blob: 9a0ff46148897ee50c1ecdfbc126bfe0cf0037ef [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
Gilles Peskine79733992022-06-20 18:41:20 +020015 * Note that many of the constants defined in this file are embedded in
16 * the persistent key store, as part of key metadata (including usage
17 * policies). As a consequence, they must not be changed (unless the storage
18 * format version changes).
19 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +010020 * This header file only defines preprocessor macros.
21 */
22/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020023 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010024 * SPDX-License-Identifier: Apache-2.0
25 *
26 * Licensed under the Apache License, Version 2.0 (the "License"); you may
27 * not use this file except in compliance with the License.
28 * You may obtain a copy of the License at
29 *
30 * http://www.apache.org/licenses/LICENSE-2.0
31 *
32 * Unless required by applicable law or agreed to in writing, software
33 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
34 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
35 * See the License for the specific language governing permissions and
36 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010037 */
38
39#ifndef PSA_CRYPTO_VALUES_H
40#define PSA_CRYPTO_VALUES_H
Mateusz Starzyk363eb292021-05-19 17:32:44 +020041#include "mbedtls/private_access.h"
Gilles Peskinef3b731e2018-12-12 13:38:31 +010042
43/** \defgroup error Error codes
44 * @{
45 */
46
David Saadab4ecc272019-02-14 13:48:10 +020047/* PSA error codes */
48
Gilles Peskine79733992022-06-20 18:41:20 +020049/* Error codes are standardized across PSA domains (framework, crypto, storage,
Gilles Peskine955993c2022-06-29 14:37:17 +020050 * etc.). Do not change the values in this section or even the expansions
51 * of each macro: it must be possible to `#include` both this header
52 * and some other PSA component's headers in the same C source,
53 * which will lead to duplicate definitions of the `PSA_SUCCESS` and
54 * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
55 * to the same sequence of tokens.
56 *
57 * If you must add a new
Gilles Peskine79733992022-06-20 18:41:20 +020058 * value, check with the Arm PSA framework group to pick one that other
59 * domains aren't already using. */
60
Gilles Peskine45873ce2023-01-04 19:50:27 +010061/* Tell uncrustify not to touch the constant definitions, otherwise
62 * it might change the spacing to something that is not PSA-compliant
63 * (e.g. adding a space after casts).
64 *
65 * *INDENT-OFF*
66 */
67
Gilles Peskinef3b731e2018-12-12 13:38:31 +010068/** The action was completed successfully. */
69#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010070
71/** An error occurred that does not correspond to any defined
72 * failure cause.
73 *
74 * Implementations may use this error code if none of the other standard
75 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020076#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010077
78/** The requested operation or a parameter is not supported
79 * by this implementation.
80 *
81 * Implementations should return this error code when an enumeration
82 * parameter such as a key type, algorithm, etc. is not recognized.
83 * If a combination of parameters is recognized and identified as
84 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
87/** The requested action is denied by a policy.
88 *
89 * Implementations should return this error code when the parameters
90 * are recognized as valid and supported, and a policy explicitly
91 * denies the requested operation.
92 *
93 * If a subset of the parameters of a function call identify a
94 * forbidden operation, and another subset of the parameters are
95 * not valid or not supported, it is unspecified whether the function
96 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
97 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020098#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010099
100/** An output buffer is too small.
101 *
102 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
103 * description to determine a sufficient buffer size.
104 *
105 * Implementations should preferably return this error code only
106 * in cases when performing the operation with a larger output
107 * buffer would succeed. However implementations may return this
108 * error if a function has invalid or unsupported parameters in addition
109 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +0200110#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100111
David Saadab4ecc272019-02-14 13:48:10 +0200112/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100113 *
David Saadab4ecc272019-02-14 13:48:10 +0200114 * Implementations should return this error, when attempting
115 * to write an item (like a key) that already exists. */
116#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100117
David Saadab4ecc272019-02-14 13:48:10 +0200118/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100119 *
David Saadab4ecc272019-02-14 13:48:10 +0200120 * Implementations should return this error, if a requested item (like
121 * a key) does not exist. */
122#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123
124/** The requested action cannot be performed in the current state.
125 *
126 * Multipart operations return this error when one of the
127 * functions is called out of sequence. Refer to the function
128 * descriptions for permitted sequencing of functions.
129 *
130 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100131 * that a key either exists or not,
132 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100133 * as applicable.
134 *
135 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200136 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100137 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200138#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100139
140/** The parameters passed to the function are invalid.
141 *
142 * Implementations may return this error any time a parameter or
143 * combination of parameters are recognized as invalid.
144 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100145 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200146 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100147 * instead.
148 */
David Saadab4ecc272019-02-14 13:48:10 +0200149#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100150
151/** There is not enough runtime memory.
152 *
153 * If the action is carried out across multiple security realms, this
154 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200155#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100156
157/** There is not enough persistent storage.
158 *
159 * Functions that modify the key storage return this error code if
160 * there is insufficient storage space on the host media. In addition,
161 * many functions that do not otherwise access storage may return this
162 * error code if the implementation requires a mandatory log entry for
163 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200164#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100165
166/** There was a communication failure inside the implementation.
167 *
168 * This can indicate a communication failure between the application
169 * and an external cryptoprocessor or between the cryptoprocessor and
170 * an external volatile or persistent memory. A communication failure
171 * may be transient or permanent depending on the cause.
172 *
173 * \warning If a function returns this error, it is undetermined
174 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200175 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
177 * if the requested action was completed successfully in an external
178 * cryptoprocessor but there was a breakdown of communication before
179 * the cryptoprocessor could report the status to the application.
180 */
David Saadab4ecc272019-02-14 13:48:10 +0200181#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100182
183/** There was a storage failure that may have led to data loss.
184 *
185 * This error indicates that some persistent storage is corrupted.
186 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200187 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188 * between the cryptoprocessor and its external storage (use
189 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
190 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
191 *
192 * Note that a storage failure does not indicate that any data that was
193 * previously read is invalid. However this previously read data may no
194 * longer be readable from storage.
195 *
196 * When a storage failure occurs, it is no longer possible to ensure
197 * the global integrity of the keystore. Depending on the global
198 * integrity guarantees offered by the implementation, access to other
199 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100200 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100201 *
202 * Implementations should only use this error code to report a
203 * permanent storage corruption. However application writers should
204 * keep in mind that transient errors while reading the storage may be
205 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200206#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100207
208/** A hardware failure was detected.
209 *
210 * A hardware failure may be transient or permanent depending on the
211 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200212#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100213
214/** A tampering attempt was detected.
215 *
216 * If an application receives this error code, there is no guarantee
217 * that previously accessed or computed data was correct and remains
218 * confidential. Applications should not perform any security function
219 * and should enter a safe failure state.
220 *
221 * Implementations may return this error code if they detect an invalid
222 * state that cannot happen during normal operation and that indicates
223 * that the implementation's security guarantees no longer hold. Depending
224 * on the implementation architecture and on its security and safety goals,
225 * the implementation may forcibly terminate the application.
226 *
227 * This error code is intended as a last resort when a security breach
228 * is detected and it is unsure whether the keystore data is still
229 * protected. Implementations shall only return this error code
230 * to report an alarm from a tampering detector, to indicate that
231 * the confidentiality of stored data can no longer be guaranteed,
232 * or to indicate that the integrity of previously returned data is now
233 * considered compromised. Implementations shall not use this error code
234 * to indicate a hardware failure that merely makes it impossible to
235 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
236 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
237 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
238 * instead).
239 *
240 * This error indicates an attack against the application. Implementations
241 * shall not return this error code as a consequence of the behavior of
242 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200243#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100244
245/** There is not enough entropy to generate random data needed
246 * for the requested action.
247 *
248 * This error indicates a failure of a hardware random generator.
249 * Application writers should note that this error can be returned not
250 * only by functions whose purpose is to generate random data, such
251 * as key, IV or nonce generation, but also by functions that execute
252 * an algorithm with a randomized result, as well as functions that
253 * use randomization of intermediate computations as a countermeasure
254 * to certain attacks.
255 *
256 * Implementations should avoid returning this error after psa_crypto_init()
257 * has succeeded. Implementations should generate sufficient
258 * entropy during initialization and subsequently use a cryptographically
259 * secure pseudorandom generator (PRNG). However implementations may return
260 * this error at any time if a policy requires the PRNG to be reseeded
261 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200262#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100263
264/** The signature, MAC or hash is incorrect.
265 *
266 * Verification functions return this error if the verification
267 * calculations completed successfully, and the value to be verified
268 * was determined to be incorrect.
269 *
270 * If the value to verify has an invalid size, implementations may return
271 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200272#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100273
274/** The decrypted padding is incorrect.
275 *
276 * \warning In some protocols, when decrypting data, it is essential that
277 * the behavior of the application does not depend on whether the padding
278 * is correct, down to precise timing. Applications should prefer
279 * protocols that use authenticated encryption rather than plain
280 * encryption. If the application must perform a decryption of
281 * unauthenticated data, the application writer should take care not
282 * to reveal whether the padding is invalid.
283 *
284 * Implementations should strive to make valid and invalid padding
285 * as close as possible to indistinguishable to an external observer.
286 * In particular, the timing of a decryption operation should not
287 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200288#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100289
David Saadab4ecc272019-02-14 13:48:10 +0200290/** Return this error when there's insufficient data when attempting
291 * to read from a resource. */
292#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100293
Ronald Croncf56a0a2020-08-04 09:51:30 +0200294/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100295 */
David Saadab4ecc272019-02-14 13:48:10 +0200296#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100297
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100298/** Stored data has been corrupted.
299 *
300 * This error indicates that some persistent storage has suffered corruption.
