for a key derivation operation or for
2421 * a key agreement operation, if otherwise permitted by by the key's type and
2422 * policy.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002423 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002424 * If this flag is present on all keys used in calls to
2425 * psa_key_derivation_input_key() for a key derivation operation, then it
2426 * permits calling psa_key_derivation_output_bytes() or
2427 * psa_key_derivation_output_key() at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002428 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002429#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002430
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002431/** Whether the key may be used to verify the result of a key derivation,
2432 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002433 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002434 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002435 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002436 * This flag allows the key to be used in a key derivation operation, if
2437 * otherwise permitted by by the key's type and policy.
2438 *
2439 * If this flag is present on all keys used in calls to
2440 * psa_key_derivation_input_key() for a key derivation operation, then it
2441 * permits calling psa_key_derivation_verify_bytes() or
2442 * psa_key_derivation_verify_key() at the end of the operation.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002443 */
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002444#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002445
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002446/**@}*/
2447
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002448/** \defgroup derivation Key derivation
2449 * @{
2450 */
2451
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002452/** A secret input for key derivation.
2453 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002454 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2455 * (passed to psa_key_derivation_input_key())
2456 * or the shared secret resulting from a key agreement
2457 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002458 *
2459 * The secret can also be a direct input (passed to
2460 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002461 * may not be used to derive keys: the operation will only allow
2462 * psa_key_derivation_output_bytes(),
2463 * psa_key_derivation_verify_bytes(), or
2464 * psa_key_derivation_verify_key(), but not
2465 * psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002466 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002467#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002468
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002469/** A low-entropy secret input for password hashing / key stretching.
2470 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002471 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2472 * psa_key_derivation_input_key()) or a direct input (passed to
2473 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2474 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2475 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002476 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002477 * The secret can also be a direct input (passed to
2478 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002479 * may not be used to derive keys: the operation will only allow
2480 * psa_key_derivation_output_bytes(),
2481 * psa_key_derivation_verify_bytes(), or
2482 * psa_key_derivation_verify_key(), but not
2483 * psa_key_derivation_output_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002484 */
2485#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102)
2486
Przemek Stekiel37c81c42022-04-07 13:38:53 +02002487/** A high-entropy additional secret input for key derivation.
2488 *
2489 * This is typically the shared secret resulting from a key agreement obtained
2490 * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
2491 * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
2492 * a direct input passed to `psa_key_derivation_input_bytes()`.
2493 */
2494#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
2495 ((psa_key_derivation_step_t)0x0103)
2496
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002497/** A label for key derivation.
2498 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002499 * This should be a direct input.
2500 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002501 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002502#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002503
2504/** A salt for key derivation.
2505 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002506 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002507 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2508 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002509 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002510#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002511
2512/** An information string for key derivation.
2513 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002514 * This should be a direct input.
2515 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002516 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002517#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002518
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002519/** A seed for key derivation.
2520 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002521 * This should be a direct input.
2522 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002523 */
2524#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2525
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002526/** A cost parameter for password hashing / key stretching.
2527 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002528 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002529 */
2530#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205)
2531
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002532/**@}*/
2533
Bence Szépkútib639d432021-04-21 10:33:54 +02002534/** \defgroup helper_macros Helper macros
2535 * @{
2536 */
2537
2538/* Helper macros */
2539
2540/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2541 * regardless of the tag length they encode.
2542 *
2543 * \param aead_alg_1 An AEAD algorithm identifier.
2544 * \param aead_alg_2 An AEAD algorithm identifier.
2545 *
2546 * \return 1 if both identifiers refer to the same AEAD algorithm,
2547 * 0 otherwise.
2548 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2549 * a supported AEAD algorithm.
2550 */
2551#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2552 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2553 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2554
2555/**@}*/
2556
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002557#endif /* PSA_CRYPTO_VALUES_H */