301 * It does not indicate the following situations, which have specific error
302 * codes:
303 *
304 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
305 * - A communication error between the cryptoprocessor and its external
306 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
307 * - When the storage is in a valid state but is full - use
308 * #PSA_ERROR_INSUFFICIENT_STORAGE.
309 * - When the storage fails for other reasons - use
310 * #PSA_ERROR_STORAGE_FAILURE.
311 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
312 *
313 * \note A storage corruption does not indicate that any data that was
314 * previously read is invalid. However this previously read data might no
315 * longer be readable from storage.
316 *
317 * When a storage failure occurs, it is no longer possible to ensure the
318 * global integrity of the keystore.
319 */
320#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
321
gabor-mezei-armfe309242020-11-09 17:39:56 +0100322/** Data read from storage is not valid for the implementation.
323 *
324 * This error indicates that some data read from storage does not have a valid
325 * format. It does not indicate the following situations, which have specific
326 * error codes:
327 *
328 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
329 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
330 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
331 *
332 * This error is typically a result of either storage corruption on a
333 * cleartext storage backend, or an attempt to read data that was
334 * written by an incompatible version of the library.
335 */
336#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
337
Gilles Peskine45873ce2023-01-04 19:50:27 +0100338/* *INDENT-ON* */
339
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100340/**@}*/
341
342/** \defgroup crypto_types Key and algorithm types
343 * @{
344 */
345
Gilles Peskine79733992022-06-20 18:41:20 +0200346/* Note that key type values, including ECC family and DH group values, are
347 * embedded in the persistent key store, as part of key metadata. As a
348 * consequence, they must not be changed (unless the storage format version
349 * changes).
350 */
351
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100352/** An invalid key type value.
353 *
354 * Zero is not the encoding of any key type.
355 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100356#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100357
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100358/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100359 *
360 * Key types defined by this standard will never have the
361 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
362 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
363 * respect the bitwise structure used by standard encodings whenever practical.
364 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100365#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100366
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100367#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100368#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
369#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
370#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100371#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100372
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100373#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100374
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100375/** Whether a key type is vendor-defined.
376 *
377 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
378 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100379#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
380 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
381
382/** Whether a key type is an unstructured array of bytes.
383 *
384 * This encompasses both symmetric keys and non-key data.
385 */
386#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100387 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
388 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100389
390/** Whether a key type is asymmetric: either a key pair or a public key. */
391#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
392 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
393 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
394 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
395/** Whether a key type is the public part of a key pair. */
396#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
397 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
398/** Whether a key type is a key pair containing a private part and a public
399 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200400#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100401 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
402/** The key pair type corresponding to a public key type.
403 *
404 * You may also pass a key pair type as \p type, it will be left unchanged.
405 *
406 * \param type A public key type or key pair type.
407 *
408 * \return The corresponding key pair type.
409 * If \p type is not a public key or a key pair,
410 * the return value is undefined.
411 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200412#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100413 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
414/** The public key type corresponding to a key pair type.
415 *
416 * You may also pass a key pair type as \p type, it will be left unchanged.
417 *
418 * \param type A public key type or key pair type.
419 *
420 * \return The corresponding public key type.
421 * If \p type is not a public key or a key pair,
422 * the return value is undefined.
423 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200424#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100425 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
426
427/** Raw data.
428 *
429 * A "key" of this type cannot be used for any cryptographic operation.
430 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100431#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100432
433/** HMAC key.
434 *
435 * The key policy determines which underlying hash algorithm the key can be
436 * used for.
437 *
438 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100439 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100440 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100441#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100442
443/** A secret for key derivation.
444 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200445 * This key type is for high-entropy secrets only. For low-entropy secrets,
446 * #PSA_KEY_TYPE_PASSWORD should be used instead.
447 *
448 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
449 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
450 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100451 * The key policy determines which key derivation algorithm the key
452 * can be used for.
453 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100454#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100455
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200456/** A low-entropy secret for password hashing or key derivation.
457 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200458 * This key type is suitable for passwords and passphrases which are typically
459 * intended to be memorizable by humans, and have a low entropy relative to
460 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200461 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200462 * for such keys. It is not suitable for passwords with extremely low entropy,
463 * such as numerical PINs.
464 *
465 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
466 * key derivation algorithms. Algorithms that accept such an input were
467 * designed to accept low-entropy secret and are known as password hashing or
468 * key stretching algorithms.
469 *
470 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
471 * key derivation algorithms, as the algorithms that take such an input expect
472 * it to be high-entropy.
473 *
474 * The key policy determines which key derivation algorithm the key can be
475 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200476 */
Manuel Pégourié-Gonnardc16033e2021-04-30 11:59:40 +0200477#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200478
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200479/** A secret value that can be used to verify a password hash.
480 *
481 * The key policy determines which key derivation algorithm the key
482 * can be used for, among the same permissible subset as for
483 * #PSA_KEY_TYPE_PASSWORD.
484 */
485#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)
486
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200487/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200488 *
489 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200490 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200491 */
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200492#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200493
Gilles Peskine737c6be2019-05-21 16:01:06 +0200494/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100495 *
496 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
497 * 32 bytes (AES-256).
498 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100499#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100500
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200501/** Key for a cipher, AEAD or MAC algorithm based on the
502 * ARIA block cipher. */
503#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)
504
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100505/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
506 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100507 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
508 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100509 *
510 * Note that single DES and 2-key 3DES are weak and strongly
511 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
512 * is weak and deprecated and should only be used in legacy protocols.
513 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100514#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100515
Gilles Peskine737c6be2019-05-21 16:01:06 +0200516/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100517 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100518#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100519
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200520/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
521 *
522 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
523 *
Gilles Peskine14d35542022-03-10 18:36:37 +0100524 * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
525 * 12-byte nonces.
526 *
527 * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
528 * with the initial counter value 1, you can process and discard a
529 * 64-byte block before the real data.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200530 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100531#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200532
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100533/** RSA public key.
534 *
535 * The size of an RSA key is the bit size of the modulus.
536 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100537#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100538/** RSA key pair (private and public key).
539 *
540 * The size of an RSA key is the bit size of the modulus.
541 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100542#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100543/** Whether a key type is an RSA key (pair or public-only). */
544#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200545 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100546
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100547#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100548#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
549#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100550/** Elliptic curve key pair.
551 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100552 * The size of an elliptic curve key is the bit size associated with the curve,
553 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
554 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
555 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100556 * \param curve A value of type ::psa_ecc_family_t that
557 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100558 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200559#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
560 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100561/** Elliptic curve public key.
562 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100563 * The size of an elliptic curve public key is the same as the corresponding
564 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
565 * `PSA_ECC_FAMILY_xxx` curve families).
566 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100567 * \param curve A value of type ::psa_ecc_family_t that
568 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100569 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100570#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
571 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
572
573/** Whether a key type is an elliptic curve key (pair or public-only). */
574#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200575 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100576 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100577/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200578#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100579 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200580 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100581/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100582#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
583 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
584 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
585
586/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100587#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
588 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100589 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
590 0))
591
Przemyslaw Stekiel6d3d18b2022-01-20 22:41:17 +0100592/** Check if the curve of given family is Weierstrass elliptic curve. */
593#define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
594
Gilles Peskine228abc52019-12-03 17:24:19 +0100595/** SEC Koblitz curves over prime fields.
596 *
597 * This family comprises the following curves:
598 * secp192k1, secp224k1, secp256k1.
599 * They are defined in _Standards for Efficient Cryptography_,
600 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
601 * https://www.secg.org/sec2-v2.pdf
602 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100603#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100604
605/** SEC random curves over prime fields.
606 *
607 * This family comprises the following curves:
608 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
609 * They are defined in _Standards for Efficient Cryptography_,
610 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
611 * https://www.secg.org/sec2-v2.pdf
612 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100613#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100614/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100615#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100616
617/** SEC Koblitz curves over binary fields.
618 *
619 * This family comprises the following curves:
620 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
621 * They are defined in _Standards for Efficient Cryptography_,
622 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
623 * https://www.secg.org/sec2-v2.pdf
624 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100625#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100626
627/** SEC random curves over binary fields.
628 *
629 * This family comprises the following curves:
630 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
631 * They are defined in _Standards for Efficient Cryptography_,
632 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
633 * https://www.secg.org/sec2-v2.pdf
634 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100635#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100636
637/** SEC additional random curves over binary fields.
638 *
639 * This family comprises the following curve:
640 * sect163r2.
641 * It is defined in _Standards for Efficient Cryptography_,
642 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
643 * https://www.secg.org/sec2-v2.pdf
644 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100645#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100646
647/** Brainpool P random curves.
648 *
649 * This family comprises the following curves:
650 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
651 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
652 * It is defined in RFC 5639.
653 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100654#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100655
656/** Curve25519 and Curve448.
657 *
658 * This family comprises the following Montgomery curves:
659 * - 255-bit: Bernstein et al.,
660 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
661 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
662 * - 448-bit: Hamburg,
663 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
664 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
665 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100666#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100667
Gilles Peskine67546802021-02-24 21:49:40 +0100668/** The twisted Edwards curves Ed25519 and Ed448.
669 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100670 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100671 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100672 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100673 *
674 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100675 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100676 * to Curve25519.
677 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
678 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
679 * to Curve448.
680 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
681 */
682#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
683
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100684#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100685#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
686#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100687/** Diffie-Hellman key pair.
688 *
Paul Elliott75e27032020-06-03 15:17:39 +0100689 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100690 * Diffie-Hellman group to be used.
691 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200692#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
693 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100694/** Diffie-Hellman public key.
695 *
Paul Elliott75e27032020-06-03 15:17:39 +0100696 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100697 * Diffie-Hellman group to be used.
698 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200699#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
700 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
701
702/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
703#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200704 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200705 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
706/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200707#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200708 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200709 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200710/** Whether a key type is a Diffie-Hellman public key. */
711#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
712 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
713 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
714
715/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100716#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
717 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200718 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
719 0))
720
Gilles Peskine228abc52019-12-03 17:24:19 +0100721/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
722 *
723 * This family includes groups with the following key sizes (in bits):
724 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
725 * all of these sizes or only a subset.
726 */
Paul Elliott75e27032020-06-03 15:17:39 +0100727#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100728
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100729#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100730 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100731/** The block size of a block cipher.
732 *
733 * \param type A cipher key type (value of type #psa_key_type_t).
734 *
735 * \return The block size for a block cipher, or 1 for a stream cipher.
736 * The return value is undefined if \p type is not a supported
737 * cipher key type.
738 *
739 * \note It is possible to build stream cipher algorithms on top of a block
740 * cipher, for example CTR mode (#PSA_ALG_CTR).
741 * This macro only takes the key type into account, so it cannot be
742 * used to determine the size of the data that #psa_cipher_update()
743 * might buffer for future processing in general.
744 *
745 * \note This macro returns a compile-time constant if its argument is one.
746 *
747 * \warning This macro may evaluate its argument multiple times.
748 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100749#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100750 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100751 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100752 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100753
Gilles Peskine79733992022-06-20 18:41:20 +0200754/* Note that algorithm values are embedded in the persistent key store,
755 * as part of key metadata. As a consequence, they must not be changed
756 * (unless the storage format version changes).
757 */
758
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100759/** Vendor-defined algorithm flag.
760 *
761 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
762 * bit set. Vendors who define additional algorithms must use an encoding with
763 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
764 * used by standard encodings whenever practical.
765 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100766#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100767
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100768#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100769#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
770#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100771#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100772#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
773#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
774#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
775#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
776#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100777
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100778/** Whether an algorithm is vendor-defined.
779 *
780 * See also #PSA_ALG_VENDOR_FLAG.
781 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100782#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
783 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
784
785/** Whether the specified algorithm is a hash algorithm.
786 *
787 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
788 *
789 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
790 * This macro may return either 0 or 1 if \p alg is not a supported
791 * algorithm identifier.
792 */
793#define PSA_ALG_IS_HASH(alg) \
794 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
795
796/** Whether the specified algorithm is a MAC algorithm.
797 *
798 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
799 *
800 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
801 * This macro may return either 0 or 1 if \p alg is not a supported
802 * algorithm identifier.
803 */
804#define PSA_ALG_IS_MAC(alg) \
805 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
806
807/** Whether the specified algorithm is a symmetric cipher algorithm.
808 *
809 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
810 *
811 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
812 * This macro may return either 0 or 1 if \p alg is not a supported
813 * algorithm identifier.
814 */
815#define PSA_ALG_IS_CIPHER(alg) \
816 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
817
818/** Whether the specified algorithm is an authenticated encryption
819 * with associated data (AEAD) algorithm.
820 *
821 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
822 *
823 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
824 * This macro may return either 0 or 1 if \p alg is not a supported
825 * algorithm identifier.
826 */
827#define PSA_ALG_IS_AEAD(alg) \
828 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
829
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200830/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200831 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100832 *
833 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
834 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200835 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100836 * This macro may return either 0 or 1 if \p alg is not a supported
837 * algorithm identifier.
838 */
839#define PSA_ALG_IS_SIGN(alg) \
840 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
841
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200842/** Whether the specified algorithm is an asymmetric encryption algorithm,
843 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100844 *
845 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
846 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200847 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100848 * This macro may return either 0 or 1 if \p alg is not a supported
849 * algorithm identifier.
850 */
851#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
852 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
853
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100854/** Whether the specified algorithm is a key agreement algorithm.
855 *
856 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
857 *
858 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
859 * This macro may return either 0 or 1 if \p alg is not a supported
860 * algorithm identifier.
861 */
862#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100863 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100864
865/** Whether the specified algorithm is a key derivation algorithm.
866 *
867 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
868 *
869 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
870 * This macro may return either 0 or 1 if \p alg is not a supported
871 * algorithm identifier.
872 */
873#define PSA_ALG_IS_KEY_DERIVATION(alg) \
874 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
875
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200876/** Whether the specified algorithm is a key stretching / password hashing
877 * algorithm.
878 *
879 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200880 * that is suitable for use with a low-entropy secret such as a password.
881 * Equivalently, it's a key derivation algorithm that uses a
882 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200883 *
884 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
885 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +0100886 * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200887 * otherwise. This macro may return either 0 or 1 if \p alg is not a
888 * supported algorithm identifier.
889 */
890#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
891 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
892 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
893
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200894/** An invalid algorithm identifier value. */
895#define PSA_ALG_NONE ((psa_algorithm_t)0)
896
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100897#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100898/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100899#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100900/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100901#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100902/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100903#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100904/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100905#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100906/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100907#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100908/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100909#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100910/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100911#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100912/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100913#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100914/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100915#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100916/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100917#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100918/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100919#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100920/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100921#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100922/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100923#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100924/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100925 *
926 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
927 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
928 * has the same output size and a (theoretically) higher security strength.
929 */
Gilles Peskine27354692021-03-03 17:45:06 +0100930#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100931
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100932/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100933 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100934 * This value may be used to form the algorithm usage field of a policy
935 * for a signature algorithm that is parametrized by a hash. The key
936 * may then be used to perform operations using the same signature
937 * algorithm parametrized with any supported hash.
938 *
939 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskineacd2d0e2021-10-04 18:10:38 +0200940 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100941 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100942 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100943 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
944 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100945 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200946 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100947 * ```
948 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100949 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100950 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
951 * call to sign or verify a message may use a different hash.
952 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200953 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
954 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
955 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100956 * ```
957 *
958 * This value may not be used to build other algorithms that are
959 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100960 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100961 *
962 * This value may not be used to build an algorithm specification to
963 * perform an operation. It is only valid to build policies.
964 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100965#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100966
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100967#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100968#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100969/** Macro to build an HMAC algorithm.
970 *
971 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
972 *
973 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
974 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
975 *
976 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100977 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100978 * hash algorithm.
979 */
980#define PSA_ALG_HMAC(hash_alg) \
981 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
982
983#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
984 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
985
986/** Whether the specified algorithm is an HMAC algorithm.
987 *
988 * HMAC is a family of MAC algorithms that are based on a hash function.
989 *
990 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
991 *
992 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
993 * This macro may return either 0 or 1 if \p alg is not a supported
994 * algorithm identifier.
995 */
996#define PSA_ALG_IS_HMAC(alg) \
997 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
998 PSA_ALG_HMAC_BASE)
999
1000/* In the encoding of a MAC algorithm, the bits corresponding to
1001 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
1002 * truncated. As an exception, the value 0 means the untruncated algorithm,
1003 * whatever its length is. The length is encoded in 6 bits, so it can
1004 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
1005 * to full length is correctly encoded as 0 and any non-trivial truncation
1006 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +01001007#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
1008#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001009
Steven Cooremand927ed72021-02-22 19:59:35 +01001010/* In the encoding of a MAC algorithm, the bit corresponding to
1011 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001012 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1013 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001014 * same base class and having a (potentially truncated) MAC length greater or
1015 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
1016#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1017
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001018/** Macro to build a truncated MAC algorithm.
1019 *
1020 * A truncated MAC algorithm is identical to the corresponding MAC
1021 * algorithm except that the MAC value for the truncated algorithm
1022 * consists of only the first \p mac_length bytes of the MAC value
1023 * for the untruncated algorithm.
1024 *
1025 * \note This macro may allow constructing algorithm identifiers that
1026 * are not valid, either because the specified length is larger
1027 * than the untruncated MAC or because the specified length is
1028 * smaller than permitted by the implementation.
1029 *
1030 * \note It is implementation-defined whether a truncated MAC that
1031 * is truncated to the same length as the MAC of the untruncated
1032 * algorithm is considered identical to the untruncated algorithm
1033 * for policy comparison purposes.
1034 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001035 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001036 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001037 * is true). This may be a truncated or untruncated
1038 * MAC algorithm.
1039 * \param mac_length Desired length of the truncated MAC in bytes.
1040 * This must be at most the full length of the MAC
1041 * and must be at least an implementation-specified
1042 * minimum. The implementation-specified minimum
1043 * shall not be zero.
1044 *
1045 * \return The corresponding MAC algorithm with the specified
1046 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001047 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001048 * MAC algorithm or if \p mac_length is too small or
1049 * too large for the specified MAC algorithm.
1050 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001051#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1052 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1053 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001054 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1055
1056/** Macro to build the base MAC algorithm corresponding to a truncated
1057 * MAC algorithm.
1058 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001059 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001060 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001061 * is true). This may be a truncated or untruncated
1062 * MAC algorithm.
1063 *
1064 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001065 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001066 * MAC algorithm.
1067 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001068#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1069 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1070 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001071
1072/** Length to which a MAC algorithm is truncated.
1073 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001074 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001075 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001076 * is true).
1077 *
1078 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001079 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1080 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001081 * MAC algorithm.
1082 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001083#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1084 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001085
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001086/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001087 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001088 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001089 * sharing the same base algorithm, and where the (potentially truncated) MAC
1090 * length of the specific algorithm is equal to or larger then the wildcard
1091 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001092 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001093 * \note When setting the minimum required MAC length to less than the
1094 * smallest MAC length allowed by the base algorithm, this effectively
1095 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001096 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001097 * \param mac_alg A MAC algorithm identifier (value of type
1098 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1099 * is true).
1100 * \param min_mac_length Desired minimum length of the message authentication
1101 * code in bytes. This must be at most the untruncated
1102 * length of the MAC and must be at least 1.
1103 *
1104 * \return The corresponding MAC wildcard algorithm with the
1105 * specified minimum length.
1106 * \return Unspecified if \p mac_alg is not a supported MAC
1107 * algorithm or if \p min_mac_length is less than 1 or
1108 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001109 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001110#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1111 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1112 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001113
Bence Szépkútia2945512020-12-03 21:40:17 +01001114#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001115/** The CBC-MAC construction over a block cipher
1116 *
1117 * \warning CBC-MAC is insecure in many cases.
1118 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1119 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001120#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001121/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001122#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001123
1124/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1125 *
1126 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1127 *
1128 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1129 * This macro may return either 0 or 1 if \p alg is not a supported
1130 * algorithm identifier.
1131 */
1132#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1133 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1134 PSA_ALG_CIPHER_MAC_BASE)
1135
1136#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1137#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1138
1139/** Whether the specified algorithm is a stream cipher.
1140 *
1141 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1142 * by applying a bitwise-xor with a stream of bytes that is generated
1143 * from a key.
1144 *
1145 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1146 *
1147 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1148 * This macro may return either 0 or 1 if \p alg is not a supported
1149 * algorithm identifier or if it is not a symmetric cipher algorithm.
1150 */
1151#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1152 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1153 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1154
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001155/** The stream cipher mode of a stream cipher algorithm.
1156 *
1157 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001158 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001159 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001160#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001161
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001162/** The CTR stream cipher mode.
1163 *
1164 * CTR is a stream cipher which is built from a block cipher.
1165 * The underlying block cipher is determined by the key type.
1166 * For example, to use AES-128-CTR, use this algorithm with
1167 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1168 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001169#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001170
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001171/** The CFB stream cipher mode.
1172 *
1173 * The underlying block cipher is determined by the key type.
1174 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001175#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001176
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001177/** The OFB stream cipher mode.
1178 *
1179 * The underlying block cipher is determined by the key type.
1180 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001181#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001182
1183/** The XTS cipher mode.
1184 *
1185 * XTS is a cipher mode which is built from a block cipher. It requires at
1186 * least one full block of input, but beyond this minimum the input
1187 * does not need to be a whole number of blocks.
1188 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001189#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001190
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001191/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1192 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001193 * \warning ECB mode does not protect the confidentiality of the encrypted data
1194 * except in extremely narrow circumstances. It is recommended that applications
1195 * only use ECB if they need to construct an operating mode that the
1196 * implementation does not provide. Implementations are encouraged to provide
1197 * the modes that applications need in preference to supporting direct access
1198 * to ECB.
1199 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001200 * The underlying block cipher is determined by the key type.
1201 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001202 * This symmetric cipher mode can only be used with messages whose lengths are a
1203 * multiple of the block size of the chosen block cipher.
1204 *
1205 * ECB mode does not accept an initialization vector (IV). When using a
1206 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1207 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001208 */
1209#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1210
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001211/** The CBC block cipher chaining mode, with no padding.
1212 *
1213 * The underlying block cipher is determined by the key type.
1214 *
1215 * This symmetric cipher mode can only be used with messages whose lengths
1216 * are whole number of blocks for the chosen block cipher.
1217 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001218#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001219
1220/** The CBC block cipher chaining mode with PKCS#7 padding.
1221 *
1222 * The underlying block cipher is determined by the key type.
1223 *
1224 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1225 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001226#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001227
Gilles Peskine679693e2019-05-06 15:10:16 +02001228#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1229
1230/** Whether the specified algorithm is an AEAD mode on a block cipher.
1231 *
1232 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1233 *
1234 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1235 * a block cipher, 0 otherwise.
1236 * This macro may return either 0 or 1 if \p alg is not a supported
1237 * algorithm identifier.
1238 */
1239#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1240 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1241 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1242
Gilles Peskine9153ec02019-02-15 13:02:02 +01001243/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001244 *
1245 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001246 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001247#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001248
Mateusz Starzyk594215b2021-10-14 12:23:06 +02001249/** The CCM* cipher mode without authentication.
1250 *
1251 * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1252 * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1253 *
1254 * The underlying block cipher is determined by the key type.
1255 *
1256 * Currently only 13-byte long IV's are supported.
1257 */
1258#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t)0x04c01300)
1259
Gilles Peskine9153ec02019-02-15 13:02:02 +01001260/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001261 *
1262 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001263 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001264#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001265
1266/** The Chacha20-Poly1305 AEAD algorithm.
1267 *
1268 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001269 *
1270 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1271 * and should reject other sizes.
1272 *
1273 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001274 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001275#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001276
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01001277/* In the encoding of an AEAD algorithm, the bits corresponding to
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001278 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1279 * The constants for default lengths follow this encoding.
1280 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001281#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1282#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001283
Steven Cooremand927ed72021-02-22 19:59:35 +01001284/* In the encoding of an AEAD algorithm, the bit corresponding to
1285 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001286 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1287 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001288 * same base class and having a tag length greater than or equal to the one
1289 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1290#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1291
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001292/** Macro to build a shortened AEAD algorithm.
1293 *
1294 * A shortened AEAD algorithm is similar to the corresponding AEAD
1295 * algorithm, but has an authentication tag that consists of fewer bytes.
1296 * Depending on the algorithm, the tag length may affect the calculation
1297 * of the ciphertext.
1298 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001299 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001300 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001301 * is true).
1302 * \param tag_length Desired length of the authentication tag in bytes.
1303 *
1304 * \return The corresponding AEAD algorithm with the specified
1305 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001306 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001307 * AEAD algorithm or if \p tag_length is not valid
1308 * for the specified AEAD algorithm.
1309 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001310#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001311 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1312 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001313 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1314 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1315
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001316/** Retrieve the tag length of a specified AEAD algorithm
1317 *
1318 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001319 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001320 * is true).
1321 *
1322 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001323 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001324 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001325 */
1326#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1327 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1328 PSA_AEAD_TAG_LENGTH_OFFSET )
1329
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001330/** Calculate the corresponding AEAD algorithm with the default tag length.
1331 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001332 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001333 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001334 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001335 * \return The corresponding AEAD algorithm with the default
1336 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001337 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001338#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001339 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001340 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1341 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1342 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001343 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001344#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1345 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1346 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001347 ref :
1348
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001349/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001350 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001351 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001352 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001353 * algorithm is equal to or larger then the minimum tag length specified by the
1354 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001355 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001356 * \note When setting the minimum required tag length to less than the
1357 * smallest tag length allowed by the base algorithm, this effectively
1358 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001359 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001360 * \param aead_alg An AEAD algorithm identifier (value of type
1361 * #psa_algorithm_t such that
1362 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1363 * \param min_tag_length Desired minimum length of the authentication tag in
1364 * bytes. This must be at least 1 and at most the largest
1365 * allowed tag length of the algorithm.
1366 *
1367 * \return The corresponding AEAD wildcard algorithm with the
1368 * specified minimum length.
1369 * \return Unspecified if \p aead_alg is not a supported
1370 * AEAD algorithm or if \p min_tag_length is less than 1
1371 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001372 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001373#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001374 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1375 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001376
Bence Szépkútia2945512020-12-03 21:40:17 +01001377#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001378/** RSA PKCS#1 v1.5 signature with hashing.
1379 *
1380 * This is the signature scheme defined by RFC 8017
1381 * (PKCS#1: RSA Cryptography Specifications) under the name
1382 * RSASSA-PKCS1-v1_5.
1383 *
1384 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1385 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001386 * This includes #PSA_ALG_ANY_HASH
1387 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001388 *
1389 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001390 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001391 * hash algorithm.
1392 */
1393#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1394 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1395/** Raw PKCS#1 v1.5 signature.
1396 *
1397 * The input to this algorithm is the DigestInfo structure used by
1398 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1399 * steps 3&ndash;6.
1400 */
1401#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1402#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1403 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1404
Bence Szépkútia2945512020-12-03 21:40:17 +01001405#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001406#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t)0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001407/** RSA PSS signature with hashing.
1408 *
1409 * This is the signature scheme defined by RFC 8017
1410 * (PKCS#1: RSA Cryptography Specifications) under the name
1411 * RSASSA-PSS, with the message generation function MGF1, and with
Tuvshinzaya Erdenekhuu44baacd2022-06-17 10:25:05 +01001412 * a salt length equal to the length of the hash, or the largest
1413 * possible salt length for the algorithm and key size if that is
1414 * smaller than the hash length. The specified hash algorithm is
1415 * used to hash the input message, to create the salted hash, and
1416 * for the mask generation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001417 *
1418 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1419 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001420 * This includes #PSA_ALG_ANY_HASH
1421 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001422 *
1423 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001424 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001425 * hash algorithm.
1426 */
1427#define PSA_ALG_RSA_PSS(hash_alg) \
1428 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001429
1430/** RSA PSS signature with hashing with relaxed verification.
1431 *
1432 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1433 * but allows an arbitrary salt length (including \c 0) when verifying a
1434 * signature.
1435 *
1436 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1437 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1438 * This includes #PSA_ALG_ANY_HASH
1439 * when specifying the algorithm in a usage policy.
1440 *
1441 * \return The corresponding RSA PSS signature algorithm.
1442 * \return Unspecified if \p hash_alg is not a supported
1443 * hash algorithm.
1444 */
1445#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1446 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1447
1448/** Whether the specified algorithm is RSA PSS with standard salt.
1449 *
1450 * \param alg An algorithm value or an algorithm policy wildcard.
1451 *
1452 * \return 1 if \p alg is of the form
1453 * #PSA_ALG_RSA_PSS(\c hash_alg),
1454 * where \c hash_alg is a hash algorithm or
1455 * #PSA_ALG_ANY_HASH. 0 otherwise.
1456 * This macro may return either 0 or 1 if \p alg is not
1457 * a supported algorithm identifier or policy.
1458 */
1459#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001460 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1461
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001462/** Whether the specified algorithm is RSA PSS with any salt.
1463 *
1464 * \param alg An algorithm value or an algorithm policy wildcard.
1465 *
1466 * \return 1 if \p alg is of the form
1467 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1468 * where \c hash_alg is a hash algorithm or
1469 * #PSA_ALG_ANY_HASH. 0 otherwise.
1470 * This macro may return either 0 or 1 if \p alg is not
1471 * a supported algorithm identifier or policy.
1472 */
1473#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1474 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1475
1476/** Whether the specified algorithm is RSA PSS.
1477 *
1478 * This includes any of the RSA PSS algorithm variants, regardless of the
1479 * constraints on salt length.
1480 *
1481 * \param alg An algorithm value or an algorithm policy wildcard.
1482 *
1483 * \return 1 if \p alg is of the form
1484 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1485 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1486 * where \c hash_alg is a hash algorithm or
1487 * #PSA_ALG_ANY_HASH. 0 otherwise.
1488 * This macro may return either 0 or 1 if \p alg is not
1489 * a supported algorithm identifier or policy.
1490 */
1491#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef6892de2021-10-08 16:28:32 +02001492 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1493 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001494
Bence Szépkútia2945512020-12-03 21:40:17 +01001495#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001496/** ECDSA signature with hashing.
1497 *
1498 * This is the ECDSA signature scheme defined by ANSI X9.62,
1499 * with a random per-message secret number (*k*).
1500 *
1501 * The representation of the signature as a byte string consists of
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001502 * the concatenation of the signature values *r* and *s*. Each of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001503 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1504 * of the base point of the curve in octets. Each value is represented
1505 * in big-endian order (most significant octet first).
1506 *
1507 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1508 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001509 * This includes #PSA_ALG_ANY_HASH
1510 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001511 *
1512 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001513 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001514 * hash algorithm.
1515 */
1516#define PSA_ALG_ECDSA(hash_alg) \
1517 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1518/** ECDSA signature without hashing.
1519 *
1520 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1521 * without specifying a hash algorithm. This algorithm may only be
1522 * used to sign or verify a sequence of bytes that should be an
1523 * already-calculated hash. Note that the input is padded with
1524 * zeros on the left or truncated on the left as required to fit
1525 * the curve size.
1526 */
1527#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001528#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001529/** Deterministic ECDSA signature with hashing.
1530 *
1531 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1532 *
1533 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1534 *
1535 * Note that when this algorithm is used for verification, signatures
1536 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1537 * same private key are accepted. In other words,
1538 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1539 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1540 *
1541 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1542 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001543 * This includes #PSA_ALG_ANY_HASH
1544 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001545 *
1546 * \return The corresponding deterministic ECDSA signature
1547 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001548 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001549 * hash algorithm.
1550 */
1551#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1552 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001553#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001554#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001555 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001556 PSA_ALG_ECDSA_BASE)
1557#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001558 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001559#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1560 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1561#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1562 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1563
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001564/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1565 * using standard parameters.
1566 *
1567 * Contexts are not supported in the current version of this specification
1568 * because there is no suitable signature interface that can take the
1569 * context as a parameter. A future version of this specification may add
1570 * suitable functions and extend this algorithm to support contexts.
1571 *
1572 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1573 * In this specification, the following curves are supported:
1574 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1575 * in RFC 8032.
1576 * The curve is Edwards25519.
1577 * The hash function used internally is SHA-512.
1578 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1579 * in RFC 8032.
1580 * The curve is Edwards448.
1581 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001582 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001583 *
1584 * This algorithm can be used with psa_sign_message() and
1585 * psa_verify_message(). Since there is no prehashing, it cannot be used
1586 * with psa_sign_hash() or psa_verify_hash().
1587 *
1588 * The signature format is the concatenation of R and S as defined by
1589 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1590 * string for Ed448).
1591 */
1592#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1593
1594#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1595#define PSA_ALG_IS_HASH_EDDSA(alg) \
1596 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1597
1598/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001599 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001600 *
1601 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1602 *
1603 * This algorithm is Ed25519 as specified in RFC 8032.
1604 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001605 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001606 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001607 *
1608 * This is a hash-and-sign algorithm: to calculate a signature,
1609 * you can either:
1610 * - call psa_sign_message() on the message;
1611 * - or calculate the SHA-512 hash of the message
1612 * with psa_hash_compute()
1613 * or with a multi-part hash operation started with psa_hash_setup(),
1614 * using the hash algorithm #PSA_ALG_SHA_512,
1615 * then sign the calculated hash with psa_sign_hash().
1616 * Verifying a signature is similar, using psa_verify_message() or
1617 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001618 */
1619#define PSA_ALG_ED25519PH \
1620 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1621
1622/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1623 * using SHAKE256 and the Edwards448 curve.
1624 *
1625 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1626 *
1627 * This algorithm is Ed448 as specified in RFC 8032.
1628 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001629 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001630 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001631 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001632 *
1633 * This is a hash-and-sign algorithm: to calculate a signature,
1634 * you can either:
1635 * - call psa_sign_message() on the message;
1636 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1637 * with psa_hash_compute()
1638 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001639 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001640 * then sign the calculated hash with psa_sign_hash().
1641 * Verifying a signature is similar, using psa_verify_message() or
1642 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001643 */
1644#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001645 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001646
Gilles Peskine6d400852021-02-24 21:39:52 +01001647/* Default definition, to be overridden if the library is extended with
1648 * more hash-and-sign algorithms that we want to keep out of this header
1649 * file. */
1650#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1651
Gilles Peskinef2fe31a2021-09-22 16:42:02 +02001652/** Whether the specified algorithm is a signature algorithm that can be used
1653 * with psa_sign_hash() and psa_verify_hash().
1654 *
1655 * This encompasses all strict hash-and-sign algorithms categorized by
1656 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1657 * paradigm more loosely:
1658 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1659 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1660 *
1661 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1662 *
1663 * \return 1 if alg is a signature algorithm that can be used to sign a
1664 * hash. 0 if alg is a signature algorithm that can only be used
1665 * to sign a message. 0 if alg is not a signature algorithm.
1666 * This macro can return either 0 or 1 if alg is not a
1667 * supported algorithm identifier.
1668 */
1669#define PSA_ALG_IS_SIGN_HASH(alg) \
1670 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1671 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1672 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1673
1674/** Whether the specified algorithm is a signature algorithm that can be used
1675 * with psa_sign_message() and psa_verify_message().
1676 *
1677 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1678 *
1679 * \return 1 if alg is a signature algorithm that can be used to sign a
1680 * message. 0 if \p alg is a signature algorithm that can only be used
1681 * to sign an already-calculated hash. 0 if \p alg is not a signature
1682 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1683 * supported algorithm identifier.
1684 */
1685#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
1686 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA )
1687
Gilles Peskined35b4892019-01-14 16:02:15 +01001688/** Whether the specified algorithm is a hash-and-sign algorithm.
1689 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001690 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1691 * structured in two parts: first the calculation of a hash in a way that
1692 * does not depend on the key, then the calculation of a signature from the
Gilles Peskinef7b41372021-09-22 16:15:05 +02001693 * hash value and the key. Hash-and-sign algorithms encode the hash
1694 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1695 * to extract this algorithm.
1696 *
1697 * Thus, for a hash-and-sign algorithm,
1698 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1699 * ```
1700 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1701 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1702 * ```
1703 * Most usefully, separating the hash from the signature allows the hash
1704 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1705 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1706 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001707 *
1708 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1709 *
1710 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1711 * This macro may return either 0 or 1 if \p alg is not a supported
1712 * algorithm identifier.
1713 */
1714#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskinef7b41372021-09-22 16:15:05 +02001715 (PSA_ALG_IS_SIGN_HASH(alg) && \
1716 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001717
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001718/** Get the hash used by a hash-and-sign signature algorithm.
1719 *
1720 * A hash-and-sign algorithm is a signature algorithm which is
1721 * composed of two phases: first a hashing phase which does not use
1722 * the key and produces a hash of the input message, then a signing
1723 * phase which only uses the hash and the key and not the message
1724 * itself.
1725 *
1726 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1727 * #PSA_ALG_IS_SIGN(\p alg) is true).
1728 *
1729 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1730 * algorithm.
1731 * \return 0 if \p alg is a signature algorithm that does not
1732 * follow the hash-and-sign structure.
1733 * \return Unspecified if \p alg is not a signature algorithm or
1734 * if it is not supported by the implementation.
1735 */
1736#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001737 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001738 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1739 0)
1740
1741/** RSA PKCS#1 v1.5 encryption.
1742 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001743#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001744
Bence Szépkútia2945512020-12-03 21:40:17 +01001745#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001746/** RSA OAEP encryption.
1747 *
1748 * This is the encryption scheme defined by RFC 8017
1749 * (PKCS#1: RSA Cryptography Specifications) under the name
1750 * RSAES-OAEP, with the message generation function MGF1.
1751 *
1752 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1753 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1754 * for MGF1.
1755 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001756 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001757 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001758 * hash algorithm.
1759 */
1760#define PSA_ALG_RSA_OAEP(hash_alg) \
1761 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1762#define PSA_ALG_IS_RSA_OAEP(alg) \
1763 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1764#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1765 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1766 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1767 0)
1768
Bence Szépkútia2945512020-12-03 21:40:17 +01001769#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001770/** Macro to build an HKDF algorithm.
1771 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001772 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001773 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001774 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001775 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001776 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001777 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1778 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1779 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1780 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001781 * starting to generate output.
1782 *
Przemek Stekiel73f97d42022-06-03 09:05:08 +02001783 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1784 * if the salt is longer than the block size of the hash algorithm; then
1785 * pad with null bytes up to the block size. As a result, it is possible
1786 * for distinct salt inputs to result in the same outputs. To ensure
1787 * unique outputs, it is recommended to use a fixed length for salt values.
1788 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001789 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1790 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1791 *
1792 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001793 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001794 * hash algorithm.
1795 */
1796#define PSA_ALG_HKDF(hash_alg) \
1797 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1798/** Whether the specified algorithm is an HKDF algorithm.
1799 *
1800 * HKDF is a family of key derivation algorithms that are based on a hash
1801 * function and the HMAC construction.
1802 *
1803 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1804 *
1805 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1806 * This macro may return either 0 or 1 if \c alg is not a supported
1807 * key derivation algorithm identifier.
1808 */
1809#define PSA_ALG_IS_HKDF(alg) \
1810 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1811#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1812 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1813
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001814#define PSA_ALG_HKDF_EXTRACT_BASE ((psa_algorithm_t)0x08000400)
1815/** Macro to build an HKDF-Extract algorithm.
1816 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001817 * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256)` is
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001818 * HKDF-Extract using HMAC-SHA-256.
1819 *
1820 * This key derivation algorithm uses the following inputs:
Przemek Stekielb398d862022-05-18 15:43:54 +02001821 * - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001822 * - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
1823 * "extract" step.
Przemek Stekielb398d862022-05-18 15:43:54 +02001824 * The inputs are mandatory and must be passed in the order above.
1825 * Each input may only be passed once.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001826 *
1827 * \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
1828 * should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
1829 * as a separate algorithm for the sake of protocols that use it as a
1830 * building block. It may also be a slight performance optimization
1831 * in applications that use HKDF with the same salt and key but many
1832 * different info strings.
1833 *
Przemek Stekielb398d862022-05-18 15:43:54 +02001834 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1835 * if the salt is longer than the block size of the hash algorithm; then
1836 * pad with null bytes up to the block size. As a result, it is possible
1837 * for distinct salt inputs to result in the same outputs. To ensure
1838 * unique outputs, it is recommended to use a fixed length for salt values.
1839 *
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001840 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1841 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1842 *
1843 * \return The corresponding HKDF-Extract algorithm.
1844 * \return Unspecified if \p hash_alg is not a supported
1845 * hash algorithm.
1846 */
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001847#define PSA_ALG_HKDF_EXTRACT(hash_alg) \
1848 (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1849/** Whether the specified algorithm is an HKDF-Extract algorithm.
1850 *
1851 * HKDF-Extract is a family of key derivation algorithms that are based
1852 * on a hash function and the HMAC construction.
1853 *
1854 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1855 *
1856 * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
1857 * This macro may return either 0 or 1 if \c alg is not a supported
1858 * key derivation algorithm identifier.
1859 */
1860#define PSA_ALG_IS_HKDF_EXTRACT(alg) \
1861 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
1862
1863#define PSA_ALG_HKDF_EXPAND_BASE ((psa_algorithm_t)0x08000500)
1864/** Macro to build an HKDF-Expand algorithm.
1865 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001866 * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256)` is
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001867 * HKDF-Expand using HMAC-SHA-256.
1868 *
1869 * This key derivation algorithm uses the following inputs:
Przemek Stekiel459ee352022-06-02 11:16:52 +02001870 * - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001871 * - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
1872 *
1873 * The inputs are mandatory and must be passed in the order above.
1874 * Each input may only be passed once.
1875 *
1876 * \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
1877 * should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
1878 * a separate algorithm for the sake of protocols that use it as a building
1879 * block. It may also be a slight performance optimization in applications
1880 * that use HKDF with the same salt and key but many different info strings.
1881 *
1882 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1883 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1884 *
1885 * \return The corresponding HKDF-Expand algorithm.
1886 * \return Unspecified if \p hash_alg is not a supported
1887 * hash algorithm.
1888 */
1889#define PSA_ALG_HKDF_EXPAND(hash_alg) \
1890 (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Przemek Stekielebf62812022-05-11 14:16:05 +02001891/** Whether the specified algorithm is an HKDF-Expand algorithm.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001892 *
1893 * HKDF-Expand is a family of key derivation algorithms that are based
1894 * on a hash function and the HMAC construction.
1895 *
1896 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1897 *
1898 * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
1899 * This macro may return either 0 or 1 if \c alg is not a supported
1900 * key derivation algorithm identifier.
1901 */
1902#define PSA_ALG_IS_HKDF_EXPAND(alg) \
1903 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1904
Przemek Stekiela29b4882022-06-02 11:37:03 +02001905/** Whether the specified algorithm is an HKDF or HKDF-Extract or
1906 * HKDF-Expand algorithm.
1907 *
1908 *
1909 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1910 *
1911 * \return 1 if \c alg is any HKDF type algorithm, 0 otherwise.
1912 * This macro may return either 0 or 1 if \c alg is not a supported
1913 * key derivation algorithm identifier.
1914 */
1915#define PSA_ALG_IS_ANY_HKDF(alg) \
1916 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE || \
1917 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE || \
1918 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1919
Bence Szépkútia2945512020-12-03 21:40:17 +01001920#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001921/** Macro to build a TLS-1.2 PRF algorithm.
1922 *
1923 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1924 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1925 * used with either SHA-256 or SHA-384.
1926 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001927 * This key derivation algorithm uses the following inputs, which must be
1928 * passed in the order given here:
1929 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001930 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1931 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001932 *
1933 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001934 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001935 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001936 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001937 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001938 * TLS 1.2 PRF using HMAC-SHA-256.
1939 *
1940 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1941 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1942 *
1943 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001944 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001945 * hash algorithm.
1946 */
1947#define PSA_ALG_TLS12_PRF(hash_alg) \
1948 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1949
1950/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1951 *
1952 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1953 *
1954 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1955 * This macro may return either 0 or 1 if \c alg is not a supported
1956 * key derivation algorithm identifier.
1957 */
1958#define PSA_ALG_IS_TLS12_PRF(alg) \
1959 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1960#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1961 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1962
Bence Szépkútia2945512020-12-03 21:40:17 +01001963#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001964/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1965 *
1966 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1967 * from the PreSharedKey (PSK) through the application of padding
1968 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1969 * The latter is based on HMAC and can be used with either SHA-256
1970 * or SHA-384.
1971 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001972 * This key derivation algorithm uses the following inputs, which must be
1973 * passed in the order given here:
1974 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001975 * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
1976 * computation of the premaster secret. This input is optional;
1977 * if omitted, it defaults to a string of null bytes with the same length
1978 * as the secret (PSK) input.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001979 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1980 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001981 *
1982 * For the application to TLS-1.2, the seed (which is
1983 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1984 * ClientHello.Random + ServerHello.Random,
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001985 * the label is "master secret" or "extended master secret" and
1986 * the other secret depends on the key exchange specified in the cipher suite:
1987 * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
1988 * PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
1989 * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
1990 * (RFC 5489, Section 2), the other secret should be the output of the
1991 * PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
1992 * The recommended way to pass this input is to use a key derivation
1993 * algorithm constructed as
1994 * PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
1995 * and to call psa_key_derivation_key_agreement(). Alternatively,
1996 * this input may be an output of `psa_raw_key_agreement()` passed with
1997 * psa_key_derivation_input_bytes(), or an equivalent input passed with
1998 * psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
1999 * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
2000 * should be the 48-byte client challenge (the PreMasterSecret of
2001 * (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
2002 * a 46-byte random string chosen by the client. On the server, this is
2003 * typically an output of psa_asymmetric_decrypt() using
2004 * PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
2005 * with `psa_key_derivation_input_bytes()`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002006 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08002007 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002008 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
2009 *
2010 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2011 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2012 *
2013 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01002014 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002015 * hash algorithm.
2016 */
2017#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
2018 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2019
2020/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
2021 *
2022 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2023 *
2024 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
2025 * This macro may return either 0 or 1 if \c alg is not a supported
2026 * key derivation algorithm identifier.
2027 */
2028#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
2029 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
2030#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
2031 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
2032
Andrzej Kurek1fafb1f2022-09-16 07:19:49 -04002033/* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point
2034 * in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2
2035 * will use to derive the session secret, as defined by step 2 of
2036 * https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7.
2037 * Uses PSA_ALG_SHA_256.
2038 * This function takes a single input:
2039 * #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE.
2040 * The only supported curve is secp256r1 (the 256-bit curve in
2041 * #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes.
Andrzej Kureke09aff82022-09-26 10:59:31 -04002042 * The output has to be read as a single chunk of 32 bytes, defined as
2043 * PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE.
Andrzej Kurek08d34b82022-07-29 10:00:16 -04002044 */
Andrzej Kurek96b9f232022-09-26 10:30:46 -04002045#define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t)0x08000609)
Andrzej Kurek08d34b82022-07-29 10:00:16 -04002046
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002047/* This flag indicates whether the key derivation algorithm is suitable for
2048 * use on low-entropy secrets such as password - these algorithms are also
2049 * known as key stretching or password hashing schemes. These are also the
2050 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02002051 *
2052 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002053 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02002054#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002055
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02002056#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002057/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002058 *
2059 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002060 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
2061 * HMAC with the specified hash.
Pengyu Lvc1ecb252022-11-08 18:17:00 +08002062 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256)` specifies PBKDF2
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002063 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002064 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02002065 * This key derivation algorithm uses the following inputs, which must be
2066 * provided in the following order:
2067 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002068 * This input step must be used exactly once.
2069 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
2070 * This input step must be used one or more times; if used several times, the
2071 * inputs will be concatenated. This can be used to build the final salt
2072 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02002073 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002074 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002075 *
2076 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2077 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2078 *
2079 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
2080 * \return Unspecified if \p hash_alg is not a supported
2081 * hash algorithm.
2082 */
2083#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
2084 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2085
2086/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
2087 *
2088 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2089 *
2090 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
2091 * This macro may return either 0 or 1 if \c alg is not a supported
2092 * key derivation algorithm identifier.
2093 */
2094#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
2095 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002096
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002097/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
2098 *
2099 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2100 * This macro specifies the PBKDF2 algorithm constructed using the
2101 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
2102 *
2103 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02002104 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002105 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02002106#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002107
Bence Szépkútia2945512020-12-03 21:40:17 +01002108#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
2109#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002110
Gilles Peskine6843c292019-01-18 16:44:49 +01002111/** Macro to build a combined algorithm that chains a key agreement with
2112 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002113 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002114 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
2115 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
2116 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
2117 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002118 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002119 * \return The corresponding key agreement and derivation
2120 * algorithm.
2121 * \return Unspecified if \p ka_alg is not a supported
2122 * key agreement algorithm or \p kdf_alg is not a
2123 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002124 */
Gilles Peskine6843c292019-01-18 16:44:49 +01002125#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
2126 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002127
2128#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
2129 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
2130
Gilles Peskine6843c292019-01-18 16:44:49 +01002131#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
2132 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002133
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002134/** Whether the specified algorithm is a raw key agreement algorithm.
2135 *
2136 * A raw key agreement algorithm is one that does not specify
2137 * a key derivation function.
2138 * Usually, raw key agreement algorithms are constructed directly with
2139 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02002140 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002141 *
2142 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2143 *
2144 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
2145 * This macro may return either 0 or 1 if \p alg is not a supported
2146 * algorithm identifier.
2147 */
Gilles Peskine6843c292019-01-18 16:44:49 +01002148#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002149 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
2150 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01002151
2152#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
2153 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
2154
2155/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002156 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002157 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002158 * `g^{ab}` in big-endian format.
2159 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
2160 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002161 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002162#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002163
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002164/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
2165 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002166 * This includes the raw finite field Diffie-Hellman algorithm as well as
2167 * finite-field Diffie-Hellman followed by any supporter key derivation
2168 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002169 *
2170 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2171 *
2172 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
2173 * This macro may return either 0 or 1 if \c alg is not a supported
2174 * key agreement algorithm identifier.
2175 */
2176#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002177 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002178
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002179/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
2180 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002181 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002182 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
2183 * `m` is the bit size associated with the curve, i.e. the bit size of the
2184 * order of the curve's coordinate field. When `m` is not a multiple of 8,
2185 * the byte containing the most significant bit of the shared secret
2186 * is padded with zero bits. The byte order is either little-endian
2187 * or big-endian depending on the curve type.
2188 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01002189 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002190 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2191 * in little-endian byte order.
2192 * The bit size is 448 for Curve448 and 255 for Curve25519.
2193 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002194 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002195 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2196 * in big-endian byte order.
2197 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2198 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002199 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002200 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2201 * in big-endian byte order.
2202 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002203 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002204#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002205
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002206/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2207 * algorithm.
2208 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002209 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2210 * elliptic curve Diffie-Hellman followed by any supporter key derivation
2211 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002212 *
2213 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2214 *
2215 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2216 * 0 otherwise.
2217 * This macro may return either 0 or 1 if \c alg is not a supported
2218 * key agreement algorithm identifier.
2219 */
2220#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002221 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002222
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002223/** Whether the specified algorithm encoding is a wildcard.
2224 *
2225 * Wildcard values may only be used to set the usage algorithm field in
2226 * a policy, not to perform an operation.
2227 *
2228 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2229 *
2230 * \return 1 if \c alg is a wildcard algorithm encoding.
2231 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2232 * an operation).
2233 * \return This macro may return either 0 or 1 if \c alg is not a supported
2234 * algorithm identifier.
2235 */
Steven Cooremand927ed72021-02-22 19:59:35 +01002236#define PSA_ALG_IS_WILDCARD(alg) \
2237 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
2238 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
2239 PSA_ALG_IS_MAC(alg) ? \
2240 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2241 PSA_ALG_IS_AEAD(alg) ? \
2242 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01002243 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002244
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002245/** Get the hash used by a composite algorithm.
2246 *
2247 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2248 *
2249 * \return The underlying hash algorithm if alg is a composite algorithm that
2250 * uses a hash algorithm.
2251 *
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002252 * \return \c 0 if alg is not a composite algorithm that uses a hash.
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002253 */
2254#define PSA_ALG_GET_HASH(alg) \
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002255 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t)0) : 0x02000000 | ((alg) & 0x000000ff))
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002256
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002257/**@}*/
2258
2259/** \defgroup key_lifetimes Key lifetimes
2260 * @{
2261 */
2262
Gilles Peskine79733992022-06-20 18:41:20 +02002263/* Note that location and persistence level values are embedded in the
2264 * persistent key store, as part of key metadata. As a consequence, they
2265 * must not be changed (unless the storage format version changes).
2266 */
2267
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002268/** The default lifetime for volatile keys.
2269 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02002270 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002271 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002272 *
2273 * A key with this lifetime is typically stored in the RAM area of the
2274 * PSA Crypto subsystem. However this is an implementation choice.
2275 * If an implementation stores data about the key in a non-volatile memory,
2276 * it must release all the resources associated with the key and erase the
2277 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002278 */
2279#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
2280
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002281/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002282 *
2283 * A persistent key remains in storage until it is explicitly destroyed or
2284 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02002285 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002286 * provide their own mechanism (for example to perform a factory reset,
2287 * to prepare for device refurbishment, or to uninstall an application).
2288 *
2289 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02002290 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002291 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002292 */
2293#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
2294
Gilles Peskineaff11812020-05-04 19:03:10 +02002295/** The persistence level of volatile keys.
2296 *
2297 * See ::psa_key_persistence_t for more information.
2298 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002299#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02002300
2301/** The default persistence level for persistent keys.
2302 *
2303 * See ::psa_key_persistence_t for more information.
2304 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002305#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002306
2307/** A persistence level indicating that a key is never destroyed.
2308 *
2309 * See ::psa_key_persistence_t for more information.
2310 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002311#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002312
2313#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002314 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002315
2316#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002317 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002318
2319/** Whether a key lifetime indicates that the key is volatile.
2320 *
2321 * A volatile key is automatically destroyed by the implementation when
2322 * the application instance terminates. In particular, a volatile key
2323 * is automatically destroyed on a power reset of the device.
2324 *
2325 * A key that is not volatile is persistent. Persistent keys are
2326 * preserved until the application explicitly destroys them or until an
2327 * implementation-specific device management event occurs (for example,
2328 * a factory reset).
2329 *
2330 * \param lifetime The lifetime value to query (value of type
2331 * ::psa_key_lifetime_t).
2332 *
2333 * \return \c 1 if the key is volatile, otherwise \c 0.
2334 */
2335#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2336 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002337 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002338
Gilles Peskined133bb22021-04-21 20:05:59 +02002339/** Whether a key lifetime indicates that the key is read-only.
2340 *
2341 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2342 * They must be created through platform-specific means that bypass the API.
2343 *
2344 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine91466c82021-06-07 23:21:50 +02002345 * consider a platform with multiple levels of privilege, where a
2346 * low-privilege application can use a key but is not allowed to destroy
2347 * it, and the platform exposes the key to the application with a read-only
2348 * lifetime. High-privilege code can destroy the key even though the
2349 * application sees the key as read-only.
Gilles Peskined133bb22021-04-21 20:05:59 +02002350 *
2351 * \param lifetime The lifetime value to query (value of type
2352 * ::psa_key_lifetime_t).
2353 *
2354 * \return \c 1 if the key is read-only, otherwise \c 0.
2355 */
2356#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2357 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2358 PSA_KEY_PERSISTENCE_READ_ONLY)
2359
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002360/** Construct a lifetime from a persistence level and a location.
2361 *
2362 * \param persistence The persistence level
2363 * (value of type ::psa_key_persistence_t).
2364 * \param location The location indicator
2365 * (value of type ::psa_key_location_t).
2366 *
2367 * \return The constructed lifetime value.
2368 */
2369#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2370 ((location) << 8 | (persistence))
2371
Gilles Peskineaff11812020-05-04 19:03:10 +02002372/** The local storage area for persistent keys.
2373 *
2374 * This storage area is available on all systems that can store persistent
2375 * keys without delegating the storage to a third-party cryptoprocessor.
2376 *
2377 * See ::psa_key_location_t for more information.
2378 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002379#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002380
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002381#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002382
Gilles Peskine79733992022-06-20 18:41:20 +02002383/* Note that key identifier values are embedded in the
2384 * persistent key store, as part of key metadata. As a consequence, they
2385 * must not be changed (unless the storage format version changes).
2386 */
2387
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002388/** The null key identifier.
2389 */
2390#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002391/** The minimum value for a key identifier chosen by the application.
2392 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002393#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002394/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002395 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002396#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002397/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002398 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002399#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002400/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002401 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002402#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002403
Ronald Cron7424f0d2020-09-14 16:17:41 +02002404
2405#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2406
2407#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2408#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2409#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2410
2411/** Utility to initialize a key identifier at runtime.
2412 *
2413 * \param unused Unused parameter.
2414 * \param key_id Identifier of the key.
2415 */
2416static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2417 unsigned int unused, psa_key_id_t key_id )
2418{
2419 (void)unused;
2420
2421 return( key_id );
2422}
2423
2424/** Compare two key identifiers.
2425 *
2426 * \param id1 First key identifier.
2427 * \param id2 Second key identifier.
2428 *
2429 * \return Non-zero if the two key identifier are equal, zero otherwise.
2430 */
2431static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2432 mbedtls_svc_key_id_t id2 )
2433{
2434 return( id1 == id2 );
2435}
2436
Ronald Cronc4d1b512020-07-31 11:26:37 +02002437/** Check whether a key identifier is null.
2438 *
2439 * \param key Key identifier.
2440 *
2441 * \return Non-zero if the key identifier is null, zero otherwise.
2442 */
2443static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2444{
2445 return( key == 0 );
2446}
2447
Ronald Cron7424f0d2020-09-14 16:17:41 +02002448#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2449
2450#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
Antonio de Angelis67294742022-05-05 14:11:32 +01002451#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).MBEDTLS_PRIVATE(key_id) )
2452#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).MBEDTLS_PRIVATE(owner) )
Ronald Cron7424f0d2020-09-14 16:17:41 +02002453
2454/** Utility to initialize a key identifier at runtime.
2455 *
2456 * \param owner_id Identifier of the key owner.
2457 * \param key_id Identifier of the key.
2458 */
2459static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2460 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2461{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002462 return( (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2463 .MBEDTLS_PRIVATE(owner) = owner_id } );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002464}
2465
2466/** Compare two key identifiers.
2467 *
2468 * \param id1 First key identifier.
2469 * \param id2 Second key identifier.
2470 *
2471 * \return Non-zero if the two key identifier are equal, zero otherwise.
2472 */
2473static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2474 mbedtls_svc_key_id_t id2 )
2475{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002476 return( ( id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id) ) &&
2477 mbedtls_key_owner_id_equal( id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner) ) );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002478}
2479
Ronald Cronc4d1b512020-07-31 11:26:37 +02002480/** Check whether a key identifier is null.
2481 *
2482 * \param key Key identifier.
2483 *
2484 * \return Non-zero if the key identifier is null, zero otherwise.
2485 */
2486static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2487{
Gilles Peskine52bb83e2021-05-28 12:59:49 +02002488 return( key.MBEDTLS_PRIVATE(key_id) == 0 );
Ronald Cronc4d1b512020-07-31 11:26:37 +02002489}
2490
Ronald Cron7424f0d2020-09-14 16:17:41 +02002491#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002492
2493/**@}*/
2494
2495/** \defgroup policy Key policies
2496 * @{
2497 */
2498
Gilles Peskine79733992022-06-20 18:41:20 +02002499/* Note that key usage flags are embedded in the
2500 * persistent key store, as part of key metadata. As a consequence, they
2501 * must not be changed (unless the storage format version changes).
2502 */
2503
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002504/** Whether the key may be exported.
2505 *
2506 * A public key or the public part of a key pair may always be exported
2507 * regardless of the value of this permission flag.
2508 *
2509 * If a key does not have export permission, implementations shall not
2510 * allow the key to be exported in plain form from the cryptoprocessor,
2511 * whether through psa_export_key() or through a proprietary interface.
2512 * The key may however be exportable in a wrapped form, i.e. in a form
2513 * where it is encrypted by another key.
2514 */
2515#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2516
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002517/** Whether the key may be copied.
2518 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002519 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002520 * with the same policy or a more restrictive policy.
2521 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002522 * For lifetimes for which the key is located in a secure element which
2523 * enforce the non-exportability of keys, copying a key outside the secure
2524 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2525 * Copying the key inside the secure element is permitted with just
2526 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2527 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002528 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2529 * is sufficient to permit the copy.
2530 */
2531#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2532
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002533/** Whether the key may be used to encrypt a message.
2534 *
2535 * This flag allows the key to be used for a symmetric encryption operation,
2536 * for an AEAD encryption-and-authentication operation,
2537 * or for an asymmetric encryption operation,
2538 * if otherwise permitted by the key's type and policy.
2539 *
2540 * For a key pair, this concerns the public key.
2541 */
2542#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2543
2544/** Whether the key may be used to decrypt a message.
2545 *
2546 * This flag allows the key to be used for a symmetric decryption operation,
2547 * for an AEAD decryption-and-verification operation,
2548 * or for an asymmetric decryption operation,
2549 * if otherwise permitted by the key's type and policy.
2550 *
2551 * For a key pair, this concerns the private key.
2552 */
2553#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2554
2555/** Whether the key may be used to sign a message.
2556 *
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002557 * This flag allows the key to be used for a MAC calculation operation or for
2558 * an asymmetric message signature operation, if otherwise permitted by the
2559 * key’s type and policy.
2560 *
2561 * For a key pair, this concerns the private key.
2562 */
2563#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
2564
2565/** Whether the key may be used to verify a message.
2566 *
2567 * This flag allows the key to be used for a MAC verification operation or for
2568 * an asymmetric message signature verification operation, if otherwise
2569 * permitted by the key’s type and policy.
2570 *
2571 * For a key pair, this concerns the public key.
2572 */
2573#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
2574
2575/** Whether the key may be used to sign a message.
2576 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002577 * This flag allows the key to be used for a MAC calculation operation
2578 * or for an asymmetric signature operation,
2579 * if otherwise permitted by the key's type and policy.
2580 *
2581 * For a key pair, this concerns the private key.
2582 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002583#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002584
2585/** Whether the key may be used to verify a message signature.
2586 *
2587 * This flag allows the key to be used for a MAC verification operation
2588 * or for an asymmetric signature verification operation,
Tom Cosgrove1797b052022-12-04 17:19:59 +00002589 * if otherwise permitted by the key's type and policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002590 *
2591 * For a key pair, this concerns the public key.
2592 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002593#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002594
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002595/** Whether the key may be used to derive other keys or produce a password
2596 * hash.
Andrew Thoelke52d18cd2021-06-25 11:03:57 +01002597 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002598 * This flag allows the key to be used for a key derivation operation or for
Tom Cosgrove1797b052022-12-04 17:19:59 +00002599 * a key agreement operation, if otherwise permitted by the key's type and
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002600 * policy.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002601 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002602 * If this flag is present on all keys used in calls to
2603 * psa_key_derivation_input_key() for a key derivation operation, then it
2604 * permits calling psa_key_derivation_output_bytes() or
2605 * psa_key_derivation_output_key() at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002606 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002607#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002608
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002609/** Whether the key may be used to verify the result of a key derivation,
2610 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002611 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002612 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002613 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002614 * This flag allows the key to be used in a key derivation operation, if
Tom Cosgrove1797b052022-12-04 17:19:59 +00002615 * otherwise permitted by the key's type and policy.
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002616 *
2617 * If this flag is present on all keys used in calls to
2618 * psa_key_derivation_input_key() for a key derivation operation, then it
2619 * permits calling psa_key_derivation_verify_bytes() or
2620 * psa_key_derivation_verify_key() at the end of the operation.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002621 */
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002622#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002623
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002624/**@}*/
2625
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002626/** \defgroup derivation Key derivation
2627 * @{
2628 */
2629
Gilles Peskine79733992022-06-20 18:41:20 +02002630/* Key input steps are not embedded in the persistent storage, so you can
2631 * change them if needed: it's only an ABI change. */
2632
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002633/** A secret input for key derivation.
2634 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002635 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2636 * (passed to psa_key_derivation_input_key())
2637 * or the shared secret resulting from a key agreement
2638 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002639 *
2640 * The secret can also be a direct input (passed to
2641 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002642 * may not be used to derive keys: the operation will only allow
2643 * psa_key_derivation_output_bytes(),
2644 * psa_key_derivation_verify_bytes(), or
2645 * psa_key_derivation_verify_key(), but not
2646 * psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002647 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002648#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002649
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002650/** A low-entropy secret input for password hashing / key stretching.
2651 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002652 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2653 * psa_key_derivation_input_key()) or a direct input (passed to
2654 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2655 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2656 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002657 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002658 * The secret can also be a direct input (passed to
2659 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002660 * may not be used to derive keys: the operation will only allow
2661 * psa_key_derivation_output_bytes(),
2662 * psa_key_derivation_verify_bytes(), or
2663 * psa_key_derivation_verify_key(), but not
2664 * psa_key_derivation_output_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002665 */
2666#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102)
2667
Przemek Stekiel37c81c42022-04-07 13:38:53 +02002668/** A high-entropy additional secret input for key derivation.
2669 *
2670 * This is typically the shared secret resulting from a key agreement obtained
2671 * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
2672 * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
2673 * a direct input passed to `psa_key_derivation_input_bytes()`.
2674 */
2675#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
2676 ((psa_key_derivation_step_t)0x0103)
2677
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002678/** A label for key derivation.
2679 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002680 * This should be a direct input.
2681 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002682 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002683#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002684
2685/** A salt for key derivation.
2686 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002687 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002688 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2689 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002690 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002691#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002692
2693/** An information string for key derivation.
2694 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002695 * This should be a direct input.
2696 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002697 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002698#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002699
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002700/** A seed for key derivation.
2701 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002702 * This should be a direct input.
2703 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002704 */
2705#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2706
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002707/** A cost parameter for password hashing / key stretching.
2708 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002709 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002710 */
2711#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205)
2712
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002713/**@}*/
2714
Bence Szépkútib639d432021-04-21 10:33:54 +02002715/** \defgroup helper_macros Helper macros
2716 * @{
2717 */
2718
2719/* Helper macros */
2720
2721/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2722 * regardless of the tag length they encode.
2723 *
2724 * \param aead_alg_1 An AEAD algorithm identifier.
2725 * \param aead_alg_2 An AEAD algorithm identifier.
2726 *
2727 * \return 1 if both identifiers refer to the same AEAD algorithm,
2728 * 0 otherwise.
2729 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2730 * a supported AEAD algorithm.
2731 */
2732#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2733 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2734 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2735
2736/**@}*/
2737
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002738#endif /* PSA_CRYPTO_VALUES_H */